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ON THE RECONSTRUCTION OF TOPOLOGICAL
SPACES FROM THEIR GROUPS OF HOMEOMORPHISMS

MATATYAHU RUBIN

Abstract. For various classes K of topological spaces we prove that if X\ ,
X2 6 K and X\ , X2 have isomorphic homeomorphism groups, then X\ and
X2 are homeomorphic. Let G denote a subgroup of the group of homeomor-
phisms H(X) of a topological space X. A class K of (X, G) 's is faithful if for
every (X\, G\) , (X2, G2) € K , if <p: G\ —» G2 is a group isomorphism, then
there is a homeomorphism h between X\ and X2 such that for every g e G\
q>(g) - hgh~[ . Theorem 1: The following class is faithful: {{X, H(X)) | ( X
is a locally finite-dimensional polyhedron in the metric or coherent topology
or I is a Euclidean manifold with boundary) and for every x G X x is an
accumulation point of (g(x)\g 6 H(X)}} U {{X, G) \ X is a differentiable or
a PL-manifold and G contains the group of differentiable or piecewise linear
homeomorphisms} U{(X, H(X)) | X is a manifold over a normed vector space
over an ordered field}. This answers a question of Whittaker [W], who asked
about the faithfulness of the class of Banach manifolds. Theorem 2: The follow-
ing class is faithful: {(X, G) \ X is a locally compact Hausdorff space and for
every open T Ç X and x € T (g(x) | g 6 H(X) and g \ (X - T) = Id} is
somewhere dense}. Note that this class includes Euclidean manifolds as well as
products of compact connected Euclidean manifolds. Theorem 3: The follow-
ing class is faithful: {(X, H(X)) | (1) A" is a O-dimensional Hausdorff space;
(2) for every x € X there is a regular open set whose boundary is {x} ; (3)
for every x 6 X there are gi , g2 € G such that x ^ gi(x) ^ gi(x) ^ x ,
and (4) for every nonempty open V C X there is g e H(X) - {Id} such that
g Í (X - V) = Id} . Note that (2) is satisfied by O-dimensional first countable
spaces, by order topologies of linear orderings, and by normed vector spaces
over fields different from R. Theorem 4: We prove (Theorem 2.23.1) that
for an appropriate class KT of trees {(Aut(T), T;<, o,Op) | T € KT} is
first-order interpretable in {Aut(7") | T € KT} .

0. Introduction

This work is concerned basically with the following question: given two topo-
logical spaces Xx , X2 with isomorphic groups of autohomeomorphisms, does
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it follow that Xx and X2 are homeomorphic? In general the answer to this
question is negative. It is well known (see, e.g., [Rr] or [S]) that there are
many nonhomeomorphic compact Hausdorff spaces with a trivial group of au-
tohomeomorphisms. But also among topological spaces that have many home-
omorphisms one can easily find nonhomeomorphic spaces that have the same
homeomorphism group; take, e.g., [0,1] and (0,1). However, for some wide and
natural classes K of topological spaces it is true that if two spaces in K have
isomorphic groups of homeomorphisms, then the spaces are homeomorphic.

The method of proof yields results which are stronger in three directions, (a)
It is the case not only that spaces which have isomorphic groups of homeomor-
phisms are homeomorphic but also that every isomorphism between H(X) and
H(Y) is induced by a homeomorphism between X and Y. This means that
if X belongs to a faithful class, then every automorphism of H(X) is inner.

(b) In order to conclude that X and Y are homeomorphic, we do not have
to assume that H(X) and H(Y) are isomorphic; in fact, it suffices to as-
sume that some rich enough subgroups of H(X) and H(Y) are isomorphic.
This strengthening has many natural applications, e.g., groups of differentiable
and Lipschitz homeomorphisms of differentiable manifolds, groups of measure-
preserving automorphisms of measure algebras, and groups of automorphisms
of certain linear orderings.

(c) It might be of interest to model theorists that in many cases dealt with in
this paper we obtain a first-order interpretation of (X,rx ,H(X); G, Op) in
H(X). This fact gives rise to the following theorem, which will appear in [R3].

Theorem 0.1. (Assume Godel's axiom of constructibility.) If X and Y are sec-
ond countable connected Euclidean manifolds and H(X) is elementarily equiv-
alent to H(Y), then X and Y are homeomorphic.

Description and discussion of the results. Let R(X) denote the Boolean alge-
bra of regular open sets of a topological space X . For a subgroup G of H(X)
let HR(X ,G) be the following structure: (G,R(X)\ ç,o,Op); ç denotes
the inclusion relation on R(X), o is the composition operation on G, and
Oo = {(f ,U ,V)\fGG, U ,VGR(X),and f(U) = V}.

In §2, Theorem 2.14(a), we prove the most fundamental result in this work.
We show that under appropriate assumptions (*) on X and G one can recon-
struct HR(X, G) from G. The direct outcome of this reconstructibility result
is the following theorem. For g G H(X) let g^ denote the automorphism that
g induces on R(X).

Theorem 0.2. Suppose (Xx ,G2) and (X2,G2) satisfy (*), and let y>: Gx —►
G2 be an isomorphism between Gx and G2 ; then there is an isomorphism t
between HR(XX , Gx) and HR(X2, G2) which induces tp, that is, for every g G
G[   <P(g)^ = to^ot-1 .

Let us explain the most useful (but not the most general) version of (*). Let
G ç H(X) ; we say that (X, G)  is regionally disrigid if for every nonempty
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RECONSTRUCTION OF TOPOLOGICAL SPACES 489

open V ç X there is g G G- {Id} such that g \ (X- V) = Id. We say that X
is regionally disrigid when (X, H(X)) is. Note that regional disrigidity implies
that X has no isolated points. However, our results can easily be extended
to spaces with isolated points. Let G ç H(X) and U ç X be open; U is
flexible with respect to G if for every open V ,W ç U : if there is g G G such
that g(V)r\W ¿ 0, then there is g G G such that g \ (X - U) = Id and
g(V)nw¿0.

(*) means that (1) X isa Hausdorff space, (2) (X ,G) is regionally disrigid,
and (3) for every nonempty open U ç X there is a nonempty open Ux ç U
such that Ux is flexible with respect to G.

(*) has two advantages: first it is satisfied by numerous natural classes of
(X, G) 's; second, the fact that a certain (X, G) satisfies (*) is usually a trivial
fact.

Even though Theorem 2.14(a) is formulated in topological terms it is indeed a
purely Boolean algebraic result. Here is maybe a more transparent formulation
of that theorem. Let B be a complete Boolean algebra (BA) and G be a
subgroup of Aut(5). We say that (B , G) is regionally disrigid if for every
a G B - {0} there is g G G - {Id} such that g(b) — b for every b which
is disjoint from a. We say that a G B is flexible in (B ,G) if, for every
c , d < a, if there is g G G such that g(c) n d ^ 0 then there is f G G such
that f(c) n d ,¿ 0 and f(b) = b for every b which is disjoint from a. We
say that (B ,G) is flexible if {a G B \ a is flexible in (B , G)} is dense in B.

Let M(B, G) = (B, G; < , o, Op), Kx = {M(B, G) \ (B , G) is regionally
disrigid and flexible}, and K0 = {G\ 3B(M(B ,G)gKx)}. The following is a
reformulation of Theorem 0.2.

Theorem 0.2 *.  Kx is first-order interpretable in K0.

In addition to the classes mentioned in the abstract the following classes
satisfy (*) :

{(X, H(X)) | X is a locally convex vector space over an ordered field},
{(X, H(X)) | X is a product of Euclidean manifolds},
{(X ,H(X)) | X is O-dimensional and regionally disrigid}; for an infinite

cardinal k {(X, H(X)) | X - T^e¡ X\ » x¡ is a Euclidean manifold}, \~]¡¡& X¡
means the k-box product of the X¡ 's; that is, a basic open set has the form
n,€/ U¡ where Ui is open in Xi and \{i\Ul ^ X¡}\ < k . More classes satisfying
(*) are mentioned in 2.23.2.

It is, however, not clear whether Theorem 0.2 is as general as it should be.
We do not know the answer to the following question.

Question 0.1. Does Theorem 0.2 remain true if (*) is replaced by the require-
ment that (X¡, G¡) be Hausdorff and regionally disrigid? We do not know the
answer to this question even when the Gi 's are taken to be H(Xi).

In fact, there are some pathological cases in which (X, G) and even (X,
H(X)) are regionally disrigid but they do not satisfy (*).
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Example 0.3. Let XQ be the torus which is obtained by identifying each two
opposite sides of the unit square. If a is an irrational number and 57 is the
family of all lines in the plane whose slope is a, then 57 induces a foliation 77
of XQ . Let GQ be the group of homeomorphisms of X0 which leave each leaf
of 7? invariant. Clearly (X0 ,G0) is regionally disrigid. It is easy to see that
(X0 , G0) does not satisfy (*). If Xx is a subspace of X0 consisting of one leaf
of the above foliation then (Xx ,H(XX)) does not satisfy (*). If X2 = xf°,
then for every open U ç X2 and for every Gç H(U)  G does not satisfy (*).

According to Ling [Lgl], the smooth version of (X0 , GQ) belongs to a faithful
class. However, his method does not cover Xx or X2.

The reader should realize that groups of analytic homeomorphisms or lin-
ear isomorphisms do not fall into the framework of this work because such
homeomorphisms are never the identity outside a regular open proper subset of
X.

Theorem 0.2 is just an intermediate step in proving faithfulness results. In
§3 we reconstruct (X ,rx) from HR(X ,G), thus obtaining the final results
mentioned in the abstract.

Unfortunately, we do not have one naturally defined faithful class which
contains all the concrete classes for which we can prove faithfulness. §3 is thus
divided into parts, each of them dealing with another faithful class. In §3.1,
Corollary 3.13(c), we prove that the class KLC = {(X ,G) | X is a locally
compact Hausdorff space and for every open U and x G U {g(x) \ g G G and
g \ (X - U) = Id} is somewhere dense} is faithful.

One might ask whether some of the conditions here can be removed or weak-
ened. The local compactness cannot be discarded. Van Mill [Ml] constructed
two nonhomeomorphic subsets of S which are very homogeneous and have
the same group of homeomorphisms.

In §3.11 and §3.111 we define and prove the faithfulness of a class K of
(X, G) 's, and in §3.IV we show that KM contains three main classical sub-
classes: (1) Euclidean manifolds with boundary, (2) polyhedra that do not
contain an infinite increasing chain of simplexes, and (3) manifolds over lo-
cally convex linearly bounded topological vector spaces over an ordered field.
A topological vector space is called linearly bounded if it contains a nonempty
open set U such that for every straight line /, U n / is bounded in /.

For polyhedra and manifolds with boundary we have an additional require-
ment (**), namely that for every x G X {g(x) \ g G H(X)} does not have
isolated points. Clearly such a requirement is necessary in order to exclude one
of the spaces (0,1) or [0,1], which have the same group of homeomorphisms.
But even when considering just compact polyhedra, (**) has to be required.
Take, e.g., the following spaces shown in Figure 1, where each segment in the
sketch denotes a copy of [0,1] and the circle denotes a copy of the 1-dimensional
sphere. Certainly H(XX) = H(X2) but Xx and X2 are not homeomorphic.
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Figure 1

TD TDIn §3.V we prove that the class K defined below is faithful. K —
{(X,G)\ (1) X is O-dimensional and Hausdorff; (2) (X,G) is regionally dis-
rigid; (3) for every x G X there are gx ,g2 G G such that x ± S\(x) #
g2(x) t¿ x; (4) for every x G X there is a regular open set V such that
{x} = bd(F) ; and (5) for every clopen set V Q X and g G G: if g(V) = V
then g r V u Id [ (X - V) g G, and if g(V) n V = 0, then g \ V n g~X \
g(V)Uld\(X-V-g(V))GG}.

Note that (5) is automatically satisfied by H(X). Condition (4) seems to
be quite restrictive; however, it is impossible to remove it without introducing
some other condition instead. Van Douwen constructed two very homogeneous
subsets of {0,1} ' Xx, X2 such that Xx and X2 are nonhomeomorphic,
H(XX) £ H(X2), and they satisfy (1), (2), and (3) in the definition of KTD .

We were unsuccessful in proving the faithfulness of the following classes.

Question 0.2. Are the following classes faithful?
(a) K™ = {(X,H(X)) | X = n,€/^, for each i G I, Xi is a Euclidean

manifold}.
See (5) and (6) in the list of faithful classes.
(b) K - {(X, H(X)) | X is a locally convex topological vector space over

R}.
See (7) in the list of faithful classes.
(c) {(X, H(X)) | X is a box product of Euclidean manifolds}.
In §3.VI we prove some faithfulness results that were found during the re-

vision of this paper. It includes proofs of the faithfulness of the following
classes: ( 1 ) manifolds over locally convex linearly bounded vector spaces over
ordered fields, (2) R x Q and similar spaces, and (3) products of countably
many compact Euclidean manifolds.

A list of concrete faithful classes. The following classes are faithful.
(1) {(X ,H(X)) | A' is a manifold with a boundary and for every x G X

{s(x) | g G H(X)} has no isolated points}. This class is contained in KM ; see
3.43 for the proof.
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(2) {(X, H(X)) | X is a polyhedron with either the coherent or the metric
topology and for every x G X {g(x) | g G H(X)} has no isolated points}.
This class is contained in K   ; see 4.34 for the proof.

(3) {(X, G) | X is a manifold with a PL-structure and PL(X) CGC H(X)}
where PL(X) is the group of PL-homeomorphisms. This class is contained in
both KLC and KM.

(4) For 0 < k < oo  {(X, G) \ X is a C^-manifold, Ck(X) CGC H(X)} ,
k kwhere C (X) is the group of C -homeomorphisms. This is a subclass of both

KLC and KM.
There are numerous variants of (4) which are faithful: Lipschitz homeomor-

phism of a manifold with a Lipschitz atlas, quasi-conformal homeomorphisms
of a smooth manifold with a quasi-conformal atlas, volume-preserving homeo-
morphisms, etc.

(5) {(X ,H(X)) | X = X' x n,€/ X¡, X' is a Euclidean manifold and for
every i G I, X{ is a compact connected Euclidean manifold}. This class is
contained in KLC.

(6) {(X, H(X)) | X = ni€/ Xt, \I\ = % for each i Gl, X¡ is a compact
manifold}. This class is dealt with in §3.VI.

(7) {(X ,H(X)) | for some infinite cardinal X, X is a manifold over [0, 1] }.
LCThis class is contained in K

(8) {(X , H(X)) | X is a manifold over a locally convex topological vector
space Y over an ordered field F , and Y has an open set U which intersects
each line in a bounded set and if R is not embeddable in F then the above U
is required to be clopen}. This class is contained in K    as redefined in §3.VI.

Note that at least for F = R the last clause in (8) is equivalent to the fact
that Y admits a continuous norm. Unfortunately, (8) does not include weak
topologies on Banach spaces.

We can also include (Y ,H(Y)) where Y is the complement of a normed
vector space over R in its completion. The same proof as for (8) works.

(9) {(X ,G)\X is a Banach space and L(X) QGQ H(X) where L(X) is
the group of Lipschitz homeomorphisms of I}. Note that in particular this
class includes the group of uniformly continuous homeomorphisms of a Banach
space. X can be replaced by a Banach manifold with a Lipschitz atlas. The
proof that the above class is faithful will appear in [RY].

(10) {(B ,p), Aut((2? ,p))\(B,p) is an atomless a-finite measure algebra}.
Note that the automorphism group of (B, p) can be regarded as a group of

LChomeomorphisms of the Stone space of B. This is a subclass of K
(11) {((L, <), Aut((L, <))) | (L, <) is a Dedekind complete linear or-

LCdering which has a dense 2-transitive suborder}. This is a subclass of K
(12) {(B, Aut(5)) | B is a complete Boolean algebra which does not have

rigid factors}. This follows from §2 because if B is a complete Boolean algebra,
then B is isomorphic to R(S(B)) where S(B) is the Stone space of B.
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(13) A tree is a partially ordered set (T, <) such that for every x G T
{y | v < x} is linearly ordered by < . A subset b c T is a branch if it is a
maximal subset of T which is linearly ordered by <. Let B(T) denote the
set of branches of T. For every x G T let Ux = {b G B(T) \ x G b}. Let
tt be the following topology on B(T): a base for xT is {Ux \ x G T}. We
regard B(T) as a topological space with the topology xT . T is homogeneous
if (1) for every x G T there is f G Aut((7\ <)) such that f(x) ¿ x and
(2) for every x G T there is / G Aut(T) such that f(x) = x and for some
y > x  f(y) / y .   {(B(T) ,H(B(T))) \ T is a homogeneous tree}. This class

TDis contained m K
(14) {(X ,H(X)) | X has the order topology of a O-dimensional linear or-

dering (L, <) and for every a < b in L there is / € Aut((L, <)) such
that / \ (a ,b) ^ Id and f((a ,b))C\(a ,b) ¿0; and for every a G L there is
/ G Aut((L , <)) such that f(a) / a} .

(15) {(X ,G) | X is O-dimensional and first countable, for every x G X
\{s(x) | g G G}\ > 3 and (X, G) is regionally disrigid}. This class is contained
in K

(16) {(X ,H(X)) | X is a box product of members from (13), (14), and
TD(15)}. This class is contained in K

(17) {(X ,H(X)) | X = Y xZ where Y G KM and Z G KTD}. Let Q,
I, C denote respectively the rationals, the irrationals, and the Cantor set; then
R x Q, R x I, and R x C belong to the above class. The above class is dealt
with in §3.VI.

Some classes in the above list call for stronger results. If X carries some
structure S in addition to its topology, and we consider the group of home-
omorphisms which preserve S, we would like to know that an isomorphism
between such groups is induced by a homeomorphism that preserves S.

Such questions arise in (3), (4), (9), (10), and (11).
The fact that an isomorphism between C (X) and C (Y) is induced by a

kC -homeomorphism and the analogous fact for PL(X) were proved by Ling
in [Lgl].  Many other structures on a smooth manifold are considered there.
In [RY] we will give an alternative proof of the smooth case and will consider
variants of that question. The case of the groups of Lipschitz and uniformly
continuous homeomorphisms of a Banach manifold will be dealt with in [RY].

The case of 2-transitive linear orderings was dealt with in [GGHJ]. It follows
easily from §2.

There is another type of question that we did not deal with. There are cases
in which H(X) is embeddable in H(Y). Are there any reasonable assumptions
on the type of the embeddings so that the embeddability of H(X) in H(Y)
will imply that X is some kind of continuous image of Y ?

Some historical remarks. The faithfulness of the class of Euclidean mani-
folds was proved by Whittaker in [W]. McCoy [M] extended Whittaker's results
to Hubert cube manifolds. Independently of our work, Ling [Lgl] proved the
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faithfulness of the smooth and the PL cases and numerous variants of these
cases. Ling's work also covers Euclidean manifolds and proves that isomor-
phism between the groups of 5-preserving homeomorphisms is induced by an
5-preserving homeomorphism ( S is some structure on a manifold).

