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On the Reconstruction of Block-Sparse Signals With
an Optimal Number of Measurements

Mihailo Stojnic, Farzad Parvaresh, and Babak Hassibi

Abstract—Let be an by matrix � � which is
an instance of a real random Gaussian ensemble. In compressed
sensing we are interested in finding the sparsest solution to the
system of equations � � � for a given �. In general, whenever
the sparsity of � is smaller than half the dimension of � then with
overwhelming probability over the sparsest solution is unique
and can be found by an exhaustive search over � with an exponen-
tial time complexity for any �. The recent work of Candés, Donoho,
and Tao shows that minimization of the � norm of � subject to
� � � results in the sparsest solution provided the sparsity of

�, say , is smaller than a certain threshold for a given number
of measurements. Specifically, if the dimension of � approaches
the dimension of �, the sparsity of � should be � ��	 N.
Here, we consider the case where � is block sparse, i.e., � consists
of � blocks where each block is of length and is either a
zero vector or a nonzero vector (under nonzero vector we consider
a vector that can have both, zero and nonzero components). Instead
of �-norm relaxation, we consider the following relaxation:


��
�

� � � � � � �  � ������� �� � � �

(*)
where  � ��� �� �� �� �� �� � � � � � for �
� � � � � . Our main result is that as , (*) finds the
sparsest solution to � � �, with overwhelming probability in

, for any � whose sparsity is �� �� � �, provided
� � , and � ������� � ��. The relaxation

given in (*) can be solved in polynomial time using semi-definite
programming.

Index Terms—Compressed sensing, block-sparse signals, semi-
definite programming.

I. INTRODUCTION

L ET be an by instance of the real random Gaussian
ensemble and be an dimensional signal from with

sparsity , i.e., only elements of are nonzero. Set
which is an dimensional vector in . In compressed

sensing is called the measurement vector and the Gaussian
measurement matrix. Compressed sensing has applications in
many different fields such as data mining [36], error-correcting
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codes [9], [10], [42], DNA microarrays [25], [39], [49], as-
tronomy, tomography, digital photography, and A/D converters.

In general, when one can hope that the solution of
is unique for large enough which is much smaller

than . In other words, instead of sensing an dimensional
signal with sparsity we can measure random linear func-
tionals of where and find by solving the under-de-
termined system of equations with the extra condition
that is sparse. The reconstruction can be presented as the
following optimization problem:

(1)

where the norm or the Hamming norm is the number of
nonzero elements of .

Define and . In [1], the authors show
that if then for any measurement matrix one
can construct different sparse signals and such that

. In addition, if then there exists an
such that the sparse solution to is unique for any

; specifically, for random Gaussian measurements the unique-
ness property holds with overwhelming probability in the choice
of . However, the reconstruction of for a given can be
cumbersome. One of the fundamental questions in compressed
sensing is whether one can efficiently recover using an optimal
number of measurements.

A. Prior Work

A naive exhaustive search can reconstruct the sparse solu-

tion to the systems of equations with

complexity. Recently, Candés, Romberg, Tao and Donoho [7],
[8], [16], show that the optimization can be relaxed to mini-
mization if the sparsity of the signal is .
In this case, the sparse signal is the solution to the following
norm optimization with high probability in the choice of :

(2)

This optimization can be solved efficiently using linear pro-
gramming. Faster algorithms were discovered in [12], [27], [28],
[50]. For a comprehensive list of papers and results in com-
pressed sensing please check [41].

Donoho and Tanner [17], [20], [21] determined the region
for which the and coincide under Gaussian mea-

surements for every (or almost every) -sparse vector . From
a refinement of their result given in [23], when approaches 1
the sparsity has to be smaller than . Notice that, ideally,
one should be able to recover the signal if the sparsity is less than
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(assuming that ). We have to mention that with Van-
dermonde measurements we can recover the sparse signal with
optimal number of measurements efficiently [1]. However, it is
not clear whether the resulting algorithms (which are variations
of recovering a measure from its moments) are robust with re-
spect to imperfections, such as noise [15], [35], [47], [51]. Also,
results similar to those valid for Gaussian matrices have been
established for several different ensembles, e.g., Fourier (see
e.g., [8]).