The method of Whittaker as well as the method of Ling is entirely diffrent
from ours. Both methods seem to require that X will be locally compact.
Whittaker's method seems to require that G will be closed under some infinitary
composition. Ling assumes that G or at least some nontrivial normal subgroup
of G is factorizable (see [Lgl]). This excludes O-dimensional spaces. On the
other hand, Ling's work includes some classes which are not included in ours,
e.g., manifolds with smooth foliations.

Later, Filipkiewicz [Fl], not knowing about Ling's results, reproved the dif-
ferentiable case.

1. Preliminaries

Most of the notions will be defined when they are first used. The terminology
of model theory is very convenient for this work. Nevertheless, no theorem of
model theory will be needed.

co denotes the set of natural numbers; \A\ denotes the cardinality of the set
A.

We use the terminology of [CK] for languages, structures and satisfaction.
See [CK, pp. 18-33], but 1.3.4-1.3.11 is not needed here. "A model" and "a
structure" mean the same thing. We denote a structure usually, but not always,
by the letters M, N. \M\ denotes the universe of M.

We make an abuse of notation and denote individual variables and elements
of the model by the same letters; so <p(f, g) means that tp is a formula all of
whose free variables are among {/, g}, whereas M t= <p[f , g] means that tp
is a formula with at most two free variables and the pair (/, g) satisfies tp in
M.

A group G is considered as the structure (G, •, ~ , Id) ; that is, it is a struc-
ture in a language which contains one binary function symbol, one unary func-
tion symbol, and one individual constant. A topological space (X, xx) is re-
garded as the following structure: (X u xx , P , Q , g) where P is a unary
predicate and P = X, Q is a unary predicate and Q = xx, and G is the
belonging relation between elements of X and elements of xx .

M =. N means that M and N are isomorphic, in particular M and N
have to be in the same language. 1=7 means that the topological spaces X
and Y are homeomorphic.

Let Mx , ... ,M¡ be structures in disjoint languages and Rx, ... ,R¡ be re-
lations on U/.i l-W/l • (Note that an «-place function can be regarded as an
n + 1-place relation.)    (Mx , ... ,Mk ;RX, ... ,R¡) denotes the structure with
universe (J,.=1 \M¡\ whose relations and functions are those of Mx, ... ,Mk,
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the relations Rx, ... ,R¡, and in addition for every i < k a unary relation P.
to denote \M¡\.

(Mx , ... , Mk ; ) is of course a special case of the above notation. If Mx, ... ,
Mr are structures,  Ar+X, ... ,Ak  are sets, and Rx, ... ,R¡ are relations on

U,=1 m U ljlr+i At, then (Mx.Mr, Ar+X, ... ,Ak;Rx , ... ,R,) denotes
the structure (Mx , ... ,Mk;Rx , ... ,R¡), where for every r < i < k, Mt is
the structure without relations or functions and with universe Ai.

We say that M and N are elementarily equivalent (M s N) if they have
the same language L and for every sentence tp G L  M N yiïïN 1= tp .

Interpretations.

Definition 1.1. Let AT be a class of models in the language L, K* be a class
of models in the language L*, and R ç K x K* be a relation. We say that
K* is first-order interpretable in K relative to R if there are formulas in L
(Pjj(xx , ... ,xn), <pEq(xx, ... , xn , y,, ... , y„), for every w-place relation sym-
bol P G L* <pP(x\ , ... , xxn , ... ,x™ , ... , x™), and for every w-place func-
tion symbol F G L* tp(x\, ... ,x\ , ... ,x™ , ... ,x™ ,yx, ... ,yn) such that,
for every M G K and M* G K*, if (M,M*) G R, then there is a func-
tion h : {(ax, ... ,an) \ M N (pv[ax, ... ,an]} °-^° \M*\ such that (1) for ev-
ery (a,.an), (bx.bn)GUom(h)  h((ax,...,an)) = h((bx,...,bn))
iff M 1= <PEJai • • ■ ■ , an , bx, ... , bn] ; (2) for every w-place relation symbol
P G L* and (a\, ... , a'n) G Dom(h), i - 1, ... , m : M N <pp[a\ , ... ,axn, ... ,
a?,... ,amn] iff (h((a\, ... ,a\)),... ,A«a*.... ,<))) G PM' ; and (3) for
every «z-place function symbol F g L*, {a[, ... ,a'n) G Dom(/z), z = 1, ... ,
m, and

(¿>, .... ,bn) GT>om(h) : M 1= <pF[a\, ... ,a\, ... ,flf, ... ,a™ ,bx, ... ,bn]

iff FM'(h((a\ .... .a*».... ,h((aï, ... ,<») = h((bx , ... ,bn)).

Proposition 1.2. Let K* be first-order interpretable in K relative to R.
(a) // Mx,  M2 G K,  M*,  M* G K*,   {M¡ ,M*) G R,  i = 1,2, and

MX^M2, then M* S M*.
(b) If in (a) = is replaced by =, then the claim obtained in this way is true.

Proof. Easy.
If K* is first-order interpretable in K relative to R and (M, M*) G R,

then we represent the elements of \M*\ by elements of \M\" ; there are cases
in which M* can be reconstructed from M but its elements are represented
by objects more complicated than «-tuples from M. Typical such cases are
Stone spaces and Boolean algebras; the elements of the Stone space of a Boolean
algebra B are represented by ultrafilters which are elements of the power set
of |M| rather than elements of \M\n . Our next goal is thus to define a notion
of interpretation more general than first-order interpretation. Let P(A) denote
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the power set of A . If M is a model, we define the second-order model based
on M, and it will be denoted by M[2].

M[2] = (M, P(\M\), P(\M\2), ... ;e,,e2, ...)   where e, ç \M\¡ x P(\M\¡),
(a i.at,r)G e¡     iff (ax , ... , a¡) G r.

Remark. It turns out that all relations on a set A can be encoded by bi-
nary relations on A ; so as far as we are concerned M     can be replaced by
(M,P(\M\2);s2).

Definition 1.3. Let K, K*, L, L*, and R be as in Definition 1.1. We say
that K* is second-order interpretable in K relative to R if K* is first-order
interpretable in {M[2] \ M G K}.

All interpretation that we shall obtain will be either first or second order, but
it is possible to define more general notions of interpretation. For every model
M and an ordinal a it is possible to define the a's order model based on M,
which will be denoted by M    .

Definition 1.4. Let K, K*, L, L*, and R be as in 1.3. We say that K* is
interpretable in K relative to R if for some a, K* is first-order interpretable
in {M[a] | M G K).

A formula in the language of M[ ] is called a second-order formula in the
language of M. If tp is a second-order formula in the language of M, then
M 1= <p[ax , ... ,an ,rx .... ,rk] means that M[   t= q>[ax , ... ,an,rx , ... ,rk].

A formula in the language of M     which of the relation symbol ex , ... ,
en , ... ,  mentions at most e, is called a monadic formula in the language of
M . Hence, intuitively speaking, a monadic formula in the language of M is a
formula that speaks on elements of \M| and on subsets of |A/| but does not
speak about «-place relations on \M\ for any « > 1.

2. The reconstruction of the Boolean algebra of regular open sets

Throughout this section we shall be concerned with structures of the form
(X, xx , G; G, Op, o) where (X, xx) is a topological space, G is a subgroup
of the group H(X) of all homeomorphisms of X, g is the belonging relation

defbetween elements of X and elements of xx, Op = {{f ,x,y) | / G G,
x , y G X u xx , and f(x) = y}, and o is the composition operation in G.
(X, xx , G; G , Op, o) will be denoted by M(X , G), and M(X, H(X)) will be
abbreviated by M(X).

In the sequel we shall define some formulas in the language of groups and
show that they represent certain sets and relations to M (X, G). Though the
final interpretation in 2.17 is a first-order interpretation, it seems both conve-
nient and more general to use, in the intermediate steps, monadic second-order
formulas, i.e., formulas in which there are variables which represent subsets of
G.
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We need some terminology. We assume that X denotes a fixed but arbi-
trary topological space; xx denotes the topology of X. G denotes a fixed but
arbitrary subgroup of H(X). f, g, h denote elements of G; they are also
used as variables ranging over elements of G. Subsets of G will be denoted
by bold letters f, g, h. Also, f, g, h are used as variables ranging over
subsets of G. If <p(i,g, ... ) is a monadic formula then <p(f, g , ...) means

Let A ç X.   int(A) and cl(A) denote the interior and the closure of A9
riefrespectively. For subsets A , B ç X let A + B = int(cl(4 U B)) and ~ B =

int(X-B) .LetA~Bd=An~B. U C X is called a regular set if U = U+ U.
Clearly, a regular set is open. R(X) denotes the set of regular sets of X. U,
V, W denote regular sets. It is well known that (R(X), +, n, ~) is a complete
Boolean algebra, its induced partial ordering is the set inclusion relation, and if
"V GR(X), then the supremum of "V, YJ W, and the infimum of T, U 'V,
are int(cl(U^)) and int(f| T), respectively.

If F is a closed set then int(F)' is regular. So for every A ç X, A + A is
defregular. Let var(/) = int(cl({x | f(x) ^ x})) and fix(/) =~ var(/). Clearly

var(/), fix(/) g R(X). Let var(f) = E{var(/) | / G f} and fix(f) =~ var(f).
Let Q(T)dà{{f\var(f)CT}.

We need some group theoretic notation. Id denotes the identity mapping.
fhááhfh-x, [f,h]dájhf-xh-x, [f,h,g]^[[f,h],g]. fhdâ{{fh\fe
f, « € h}, [f, h], /h , [f, h], etc. are defined similarly.

Our policy is to add assumptions just at the first time they are needed, so we
gradually add more and more assumptions on M(X, G).

Assumption 2.1.  X is assumed to be a Hausdorff space.

Lemma 2.1. (a) Let fx , ... ,fn G G, x G X and for every 1 < i < j < n
fj(x) t¿ fj(x), then there is an open neighborhood T ofx such that fx(T), ... ,
f„(T) are pairwise disjoint.

(b) Let f ,g gG, T ç var(f) n var(g) be open and f \ T ¿ g \ T ; then
there is a nonempty open subset T' of T such that T1, f(T'), g(T') are
pairwise disjoint.

Proof, (a) Let Tt, ... ,T  be pairwise disjoint open neighborhoods of /,(x),

... ,fn(x) respectively. Then T = H/Li//"" (^/) is as required.
(b) Let x G T be such that f(x) ¿ g(x). By (a) there is an open set Tx such

that x G Tx C T and f(Tx) n g(Tx) = 0. Let y G Tx be such that f(y) ¿ y .
By (a) there is an open set T2 such that y G T2 ç Tx and f(T2) n T2 = 0.
Let z G T2 be such that g(z) ¿ z. By (a) there is an open set T' such that
z gT' CT2 and g(T') n T' = 0.  T' is as required.

Definition 2.2. Let W c xx; %7 is dense if for every T G xx - {0} there is
SG%f-{0} such that S QT.
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Definition 2.3.  M(X , G) is regionally disrigid if {var(g) | g g G} is dense.

Assumption 2.2.  M(X , G) is regionally disrigid.

Lemma 2.4. (a) For every T G xx - {0} and n G co there is h G Q(T) such
that h" ¿Id.

(b) Let 0¿U C var(/)nvar(g) ; then there is h G Q(U) such that [fh , g] ¿
Id.

(c) If T is open and T n var(/) ^ 0, then there is h G Q(T) such that
[f,h]¿Id.

(d) // H is a nontrivial normal subgroup of G then M(\ar(H), H) is re-
gionally disrigid.
Proof, (a) We prove by induction on « > 1 that for every T G xx - {0} there
is h G Q(T) and x G T such that for every 0 < / < j < n f'(x) ¿ fJ(x).
For « = 1 this is just the assumption of regional disrigidity. Assume the claim
is true for « and we prove it for « + 1 . Let T G xx - {0} and let h , x be as
assured by the induction hypothesis. By 2.1 (a) there is an open neighborhood
T, of x such that Tx ç T and T{, h(Tx), ... ,h"(Tx) are pairwise disjoint.
If there is y G Tx such that h"+ (y) ^ y, then h, y demonstrate the claim
for « + 1 . Assume for every y G 7", h"+ (y) = y. Let h' be such that
0 ^ var(«') ç Tx , and suppose h'(y) ¿ y . It is easy to see that the points y ,
hh'(y), ... ,(hh')"+ (y) are distinct, and clearly hh' G Q(T); hence hh' and
y are as required.

(b) Without loss of generality we can assume that [/, g] = Id. We distin-
guish between two cases.
Case I: fg \ U + Id. Let Ux = U n var(fg). Since Ux c var(g) and [g,f] =
Id f(Ux) ç var(g). Ux ¿ 0 so it follows that / \ [/, # gf \ Ux = fg \ £/, .
By 2.1(b) there is a nonempty open subset T of Ux such that T, f(T),
fg(T) are pairwise disjoint.  Let Tx  be a nonempty open subset of T such
that g(Tx) n T, = 0. Let « G Q(TX) - {Id}. We show that [fh,g] ¿ Id.
Let x G X be such that h(x) ¿ x. Note that x, h~x(x) G Tx . So gfh(x) =
ghfli~x(x) = gfh~x(x). On the other hand, fhg(x) = hfh~xg(x) = hfg(x) -
fg(x) - gf(x). Since h~x(x)±x gfh(x) # fhg(x) ; hence h is as desired.
Case II. fg \ U = Id. Let T be a nonempty open subset of U such that
g(T) DT = 0. Hence also f(T) n T = 0. Let h G Q(T) and h2 ¿ Id. We
show that [/ , g] t¿ Id. Let x G X be such that « (x) ^ x . As in the previous
case it is easy to check that fhg(x) = h(x) ¿ h~x(x) = gf (x). So h is as
desired.

(c) This is a trivial corollary of regional disrigidity and (b).
(d) Let 0 ¿ U C var(H) ; hence there is / G H such that var(/) n U ± 0.

Let 0 # V ç U be such that f(V) n V = 0. By (c) there is g G Q(V) such
that [f.g] ¿ Id. [f,g] = f(F ' )* , hence [f, g] G H . var([/, g]) ç
var(£) + /(var(£)) ç V + f(V). Let h G G be such that [[/ , g], h] ± Id and
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var(/z) ç var(g). Hence [f,g,h] G H and var([f,g,h]) C var(h) +
[f,g](var(h)) ç V + [f,g](V). [f,g](V) = V, hence var([/,g,h]) ç
V.    Q.E.D.

The following observation will save some computation in what follows.

Observation 2.5. Let h G G ; then h induces an automorphism h of M(X, G) :
h(x) = h(x) when x G Xlixx and h(f) - f   when f gG.

h
Let xx , ... ,xn,yx , ... ,yn G M(X, G) and « G G ; then (x, , ... , xn) =

(y, , ... ,yn)  means that for every  1 < z < n   h(xj) = y..   (x, , ... ,xn) =
h

(y,, ... ,yn) means that there is h such that (xx, ... ,xn) = (yx, ... ,yn).
x s y means that (x) s (y).

Let Z(f) d^ {g | (V/ e f)([g J] = Id)} • Let On(f ,g) mean that [f ,g] =
{Id} . Z(f), Cm(f, g) etc. are defined similarly.

Definition 2.6. (a) f is mixed on U, if for every 0 ^ V ç U there is 0 ^
W C V and / G f such that W ç var(/) and /Ö(H0 ç f.

(b) f is mixed, if it is mixed on var(f).

Lemma 2.7. (a) If ^ Q R(X) and for every U G % i is mixed on U, then f
is mixed on YJ ̂ '.

(b) If f is mixed on U and g G Z(f), then var(g) n U = 0.
(c) If f is mixed then Z(f) = Q(X ~ var(f)).

Proof, (a) is trivial, (b) is a trivial consequence of 2.4(b), and (c) is a trivial
consequence of (b).

Let us now explain the general method by which we reconstruct R(X) from
G. We would like to represent each open set U G R(X) by the subset Q(U) of
G. The difficulty is that in order to do that, we have to find a group theoretic
characterization of those subsets of G which have the form Q(U). For f, g G
G let V(f, g) = Z(gZ{/)). It is easy to see that if var(/) n var(#) = 0, then
V(f • g) fias the form Q(U) for some U G R(X). So we would like to find a
formula ip(f,g) in the language of groups such that for every f ,g g G G N
y/[f, g] iff var(/)nvar(g) = 0. Unfortunately, we did not find such a formula.
Instead we found a formula y/3(f, g) which has the following weaker property:
(a) (Theorem 2.13(a)) If (X, G) is regionally disrigid and G1= y/3[f, g], then
var(/) n var(g) = 0 ; and (b) (Theorem 2.13(b)) under additional assumptions
on (X, G) there are many / 's and g 's for which G t= \p3[f , g]. The above
additional requirements will assure that

{UGR(X)\(3f,gGG)(G£V,3[f,g]AQ(U) = V(f,g))}    generates R(X).

Let D(U,V) = V/(/(C/) n V = 0); let D(f,g) = D(var(f), var(g)).
U <  V  =f VW(D(V,W) -+ D(U ,W)), and f ^ g  =" var(f) =;: var(g).
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Let U « V = U =4 V A V 4 U, and f « g = var(f) « var(g). Let conv(I7) =
11{g(U) | g G G} and conv(f) = conv(var(f)).

Lemma 2.8. (a) Let <pD(f,g) = VhCm(f,gh); then for every f and g,  G 1=
<PD[t.g] iffD(f,g) holds in M(X,G).

(b) There are formulas 9»x(f,g) a«íí ^(f,g) in the language of groups such
that for every f and g,  G t= ̂ [f, g] iff f ^, g holds in M(X, G), and G N
Vjf.g] ifff^g holds in M(X,G).
Proof, (a) follows trivially from 2.4(b), and (b) follows easily from (a).

Definition 2.9. (a) Let D(UX,U2;V) = Vf(var(f)nV = 0 - f(Ux)nU2 = 0).
(b) Let

conv((7; V) = Y^{f(U) | var(/) nV = 0},    and

conv(L/;g)d¿f£{/(<J)|/€Z(g)}.

(d) Let D(f, ,f2;V)= D(var(fx), var(f2); V) and D(f, ,f2;g) and conv(f,g)
be defined similarly.

(e) We say that U is F-flexible if for every W{ , W2QU, D(WX,W2;V)
implies D(WX , W2) ; we say that U is g-flexible if for every Wx, W2 ç U,
D(Wx,W2;g) implies D(WX ,W2). F1(C/;K) and Fl(U;g) denote, respec-
tively, that U is F-flexible and that U is g-flexible.

Note that D(UX ,U2;g) implies £>((/, , U2 ; var(g)), and Fl(U ; F)Avar(g) ç
F implies Fl([/;g).

Definition 2.10. (a) Let V(f, g, h) = Z(gZ(f)) n {/' | /' s$ h} .
(b) Let

¥x({,{')=\lg(^Cm(g,t)-^(3gx ^g)(gx^ IdACm(V(f,g,gx)J))).

Lemma 2.11. (a)  V(f ,g,h) C ß(conv(h) ~ conv(var(g) nfix(f);f)).
(b) K(f, g, h) n ß(fix(f)) = ß(conv(h) n fix(f) ~ conv(g ; f)).
(c) //" var(g) n var(f) n conv(h) = 0, /«e«

K(f, g, h) = ß(conv(h) ~ conv(g ; f)).

(d) If G\= i//x[f,f], then Fl(var(f);f) holds in M(X,G). In particular, if
C7N y/,[f,f], then D(var(f) Dvar(f), var(f) nfix(f)) Ao/íís ¡n M(X,G).

(e) // var(f ) n var(f) = 0 íz«í/ Fl(var(f);f) «oto z« M(X,G), then G h

Proo/. (a), (b), (c) are trivial consequences of 2.4(b) and 2.7.
(d) Suppose -. Fl(var(f ) ; f), and we show that G*ipx[f,f]. Let Wx,W2ç

var(f ) be such that WX = W2, but D(WX , W2 ;f). Since M(X , C7) is regionally
disrigid, by 2.4(c) there is g G G such that var(g) ç Wx and -<Cm(g, f ). Let
gx ̂ . g and #, #Id. We show that ^Cm(V(f ,g ,gx) , f) holds.
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Let W3 = W2 n conv(g,). Clearly W3 ± 0. var(gim) C\W3 = 0, hence
Z(gZ(f)) is mixed on W., i.e., V(i,g,gx) is mixed on W3. Hence since
var(f ) n W3 £ 0, by 2.7(b) -.On(K(f, g,gx),() holds. So (d) is proved.

(e) Suppose var(f)nvar(f) = 0 and Fl(var(f');f) holds. Suppose -<Cm(g , f)
holds. Hence var(g) n var(f) ^ 0. Let g, # Id be such that var(g,) ç
var(g) nvar(f). By (a) and (c):

V(t• g • g\) Ç Ô(conv(g,) ~ conv(var(£) n fix(f) ;f))
ç Q(com(gx) ~ conv(var(g,) ;f)).

Since var(g,) ç var(f) and Fl(var(f);f) holds, var(f) n conv(g,) =
var(f) nconv(g, ;f), and hence var(f) n (conv(g,) ~ conv(g, ;f)) = 0; hence
f cZ(V(f,g,gx)). This shows that C7N y/x[f,t].

Lemma 2.12. Let k0, ... ,kn g to and suppose that /*°(F), ... ,fk"(V) are
pairwise disjoint;  then for every  hx, ... ,hn  G  Z(f)   and 0  ^   W  ç   V

Proof. By induction on «. « = 1 : Suppose by contradiction that for some
«, G Z(f) and 0 ¿ W ç V hx(V) D fk°(W) + fk,(W). Hence 0 ^ W ç
rh(hx(V))r\rk\hx(V)). Since (F,/) £ (h¿V),f), rVin/4^)/
0. So /l(F)n/¿o(F)-/A:o+A:,(/"í:o(F)n/"':|(F))^0; this contradicts our
assumption, so the case « = 1 is proved.

Suppose the claim has been proved for « > 1 and we prove it for « + 1. Let
f, k0, ... , kn+x, V,«,,... , hn+x, and W be as in the claim. By applying the
induction hypothesis to /, k0, ... ,kn, V, «,,...,hn , and W we conclude
that there is 0 ¿ Wx c W and 0 < / < « such that £"=, hi(V)r\fk,(Wl) = 0.
Now we replace k¡ by /cM+, ; hence by applying the induction hypothesis to /,
k0 , ... ,k¡_, , kl+x , ... ,kn, kn+x, V, «,,...,hn, and Wx we conclude that
there is 0 ^ W2 C Wx  and m € {0,...,,/- 1,/+ 1.« + 1} such that
E"=i ht(V) n fkm(W2) = 0. Now we apply the case « - 1 to /, k,, km , V,
hn+x , and W2 ; hence hn+x(V) £ fk'(W2) +fkm(W2). Since R(X) is a Boolean
algebra it follows that £"+,' A,.(K) £ Ylto fk'(w)> and the lemma is proved.

Let

r2(/./) s V«([« ,/] ^ Id - (3/, ,/2 e Z(/))
([«./,./2] ^ Id A^, ([«,/,,/,],/))).

Let

^(/ , /') = (V* 4 f')((g ¿ Id) - (3/" 4 ¿r)
((/")'2^IdA^,(/, {/',/"}) A W2(f,f")))-

Theorem 2.13. (a) // var(/) n var(/') # 0, then G ¥ ip3[f, /'].
(b) //Fl(var(/'); var(/)), then C7N y3[/,/'].
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Proof, (a) We first prove the following claim.

Claim 1. If var(/") ç var(/) and (f")x2 ¿ Id, then GP y/2[f,f"].

Proof. Since (/")' ^ Id there is x G X such that x, f"(x), (f")2(x),
(f") (x), (/") (x) are distinct. By 2.1(a) there is an open neighborhood T of
x such that 7\ f"(T), (f"f(T), (f")3(T), (f"f(T) are pairwise disjoint.
T ç var(/") ç var(/), so by 2.4(c) there is «  such that [h,f] ¿ Id and
U =f var(A) ç T. Let /, , f2 G Z(f"). We denote [h,fx,f2] = g. Suppose
g ^ Id, and we shall show that ipx (g, f") cannot hold.

(1)

g = [h ,/, ,f2] = [h • («-'/' ,/2] = h ■ (h~xf ■ ((h ■ («-'/T1/2
= h-(h~i)fl-hhfi'(h~{)h-

From ( 1 ) it follows that
(2) yar(g) C U + fx(U) + f2fx(U) + f2(U).

Since U ç var(f") and /, , f2 G Z(f"), and by (2)
(3) var(g-) ç \ar(f").
By 2.12 using (2) it follows that for every 0 # Ux c U Eto^")'^) ~

(Ux + fx(Ux) + f2fx(Ux) + f2(Ux)) ¿ 0. Hence conv(var(g)) ç conv(U) ç
conv(£;=0(/")'(t/) ~ (U+fx(U)+f2fx(U)+f2(U))) ç conv(var(/") ~ var(g)),
namely

(4) var(g) =3 var(/") ~ var(g).
By (3), (4), and the fact that g ± Id, -uD(var(/")nvar(£), var(/")nfix(^))

holds, hence by 2.11 (d) G ¥ \px [g , /"]. We have thus proved Claim 1.
We are now ready to prove (a). Suppose var(/) n var(/') / 0, and let

0 / var(g) ç var(/) n var(f'). Hence Id ^ g =<: /' ; we shall show that there
is no /" as required in \p3.

Let f" ^ g, (f")xl ¿ Id, and G t= y/x[/,{/',/"}]; we shall show that
var(/") C var(/), and hence it will follow from Claim 1 that G ¥ ip2[f , /"].

Suppose by contradiction var(/") n fix(/) ^ 0 ; then

0 Í var(/") n fix(/) si var(/") ^ yar(g) =<: var(/') n var(/).

Hence -D(var({/" , /'}) n var(/), var({/" , /'}) n fix(/)). By 2.11 (d) G *
Vi[/.{/'./"}]> a contradiction. Hence var(/") ç var(/), so by Claim 1
G F V2[f, f"] ■ This proves (a).

(b) We first prove the following claim.
Claim 2. Suppose Fl(var(/') ; var(/)), then G N y/2[f, /'].
Proof. Let h be such that [« , /] ^ Id. Hence there is 0 ^ U ç var(/) such
that h(U) n U = 0. Let /, G Q(U) - {Id}. We check that var([« ,/,]) ç
U + h(U), [h , fx](U) = U, and U n var([« ,/,]) ¿ 0.

(D [h,fl] = hfxh-xfx-x=fxhf7x.
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Hence var([A ,/",]) ç A(var/,) +var(/,_1) ç «([/) + U. [«,/,] f U =
/"' \ U and hence var([A,/,]) n U ¿ 0 and [A,/,]([/) = U. Let 0 ^
C/, ç Í7 be such that [A ,/,](£/,) ni/, = 0, and let /2 e Q(UX) - {Id}. It
follows from the same argument as above that [h , /, , f2] = [[A , /,], /2] ^ Id
and that var([A ,/, , f2]) ç var(/2) + [A ,/,](var(/2)) ç U + U = U. Hence
var([A , /, , f2] ç var(/). Since by assumption Fl(var(/') ; var(/)), it follows
that GN V{([h ,fx ,f2],f']. Also since var(/,), var(/2) are disjoint from
var(/'), fx,f2G Z(f'), hence G t= ip2[f, /'] and Claim 2 is proved.

We are now ready to prove (b). Suppose Fl(var(/') ; var(/)) holds, and let
Id ¿ g s$ f'. By 2.4(a) there is /" =$ g such that var(/") ç var(/') and
(f")x2 # Id. By Claim 2 G1= ̂ 2[/, /"] ; and since Fl(var({/', /"}) ; var(/))
holds G \= y/x [f, {/', /"}]. It follows that G N \p3[f, f'], so (b) is proved.

Let C(X ,G) = {U \(3f ,g,h G G)(3GX c G)(GX is a normal subgroup of
G, f,gGGx, Gx\=ip3[f,g], and Q(U) = V(f, g ,A)} .
Assumption 2.3. C(X ,G) generates R(X). (That is, R(X) is the smallest
complete subalgebra of R(X) which contains C(X, G).)

Let A:0 = {M(X ,G) | M(X ,G) satisfy Assumptions 2.1-2.3}.  Let K°0 =
{G | 3X(G C H(X) A M(X , G) G K°) and let A^ = {HR(X , G) \ M(X , G) G
K0}.

Theorem 2.14. (a) Kx is second-order interpretable in K0.
(b) Let M(X¡,G¡) G K°, i = 1,2, and tp be an isomorphism between

Gx and G2 ; then tp can be uniquely extended to an isomorphism between
HR(XX,GX) and HR(X2,G2).
Remark. Even though Assumption 2.3 is not very explicit the reader can notice
that the following property (*) of M(X, G) already implies that M(X, G) G
K° : (*) {U I M(X , G) 1= ¥l(U; ~ U)} is dense in xx . Most classes which
will be considered later have property (*). For instance, in R" every open ball
and even every regular open connected set U satisfy Fl((7; ~ U).

Proof of 2.14. (a) The official definition of interpretation requires that we find
second-order formulas (pv, <pE , tpc, and <p0 to represent the universe of
HR(X, G), the equality, and the other relations on HR(X ,G). We will be
somewhat informal and will leave it to reader to check some of the details.

Each element of G will be represented by itself. Each U G R(X) will be
represented by Q(U). We need a formula yR(f) such that GN yR[f\ iff for
some U G R(X) f = Q(U). Let ^4(f) = (3f,g, A)(3C7, ç G) ((Gx is a
normal subgroup of C7) A (/, g G Gx ) A (C7, 1= <p3[f, g]) A f = V(f, g, A))).
It is easy to see that ^4(f) is indeed a second-order formula. We show that
for every f Ç G, G t= iy4[f] iff for some U G C(X ,G), f = Q(U). By
the definition of C(X, G) , for every U G C(X, G) G \= if/4[Q(U)]. Suppose
G N ip4[f] and let /, g , h , and (7, be as assured by ip4 . By Lemma 2.4(d)
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M(var(C7,), C7,) is regionally disrigid, hence by 2.13(a) var(/) n var(g) = 0.
Hence by 2.11(c) V(f, g ,h) = Q(conv(h) ~ conv(g;f)). So f=Q(U) where
U = conv(A) ~ conv(g ;/). Hence for some U G C(X, G), i = Q(U).

Note that if ^ ç R(X) and Yl(%?) = int(D^) is the meet of % in R(X),
then 0(11(20) = C\{Q(U) I U G %}, and if U G R(X) then ß(~ U) =
Z(Q(U)). So since C(X ,G) generates R(X), for every f c G: there is U
such that f = Q(U) iff f can be obtained from {Q(U) \ U G C(X, G)} by re-
peated application of the operations Z and f| ■ It is thus clear that HR(X, G)
is reconstructible from G, but in order to satisfy the formal definition of in-
terpretability, we have still to show that there is a second-order formula ^Ä(f)
which says that f can be obtained in the above way.

It is well known that the derivation of an element from other elements using
certain operations can be described by means of evaluated trees. We briefly
describe this formalism.

A well-founded tree is a partially ordered set (T, <) such that for every
x G T {y | y < x} is linearly ordered and such that every set of pairwise
comparable elements is finite. For our present needs let us define a G-evaluated
tree.

Definition. A G-evaluated tree is a well-founded tree T together with a func-
tion E:T -» P(G) U {D, Z} such that for every x G T, E(x) G P(G) iff x
is maximal in T, and whenever x G T has more than one successor, then
E(x) = f] • Let (T ,E) be a G-evaluated tree; then it is easy to define by trans-
finite induction the value vT E(x) for every x G T : vT E(x) = E(x) iff x is
a maximal element of T ; vT E(x) = Z(vT E(y)) if E(x) = Z and y is the
unique successor of x; and vT E(x) = f){vT E(y)\y is a successor of x} if
£(*)=n.

It is easy to see that {Q(V)\V g R(X)} = {h| there is a G-evaluated tree
(T ,E) and x G T such that (1) \T\ < \G\ ; (2) for every y g T if E(y) G
P(G) then y/4(E(y)) holds; and (3) h = vT E(x)} . It is thus easy to see that
[Q(V)\V g R(X)} is second-order definable in G.

The operations o, ç , Op are trivially definable, so the theorem is proved.

Question 1. Is {HR(X, G)\M(X ,G) is Hausdorff and regionally disrigid} inter-
pretable in [G\3X(G ç H(X)AM(X, G) is Hausdorff and regionally disrigid)}?

Our next goal is to obtain a first-order interpretation; naturally we do not
know how to do it without the strengthening of Assumption 2.3. On the other
hand, it is obvious that a first-order interpretation of all HR(X, G) is impos-
sible because of cardinality considerations; for take a countable subgroup G
of H(R) such that M(R, G) is regionally disrigid. Every structure which is
first-order interpretable in G has cardinality < N0 , whereas \HR(R, G)\ = 2H°.
This observation implies that we have to be more modest in what we want to
interpret.

Let V(X,G) = {var(/)|/ G G} and HV(X ,G) = (G ,V(X ,G);o, ç,
Op).   Our goal is to obtain a first-order interpretation of HV(X, G) in G.
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(Since we have assumed regional disrigidity, HR(X, G) is second-order inter-
pretable in HV(X, G).)

In fact we tried, without success, to prove a stronger and a neater theorem
than what is presented here. This is the first-order version of Question 1. So
the following question remains open.

Question 2. If {HV(X, G)\M(X, G) is Hausdorff and regionally disrigid} first-
order interpretable in {G\3X(G ç H(X)AM(X, G) is Hausdorff and regionally
disrigid)}?

For a while we drop Assumption 2.3 and assume that M(X ,G) satisfies
only Assumptions 2.1 and 2.2; that is, M(X, G) is Hausdorff and regionally
disrigid.

Our plan is to find a first-order formula in the language of groups x(f -g)
which is equivalent to the fact that var(/) n var(g) = 0. From such a x
it is easy to obtain a first-order interpretation of HV(X ,G) in G; for let
Xç(f >g) = ^n(x(h,g) -» X(h,f)). Clearly Xç(f.g) is equivalent to the
fact that var(/) ç var(g). The desired interpretation is then obtained very
easily.

To make our way of thinking clearer we shall first consider a x that works just
for a rather special case. Then we shall present our theorem in its full generality;
its form will be the following: Let K be the class of M(X, G) 's having the
property <P, (<P will be defined later); then {HV(X ,G)\M(X ,G) G K) is
first-order interpretable in {G\3X(G ç H(X) A M(X, G) G K)}.

The property O that defines K is not very transparent, but we shall show
that the class K is quite big. This will be done in two ways: first we shall show
that K is closed under certain operations, and second we shall show that many
large natural classes of M(X) 's and M(X, G) 's happen to be included in K.

We start with one special case. Recall that \p3(f ,g) is a first-order for-
mula. 2.13 tells us two facts about y/3 : (1) y/3(f , g) does not hold if var(/) n
var(g-) / 0; (2) there are some cases in which y/3(f ,g) does hold, namely
when Fl(var(#); var(/)) holds. It turns out that for O-dimensional spaces
¥l(U;V) is equivalent to Un V = 0, so for such spaces y/3(f,g) holds
iff var(/) n var(g) = 0. The precise statement is given in the following propo-
sition.

Proposition 2.15. Suppose M(X ,G) has the following properties: (1) every
nonempty open set contains a nonempty clopen set; (2) if g g G, V is dopen,
and g(V)nV = 0, then gvd^g \Vu(g~x \ g(V))ö!d \ (X-V-g(V)) gG.
Then for every U , V g R(X), Fl(U;V) holds in M(X, G) iff UnV = 0;and
therefore for every f, g G G, G t \p3[f, g] iff var(f) n var(g) = 0.

We leave the trivial proof to the reader.
In order to deal with the general case in which a first-order interpretation can

be obtained, we need some definitions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



506 MATATYAHU RUBIN

We define by induction properties Fl'n(U;V) where i = 0,1,2 and « G œ.

Fll(U;V) = Flx0(U;V) = Fl(U;V),

K+l(U;V) = £{t/ ç U | Fl°2n(U';V)} = U,

*L+i<V\V) = J2iV' S K | <+1(f/;F')} = F.
f0^h = £{^c^h2;i(£/;k')} = k, and
nl+2(U;V) = £{t/ e t71 Fi+i^în) = H

Fl£(r/;K) = F1(£/;K)AF1(K;C/),    and

F1^+1(C7; K) = 53 {V Q V I £{f/ ç u | Fl^(c/' ; v')} = u) = V

Let &n=VUF]!n(U;~U) and <D„ = <P° v <pj, . Clearly ^n implies <p;+,.
One can construct examples of M(X, G) 's that show that the <l>'n 's are not
equivalent. In fact, the natural classes of M(X, G) 's to which we shall apply
our general theorem will all satisfy O,.

We shall use the following trivial observation. If Fl'n(U;V), If' ç U, and
V' C V hold, then Fl^U'; V1) holds.

Let us define the following sequence of first-order formulas: x0(/, g) =
^(/. g) ■ Suppose x„(f • g) has been defined; then

X+n(f,g) = Z({f'\xn(f',g)})QZ(f),
and

Xn+l=Z({g'\x+n(f,g')})ÇZ(g).
Lemma 2.16. (a) If var(/) n var(g) ^ 0, then for every n gco: G t= -<xn[f • g\ ■

(b) // Hj(var(/) ; var(*)) holds in M(X, G), then G£Xn[f.g]-
(c) If z = 0 or / = 1 then ¥l[(U ; V) A Fl),(K ; U) implies Fl2n(U; V).