In this paper, we will focus on developing robust efficient
algorithms that work for Gaussian measurements.

B. Our Main Result

We consider the reconstruction of block-sparse signals
from their random measurements. A signal of dimension
which consists of blocks (see Fig. 1) of size
is -block sparse if only blocks of the signal out of are
nonzero (under nonzero block we consider a block that can
have both zero and nonzero components). Such signals arise
in various applications, e.g., DNA microarrays, equalization
of sparse communication channels, magnetoencephalography,
etc. (see, e.g., [3], [13], [24], [25], [29], [38], [46], [49], and the
references therein). We measure the signal with an
random Gaussian matrix (for the ease of the exposition
we will assume that is an integer; however, our results will
hold even if is not an integer). More on a scenario similar
to this one the interested reader can find in e.g., [11], [14],
[40], [45], [46]. Using the relaxation for reconstructing
does not exploit the fact that the signal is block-sparse, i.e.,
that the potential nonzero entries can occur only in consecutive
positions. Instead, different techniques were used throughout
the literature. In [46] the authors adapt standard orthogonal
matching pursuit algorithm (used normally in case ) to the
block-sparse case. In [11], [14], [30], and [45], the authors use
certain convex or non-convex relaxations (mostly different from
the standard ) and discuss their performances. Generalization
of the block-sparse problem to the case when the number of
blocks is infinite was considered in the most recent paper [40].
We should also mention that the above mentioned works [11],
[14], [40], [45], [46] indeed consider the block structure of the
unknown signal , i.e., the same signal structure that we are
analyzing in this paper. However, what is different in our case
is the structure of the measurement matrix . Namely, while in
other cases the measurement matrix is assumed to be block
diagonal in our case the matrix is assumed to be full.

In this paper, we consider the following convex relaxation for
the recovery of :

(3)

where , for
. If one considers optimization as minimization

of the sum of the magnitudes of the components of a vector
then (3) can be viewed in the same way. The only difference is
that in (3) we have as objective function norm of the vector

Fig. 1. Block sparse model.

whose components are now actually vec-
tors . We
will analyze theoretical performance of (3) and show that for a
large enough , independent of , if approaches one, can
approach 1/2 and the optimization of (3) will give the unique
sparse solution with overwhelming probability over the choice
of for any (given that we mentioned earlier that
is not possible our result is then near optimal). We will also
briefly outline how (3) can be posed as a semi-definite program
and therefore solved efficiently in polynomial time by a host of
numerical methods. Furthermore, we will demonstrate how (3)
can be adapted for practical considerations. Numerical results
that we will present indicate that in practice a modified version
of (3) (given in Section IV) will even for moderate values of
be able to recover most of the signals with sparsity fairly close
to the number of measurements. Before proceeding further, we
state the main result of this work in the following theorem.

Theorem 1: Let be an matrix. Further, let be
an instance of random Gaussian ensemble. Also, assume that
tends to infinity, , and the block-sparsity of is smaller
than . Assume that is a small positive number, i.e.,

and . Then, there are and
such that all block-sparse signals that have blocks

of length can be reconstructed with overwhelming probability
from by solving the optimization problem (3).

Remark: Three points from the above theorem deserve clar-
ification: 1) For any two real functions and we have

if there exist constants and such that
for any ; 2) for any two real functions

and we have if there exist constants
and such that for any ; and

3) under overwhelming probability we assume a probability
such that for some constant .

We will prove the above Theorem in Section 3. Our proof
technique does not use the restricted isometry property of the
measurement matrix , introduced in the work of Candés and
Tao [8] and further discussed in [4], nor does it rely on the

-neighborliness of the projected polytopes presented in the
work of Donoho and Tanner [17], [20], [21], [48]. Instead, we
look at the null-space of the measurement matrix and use a
generalization of a necessary and sufficient condition given in
[43] for the equivalence of (1) and (3).
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II. NULL-SPACE CHARACTERIZATION

In this section, we introduce a necessary and sufficient con-
dition on the measurement matrix so that the optimizations
of (1) and (3) are equivalent for all -block sparse (see [18],
[26], [31]–[33], [37], [43], and [53] for variations of this re-
sult). Throughout the paper, we set to be the set of all sub-
sets of size of and by we mean the com-
plement of the set with respect to , i.e.,

.
Theorem 2: Assume that is a measurement matrix.