Proof, (a) By induction on «. For « = 0 the claim is proved in 2.13(a).
Suppose the claim is true for n . Let var(/) n var(g) ^ 0, and let A be such
that var(A) ç var(/) n var(g) and [A ,/] ^ Id. By the induction hypothesis
for every /' such that G Ë xA\f' ,g]: var(f') n var(A) = 0. Hence A e
Z({f | G N x„[f'.g]}) but A £ Z(f). So G * x+n[f,g]- We have thus
proved that if var(/) n var(g) ^ 0, then G J* #*[/, g] • In the same way it is
proved that if var(/) n var(g) ^ 0, then G J* Xn+[[f > g] ■

(b) By induction on « . The case « = 0 is proved in 2.13(b). Suppose the
claim is true for « , and let Fl^+,(var(/) ; \ar(g)) hold in M(X, G). By the
regional disrigidity and the observation preceding 2.16

X>ar(*') ç var(g) | £{var(/) ç var(/) | Fl^(var(/) ; vai(g'))} = var(/)}

= var(#).

It follows easily from the definitions that G t= Xn+i[f ■ g] ■
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(c) By induction on «. For « = 0 the claim is true by the definitions.
Suppose the claim is true for 2«. Let Fl°2n+x(U;V) and Fl2n+x(V ; U) hold
in M(X ,G). Let A '={£/' G U | Fl°2n(U' ,V) holds} and B = {V' C V \
¥l°2n(V';U) holds}. So £M = \j and £5 = V. By the observation preceding
this lemma for every if G A and V' G B Fl°2n(U';V') and Fl°2n(V';U') hold,
and thus by the induction hypothesis Fl2n(U' ,V') holds. So J2{v> £ ^ I
£{£/' ç t/ | Fl22n(U';V')} = U} = V, that is, ¥l\n+x(U;V) holds. The
argumentation is similar in the three remaining cases.

Let K{n) = {M(X, G) \ M(X, G) satisfy Assumptions 2.1, 2.2 and M(X, G)
N <&„}. Note that K(n) C K(n+X) C K°. Let K{0n) = {G \ 3X(G ç H(X) A
M(X, G) g K(n))} , and let K2n) = {HV(X , G) \ M(X, G) G K(n)} .

Corollary 2.17.  K2] is first-order interpretable in K^].

Proof. By 2.16, if M(X , G) G K{n), then for every /, g G G G h xn[f - g] iff
var(/) nvar(g). The remaining details in the interpretation are as explained in
the discussion that follows Question 2.

There is one interesting case in which V(X, G) = R(X) ; we now consider
this case.

Lemma 2.18. If M(X ,H(X)) is regionally disrigid and X is second countable,
then V(X ,H(X)) = R(X).
Proof. Let {Tn \ n G co} be a base for X, and let V G R(X). We define by in-
duction a sequence {fn \ n G co} of elements of H(X). Suppose f0, ... , fn_x
have been defined «>0;if Vr\Tn = 0 define fn = Id. Suppose V n Tn ̂  0.
If for some k < « V n Tn n var(fk) / 0, define fn - Id. Otherwise let
o„ Q {0,...,«- 1} be a maximal subset such that V nTnn f)kea Tk ¥" @ ■
Let  f  be such thatJ n

0/var(/jçKnr„n f) Tk.
k€o„

Let / = \Jnew(fn i var(/„)) U Id t (X - Un6<avar(/„)). We show that / G
H(X). The only nontrivial fact is that / and /~ are continuous. Since X
is second countable it is sufficient to show that if limx^. = x, then l\mf(xk) =
f(x). Suppose {x^} is a counterexample. Without loss of generality there is
a 1-1 sequence nk such that xk G var(fn ), lim(xJt) = x, and there is i such
that x G T¡ and for every k f(xk) $ Ti. Let k' be such that xk, G Ti and
nk, > i. xk, G T¡ n var(/n, ). By the maximality of on , i G on , and hence
var(/„t/) ç T.. But Ti 1 f(xk,) = f„kl(xk,) G var(/^J Ç T., a contradiction.
So / is continuous, and similarly /~   is.

It is easy to see that var(/) = V, so the lemma is proved.

Question 3. Is 2.18 true for every regionally disrigid metric space?
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The main results of this section are 2.14 and 2.17; these theorems however
are formulated in an abstract way. In the remainder of this section we shall
apply the above theorems to some concrete classes of M(X, G) 's.

Definition 2.19. Let X and Y be topological spaces and A: X ->• Y be a
homeomorphism of X into Y. A is a correct embedding of X into Y, if
h(X) is open, and \J{T C X \ T is open and cl(A(T)) ç h(X)} is dense in
X.

Proposition 2.20. (a) Let Y be a regular space and h: X —> Y be a homeomor-
phism; then A is a correct embedding iff h(X) is open.

(b) Let h: X ^ Y be correct, f g H(X), and cl(A(var(/))) ç h(X). Let
f = hfh'x U Id r (Y - h(X)) ; then f g H(Y).
Proof. Trivial.
Definition 2.21. Let K be a class of M(X,G)'s. We say that M(Y ,H) is
regionally AT-formed if there is a family {(Ti., h¡) \ i G 1} such that (1) for
every i there is M(Xt ,G¡) G K such that T¡ ç Xi is open, h¡: Ti -► Y is
correct, and for every / e G( : if var(/) ç T. and cl(A((var(/))) ç A^T)),
then / =f h¡fhjx u Id [ (Y - A,(7;)) g H ; and (2) U{«,(T;) I ' e /} is dense
in Y.

We denote by Reg(AT) the class of all M (X , G) 's which are regionally K-
formed. If AT is a class of topological spaces, then Reg(AT) is the class of Y 's
such that M(Y ,H(Y)) is regionally {M(X ,H(X)) \ X G A>formed. Note
that if K is the class of all M(X, G) 's which are regionally disrigid, then
K = Reg(A").

Of special interest is the class A"* = {M(X , G) | M(X , G) t= <D°} . K* Q K(x)
so 2.17 applies to A"*. K* is interesting for the following reasons: (a) It already
contains most of the natural classes of M(X, G) 's to which we know to apply
2.14; (b) K* = Reg(A"*), and hence showing that a certain M(X ,G) G K*
implies automatically that many other M(X, G) 's belong to A"*.

Proposition 2.22. (a) // M(X ,G) \=U{U \Fl(U; ~ U)} is dense in xx ", then
M(X ,G)GK* .

(b) A" = Reg(A:*).
Proof. Easy.

Some nontopological faithfulness results can be inferred from 2.17. They are
presented in the following theorem.

Theorem 2.23.1 [R2]. (a) Let KB = {B \ B is a complete Boolean algebra and
for every b G B - {0} there is g G Aut(B) such that g ^ Id, and for every a&B
such that a A b = 0 g(a) = a}. Then {(B , Aut(B) ; < , o, Op) | B e KB} is
first-order interpretable in {Aut(5) \B G KB} .

(b) Let KM — {(B ,p) | (B ,p) is a measure algebra and p(lB) = 1}.
Let Aut(ß, p) be the group of measure-preserving automorphisms of B. Then
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{(Aut(B ,p),B,[0,l];p, <B , +[0 ,], o, Op) | {B, p) G KM } is first-order in-
terpretable in {AuX(B ,p) | (B , p) G KM}. (See [En] for related results which
are obtained by a different method.)

(c) A tree T is a poset such that for every a ,b ,c G T if a ,b < c then a
and b are comparable (a<>b). Let K be the class of all trees T that have
the following properties: (1) T has a root 0T, i.e., for every a G T Ot < a;
(2) for every a G T there is b G T such that a < b; (3) for every a, b G T
if a < b, then there is c G T such that a < c and c is incomparable with
b(c<>b) ; (4) every a, b G T have a greatest lower bound c (c = aAb);(5) if
a ,b ,c G T are distinct and a A b = c, then there is a G T such that a < a
and a is a successor of c (i.e., there is no d such that c < d < a); we denote
a by Sa(c) ; (6) every nonempty subset ACT has a greatest lower bound
denoted by f\A; and (1) for every a,b G T there is f G Aut(r) such that
f(a)Ob and f(a A b) = a A b .

Note that (l)-(5) are first-order requirements, (6) is a completeness reauire-
ment, and (7) ¿j a homogeneity reguirement.   {(Aut(T) ,T ; < , o , Op) | T G

T TK } is first-order interpretable in {Aut(T) \ T G K }.
(d) [GGHJ] For a linear ordering (L, <) let Bet(<) be the betweenness

three-place relation determined by <. Let L denote the Dedekind completion of
L. Let KL be the class of all linear orderings (L , <) that have the following
property: there is a dense subset D ç L such that for every ax < bx, a2 < b2
in D there is f G Aut((L, <)) such that f(ax) = a2 and f(bx) = b2. Then
{(Aut((L , <)), L; Bet(<), o , Op) | (L , <) G KL} is first-order interpretable in
{Aut«L, <))\(L, <)GKL}.

Remarks. In (a), (b), (c), and (d) we did not present the strongest possible for-
mulation; our main purpose was rather to demonstrate the range of applications
that Theorems 2.14 and 2.17 have.

Proof. A result stronger than (a) appears in [R2] and a result stronger than (d)
appears in [GGHJ]; however, both (a) and (d) are trivial corollaries of 2.17.
Using Maharam's theorem [Mm], (b) is also a trivial corollary of 2.17.

We prove (c). Let T G KT. Let B(T) = {b ç T \ b is a maximal
set of pairwise comparable elements}. Let 3§(T) = {Va \ a G T} where
Va - {b G B(T) | a G b}. 778(T) is a base consisting of clopen sets for a
O-dimensional topology on B(T), and it is easy to check that by requirement
(7) M(B(T), Aut(T)) is regionally disrigid and moreover for every a G T
M(B(T), Aut(r)) N ¥l(Va ; ~ Va). Let R(T) =f R(B(T)) ; hence by 2.17 and
2.22(a) MX(T) d= (Aut(T), R(T) ; ç,o,Op) is interpretable in Aut(r).

Let  tpx(V) = (Vf7, ,U2 C V)  (if Ux ¿ 0 ¿ U2, then there is g  such
that g(Ux)n U2 Í 0, g f (~ V) = Id, and g2 = Id). Note that <px(V)
is a first-order formula in the language of MX(T). We show that for every
V g MX(T): MX(T) \= tpx[V] iff (*) there is a G T such that (1) for every
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b G T if Vb ç V then a < b ; and (2) for every b, c G T if Vb ç V and
a<c<b , then Vc ç V.

Suppose that V satisfies (*) and let Ux , i/2 ç K be nonempty. Without
loss of generality Ux = Vb, U2 = Vc, and b0c. Let g, G Aut(T) be such
that gx(b) is comparable with c and gx(b Ac) = b Ac. Let g: T —> T be
defined as follows: For every dGT:ifbAc<dAb, then #(£/) = g, (d) ; if
b Ac < d Ac , then g(fiQ = £,"'(*/) ; otherwise g(d) = d . Clearly g G Aut(T)
and g is as required in <px .

Suppose MX(T) 1= <px[V]. Let a = /\{b \ Vb ç V} and we show that a is
as required in (*). Clearly if Vb ç V, then a < b . Suppose by contradiction
Vb ç V, a < c < b but Vc <£ V. Hence Fn ~ V ^ 0 and hence for some
d > c Vd n V = 0. Let eel be such that Ve ç V and b Ae < c ; such an
<? exists because c > /\{t \ Vt c V}. Let g G Aut(T) be such that g2 = Id
and g(Vb) n Ve # 0; we show that g(d)#d and hence g f (~ K) # Id. By
replacing b by b' > b and (? by e > e we can w.l.o.g. assume that g(b) = e .
Hence g(b Ae) = g(b) A g(e) = e A b , and hence g(c) > g(b A e) = b A e .
g(c) < g(b) = e, so b A e < g(c) < e and so g(c)ftc, but this implies that
g(d)0d. Hence g \ (~ V) ^ Id and (*) is proved.

Let <p2(V) = V £ 0A<px(V)AVU(tpx(U) -» ((£/ ç V) V (F ç £/) V (U n
F = 0))). We show that M,(r) N ç>2[F] iff for some ûëi V = Va.
Clearly if V = Fa, then Af,(r) 1= <»2[F]. Suppose M,(r) N ç»2[K]. Let a =
A{^ I Vb ç F} and we show that V = Va . By definition V C Va . Suppose by
contradiction b > a but Vb <£. V. Let c be such that Vc C V ; hence since V
satisfies <px b Ac = a . Without loss of generality b = Sb(a) and c = Sc(a).
Let d be such that Vd ç V and c A d = a. Hence Vb u Vc satisfies <px but
Vb u Vc is neither comparable nor is it disjoint from V. Hence V does not
satisfy tp2, a contradiction.

It is now clear how to interpret (Aut(T), T; < , Op) in MX(T), hence (c)
is proved.

We make the convention that if X0 is a topological space and K is a class
of M(X, G) 's, then X0eK means that M(X0 , H(X0)) G K.

We shall now list some classes of M(X , G) 's which are included in K*. The
proofs are mostly trivial or easy so they are left to the reader.

Proposition 2.23.2. (a) For every n R" g K*, and hence every regionally Eu-
clidean space belongs to K*. Note that this class contains manifolds with bound-
ary and polyhedra.

(b) If Y is a locally convex Hausdorff topological vector space over R, then
Y gK* .

(c) If Y is a normed vector space over an ordered field, then Y G K*.
(d) If k < co X is a k times continuously differentiable manifold, C (X) is

the group of k times continuously differentiable nonsingular homeomorphisms
of X, and G 2 Ck(X), then M(X, G) g K*. Many other variants of the above
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belong to K* ; e.g., add a volume form and consider those homeomorphisms
which preserve volume, replace "continuously differentiable" by "differentiable. "

(e) If PL(X) is the group of PL-homeomorphisms of a PL manifold X, and
G 2 PL(X), then M(X ,G)GK*.

(f) If X is a normed vector space over an ordered field F, L(X) is the
group of all homeomorphisms f such that both f and f~ are Lipschitz, and
G 2 L(X), then M(X, G) G K*.

(g) Let X be a manifold and F be an equivalence relation on X such that
for every x G X there is a neighborhood U of x such that (U ,F \ U) is
isomorphic to (R" , Fn k) where Fn k = {((x, , ... ,xn) ,(yx , ... , yn)) for every
i<k, x^yT}.

We call (X, F) a manifold with a simple foliation. Let H(X, F) be the
group of all homeomorphisms f of X which preserve F, that is, (x, y) G F
iff (f(x),f(y)) GF. Let H0(X,F) = {f \ f G H(X) and for all x G X
(x , f(x)) G F} . Then M(X , H0(X, F)) G K* and M(X, H(X ,F))gK°.

The smooth versions of the above are also in K* and K , respectively.
(h) Let (L , <) be a linearly ordered set; we denote the group of automor-

phisms of (L , <) by Aut((L, <)). Note that Aut((L, <)) is a subgroup
of H(L) where L is considered together with its order topology. Let K =
{M(L , Aut((L , <))) | (L , <) is a linear ordering and M(L , Aut(L , <))
is regionally disrigid}; then KOR ç K*. If (L, <) is a dense linear order-
ing such that M(L, Aut((L, <))) is regionally disrigid and for some c G
L {f(c) | / G Aut((L, <))} is dense in L, then for every G such that
Aut((L , <))QGC H(L): M(L ,G)gK* .

(i) If X is an infinite cardinal, then [0,1]  G K*.
(j) If F is the Dedekind completion of an ordered field F, then for every

cardinal X T g K*.
(k) If X is O-dimensional and regionally disrigid then X G K* .
(1) Let C denote the Cantor set, Q be the rationals, I the irrationals, and

R the reals; then any product of these spaces belongs to K . More generally if
X g K* and Y is O-dimensional, then X x Y g K°.

(m) Let k be an infinite cardinal and for every i g I, let X¡ be a Eu-
clidean manifold. Let Y = r¡*=/ Xi be the space whose points are the elements
of n,€/ Xi and whose basic open sets are n,e/ U¡ where each Ui is open in
X¡ and \{i \ Uj ^ X¡}\ < k . Then Y G K°. If Y is as above, X is an infinite
cardinal and x G Y, let Yk(x) = {y G Y \ \{i \ x(z') ^ y(z')}| < X} ; then the
subspace Y (x) belongs to K°.

(n) Let (T, <) be a tree ; for every aGT let Xa be a topological space. Let
Y = YlaeT Xa be the following space: a point of Y is a function x from some
b G B(T) to \Ja€T Xa such that for every a G b x(a) G Xa . A basic open set
of Y has the form \[a€b Ua where b G B(T), for every a G b, Ua is open in
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Xa, and for some aQG b, Ua = Xa for every a> a0. If each Xa is a manifold,
then YgK°.

3. The reconstruction of X from HR(X, G)

In this section we prove four results all having more or less the following
form. We define a certain class K of M(X, G) 's, and then, letting A", be
{HR(X, G) | M(X,G) G K} and K3 be {(X,xx; g) \ 3G(M(X,G) G K)} ,
we prove that K3 is interpretable in A", and that every isomorphism between
elements HR(X¡ ,G¡) of Kx , i = 1,2, is induced by a homeomorphism be-
tween Xi, i = 1,2. Each of the three first results extends [W] in some natural
direction. We withdraw all assumptions of §2.

I. Locally compact spaces
Our first result is the easiest for the following reasons: (a) we consider only

locally compact M(X, G) 's; (b) we assume relatively strong homogeneity re-
quirements; and (c) we do not try to obtain a first-order interpretation and are
ready to accept any interpretation.

Nevertheless, our class of M(X, G) 's contains {M(X) | X is a Euclidean
manifold}, {M(X, C (X)) \ X is a differential manifold of «th order and
k < n < oo}, and {M(X, PL(X)) | X is a PL-manifold and PL(X) is the
group of piecewise linear homeomorphisms of X }.

Definition 3.1. (a) Let x G X, x is densely conjugated in M(X, G) if {/(x) |
f G G) is somewhere dense in X, that is, int(cl({/(x) | / G G})) ^ 0. Let
DC(X, G) denote the set of densely conjugated points of M(X, G).

(b) M(X , G) has property D if for every distinct x , y G DC(X , G) : if
y G cl({/(x) I / G G}), then {/(x) \ f G G and f(y) = y} is somewhere
dense.

(c) Let HRP(X , G) = (HR(X ,G),X; G , Op), where e is the belonging
relation between elements of X and elements of R(X), and (/ , x , y) G Op
iff / G G, x, y G X, and /(x) = y. Let HRD(X,G), HVP(X.G),
and HVD(X, G) be respectively the submodels of HRP(X, G) with universes
R(X) u DC(X, G), HV(X, G) U X, and HV(X, G) U DC(X , G).

Note that if R(X) is an open base for X, then HRP(X , G) determines X ;
if X is regular then R(X) is an open base; if M(X, G) is regionally disrigid
then (V(X,G), ç) determines (R(X), C).

Definition 3.2. (a) X is regionally compact if \J{T \ T is open and cl(T) is
compact} is dense in X.

(b) KRD = {M(X ,G) | X is regionally compact Hausdorff space and
M(X , G) has property D }. Let KRD = {HR(X , G) \ M(X , G) G KRD } and
KRD = {HRD(X , G) | M(X , G) G KRD) .

Theorem 3.3. (a) A"3     is interpretable in A",
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(b) Let tp: HR(XX , G,) —> HR(X2, G2) be an isomorphism between two el-
ements of Kx ; then q> has a unique extension to an isomorphism between
HRD(XX , G,) and HRD(X2, G2).

Remarks, (a) Note that local compactness implies regional compactness.
(b) The reader could now see that combining 3.3 with 2.13 one gets already

many interesting reconstructibility results; that is, for many M(X, G) 's we can
already conclude that G, = G2 implies Xx = X2.

Proof, (b) will follow from the proof of (a). Let us explain how. HR(X , G) is a
submodel of HRD(X ,G). In our interpretation of HRD(X, G) in HR(X, G)
every element c of HRD(X, G) that belongs to HR(X ,G) will be represented
by c itself. Let <p be an isomorphism between two HR(X, G) 's. Clearly tp
induces an isomorphism <p between the corresponding HRD(X, G) 's; but since
each element of HR(X ,G) is represented by itself, for every c G HR(X ,G)
0(c) — <p(c), so (p extends tp . The uniqueness is trivial.

Now we survey the proof of (a). Let S(X) be the set of ultrafilters of R(X).
(Recall that R(X) is a Boolean algebra.) Since X is Hausdorff, for every
p G S(X), f]{cl(V) | V G p} contains at most one point; we denote this
point by x if it exists. Let p G S(X) ; we call p a good ultrafilter if there is
U G p such that for every nonempty V ç U there is V' = V such that V' G p .
Clearly, if X is regionally compact and p is good, then f|{cl(F) | V g p} ^ 0 ;

RDso if M(X ,G) G K and p is good, then x exists. Second, it is clear
from the definition of being good that this notion is expressible in terms of
HR(X, G). Third, we show that if X is regionally compact and p is good then
x G DC(X, G). Suppose not, and let U be as assured by the goodness of p .
Without loss of generality cl(U) is compact. Let y G U - cl{f(xp) | / G G}).
It is easy to see that there is an open set T such that y G T ç cl(T) ç
X - cl({f(xp) | / 6 G}). Let V = int(cl(r)) n U. Clearly for no V' = V
V' g p , hence p is not good, a contradiction.

It is also clear that if x e DC(X, G) and p is an ultrafilter containing
{U | x G U} , then p is good.

It is obvious that we mean to represent the points of DC(X, G) by good
ultrafilters, but we still have to express equality in terms of the relations of
HR(X, G) ; i.e., we look for a formula <pEq(p , g) in the language of HR(X, G)
such that for every good p and g HR(X, G) t= <pEq[p , g] iff x = x . Property
D was devised in order to ensure the existence of such a <pE . It is easy to see

that -^<pEq(P • Q) =f (3U G P)(W G g)(U ? If) V (3f7 G p)(3V g g)(U n V =
0 A (VC/, ç U)(UX ¿0^(3fGG)(VG f(g) AUxg f(p)))) is as required.

We did not yet finish, since we now need a formula (p&(p ,U) to express
defthe fact that xp G U.   <p€(p, U) = Vg(((g is good) A <pEq(p , g)) -> U G g).

def
<Poç(f -P >Q) = <PE(i(f(PS) • Q) ■ T*ùs completes the proof of the theorem.
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Corollary 3.4. Let KRDX = KRD n K°, let KRDX = {G \ 3X(G ç H(X) A
M(X, G) G KRDX)}, and let KRDX = {HRD(X, G) | M(X , G) G KRDX} ; then
(a) KRDX is interpretable in KRDX, and (b) if M(Xi, G¡) g Krdx , i = 1,2,
and tp: G, —► G2 is an isomorphism between G, and G2, then there is a unigue
isomorphism <p between HRD(XX ,G,) and HRD(X2,G2) which extends tp.
Proof. Combine 2.13 and 3.3.

Corollary 3.4 is a final result for some M(X, G) 's, namely those for which
DC(X,G) = X. For if M(X ,G) G KRD and CD(X, G) = X, then X is
locally compact and hence is regular and therefore R(X) is an open base for
X ; in such a case HRD(X, G) determines (X, xx). We make this statement
precise in the following corollary.

Corollary 3.5. Let KRD1 = KRDX n {M(X, G) | CD(X ,G) = X}, let KRD1 =
{G | 3X(G ç H(X) A M(X,G) G KRD2)}; then (a) KRD2 is interpretable in
KRD2,and

(b) if M(Xi,Gi) G KRD1, i = 1,2, and tp: G, -+ G2 is an isomorphism
between G, and G2, then there is a unigue isomorphism between M(XX ,GX)
and M(X2, G2) extending tp. (So every isomorphism between G, and G2 is
induced by a homeomorphism between Xx and X2.)

LC(c) Let K — {M(X, G) | X is a locally compact Hausdorff space, and for
every open T and x G T {f(x) \ f G G and var(/) ç T} is somewhere
dense}; then KLC ç KRD2.
Proof, (a) is a special case of 3.4. (b) follows from the particular method
of interpretation. To prove (c) it is sufficient to observe that KLC ç A"(1)
(see the definition of A"(1) before 2.16). Clearly if M(X ,G) G KLC then
VU{¿2U' ç U I Fl(i7', ~ [/)} = U); hence M(X,G) 1= <D° and hence it
belongs to AT(1).

nni / Ç*
K does not have a natural definition; however, its subclass K is nat-

urally defined, and it contains some interesting subclasses. Also note that if
M(X, G) G KLC and GCHç H(X), then M(X,H) G KLC .

In the following corollary we list some subclasses of K     ; these classes are
faithful since KLC is faithful.

/ cCorollary 3.6. The following classes are contained in K    , and hence they are
faithful.

(a) (Whittaker [W]) {X \X isa Euclidean manifold}.
(b) {M(X ,G)\X isa PL-manifold and PL(X) ç G ç H(X)}.
(c) {M(X ,G) | for some k < oo X is a Ck-manifold and Ck(X) CGC

H(X)}.
(d) Let X be a manifold with an atlas [tp¡ \ i G 1} and K be a number such

that for every i, j G I, (p¡o ç>Jx has a Lipschitz constant less than K ; we call
such a manifold a Lipschitz manifold and it makes sense to say that f G H(X)
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is Lipschitz. We denote L(X) = {/ G H(X) | / and f ' are Lipschitz}. Then
{M(X, G) | X is a Lipschitz manifold and L(X) çGç H(X)} is contained in

F CK      and is hence faithful.
Many variants of (a), (b), (c), and (d) which are obtained by adding structure

T C(like volume) give rise to subclasses of K
(e) The following class is contained in KLC : {X \ X = rj,6/ Xt for every i G I

Xi is a connected Euclidean manifold and Xi is compact for all but finitely many
members of 1}.

Definition 3.7. Let A" be a class of M(X .G)^. We say that M(Y,H) is a
A>manifold if for every y g Y there are M(X , G) G K, an open T ç X, and
an A: cl(T) —► Y such that (1) A is a homeomorphism between cl(T) and
A(cl(T)) ; (2) A(cl(F)) is closed in Y ; (3) h(T) is open in Y ; (4) y g h(T) ;
and (5) for every / G G : if var(/) ç T, then / =f hfh'x U Id [ (Y - h(T)) G
H. (Note that conditions (l)-(3) imply that f gH(Y) .)

If AT is a class of spaces, then we say that Y is a A"-manifold if M(Y, H(Y))
is an {M(X, H(X)) \ X G A>manifold.

Let Man(A") be the class of AT-manifolds. Clearly Man(AT) C Reg(AT).

Proposition 3.8. (a) KLC = Man(A:LC).
(b) // X is an infinite cardinal, then [0, if G KLC. (In particular 3.6 applies

to Hubert cube manifolds and any [0,1] -manifold, X > N0. This strengthens
[MJO
Proof, (a) is trivial, (b) follows easily from the fact that [0,1]N° is homoge-
neous. (See [BP].)

RD2Remark. It is easy to construct for every separable X such that M(X) g K
or)')

a countable G ç H(X) such that M(X, G) G K . On one hand, this means
that 3.6 is stronger than [W]. On the other hand, it shows that in the presence of
local compactness, one needs just a small portion of H(X) in order to recon-
struct X, and this means that local compactness can be regarded as too strong
an assumption.

3.6 is too restricted also in another direction; it requires all points of X to
be densely conjugated. This is not the case for polyhedra or for manifolds with
boundary.

II. Normed manifolds
Our next two goals are to drop the assumption of local compactness and to

include spaces in which not every point has a somewhere dense orbit. We define
(after 3.34) a class KM ; in 3.II and 3.III we prove that KM is faithful and in
3.IV we prove that some classes including normed manifolds, polyhedra, and
manifolds with boundary are contained in K . We do not know how to prove
that the class of locally convex topological vector spaces over R is faithful; the
best result in this direction obtained in this work (3.VI) is the following. Let
X be a topological vector space over an ordered field F.   A C X is linearly
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bounded if for every straight line /, An I is bounded in /. J is linearly
bounded if it contains a linearly bounded nonempty open set. The class of all
manifolds over locally convex linearly bounded vector spaces over an ordered
field containing R is contained in K    and is thus faithful.

A subset A of a Boolean algebra B is dense in B if for every b G B - {0}
there is a G A - {0} such that a < b . Let R c R(X) be dense in R(X) and
closed under G. We define M(X ,G,R) =f (M(X ,G),R;), HR(X ,G,R) =
(G,R;o, c,Op), and HRP(X,G,R) = (HR(X ,G ,R) ,X; €,Op); note
that HR(X , G, V(X, G)) = HV(X, G). The main result in this part (Corol-
lary 3.20(a)) is that for a certain class K of M(X,G,R)'s {HRP(X ,G,R)\
M(X, G, R) G K} is first-order interpretable in {HR(X ,G,R)\ M(X ,G,R)g
K}. In all applications R will be V(X, G), but this is irrelevant to our
proof. Combining the fact that HR(X,G,V(X,G)) is first-order interpre
table in G and that HRP(X,G,V(X,G)) is first-order interpretable in
HR(X, G, V(X, G)), we shall conclude that for a certain class of M(X, G) 's
(X, V(X, G) ; G) is first-order interpretable in G (Corollary 3.20(b)).

In what follows M(X, G, R) is fixed, T, S denote elements of xx , and
U, V, W denote elements of R .

Definitions 3.9 and 3.11 are based on the relations and functions of M(X, G)
and do not use the distinguished subset R of R(X) mentioned in M(X ,G,R).

Definition 3.9. (a) T is small if \T\ > 1 and for every 0 ^ Tx ç T there is
/ G G suchthat f(T) ç Tx .

(b) T is strongly small in S ( T is SS in S ) if S ¿ 0 and for every
0¿SxCS there is / G G such that var(/) c S, and f(T) ç Sx .

If T is small, let sc(r) =f \J{T' \ T' s T}. sc(T) is called the small
component of T. Let SC(X, G) = {sc(T) | T is small in M(X ,G)}. Clearly
every small component is open, and every two distinct small components are
disjoint.

Let S(X, G) = \J{T | T is small in M(X, G)} . Our goal is to interpret
S(X ,G) in HR(X ,G,R).

Proposition 3.10. (a) Let S be a small component of M(X, G), and suppose
there is an open Tx ^ 0 such that cl(Tx) ç S ; then if T C S is small, then
cl(T) ç S. If in addition, cl(Tx) is contained in a small set, then cl(T) is
contained in a small set.

(b) // T is SS in S and X is Hausdorff then cl(T) CS.
(c) If T is small and 0±ScT, then S is small and sc(S) = sc(T).

Proof. Trivial.

Definition 3.11. T is excellent if ( 1 ) T is small; (2) for every S : if cl(S) ç T,
then 5 is SS in T; (3) for every x e cl(T) and small 5 ç sc(T), there is
S' = S such that S' ç T and x e cl(S') ; and (4) for every S, if T n S = 0,
then there is T' = T such that T' n S = 0, and cl(T) - cl(S) ç T'.
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Note that (1) is implied by the conjunction of (2) and (4). Note that an open
ball is excellent in R" .

If A ç X let od(A) d= cl(A) - in\(A).

Definition 3.12. Let T be open; T is recognizably clopen in M(X,G) (T
is RCL) if T is clopen and for every f G G such that f(T)nT = 0,
f ¡TUT1 \f(T)Uld¡(X-T-f(T))GG.

Note that if G — H(X), then every clopen set is recognizably clopen.

Definition 3.13. (a) Let 5 be a small component in M(X ,G). S is excellently
structured (relative to M(X, G ,R) if (1) for every x G S, T 3 x , and small
V ç S (recall that V, U, W denote members of R ), there is V' = V such
that x 6 V1 ç cl(F') ç T; and (2) for every x e S and T 3 x there are V
and an excellent U such that U n V = 0, U ç T, and cl(U) n cl(K) = {x} .

(b) Let S be a small component of M(X ,G). S is clopenly structured
(relative to M(X, G.R)) if (1) every small clopen subset of S is recognizably
clopen; (2) for every x e S, x has a base for its neighborhood system consisting
of clopen sets which belong to R ; and (3) for every x e S there is V G R such
that bd(F) = {x}.

(c) Let KECS be the class of M(X, G,R) 's such that X is Hausdorff, and
for every S G SC(X, G) either S is excellently structured or S is clopenly
structured. (Recall that R is assumed to be a dense subset of R(X).) Let
kecs = {HR(X >G>R)\ MtX ,G,R)G KECS} .

Assumption 3.II.1. We consider only  (X.G.R)^ such that M(X,G,R) G
„ECS

Let LHR be the language of HR(X,G,R).

Proposition 3.14. (a) If S G SC(X, G) and S is excellently structured, then for
every small T ç S,  T is not clopen.

(b) There are first-order formulas in LHR: q>s(U), <pss(U,V), (pCL(U),
<PcsW)' 9>es(U)> and Vce(U,v^ which in HR(X,G,R) respectively mean
that U is small; U is strongly small in V ; U is small and clopen; U is small
and sc(U) is clopenly structured; U is small and sc(U) is excellently structured;
and U and V are small and sc(U) = sc(K).

Proof. Easy.

Lemma3.15. Let tp0(U ,V) = ^W(tpss(U ,W)^WC\V ¿0), andlet <px(U ,V)
be the formula that says (1) U is small and sc(U) is excellently structured; (2)
U D V = 0; and (3) for every small Ux : if sc(U) = sc(Ux), then there is
U2 = Ux such that U2ÇU and <p0(U2, V).

(a)Ifcl(U)ncl(V)¿0, then HR(X ,G,R) N <p0[U, V].
(X>) If HR(X ,G ,R)\= <px[U ,V], then cl(U) nd(K) ^ 0.
(c) // U is excellent, Un V = 0, and cl(U)ncl( V) # 0, then HR(X, G, R) t=

<P¡[U,V].
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Proof, (a) Let cl(t/)ncl(F) ¿ 0, and suppose U is SS in W. By 3.10(b)
cl(£7) ç W, hence IF n cl(F) ^ 0, and hence W n F / 0. This means that
i//?(X,G,/?)Ni>0[fJ,F].

(b) Suppose cl(J7)ncl(F) = 0, and we show that HR(X ,G,R) t= -iç»,[t7, F].
Without loss of generality U is small and sc( 17) is excellently structured, so
there is an excellent 17, such that sc(Ux) = sc(£7). Let U2 = Ux and U2ç U,
hence cl(U2) n cl(F) = 0. By 3.11(4) there is W ^ U2 such that cl(U2) ç W
and WnV = 0. Since W is excellent by 3.11(2) U2 is SS in W. This
shows that HR(X ,G,R)\= -*(p0[U2, V]. Hence there is no U2 = Ux such that
U2CU and <p0(U2 , V) holds, so HR(X, G,R) \- ̂ (px[U, V].

(c) Let U and F be as in (c); of the three requirements in <px(U ,V) the first
two are trivially satisfied. To prove (3), let £/, be small and sc(J7,) = sc(U).
Let x G cl(U) ncl(F). By 3.11(3) there is U2 = Ux such that U2 ç U and
x G cl(C/2). Hence cl(f72)ncl(F) ^ 0 and so by (a) HR(X ,G,R) \= <p0[U2, V].
This proves (3) in the definition of (px.

Lemma 3.16. Let

<p2(U,V) = (px(U,V)A(\IUx,U2)

(a)IfHR(X,G,R)\=<p2[U,V], then \cl(U) ncl(F)| = 1.
(b) // U is excellent and | cl(i7)ncl(F)| = 1, then HR(X ,G,R)l= q>2[U, V].
(c)IfHR(X,G,R)\=<p2[U,V]AUx ç UA(p0[Ux ,V], then |cl(C/,)ncl(F)| =

1.
(d) If x G S G SC(X, G) and S is excellently structured, then there are U

and V such that {x} = cl(U) n cl(F) and HR(X, G, R) N <p2[U , V].
Proof, (a) Let HR(X,G,R) \= <p2[U, V]. By 3.15(b) cl(U) ncl(V) ¿ 0. Sup-
pose by contradiction that x, ^ x2 and x, ,x2 G cl(U) n cl(F). By 3.13(a)(1)
and by the smallness of U, there is If' such that 0 ^ cl(U') ç U. By
3.10(a) cl(U) C sc(U), and hence x, ,x2 G sc(U). Let T, , T2 be dis-
joint neighborhoods of x, and x2, respectively. Since sc( U) is excellently
structured, by 3.13(a)(2) there is an excellent W c sc(U). By the excel-
lence of W it is small, so by 3.13(a)(1) there are Wx = W2 = W such that
x,. G Wi C cl(W¡) CT¡, i =1,2. Hence, cl(PF,)ncl(lF2) = 0. By 3.11(4) there
is W3 s Wx such that cl(Wx) C W3 and W}nW2 = 0, and hence by 3.11(2)
Wx is SS in W3. Let U¡ = Un IF . Since x(. G cl(<7,.) n cl(F), by 3.15(a),
HR(X,G,R) 1= <p0[U¿ ,V], i =1,2. Since Wx is SS in W3 and UxçWx,
Ux is 55 in W3 .But W3nU2 = 0, hence HR(X ,G,R) P <p0[Ux , U2]. This
shows that HR(X,G,R) F <p2[U, V], a contradiction, so (a) is proved.