Then the solutions of (1) and (3) coincide for any -block sparse
if and only if for all nonzero where and all

(4)

where , for
.

Proof: The proof goes along the lines similar to those in the
proofs in [18], [26], [31]–[33], [37], [43], and [53]. The only dif-
ference is that each component of the vector is now replaced by
the two norm of the subvector. First, we prove that if (4) is satis-
fied then the solution of (3) coincides with the solution (1). Let

be the solution of (1) and let be the solution of (3). Also, let
. Further, let , for

and ,
for . Set to be the support of , then we can
write

(5)

Since lies in the null-space of , we have
. Thus, (5) implies

, which is a contradiction. Therefore, .
Now we prove the converse. Assume (4) does not hold.

Then there exists

such that is -block sparse and
, where is the support of .

Take and . Since is in the null-space

of . Therefore, we have found a signal

which is not -block sparse and has smaller norm

than the -block sparse . ( is -block

sparse; since we have ).

Remark 1: One should note that the results from [31]–[33]
relate to the use of norm instead of norm in
(2). As pointed out by an anonymous reviewer it is reasonable
to believe that the null-space characterization given in Theorem
2 (as well as the entire technique presented in this paper) can
easily be generalized to the optimization.

Remark 2: We need not to check (4) for all subsets ;
checking the subset with the largest (in two norm) blocks of

is sufficient. However, the form of Theorem 2 will be more
convenient for our subsequent analysis.

Let be a basis of the null space of A, so that any
dimensional vector in the null-space of can be repre-
sented as where . For any
write . We split into blocks of size

, for .
Then, the condition (4) of Theorem 2 is equivalent to

(6)

We denote by the event that (6) happens. In the following
we find an upper bound on the probability that fails as tends
to infinity. We will show that for certain values of , and
this probability tends to zero.

Lemma 3: Let be a random matrix with i.i.d.
entries. Then the following statements hold.

• The distribution of is left-rotationally invariant,
.

• The distribution of , any basis of the null-space of is
left-rotationally invariant.

.
• It is always possible to choose a basis for the null-space

such that has i.i.d. entries.
Proof:

• The first part trivially follows.
• To show the second part we first focus on an orthonormal

basis for the null space. Thus, assume that

For this particular basis (i.e., the orthonormal basis), we
have

Then

Therefore, for any deterministic unitary
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Now doing the change of variables , we have
(the Jacobian of the transformation is 1), and

therefore

where we have used the fact that is right rotationally
invariant, i.e., has the same distribution as .
This shows the left rotational invariance of the orthonormal
basis. Any other basis can be written as

where is square, nonsingular and independent of the or-
thonormal basis . It is clear that any such is left rota-
tionally invariant.

• The third part now follows from the second part by care-
fully selecting the random matrix . Namely, we choose
to be an upper-triangular random matrix in the following
way: the th entry on the main diagonal of is a dis-
tributed random variable with degrees of freedom
and any strictly upper-triangular entry of is . All
diagonal and strictly upper-triangular elements of are
independent random variables. Furthermore, as mentioned
above, the random entries of are independent of the en-
tries in left rotationally invariant orthonormal basis .
then has i.i.d. entries. (The interested reader can
find more on this construction of the Gaussian matrix
in Lemma 1 and in Remark 2 after Lemma 1 in [34]. Fur-
thermore the Proof of Lemma 1 is given in Appendix A of
[34].)

In view of Theorem 2 and Theorem 3, for any whose null-
space is rotationally invariant the sharp bounds of [19], for ex-
ample, apply (of course, if ). In this paper, we shall analyze
the null-space directly.

III. PROBABILISTIC ANALYSIS OF THE NULL-SPACE

CHARACTERIZATION

Assume is an matrix whose components
are i.i.d. zero-mean unit-variance Gaussian random variables.
Define to be the matrix which consists of the

rows of and define to be the th
column of (see Fig. 2).

Let where is a constant independent
of . Then we will find a such that and

(7)

Proving (7) is enough to show that for all random matrix ensem-
bles which have isotropically distributed null-space, (3) with
overwhelming probability solves (1). In order to prove (7), we
will actually look at the complement of the event and we
show that

(8)

Fig. 2. Block structure of matrix � .