(b) Let U and F be as in (b), and let {x} = cl((7)ncl(F). Clearly UnV = 0
and hence by 3.15(c) HR(X ,G,R) t= <px[U ,F]. By 3.11(4) there is U' =
U such that tfnV = 0 and cl(U) - cl(F) ç U'. Suppose W ç U and
HR(X,G,R)\=<p0[W ,F]. Since ï7'nF = 0, IF is not 55 in u7'. By 3.11(2)
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cl(W) at u'. But cl(W)-cl(V) ç cl(U)-cl(V) ç Ú , hence cl(IF)ncl(F) £ U',
so x e cl(W). We have thus shown that if Wx,W2çU and HR(X ,G,R)\=
AJL, <P0WX • F] ' then cl(IF,) n cl(W2) 2 {x} ¿ 0 ; by 3.15(a) it follows that
HR(X,G,R)\= (p0[W{ ,W2]. This means that HR(X, G,R) 1= <p2[U, V], and
(b) is proved.

(c) Let U, V, Ux be as in (c). Suppose by contradiction that cl(C/,) n
cl(F) = 0. Let {x} = cl(U) ncl(F). Since sc(C7) is excellently structured,
by 3.13(a)(2) there is an excellent W' such that sc(W') = sc(»7). By 3.3(a)(1)
there is W S w' such that x G W C cl(W) C X - cl(Ux). By 3.11(4) there
is  IF, s IF such that  IF, n Ux = 0 and cl(W) ç Wx.   By 3.11(2)   W is
SS in Wx, and hence <72 d= U nW is SS in Wx . These facts mean that
(i) HR(X,G,R) \= -^<p0[U2,Ux]. Since x G cl(U2) n cl(F), by 3.15(a) (ii)
HR(X ,G,R)l= <p0[U2 , V]. It is assumed that (iii) HR(X,G,R)£ <p0[Ux , V].
But (i), (ii), and (iii) imply that HR(X ,G,R)£ ^q>2[U, V], a contradiction;
hence (c) is proved.

(d) follows trivially from 3.13(a)(2) and (b).

Lemma 3.17. Let

<p3(Ux ,VX,U2, V2) = (VL/; Ç UX)(VU'2 Ç U2)

((AL^.n))-^0(^.^2)) •
Then for every Ux, F,, U2, F2 : if HR(X, G,R) \= /\2=x <p2[Ut.., F.], then
HR(X ,G,R)\= <p3[Ux ,VX,U2, V2] iff cl(Ux)ncl(Vx) = cl(U2) n cl(V2).

Proof: Suppose HR(G,X,R) N A?=i fJLUt, Vt]. Proof of => . Assume
HR(X,G,R) 1= cp3[Ux , F, , <72, F2], and suppose by contradiction cl(f7,) n
cl(F1) = {x1}#{x2} = cl(C/2)ncl(F2).

Let  Wi be excellent, xi € W¡,  i = 1 ,2, and clíIF,) ncl(IT2) = 0.  Let
U\ = UinWi, i =1,2; then HR(X,G,R)\= A-=1 (üj Ç C/, A ̂ 0[/7,', F;]) A
^<p0[U'x , U2], so HR(X ,G,R)\= -^(p3[Ux , F, , (72, F2], a contradiction.
Proof of ^. Assume cl(í7,)ncl(F,) = cl(í72)ncl(F2) = {x} , and HR(X ,G,R)
N A-=, ̂ zt^ • F/] • Let U't CUt i =1,2, and HR(X ,G,R)£ cp^ , VA . By
3.16(c) x G cl({7,') 1 = 1,2, and by 3.15(a) 7/Ä(X , G,R) 1= ç>0[C/i , I72]. So
HR(X ,G,R)\= <p3[Ux ,VX,U2, V2].   Q.E.D.

Lemma 3.18. . Let <pA(U , F ,W) = (3WX ,W2,UX, VX)((WX is SS in W2) A
(W2C W)A(UX C Wx)A(p2(Ux,Vx)A(p3(U ,V ,UX ,F,)). Then if HR(X , G, R)
^ <P2[U ,V], then for every W: HR(X ,G,R)\= tp4[U ,V ,W] iff cl(U)ncl(V) c
W.
Proof. Let HR(X, G, R) t= <p2[U, V], and let WgR.

First direction. Suppose cl(C/) ncl(F) = {x} ç W. Let W2 be excellent, and
x G W2 ç W. There is Wx such that xgWxç cl(Wx) c W2 . So Wx is SS in
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W2. There are F, and an excellent Ux ç Wx suchthat {x} = cl(Ux)ncl(Vx).
Hence by 3.16(b) and 3.17 HR(X, G,R) t= tp2[U, V]A(p3[U, V, Ux ,F,]. This
amounts to proving that HR(X ,G,R)t <p4[U, V , W].

Second direction. Suppose HR(X, G, R) 1= <p2[U, V] A <pA[U, V , W]. Let Wx,
W2, Ux, F, be as assured by q>4 . Let {x} = cl(£/,) n cl(F,). Clearly {x} =
cl(U)ncl(V). xgcI(Ux) Ccl(IF,). Since IF, is SS in W2 cl(Wx) ç W2.
Hence x e cl(Ux) ç cl(Wx) ç W2 ç W.   Q.E.D.

Let us now consider the formulas <p2(U,V), <p3(Ux ,VX ,U2,V2), and
<p4(U, V , W). We shall use pairs (U ,V) which satisfy (p2 to represent all
the points which belong to an excellently structured small component. By the
definition of <p2 and by 3.16(a) and (d) {x\(3U ,V)(HR(X ,G ,R)\= q>2[U ,V]
and {x} = cl(¿7) n cl(F))} = lj{5 € SC(X ,G)\S is excellently structured}.
(p3(Ux , F, , U2, V2) tells which pairs represent the same point and q>4(U, V, W)
tells when the point represented by (U ,V) belongs to W.

Now we carry out a similar procedure for the clopenly structured small com-
ponents.

Lemma 3.19. Let <p5(U) be the formula which says (1) U is small, and sc(U)
is clopenly structured; (2) for every small and clopen V either U n F is small
and clopen or U n F = 0, or U ~ F is small and clopen or U ~ V = 0 ; and
(3)   U is not small and clopen.

(a) For every UgR HR(X, G, R) t= tp S[U] iff U is small, sc(U) is clopenly
structured, and | bd( U) | = 1

(b) For every x G S G SC(X, G) : if S is clopenly structured, then there is U
such that HR(X,G,R) N <p5[U] and bd(U) = {x}.

(c) Let (p6(U, V) say that for every small and clopen W: U n W is small
and clopen or U n W = 0 iff V n W is small and clopen or V n W = 0.

Then for every U, V suchthat HR(X , G,R) 1= cp5[U] A (pAV]:

HR(X ,G,R,R)\=<p6[U ,V] iffbd(U) = bd(V).

(d) Let <p1(U ,W) say that there is small and clopen Wx c W such that
C/ n IF, is not empty and not small and clopen.

Then for every U, WgR such that HR(X , G, R) 1= <p5[U] : HR(X ,G,R)\=
?7[U,W] iffbd(U)CW.
Proof. The proofs of (a)-(d) are very easy; however, prior to this we have to
check that <p5, <p6, f/>7 can indeed be written as first-order formulas in LHR .
The formal difficulty is that even though UnV and U ~ F need not belong
to R, we have to say about U, V g R that U n V is small and clopen and
that Í7 ~ V is small and clopen. We leave it to the reader to check that this is
possible.

Let ß Ç X ; we denote by HRP(X ,G,R,Q) the submodel of HRP(X, G)
whose universe is Gu R U Q .  (HRP(X, G) was defined in Definition 3.1(c).)
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Corollary 3.20. (a) Let KECS = {HRP(X ,G,R ,S(X ,G)) \ M(X,G,R) G
KECS} ; then Kfcs is first-order interpretable in KECS. (KECS was defined
in 3.13(c).)

(b) For every n G co let Kw be as defined just before 2.17, and let K
= K(n)n{M(X,G)  |  M(X,G,V(X,G))  G KECS}.    Let KEC{n)  =  {G \
3X(G C H(X) A M(X, G) G KEC{n))}, and let

KEC(n) = {HRP(X to,V(X, G),S(X, G)) | M(X, G) G KEC(n)}.

Then KEC{n) is first-order interpretable in KEC{n).
Proof, (a) follows easily from 3.16-3.19. (b) follows from (a) and 2.17.
Remarks. It is unnecessary to remember the exact definition of K . In-
stead one should refer to 2.32.2, where a list of concrete classes of M(X, G) 's
is claimed to be included in K(n). We shall later examine this list more care-
fully and check which of the M(X, G) 's mentioned there happens to belong to
j,EC{n) just jn or(jer not t0 ieave tne reader in the dark, let us mention, for the
time being without proof, that if K is the class of normed vector spaces over
ordered fields, then the class of all regionally A"-formed M(X) 's (see Definition
2.21) is included in KEC(2). Also, Euclidean manifolds with either a differential
structure or a piecewise linear structure together with the corresponding groups
of homeomorphisms belong to K . The treatment of concrete classes of
M(X, G) 's appears in Theorems 3.42 and 3.43.

2.20(b) yields a final reconstructibility result for normed manifolds, (i.e., K-
manifolds where K is the class of normed vector spaces over ordered fields.
See Definition 3.7.) If X is a normed manifold, then S(X, H(X)) = X and
V(X, H(X)) is an open base for X. Hence HRP(X, H(X), S(X, H(X))),
which is equal by definition to (H(X), V(X, H(X)) ,X;o, C , Op, e), deter-
mines (X,xx).

Using the yet unproven fact that the class of normed manifolds is included
in AT       , we obtain the following special case of 3.20(b) as a corollary.
Corollary 3.21. {(H(X), V(X) ,X;o, ç , Op, e) \ X is a normed manifold}
is first-order interpretable in {(H(X), o) | X is a normed manifold}; and conse-
quently if X, Y are normed manifolds and H(X) = H(Y), then X =Y. More-
over, from the particular way that the interpretation was constructed, it follows
that if <p is an isomorphism between H(X) and H(Y), then there is a homeo-
morphism A between X and Y such that for every f G H(X) tp(f) = hfh~x.
This answers a guestion that was mentioned by Whittaker in [W].

III. Regionally normed spaces: polyhedra and manifolds with boundary
The abstract setting. In section II we showed how under certain assumptions

S(X, G) can be interpreted in HR(X, G).  This sufficed for M(X, G) 's in
which X = S(X, G).

In section III we shall see how to interpret in HR(X, G) some set L(X, G) 2
S(X, G) of limit points of S(X ,G). In a polyhedron X every point x which
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is an accumulation point of {/(x) | / G H(X)} belongs to L(X ,G). In
manifolds with boundary every point which is not a boundary point of a one-
dimensional connected component belongs to L(X ,G).

We drop all previous assumptions and start a new list of ad hoc assumptions.

Assumption 3.III.1. (a) R denotes an open base for X consisting of regular
open sets. 5 denotes a subset of X.

(b) X is a Hausdorff space.
(c) If A C X, x $. S, and x is an accumulation point of A , then there is

a sequence {ai \ i goj} ç A such that lim(€&) at, = x .

We denote sequences by arrowed letters; T denotes a sequence {Tj \ i gco}

of open sets, x = {x¡\ i gco} , f = {f \ i gco} , and lim x = lim (.    Xj.

Definition 3.22. (a) A sequence U of pairwise disjoint regular open sets such
that for every i, S n U¡ is connected and is dense in U¡ is called a normal
sequence.

(b) Let  T be a sequence of open sets x ç X and / ç H(X) ;  x  is a
T-sequence if for every i G co x(G T¡ ; f is a T-sequence if for every i gco
var(/;.) ç T¡.

(c) x is an accumulation point of 7   (x G Ac(T)), if x G cl(Uea,^,) _
U^chT,).

(d) x = Hm¡     Ti if for every  T-sequence x  we have lim x = x.   We

denote lim.^r by limT.

Definition 3.23. x is hereditarily self-conjugate (HSC), if for every i ± j,
x( / x , and for every subsequence x   of x   x' = x .

Proposition 3.24. If x is HSC, then either x is convergent or x has no accu-
mulation points.

Definition 3.25. (a) U G R(X) is transitive in HRP(X, G, R , 5), if 5 n U is
dense in U and for every x, y e U n S there is g G G such that g(x) = y
and var(g) ç U.  U is transitive if for every i Gco, Ui is transitive.

(b) If / ç H(X) and {var(_^) \i Gco) is normal then

n7 = (J (/* r var(/<))u Id r ( x - U var(/;.) j.

Note that Ylf is not necessarily a homeomorphism of X.
(c) U has the infinite product property (IPP) if for every (/-sequence / - G

n/ belongs to G.
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Proposition 3.26. The notions " U is transitive, " " U is transitive, " and " U has
the IPP " are expressible in terms of HRP(X ,G,R,S).

Proposition 3.27. Let P(U) =   "for every subseguence  u    of U, for every
U' -sequence x', and for every x G X if lim x' = x, then lim U' = x. "

(a) // P(U) holds, then U has the IPP in H(X).
(b) If U is transitive and U has the IPP in H(X), then P(U) holds.
The following is an assumption that G is closed under a certain infinitary

operation of composition.

Assumption 3.III.2. If P(U) holds and Ac(U) n 5 = 0, then U has the IPP
in G.

Definition 3.28. (a) Let x ç 5 and U be a sequence; we say that  U is a
witnessing sequence for x  (WS) if (i)  U is normal and transitive and x is
a i/-sequence; (ii) for every subsequence u   of U and every i/'-sequence y'
there is a subsequence y" of y' such that y" = x ; (iii) U does not have the
IPP.

(b) Let SEQ(X,G,R,S) be the set of all HSC sequences from 5 which
have a WS.

Proposition 3.29. (a) If 7c G SEQ(X ,G,R,S), then x is convergent,
(b) SEQ(X ,G,R,S) is definable in HRP(X ,G,R ,5).

Proof, (a) Let x G SEQ(X,G,R,S), and suppose by contradiction x is not
convergent. By 3.25 x has no accumulation points. Let U be a WS for
x . Suppose by contradiction Ac( U) ^ 0. So there is a subsequence u of
U and a convergent [/'-sequence y'. But then if y" is a subsequence of
y', then y" ^ x , in contradiction to (ii) of 3.28. So Ac(U) = 0, and by
Assumption 3.III U has the IPP. This contradicts (iii) of 3.28. It follows that
x is convergent.

The proof of (b) is trivial.
Now we want to express in terms of HRP(X,G,R ,S) the fact that two

sequences x , y e SEQ(Z,G,R,S) have the same limit.

Definition 3.30. (a) If x is a {/-sequence and U' is a subsequence of U, let
x t v   denote the subsequence of x consisting of those x( 's which belong to
some member of Ú'.

(b) For x , y G SEQ(,T ,G,R,S) and a normal sequence U let Q(x , y , U)
mean (1) U is a WS for x ; and (2) for every subsequence u of U and
every [/'-sequence ~z , there is a subsequence U" of U' and g G G such that
g(y) = y and g(x \ U") = 7' [ U".
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Lemma 3.31. If x , y , and U are as in 3.30(b) and Q(x , y , U) holds, then
lim x ^ lim y .

Proof. Assume that Q(x , y , U) holds. If for every subsequence U', of U
and a [/'-sequence z ' x = lim x is a limit point of z', then lim U = x .
But then P(U) from 3.27 holds, and by Assumption 3.II.2 U has the IPP,
contradicting the fact that U is a WS for x . Hence there are a subsequence
[/' of U anda [/'-sequence z' such that either limz*' exists and limz*'^x
or z' has no accumulation points. But since U is a WS for x , x = z" for
some subsequence z " of z ; hence lim z*' = z' exists. Let U" and g be as
assured for z' by ô(* • y >U), hence g(x) = z' / x and g(lim y) = lim y ,
hence lim x ^ lim y .   Q.E.D.

Assumption 3.III.3. If x , ye SEQ(X ,G,R,S) and lim x ,¿ lim y , then
3t7ß(Jc,y,i7).

Corollary 3.32. (a) 3U Q(x ,y ,U) is expressible in HRP(X,G,R,S).
(b) (limx = limy) = -i3[/ Q(x , y , U), hence the fact that limx = limy

for x , y c SEQ(X,G,R,S) is expressible (by a second-order formula) in
HRP(X,G,R,S).
Proof. Trivial.

Next we want to express in HRP(X ,G,R ,5) the fact that limx € U.
Let L = L(X, G, R,S)d= S U {limx | xgSEQ(X,G,R, 5)}.

Assumption 3.III.4. For every x G L and open T 3 x there is g G G such
that g(x) / x and var(g) ç T.

Proposition 3.33. Let x G SEQ(X ,G,R ,5) and U G R ; then limx G U iff
there is g G G such that var(g) c U and lim x ^ lim g(x).

Proof. Trivial.

Corollary 3.34. HRP(X ,G,R, L(X ,G,R,S)) is second-order interpretable in
HRP(X ,G,R,S).

Let us summarize for the reader what we have achieved in §§2, 3.II, and 3.III.
Let KM be the class of all M(X , G) 's that have the following properties:

(1) M(X,G) G K° (see definition before 2.14); (2) M(X,G,R(X)) G KECS
(see Definition 3.13); (3) HRP(X,G,R(X), S(X,G)) satisfies Assumptions
3.III. 1—3.III.4 (see the notation preceding 3.10 for S(X ,G) and the notation
preceding 3.20 for HRP(X, G, R , 5)) ; and (4) L(X, G, R(X), S(X , G)) = X.

Let K™ = {G | 3X(M(X, G) G KM)} .
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Theorem 3.35.  K     is interpretable in A"0 .
Proof. Combine the results of 2.14, 3.II, and 3.III.
Remarks, (a) In the formulation of 3.35 we did not try to obtain a first-order
interpretation.  Indeed by slightly modifying the definition of K     and some
extra work we can obtain a first-order interpretation of K    in K0 . This will
be done in [R3], where a first-order interpretation is essential.

(b) KM is of course a very artificial class. The only reason for defining K
is to obtain a better presentation. Indeed we are interested in the class which in-
cludes (1) normed manifolds, (2) manifolds with boundary, (3) polyhedra, and
(4) smooth and PL-manifolds with their corresponding groups. So it remains
to show that K    includes these classes.

(c) Assumption 3.III.2 is very restrictive. It unfortunately excludes the groups
of smooth (PL) homeomorphisms of a smooth (PL) manifold with boundary.
However, it is not too difficult to modify the assumptions in such a way that
these cases will be included in our results. Ling's work [Lg] covers these cases.

IV. Regionally normed spaces (continued)
Our next goals are to show that every regionally normed space satisfies the

assumptions of 3.II and that every Euclidean manifold with boundary and every
polyhedron satisfies the assumptions of 3.III.

Let Y denote a normed vector space over an ordered field F. Let BY =
{xgY\ ||x|| < 1} , BY = cl(BY), and SY = bd(BY).

If A.BCY and X G F , let A + B = {a + b \ a G A , b G B} and XA = {Xa \
a G A}.

Definition 3.36. (a) Let A: By —► X, A is cellular, if A is a homeomorphism
into X, h(BY) is closed and h(BY) is open. h(By) is called a cell, h(\-BY)
is called a half cell.

(b) N(X) = [}{T | T is a cell}.
(c) X is regionally normed if N(X) is dense in X.

We drop all previous assumptions.

Assumption 3.IV.1. X is regionally normed.

Lemma 3.37. (a) If V c X isa cell, then F1(F; ~ F) holds in M(X).
(b) M(X) g Ki2). (See the definition of K(2) after 2.16.)

Proof. Easy.

Notational Convention. Whenever G = H(X) we omit the mention of G in
our notation, so V(X) denotes V(X,H(X)), S(X) denotes S(X, H(X)), etc.
Whenever R = V(X, G) we omit its mention in our notation, so M(X, G) de-
notes M(X ,G,V(X ,G)) and M(X) denotes M(X, H(X), V(X)) etc. Note
that this convention causes ambiguity since now M(X), M(X, G) have two
meanings; however, this ambiguity is inessential since M(X,G, V(X, G)) is
first order interpretable in M(X, G).
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Lemma 3.38. (a) Every half cell is small in M(X), and S(X) = N(X).
(b) Let A : By —► X be cellular and Y be a vector space over afield F which

is not isomorphic to R; then U = sc(h(j • BY)) is clopenly structured (see
Definition 3.13).

(c) If A : BY —► X is cellular and Y is a vector space over R, then h(\-By)
is excellent.

(d) If h and Y are as in (c), then sc(h(^- By)) is excellently structured.
(e) M(X) G KECS .

Proof, (a) is trivial, (b) The only less trivial part of (b) is that for every x G U
there is F G V(X) such that bd(F) = {x}. If Y is 1-dimensional then its
topology is the order topology of F and it is easy to find F as required.

Suppose dim(y) > 1. It is sufficient to show that there is F ç BY such that
bd(F) = {0}, and V g V(Y). Let {Xn | « G co} be an increasing sequence
without a supremum of elements of F , and each Xn < 1. Let B = \Jn€w ̂ tfiy ■
Clearly, B is clopen. Let x0 G SY , and let F = B n {Ax \ X G F , ||x|| = 1,
and x G x0 + B} . It is easy to see that bd(F) = {0} and F g V(Y). So (b) is
proved.

(e) follows from (b) and (d).
The proof of (c) and (d) is less trivial, and we break it into several subclaims.

Lemma 3.39. Let Y be a normed vector space over R. Then:
(a) BYGV(Y).
(b) For every 0 < a < ß < 1 there is A e H(Y) such that var(A) C BY and

h(ßBY) = aBY.
(c) For every 0 < a < 1, v G BY, and 0 < ß < 1 - ||v||, there is A G H (Y)

such that var(A) ç BY, A(0) = v , and h(aBY) = v + ßBy .
(d) For every closed F ç BY there is A G H (Y) such that var(A) ç BY and

h(F)çl.BY.
(e) For every closed F ç BY and every nonempty open set U ç BY , there is

A G H(Y) such that var(A) ç BY and h(F) ç U.
(f) For every nonempty closed F Ç BY and x gSy , there is h G H(Y) such

that var(A) ç 2BY, h(F) c By, and h(F) nSY = {x} .
(g) For every closed F such that F n By =0, there is A G H (Y) such that

var(A) C2BY, By-F ç h(By), and h(By) n F = 0.
Proof, (a) and (b) are trivial.

(c) By (b) we can assume that a = ß . Let g: [0, co) —► [0,1] be defined as
follows:

8(t) =

1, 0<t<ß

'fr-x-  "SiS1
0, 1 < t.

Let A(x) = x + ¿?(||x||) • v . It is easy to check that A is as desired.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RECONSTRUCTION OF TOPOLOGICAL SPACES 527

Let d(A, B)  denote the distance between the subsets A and B of Y ;
d(x,A) = d({x},A).

(d) Let /: [0, 1) x [0,1] —► [0,1] be a continuous function such that for
riefevery s G [0,1) : (1) fs(t) = f(s,t) is a 1-1 order-preserving function from

[0,1] onto [0,1]; (2) fs(s) < \ ; and (3) for every ie[0,l]  fs(t) < t. Let
u: By - {0} —»[0,1) be defined as follows.  zz(x) = max(l - ¿(x/HxH, F), 0),
and let

(0, x = 0,
h(x) = { /(M(x),||x||)-x/||x||,    xgBy-{0},

x , x G Y - BY.

It is easy to check that A G H(Y). Let x G F ; we show that ||A(x)|| < \ . If
x = 0 then A(x) = 0. Suppose x ^ 0, then 0 < d(x/\\x\\,F) < 1 - ||x|| < 1
denote s = d(x/\\x\\ ,F), so A(x) = f(l - s, ||x||) • x/||x||, but s< 1 - ||x||,
hence ||x|| <l-j,so /(l -s,\\x\\) </(l -s, 1 -s) < i , and thus ||A(x)|| =
f(l-s, ||x||) < {-. So (d) is proved.

(e) This is a corollary of (c) and (d).
(f) Let 0 ¿ F ç BY . We define /: SY -► [0,1].

f(x) = max({A | Xx G F} u {{-}).

Let us first prove that for every x G SY and for every e > 0, there is a
neighborhood U of x such that for every y e Sy n U, f(y) < f(x) + e.
Suppose by contradiction such a U does not exist. Hence there is a sequence
{xn | « G co} ç Sy such that lim^^ xn = x, but for every n G co f(xn) >
f(x) + e. For every « e co let Xn > f(x) + e be such that Xnxn G F . Without
loss of generality lim^_ X„ = X. So luri    _ Xx„ = Xx. But then Xx G F,
and X > f(x), a contradiction. Let x0 G SY and we are now seeking A as
required. By (c) w.l.o.g. /(x0) > |. Let a < 1 be such that Sup({/(x) |
x G x0 + aBY}) < (I + f(x0))/2. Let g: [0,2] — [/(x0) ,1] be a continuous
function such that g(0) = f(x0), for every s > a g(s) = 1, and for every
i G (0 , a] g(s) > Sup({/(x) | x G x0 + sBy}). Let gx: ({-,1] x (0 , oo) be
defined as follows:

*i(*.0

t, 0<í<¿or2<í- 2
1 5-1

2s^lt+2s-^ï-    ^^.*'
1 2-2í

-í + -=-,      5</<2.2-5
The reader can check the continuity of gx  by noticing that for every s G
(£.1]: áfj(0 = ^i(*-0 is the identity on (0, 5] U [2,00), it moves linearly
[5,5] onto [5,1], and it moves linearly [5,2] onto [1 ,2]. Let A: Y —» Y be
defined as follows:

A(x) = {
0, x = 0,
^iU(llÄ-xoll).IWI))-Ä'    x*°-
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Since for every s, gs isa 1-1 mapping from (0,oo) onto (0,oo), A(x) is
1-1 and onto. Since gx, g, ||x|| are continuous and l/||x|| is continuous in
Y - {0} , A is continuous. Since A \ j • By = Id, A-1 is continuous at 0. Let
g2(s ,t) be defined by the following equation: g2(s ,t) = u iff gx(s, u) = t.
g2 is continuous for the same reason that gx was. Let x ^ 0; then A~'(x) =
g2(g-(||x/||x|| - x0||, ||x||) • x/||x||, so A-1 is continuous, hence A G H(X).
f(x0) ■ x0 € F ; we now show that A(/(x0) • x0) = x0 .

h(f(x0) -x0) = gx(g(\\x0 -x0||), f(x0))-x0 = gx(f(x0),/(x0)) -x0 = 1 -x0 = x0.

We now show that h(F) - {x0} ç By.   Let x e F - {/(x0) • x0} - {0}.
h(x) = S,(£(||*/||x||-*oll)'ll*ll)'*/ll*ll- If */IMI = *o> then ||x|| < /(x0),
so A(x) = £,(/(x0),||x||)-x0, but £,(/(x0),||x||) < gx(f(x0), /(x0)) < 1
so ||A(x)|| < ||x0|| = 1. If x/||x||j¿ x0, let zz = ^(||x/||x|| -x0||), so«>
Sup({/(y) | y G x0 + ||x/||x|| - x0|| • By}) ; but x/||x|| G x0 + ||x/||x|| - x0|| • By ,
hence

u > f(xl\\x\\) > max({A | X • x/||x|| G F} U {0}) > ||x||.
We thus can conclude that ||A(x)|| = \\gx(u, \\x\\) ■ x/||x|||| = g,(M,||x||) <
gx(u ,u) = 1, and hence A(x) 6 By , and (f) is proved.

(g) Let F be as in (g). W.l.o.g. F ± 0. Let /: [1,2] x [0, oo] — [0, oo] be
defined as follows:

' st, 0 < t < 1,
f(s,t)=\ (2-s)t + 2s-2,    l<t<2,

t, 2<t.
So f(s,t) moves linearly [0,1] onto [0,5], [1,2] onto [5,2], and [2,oo]
onto [2 , oo). Let

i0, x = 0,
h{X) = I /(min(l + d(^ ,F),l\), \\x\\) - flfrr,    x * 0.

Clearly A is as desired.

Proof of 3.38 (c) and (d). (c) Let A and Y be as in (c), and let F = h(\ -By).
We show that F has the four properties of excellent sets as defined in 3.11. (1)
F is small by 3.38(a). (2) follows from 3.39(e). (3) follows from 3.39(f). (4)
follows from 3.39(g).

(d) Let A, Y be as in (d), and let 5 = sc(A(i • By)). We have to show
that 5 satisfies conditions (1) and (2) in Definition 3.13(a). Only condition
(2) is nontrivial. Let x e 5, and let T 3 x be open. Let W ç T be a cell
containing x . Hence it is easy to see that there is a half cell F, ç W such that
x G bd(F,). Let F ç F, be the closure of a half cell [/,. By 3.39(f) there is
g G H(X) such that g(Ux) ç F, and bd(F,) n g(F) = {x}, hence g(Ux) is
excellent, g(Ux)n ~VX=0 and cl(g([/,)) n cl(~ F,) = {x} .   F =f~ F, and

def[/ = g(Ux) are as required in 3.3(a)(2), so 5 is excellently structured. This
completes the proof of 3.38(d).
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Definition 3.40.  X is a normed manifold if N(X) = X.
Lemmas 3.37(b), 3.38(a), and 3.38(e) were the facts that remained unproved

when we mentioned Corollary 3.21. At this point 3.21 is already fully proved.

Theorem 3.41. (a) Let X be a k times differentiable manifold k < oo and G
be a subgroup of H(X) containing the group C (X) of k times continuously
differentiable homeomorphisms; then M(X, G) G K      '.

(b) Let X be a PL-manifold and G be a subgroup of H(X) containing all
piecewise linear homeomorphisms; then M(X, G) G K        .
Proof, (a) is not trivial for k = oo, but the needed facts are well known.

(b) is not trivial, but the only nontrivial fact is well known; see [Gm],

Definition 3.42. (a) X is a manifold with boundary if X is Hausdorff and
for every x G X there is « > 0 and an open neighborhood of x which is
homeomorphic either to R" or to R" x [0,1 ).

(b) We define a simplicial complex as in [Sp, p. 108]. If A" is a simplicial
complex we again use the notation of [Sp]: \K\d denotes |A"| with its metric
topology, and |A"| denotes |A"| together with its coherent topology. A simpli-
cial complex K is locally finite dimensional if K does not contain a strictly
increasing infinite chain of simplexes. A space is called a polyhedron if it is
homeomorphic to either \K\ or \K\d , where A" is a locally finite-dimensional
simplicial complex. We can enlarge the class in question by a little bit. We call
X a long polyhedron if X has an open cover consisting of polyhedra (in the
relative topology).

Lemma 3.42. Let X be a manifold with boundary or a long polyhedron. Let
R = V(X) and S = S(X); we denote L(X ,H(X) ,V(X) ,S(X)) by L(X).
Then (a) L(X) = {x \ x is an accumulation point of {g(x) \ g G H(X)}};
and (b) X, H(X), V(X), S(X) satisfy Assumptions 3.III.1-4. Recall that
S(X) = lj{5 | 5 is a small open set} and V(X) = {var(f) | / 6 H(X)}.
Proof. There are several types of spaces that have to be dealt with. We deal
only with the case of polyhedra with their metric topology; the other cases are
in fact simpler.

Let A" = (VK,^K) be a simplicial complex. Let YK be a vector space
over R with Hamel basis VK and let XK = {x G YK | for some F g 7Fk
x is in the convex hull of F}. We abbreviate VK, SFK, and XK by F,
&~, and X respectively. If x = J2veVKv > v = T,v€V ßvv belong to X let
d(x, y) = ¿ZveV(K - Hy)2)1'2 ■ For F G & let ch(F) be the convex hull of
F in X. For x = Ev€VKv > let Fx = (v I K * °} • Let &M = {F G ? \
-(3F' € &)(F % F')} . Let S' = {x\FxG 3rM} . Clearly 5' ç S(X).

It is easy to check that Assumption 3.III.1 holds. Assumption 3.III.2 follows
from 3.27(a).

Let SEQ(X) denote SEQ(X, H(X), V(X), S(X)), and L'(X) = {x g X \ x
is an accumulation point of {A(x) | A G H(X)}} . We show that L'(X) = L(X).
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Suppose x  £  L'(X)  and suppose by contradiction x G L(X).   Clearly
x £ S(X), hence there is x G SEQ(X) such that x = lim x . Let U be a WS
for x . Hence for every y G Ac(U)   y = x . Hence x is an isolated point of
Ac([/). We show that Ac(U) is connected and |Ac(i/)| > 1. Since U does
not have the IPP, and since for every subsequence [/' of U and [/'-sequence
y',  y' has a convergent subsequence by 2.27(a)  |Ac([/)| > 1.   Suppose by
contradiction Ac(U) is not connected; then there are open disjoint F and IF
suchthat VnAc(U), Wn Ac(U) ± 0, and V\jW2Ac(U) (this is also true
in the case of the coherent topology). Suppose x G V, hence for all but finitely
many i 's V nU¡ ^ 0.  Similarly W nU¡ ^ 0 for infinitely many z 's. Let

[/' be a subsequence of U consisting of those Í/ 's that intersect both F and
W. Since each [/. is connected, for every member [/. of U'   V u W ^ [/..

Let y ' be a [/' sequence such that y\ g U. - F - IF. If y' is a limit point

of y', then y' £ F u IF and hence y' <£ Ac([/), a contradiction.  Hence
Ac([/) is connected. We have thus proved that x is not isolated in Ac([/),
hence x G L'(X) , a contradiction.

Suppose x G L'(X) , and we show that x G L(X). Since F is discrete
in X and since x 6 Ac({A(x) | A e //(X)}), there is x G X - V such that
x = x, and hence w.l.o.g. x i V. If Fx G 9~M then x G S' ç S(X),
hence x G L(X). Suppose that Fx £ 9^M . Let Fx c F G 9~M. For G =

def{u0, ... ,«/_,} e 7F, let ch(G) denote the convex hull of G, and rbd(G) =
Œ,</A,M, I ¿;</^, = 1 , for every i < l X¡ > 0 and for some i < I X¡. = 0}.
Let K = {y G ch(Fx) | d(x,y) < \d(x, rbd(Fx))}. A" is convex. There is
an open convex set U C ch(F) such that cl(U) n rbd(F) = K. Let x0 G U,
for i > 0 let x. = (l/z')x0 + (1 - l/z')x, and let x = {x( | i G co}.  Clearly

—* deflim x = x, di = d(x¡, K) is strictly decreasing, and for every i g co x¡ G U.
We wish to show that x e SEQ(^). x ç s' ç S(X), and it is trivial that x is
HSC. Let U, = {y € U | rf,. - (d¡ - dl+x)/3 < d(y , K) < di + (dt_x - rf,.)/3} and
[/ = {[/. | z e <u}.  X- e [/,, hence x is a Í/ sequence. Every t/(. is convex,

so U¡ is connected and transitive; and since U¡ ç S(X), this means that U

is normal and transitive. It is now easy to see that U is a WS for x , hence
x G SEQ(X).

By a very similar construction it can be shown that if x , y are sequences
whose members are in S(X) and such that limx G L'(X)  and  y  has no
subsequence converging to lim x , then there is U such that Q(x , y , U) holds.
This shows that Assumption 3.III.3 holds, and the lemma is proved.
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Corollary 3.43. Let K = [X \ X is a normed manifold or X is a manifold with
boundary and X = L(X) or X is a long polyhedron and X = L(X)} ; then
if XX,X2 G K, and <p: H(XX) °-^° H(X2) is an isomorphism, then there is a
homeomorphism A: Xx °-^° X2 such that for every f G H(XX): cp(f) = hfh~~ .
Proof. Combine the results of 3.20, 3.30(b), 3.34, 3.35, 3.38(e), and 3.42.
Question 5. Generalize 3.43 to complexes which are not locally finite dimen-
sional.

V. 0-dimensional spaces
In this part, we make strong assumptions on the separation properties of the

space in question; in return we gain by assuming weaker homogeneity properties.
As an application we shall obtain a quite general resconstructibility result for

0-dimensional linear orderings (Theorem 3.50(b)).
We again drop all previous assumptions and start a new list of assumptions.
For G C H(X) and xgX let G(x) denote {g(x) \ g G G}.

Assumption 3.V.I. (a) X is a Hausdorff space.
(b) For every xcX   \G(x)\ > 3 .
(c) R denotes a dense subset of R(X).

Let cp'c(V) be the following first-order formula in LHR : For every f G G,
if f(V n /(F)) = Vnf(V) then there is /' e G such that f' 2 f \ (V n
/(F))Uldt~(Fn/(F)).

Let cpc(V) = (p'c(V)Acp'c(-V).

Definition 3.44. F is strongly recognizably clopen if it is reconizably clopen
(see Definition 3.12) and for every g G G if g(V n g(V)) = F n g(V), then
g\(Vng(V))uid\(X-(Vng(V)))GG.

Note that in M(X , H(X)) every clopen set is strongly recognizably clopen.

Assumption 3.V.2. (a) Every clopen subset of X is strongly recognizably clopen.
(b) For every distinct x,y G X there is a clopen F g R such that x g V

and y ^ V.

Lemma 3.45. For every V cR: HR(X ,G ,R)\= <pc[V] iff V is clopen.
Proof. It is clear that <pc is satisfied by every clopen set.

To prove the converse we need the following claims.

Claim 1. If [/ satisfies <p'c, x Gbd(U), g g G, and g(x) ^ x, then there
is IF' = W'(U ,x,g) 3 x such that IF' is clopen and g(W' n U) ç~ U.
Proof. Let IF be a clopen neighborhood of x such that g(W) n W = 0. Let
h G G extend g \ W l) g~x \ g(W)u!d \~ (W u g(W)). Since A2 = Id
h(Unh(U)) = Unh(U), hence since U satisfies tp'c there is / e G extending
A r ([/nA([/))Uld r~([/nA([/)). Weshowthat Sd=WnUnh(U) is clopen.
f(S) = h(S) = g(S) c g(W) and f(W-S) = W-Sç W, and since W and
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g(W) are disjoint and clopen cl(5) n cl(W - 5) = 0, hence 5 is clopen. Let
IF' = IF - 5, then IF' is as required. This proves Claim 1.
Claim 2. Let U satisfy cpc, x G bd(U), g G G, and g(x) ^ x ; then there
is W = W(U ,x , g)3x such that W is clopen g(W n U) = g(W) ~ U and
g(W~U) = g(W)nU. Proof: Let IIa = W'(U ,x , g) n 1F'(~ [/,x,g);then
IF is as required.