Fig. 3. Covering of the unit sphere.

where denotes the complement of the event . Using the
union bound, we can write

(9)

Clearly, the size of is . Since the probability in (9) is

insensitive to scaling of by a constant we can restrict to lie
on the surface of a shape that encapsulates the origin. Fur-

thermore, since the elements of the matrix are i.i.d. all

terms in the first summation on the right-hand side of (9) will
then be equal. Therefore, we can further write

(10)

The main difficulty in computing the probability on the
right-hand side of (10) is in the fact that the vector is contin-
uous. Our approach will be based on the discrete covering of
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the unit sphere. In order to do that we will use small spheres
of radius . It can be shown [22], [42], [52] that
spheres of radius is enough to cover the surface of the

-dimensional unit sphere. Let the coordinates of
the centers of these small spheres be the vectors

. Clearly, . Further,
let be the intersection of the unit
sphere and the hyperplane through perpendicular on the line
that connects and the origin. It is not difficult to see that

forms a body which completely encapsulates the
origin. This effectively means that for any point such that

, the line connecting and the origin will intersect

. Hence, we set and apply
union bound over to get

(11)

Every vector can be represented as where
. Then we have

(12)

Given the symmetry of the problem (i.e., the rotational invari-
ance of the ) it should be noted that, without loss of generality,
we can assume . Then clearly the max-
imization over in (12) can be omitted. To further simplify no-
tation we set Further, using the
results from [6] we have that points can be located
on the sphere of radius centered at such that (which is
centered at and lies in a -dimensional space,
and whose radius is ) is inside a polytope determined by them
and

(13)

To get a feeling for what values and can take we refer to
[5] where it was stated that points can be located on

the sphere of radius centered at such that (the
sphere of radius centered at ) is inside a polytope determined
by them.

Let us call the polytope determined by points
. Let be its corner

points. Since , and
we have

(14)

where the second inequality follows from the property that the
maximum of a convex function over a polytope is achieved at
its corner points and that function inside the is convex as
it is a sum of convex norms. Connecting (11), (12), and (14), we
obtain

(15)

Using the union bound over , we further have

(16)
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Given that only the first component of is not equal to zero
and the symmetry of the problem we can write

(17)

where denotes th components of . Let
, and

. Clearly, and are independent
zero-mean Gaussian random vectors of length . Then we can
rewrite (17) as

(18)

Let , and denote the th components of the vectors
, respectively. Then for any it holds

Let be independent
zero-mean Gaussian random vectors such that such that for any

where we used the fact that . Since
, and we have from (18)

(19)

Since does not depend on , the outer maximization can
be omitted. Using the Chernoff bound we further have

(20)

where is any positive constant and and are in-
dependent zero-mean Gaussian random vectors such that for
any

. Connecting (15)–(20), we have

(21)

After setting , and using the fact that

, we finally obtain

(22)

where

(23)
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and . We now set
. In the appendixes, we will

determine , and
.

We now return to the analysis of (23). Replacing the results
from (37), (38), and (44) in (23), we finally have

(24)

where we recall that , and
. Our goal is to find such that for

and . That means
we need

(25)

which implies

(26)

To simplify the exposition below, let

(27)

Combining the previous results, the following theorem then can
be proved.

Theorem 4: Assume that the matrix has an isotropically
distributed null-space and that the number of rows of the matrix

is . Fix constants and according to (13) and
arbitrarily small numbers and , say and . Let

, and . Choose
where is given by (27). If [see (28) shown at the

bottom of the page], then with overwhelming probability for all
block-sparse that have blocks of length and sparsity ,
the solutions to the optimizations (1) and (3) coincide.

Proof: Follows from the previous discussion combining
(8), (22), (23), (24), (25), and (26).

Before moving on to the numerical study of the performance
of the algorithm (3), we should also mention that the results from
Theorem 4 as well as the theoretical results from [16], [19], and
[23] are related to what is often called the strong threshold (the
interested reader can find more on the definition of the strong
threshold in [16], [19], and [21]) for sparsity. As we have said
earlier, if the number of the measurements is then the
strong threshold for sparsity is ideally . Also, the
definition of the strong threshold assumes that the reconstructing
algorithm [(2), (3), or any other] succeeds for any sparse signal

with sparsity below the strong threshold. However, since this can
not be numerically verified (we simply can not generate all pos-
sible -block sparse signals from ), a weaker notion of the
threshold (called the weak threshold) is usually considered in nu-
merical experiments (the interested reader can also find more on
the definition of the weak threshold in [16]). The main feature
of the weak threshold definition is that it allows failure in recon-
struction of a certain small fraction of signals with sparsity below
it. However, as expected, the ideal performance in the sense of the
weak threshold assumes that if the number of the measurements
is and the sparsity is , then should approach

. As the numerical experiments in the following sections hint,
increasing the block length leads to almost ideal performance
of the reconstructing technique introduced in this paper.

IV. NUMERICAL STUDY OF THE BLOCK SPARSE

RECONSTRUCTION

In this section we recall the basics of the algorithm, show how
it can efficiently be solved in polynomial time, and demonstrate
its performance through numerical simulations.

In order to recover a -block sparse signal from the linear
measurements we consider the following optimization
problem:

(29)

where , for
. Since the objective function is convex this is clearly

a convex optimization problem. Since this problem is convex it
is solvable in polynomial time. Furthermore, we can transform
it to a bit more convenient form in the following way:

(30)

where as earlier , for
. This is a second-order cone programming

(SOCP) optimization problem which can be solved by a host of
numerical methods [2]. Finally, it is not that difficult to see that
(30) can be transformed to

(31)

(28)
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with , for
. Clearly, (31) is a semi-definite program and

can be solved by a host of numerical methods in polynomial
time. From the numerical point of view, it is more efficient to
solve (30) than (31).

To further improve the reconstruction performance we intro-
duce an additional modification of (31). Assume that

is the solution of (31). Further, sort and assume
that is the set of indexes which correspond to the vectors

with the largest norm. Let these indexes determine the posi-
tions of the nonzero blocks. Then let be the submatrix of
obtained by selecting the columns with the indexes from the
first rows of . Also let be the first components of .
Then we generate the nonzero part of the reconstructed signal
as . We refer to this procedure of reconstructing
the sparse signal as algorithm and in the following sub-
section we show its performance. Also, we mention that to fully
implement the above described algorithm one needs to know the
sparsity value (this is in a sharp contrast with solving (31)
which does not require the knowledge of ). The necessity of
using the knowledge of can be avoided if one implements a
bit more sophisticated interior-point methods for solving (31).
However, a practical implementation of an interior-point opti-
mization algorithm goes beyond the scope of this paper, and we
therefore do not pursue it further here.

Recovery of block-sparse signals

Input: Measured vector , size of blocks , and
measurement matrix .
Output: Block-sparse signal .

1: Solve the following optimization problem

using semi-definite programming.
2: Sort for , such that

.
3: Set to be the submatrix of containing columns of first

rows of that correspond to the blocks .
4: Let represent the nonzero blocks of . Set

and the rest of blocks of to zero.
5: .

A. Simulation Results

In this section, we discuss the performance of the algo-
rithm. We conducted four numerical experiments for four dif-
ferent values of the block length . In cases when 1, 4, or
8, we set the length of the sparse vector to be and in
the case we set . For fixed values of and
we then generated a random Gaussian measurement matrix
for . For each of these matrices we
randomly generate 100 different signals of a given sparsity ,
form a measurement vector , and run the algorithm. The
percentage of success (perfect recovery of the sparse signal) is
shown in Fig. 4. The threshold values are shown in Table I.

Fig. 4. Threshold for � for a given� (the colors of the curves indicate the prob-
ability of success of � �� algorithm calculated over 100 independent instances
of block sparse signals � and a fixed Gaussian measurement matrix �); � is the
length of each block of �.