Let HR(X,G,R) t= ç»c[F], and suppose by contradiction that V is not
clopen. Let x e bd(F). By Assumption 3.V.l(b) there are gx , g2 G G such that
x Ï g¿x) ¿ g2gx(x) ï x . Let Wx = W(V,x,gx), W2 = W(V ,gx(x) ,g2),
and W = g~x(W2)nWx .

g2gx(wn V) = g2gx(wx n gx(W2) nv) = g2(gx(wx n V) n if2)
= ^(U,(^) ~ V) n IF2) ç g2(IF2 ~ F) ç F

Hence g2gx(W n F) ç F . This contradicts the existence of W(V ,x , g2gx),
hence F is clopen, and the lemma is proved.

Lemma 3.46. (a) Let cpp(V) be the formula in LHR which says: for every clopen
U either V n U is clopen or V ~ U is clopen, but not both of them are clopen.
Then for every VgR  HR(X, G, R) \= <p p[V] iff \bd(V)\ = I.

(b) Let <PEq(Ux ,U2) be the formula which says: for every clopen V : f/, n F
is clopen iff U2nV is clopen.

Thenfor every Ux,U2gR: if |bd([/,)| = \bd(U2)\ = 1, then HR(X,G,R)
^Eq[£Vtf2]   Íff0d(Ux)=bd(U2).
Proof. Easy.
Assumption 3.V.3.  R contains a base for X consisting of clopen sets.

Lemma 3.47. Let <p€(U ,V) be the formula in LHR which says that there is a
clopen W ç V such that U n W is not clopen.

Then for every U, VgR if \ bd(U)\ = 1, then HR(X ,G,R)\= cpe[U, V]
iffbd(U)CV.
Proof. Easy.

TDLet K be the class of all M(X , G) 's which have the following properties:
(1) X is a Hausdorff space; (2) the set of clopen sets is an open base for X ;
(3) for every x G X either {x} is open or there is a regular open set F such
that bd(F) = {x} ; (4) for every x G X \G(x)\ > 3 ; (5) for every open T : if
\T\ > 1 , then there is g G G- {Id} such that var(g) ç T ; and (6) every clopen
set is strongly recognizably clopen.

Definition 3.48. X is a linear space if its topology is the order topology of a
dense linear ordering without end points.

Proposition 3.49. (a) For first countable spaces (1) A (2) implies (3).
(b) // X is linear and M(X) satisfies (2), (4), and (5), then M(X) G KTD .

Proof. Easy.
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Let KTDO be the set of all M(X) 's in KTD such that X is linear. So
M(X) G KTDO if (i) X is linear; (ii) for every distinct x, y G X there is a
clopen F such that x G V and y £ V ; (iii) for every nonempty open T
there is g G H(X) - {Id} such that var(g) ç T ; and (iv) for every x e X
\H(X)(x)\>3.

Let A-™ = {G | 3X(G ç H(X) A M(X, G) e A"ro)} , A-™ = {HRP(X, G) \
M(X ,G)cKTD}, Kl°° = {H(X) | M(X) G KTDO} , and

K™ = {HRP((X , H(X)) | M(X) G KTDO}.

TD TD TDTheorem 3.50. (a) K} is interpretable in KQ ; hence if M(X¡ ,GA G K ,
i = 1,2, and GX=G2, then Xx = X2.

(b) K3     is interpretable in K™ .

Proof, (a) One would like to use 2.15 in order to interpret Kx = {HV(X, G) \
M(X,G) G KTD} in KT0D . However, in 2.15 it is assumed that M(X,G) is
regionally disrigid, whereas here X might have isolated points.

Let IS(X) = {x | {x} is clopen in X }; let VIS(X) = EU*} I x G IS(X)} .
TDNote that by requirement (5) in the definition of K , every transposition of

isolated points belongs to G. So the methods of [R1 ] can be used in order to
interpret IS(X) in G. Let cp: P(IS(X)) -> {F | F G R(X) and F C VIS(X)}
be defined as follows: <p(A) = int(cl(^)). Clearly cp is an isomorphism between
the above Boolean algebras. Since IS(X) can be interpreted in G, P(IS(X))
can be interpreted in G, and hence {F e R(X)\V ç F (X)} is interpretable
in G. The method of 2.15 can be applied in order to interpret in G {V G
R(X) | FCI~ VIS(X)}.

It is possible to combine the interpretations of {F e R(X) \ V ç VIS(X)}
and {V G R(X) \ V C X ~ VIS(X)} and to obtain in this way an interpretation
of R(X) in G; moreover in this way one gets an interpretation of HR(X, G)
in G. By Lemmas 3.46 and 3.47 it follows that HRP(X ,G) is interpretable
in HR(X ,G). So HRP(X, G) is interpretable in G.

Suppose now that for i = 1,2 M(Xi, G¡) G KTD and that G, = G2. So
HRP(XX,GX) = HRP(X2,G2) ; by requirement (2) in the definition of KTD
R(X7j are open bases for Xi, so XX=X2. We have thus proved (a).

(b) is a special case of (a).

Question 6. Can (b) be strengthened by replacing "interpretation" by "first-order
interpretation"? The only difficulty is to show that V(X, H(X)) = R(X).

TDORemark, (a) If in the definition of K we strengthen the requirement of
regional disrigidity by demanding that for every nonempty open set T there
is an order-preserving g G H(X) - {Id} such that var(g) Ç T, then for the
resulting class we can obtain a first-order interpretation of HRP(X, H(X)) in
H(X).
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(b) It is impossible to drop the requirement of dense linear orderings without
end points. The following linear orderings have the same group of homeomor-
phisms:  (N, + 1)* + K, + 1 and N* + K, .

VI. Some more faithful classes.
Let F be a topological vector space over an ordered field F ; a subset U ç V

is linearly bounded if the intersection of U with every straight line / is bounded
defin /. Let "V = {V | F is locally convex topological vector space over an

ordered field F, and F contains a nonempty linearly bounded open subset
U, and if R is not embeddable in F then U is clopen}. We will show that
the definition of A" (following 3.34) can be modified to include K of 3.V
and the class K L = {X \ X is a manifold over 'V} .

Let us redefine S(X ,G) (previously defined after 3.9). S(X ,G) = {x |
x belongs to an excellently structured small component of M(X ,G)} U {x |
for some clopen U x G U and M(U ,{g G G | var(g) c [/}) g KTD},
Let KECS = {M(X, G) \ M(X, G) G K*, every clopen set in X is strongly
recognizably clopen, and every small component that does not contain a small
clopen set is excellently structured}; see 3.13(c). A" is defined from AT as
in 3.HI following 3.34.

Theorem 3.51. (a) KTD ç KM .
(b) KLL C KM .
(c) KM is interpretable in {G\3X(M(X ,G)gKm)} .

Proof, (a) is clear from the definition; the proof of (c) is included in 3.II, 3.Ill,
and 3.V.

(b) It suffices to show that if X G K is a topological vector space over F ,
then (1) if F = R, then X is excellently structured, and (2) if F ¥ R then
XCKTD.

(bl) Let X g KLL be a topological vector space over R. Let U and F
be open linearly bounded convex open sets. We show that for some linearly
bounded W and A G H(X): h(U) = V and var(A) ç W. W.l.o.g. 0 G U ç V.
Let \\xWrj = Sup({A | x <£ Ai/}) and ||x||K be defined analogously. It is well
known that II II „ , || IL are continuous functions from X to R. Let

JO, x = 0,
k{X)= l WxWußxWy-x,    x¿0.

Then A G H(X) and h(U) = V. A can be corrected to be the identity outside
2F.

We have thus shown that X is a small component of itself. By inessential
modifications of 3.IV we can show that every linearly bounded convex nonempty
open set U is excellent and that X is excellently structured.

(b2) Let X g KLL be a locally convex topological vector space over F and
F je R and suppose X contains a linearly bounded nonempty open set F0,
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which in the case that F is Archimedean is also clopen. We show that there is
TDa regular open set U such that bd(i7) = {0} . This will imply that X G K

First let us show that there is a sequence {Uß | ß < a} of clopen sets such
that for every limit Ô < a  f)ß<s Uß = Us and f\ß<a Uß = {0} .

Suppose that F is Archimedean. W.l.o.g. F0 3 0; let U¡ = (l/i) • VQ
where i < co. It is clear that {[/ \ i < co} is as required. Suppose F is
not Archimedean. Let F, be an open convex symmetric linearly bounded
neighborhood of 0. Let F = \Jn€a)nVx • We first show that F is clopen.
Suppose x £ V, then (x + F) n F = 0 for otherwise there are vx , v2 G V
x + vx = v2, hence x = \(2v2) + j(-2vx) e F. Let {X¡ \ i < a} be a strictly
decreasing sequence of members of F converging to 0, and X0 < 1. For every
ß < a let Uß = C\i<ß^iV • It is trivial that Ua = {0} and that for a limit Ô
Us = flfl<(5 U-. We prove that Uß is open for every ß < a. Let x G Uß ; we
show that x + XßV C Uß . Let i < ß ; hence x = X¡v for some v G V, thus
x + XßV = Xi(v + (XB/Xi)-V)çXi(V + V) = XtV. Hence x + XßVC Uß.

Let / be a ray with endpoint at 0. The set A d= {i \ (U¡ - UM)nl ¿ 0}
is unbounded in a. For i G A let Wi ç [/. - Uj+X be a convex clopen set
such that IF(. n / / 0. Let W = \JieA W¡. Let us denote X = [/_, . Hence
for every i [/. - Uj+X is clopen and U,<q(^, _ Ui+X) = X - {0}. It follows
that bd(W) - {0} = U/<Qbd(IF n ([/, - UM)). But since W n ([/,. - Ui+X) is
always clopen bd(IF) - {0} = 0. Clearly 0 G bd(W), hence bd(IF) = {0} . It
remains to show that W is regular. 0 <£ int(cl(IF)) since -/ ncl(W) = {0}.
Hence int(cl(IF)) = IF.   Q.E.D.

So far the classes for which we have shown faithfulness consisted of spaces
X which essentially had the following property: for every x G X either x
lies in a clopen connected component of X, or there is a clopen 0-dimensional
U containing x. These requirements excluded spaces like R x Q, R x I, or
R x C, where Q , I, and C are respectively the rationals, the irrationals, and
the Cantor set.

We can do a little bit better and include the above spaces as well as some
other natural cases in faithful classes.

Let C(X) denote the set of components of X and let G ç H(X). For
x G X, CG C(X), U G R(X) and / ,g G G let C(x) denote the connected

rief
component of x, G(x) = {g(x) \ g G G}, Bd(í/,C) = (C = bd(U)), and

def
Eq(f,g,C) = (f \ C = g \ C). Let HRC(X, G) = (G,R(X), C(X) ; Op,
ç,Bd,Eq) where Op = {(g ,x ,y) | g G G, x,y G R(X) U C(X), and
g(x) = y} , and ç denotes the inclusion relation on R(X).

We first show that under appropriate assumptions on M(X, G), HRC(X, G)
is interpretable in G. Let (fF = {g G G \ (VC G C(X))(g(C) = C)} and
GLCF = {gsG\ (VC G C(X))(\C\ > 1 * g(C) = C)} .

Let K be the class of all M(X, G) 's which satisfy the following require-
ments: (1) X/C(X) is 0-dimensional; (2) (VC g C(X))((C is not clopen) =>
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(3F G R(X))(C = bd(F))); (3) M(X ,GLCF) G K* ; (4) for every x G X
GCF(x) is dense in C(x) ; (5) (Vx G X)(\G(x)\ > 3) ; and (6) for every g G G
and U G R(X) : if g(U) = U and g \ bd(U) = Id, then g \ Ullld \ (X-U) G
G.

Let K% = {G | 3X(M(X, G) G Kc)} and Kc{ = {HRC(X, G) \ M(X, G) G
Kc}.

Lemma 3.52. (a) Kcx   is interpretable in K^.
(b)If X = YxZ, Y GKECS, and Z G KTD, then M(X) g Kc .
(c) If X = Yliew Xt, and for every i   Xt  is a Euclidean manifold, then

M(X) G Kc.

(d) If X is a box product of Euclidean manifolds then M(X) G Kc.
Proof. We leave the easy proofs of (b), (c), and (d) to the reader and prove only
(a).

Since GL F is a normal subgroup of G, it follows from 2.14 and requirement
(3) in the definition of Kc that HR(X , G) is interpretable in G.

We will use the formulas cpc, cpp, <pE , and cpe of 3.V. Let cp'P(V) =
Vp(V) A (F is the sum of clopen sets). It is easy to modify the proof of 3.V in
order to show that cpc(U), <p'P(V), <pEq(Ux , U2), and <pe(U, V) mean respec-
tively that U is clopen, bd(F) e C(X), bd(i/,) = bd(U2), and bd(U) c V.
It follows that (G, R(X), C(X) ; Op, Bd) is interpretable in G.

Let EqQ(g,C) = 3V(C = bd(V)A(g \ Fuld [ (X ~ F) e G)). It is easy to
see that Eq0(g , C) holds iff g \ C = Id, so Eq(g ,f,C) can be expressed by
the formula Eq0(gf~  , C). This proves the lemma.

Recall that KLC = {M(X,G) \ X is locally compact and has no isolated
points, and for every x G X and an open T 3 x {g(x) \ g G G and g \
(X - T) = Id} is somewhere dense}. For A ç X let G \ A = {g \ A \ g g G
and g(A) = A} , hence G \ AC H(A). Let KCLC = {M(X, G) | M(X, G) G
Kc and for every C e C(X) if \C\ > 1 then Af(C,G \ C) g Klc} and
KqLC = {G | 3X(M(X , G) G KCLC)} .

Analogously we define K to be the class of all M(X, G) 's in A"    such
that for every C € C(X) if \C\ > 1 then M(C ,G\ C)c KECS , and we define

a
oA"0        accordingly.

Theorem 3.53. (a) KCLC is interpretable in KQ
(b) If X = ri/eo, X¡, for every i X¡ is a Euclidean manifold, Xi is compact

for all but finitely many i 's, and X does not have isolated points, then M(X) g
K      . (Here a space consisting of a single point is considered to be a manifold.)

(c) KCECS is interpretable in K^ECS .
(d) If X G KECS and Y e KTD, then M(X x Y) G KCECS, in particular

RxQ.RxC.RxIe KCECS.
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Proof. We leave the easy proofs of (b) and (d) to the reader; the proofs of (a)
and (c) are completely analogous, so we prove only (a). It suffices to show that
M(X, G) is interpretable in HRC(X, G). Let M'(X ,G) = (G, R(X), X ; Op,
Ç). M'(X, G) differs from M(X, G) since the G relation on X x R(X) does
not appear in M'(X,G). However, M(X,G) is interpretable in M'(X,G)
because x G U is equivalent to the formula 3g(g(x) ^ x A g [~ U = Id).
Hence it suffices to show that M'(X , G) is interpretable in HRC(X, G). Let
CX(X) = {x | {x} = C(x)} and C2(X) = X - CX(X). It is trivial that
(G, R(X), C, (X) ; Op, Ç) is interpretable in HRC(X, G). To interpret C2(X)
note that for every C gC(X)

G \ C = {g G G I g(C) = C}/{g GG\g\C = Id}.
The right-hand group is interpretable in HRC(X, G), and so is the left-hand
group. By 3.1 we thus obtain that C2(X) can be captured from HRC(X, G).
This concludes the proof of (a).

Bibliography

[BP] C. Bessaga and A. Pelczynski, Selected topics in infinite dimensional topology, Polish Scientific
Publishers, Warsaw, 1975.

[CK] C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973.
[En] S. J. Eigen, The group of measure preserving transformations of [0, 1] has no outer automor-

phisms, Math. Ann. 259 (1982), 259-270.
[Fl] R. P. Filipkiewicz, Isomorphism between diffeomorphism groups, Ergodic Theory Dynamical

Systems 2 (1982), 159-171.
[GGHJ] A. M. W. Glass, Y. Gurevich, W. C. Holland, and M. Jambu-Giraudet, Elementary theory

of automorphism groups of doubly homogeneous chains, preprint.
[Gm] V. K. A. M. Gugenheim, Piecewise linear isotopy, Proc. London Math. Soc. 31 (1953), 29-53.
[LI] Yu-lee Lee, Characterizing the topology by the class of homeomorphism, Duke Math. J. 35

(1968), 625-629.
[L2] _, On the existence of non-comparable homogeneous topologies with the same class of home-

omorphisms, Tôhoku Math. J. (2) 22 (1970), 499-501.
[Lgl] W. Ling, A classification theorem for manifold automorphism groups, preprint.
[Lg2]_, Factorizable groups of homeomorphisms, preprint.
[M] R. A. McCoy, Homeomorphism groups of Hubert cube manifolds, General Topology Appl. 2

(1972), 55-60.
[Ml] J. van Mill, Homeomorphism groups and homogeneous spaces, preprint.
[Mm] D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sei. U.S.A. 28 (1942),

108-111.
[RI] M. Rubin, On the automorphism groups of homogeneous and saturated Boolean algebras, Al-

gebra Universalis 9 (1979), 54-86.
[R2] _, On the reconstruction of complete Boolean algebras from their automorphism groups,

Arch. Math. Logik und Grundlagen. 20 (1980), 125-146.
[R3] -, Second countable connected manifolds with elementarily equivalent homeomorphism

groups are homeomorphic in the constructible universe, in preparation.
[RY] M. Rubin and Y. Yomdin, On the reconstruction of smooth manifolds, Banach spaces and

measure spaces from their automorphism groups, Israel J. of Math, (to appear).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



538 MATATYAHU RUBIN

[Rr] L. Rieger, Some remarks on automorphisms of Boolean algebras, Fund. Math. 38 (1951), 209-
216.

[S]    S. Shelah, Why there are many nonisomorphic models for unsuperstable theories (Proc. Internat.
Congr. Math., Vancouver, B. C, 1974, vol. 1), Canadian Math. Congress, Montreal, 1975, pp.
259-263.

[Sp]  E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
[Ts]  F. Takens, Characterization of a differentiable structure by its group of diffeomorphisms, Bol.

Soc. Brasil Mat. 10 (1979), 17-26.
[W]  J. V. Whittaker, On isomorphic groups and homeomorphic spaces, Ann. of Math. 78 (1963),

74-91.

Department of Mathematics, Ben Gurion University, Beer Sheva, Israel (Current ad-
dress)

Department of Mathematics, Simon Fraser University, Burnaby, Canada

E.Mail. matti@bengus.bitnet

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