TABLE I
THEORETICAL AND SIMULATION RESULTS FOR RECOVERY OF BLOCK-SPARSE

SIGNALS WITH DIFFERENT BLOCK SIZE. � IS THE STRONG THRESHOLD FOR

� OPTIMIZATION AND � IS THE WEAK THRESHOLD FOR � OPTIMIZATION

[19], [21]. � REPRESENTS THE BLOCK SIZE IN VARIOUS SIMULATIONS.
THE DATA FOR ��� ARE TAKEN FROM THE CURVES WITH

PROBABILITY OF SUCCESS MORE THAN %95

These values are taken from Fig. 4 as the values for which the
probability of perfect recovery is at least 95%. The case
corresponds to the basic relaxation. As can be seen from
Fig. 4, increasing the block length significantly improves the
threshold for allowable sparsity.

V. CONCLUSION

In this paper, we studied the efficient recovery of block sparse
signals using an under-determined system of equations gener-
ated from random Gaussian matrices. Such problems arise in
different applications, such as DNA microarrays, equalization
of sparse communication channels, magnetoencephalography,
etc. We analyzed the minimization of a mixed type norm,
which can be reduced to solving a semi-definite program (in fact
it can be reduced to solving an SOCP—a special type of gen-
eral semi-definite programs). We showed that, as the number of
measurements approaches the number of unknowns, the
algorithm can uniquely recover all block-sparse signals whose
sparsity is up to half the number of measurements with over-
whelming probability over the measurement matrix. This coin-
cides with the best that can be achieved via exhaustive search.
Extensive numerical simulations demonstrated that opti-
mization (or its a variant) can be very successful when applied
in recovery of block-sparse compressed signals. We believe that
the proving technique presented in this paper is powerful and
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potentially could be used to obtain similar thresholds for any
number of measurements. However, due to inability to deal nu-
merically with certain parabolic cylinder functions, our proof
technique (which involves a certain union bound) appears to
give a loose bound when the number of measurements is a fixed
fraction of the number of unknowns.

For future work, it would be interesting to see if one could
obtain “sharp” bounds on when signal recovery is possible
(similar to the sharp bounds in [17]) for method. In this
paper, we were able to use some probabilistic arguments to show
that, for a random Gaussian measurement matrix, (4) holds with
overwhelming probability. In our proof we used a union bound to
upper bound the probability that (4) fails; this makes our bound
loose for less than one. We expect to get sharp thresholds for
other values of by generalizing the idea of looking at the neigh-
borliness of randomly projected simplices presented in [17],
[20], and [21]. However, for relaxation in (3) instead of simplices
we would have to work with the convex hull of -dimensional
spheres. Specifically, one would need to compute the probability
that a random -dimensional affine plane that passes through a
point on the boundary of will be inside the tangent cone of that
given point. Solving this problem seems to be rather difficult.

APPENDIX I

COMPUTING AND

Now we turn to computing and
. Let us first consider . Since

is a dimensional vector let .
As we have stated earlier are i.i.d. zero-mean
Gaussian random variables with variance

. Then we can write

Using the spherical coordinates, it is not that difficult to show
that the previous integral can be transformed to

(32)

where is parabolic cylinder function (see, e.g., [44]). Before
proceeding further we recall the asymptotic results for from
[44]. Namely, from [44] we have that if and

(33)

where

(34)

From (33) and (34) we have

(35)

Connecting (32) and (35), we finally obtain for and
( is a constant independent of )

(36)

Using the facts that and
when is large, (36) can be rewritten as

Since it further follows

(37)

To compute we first note that is a dimensional
vector. Let . As we have stated earlier

are i.i.d. zero-mean Gaussian random variables
with variance . Then the rest
of the derivation for computing follows di-
rectly as in the case of . Hence, we can write
similarly to (37)

(38)

APPENDIX II

COMPUTING

Now we turn to computing . Since is
a dimensional vector let . As we
have stated earlier are i.i.d. zero-mean Gaussian
random variables with variance

. Then we can write
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Similarly as in the previous subsection using the spherical coor-
dinates it is not that difficult to show that the previous integral
can be transformed to

(39)

where as earlier is parabolic cylinder function. Before pro-
ceeding further we again recall another set of the asymptotic re-
sults for from [44]. Namely, from [44] we have that if
and

(40)

where

(41)

From (40) and (41) we have

(42)

Connecting (39) and (42) we finally obtain for and
(as earlier is a constant independent of )

(43)

Using the facts that and
when is large, (43) can be rewritten as

Since it further follows

(44)
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