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Abst rac t  

Extended linearization is the process of factoring a non- 
linear system into a linear-like structure x = A(x)x + 
B(x)u  which contains state-dependent coefficient (SDC) 
matrices. An extended linearization control technique is 
any technique which (a) treats the SDC matrices A(z)  
and B(x )  as being constant and (b) uses a linear control 
synthesis method on the linear-like structure to produce a 
closed-loop SDC matrix which is pointwise Hurwitz. This 
paper investigates the recoverability of nonlinear state 
feedback laws using extended linearization control tech- 
niques [l, 21 with particular focus on the state-dependent 
Riccati equation (SDRE) method [ 3 ] .  By recoverable it 
is meant that a given nonlinear state feedback law of the 
form U = k ( z ) ,  k ( 0 )  = 0, can be obtained (or recovered) 
from a given control design method. Conditions relating 
to recoverability by extended linearization control meth- 
ods are provided. An example is then presented where 
it is attempted to recover an optimal feedback law. It is 
shown that there exists no extended linearization control 
technique that is capable of recovering the given law. It 
is then shown how the feedback law can be recovered by 
using two control techniques which are variations of the 
SDRE method. The first uses a state-dependent state 
weighting matrix which may be negative definite or even 
indefinite over a subset of the state space while the second 
uses a nonsymmetric solution of the state-dependent Ric- 
cati equation which simultaneously satisfies a symmetry 
condition. Even though these latter techniques are based 
on the extended linearization of the system, they are not 
extended linearization control methods since they do not 
guarantee that the closed-loop SDC matrix is pointwise 
Hurwitz. 

Notation 
C1 

col{M} 

Denotes the class of vector functions which 
are continuously differentiable 
Denotes the columns of a matrix M 

1. Introduct ion 

Consider the control-affine nonlinear system 

x = f (x) + B ( Z ) U  (1) 

where x E R", U E R" and where it is assumed that 
the vector fields f ( . )  and col{B(.)} are known C1 func- 
tions with f (0) = 0. Under these assumptions, it is well 
known [3 ,  41 that the nonlinear system (1) can be fac- 
tored nonuniquely into the following linear-like structure 
having state-dependent coefficients (SDC): 

X = A(x)x + B(x)u  (2) 
with f ( x )  = A(x)x and col{A(.)} E C1. 

Definition 1 The state dependent coefficient (SDC) 
representation (2) i s  a stabilizable parameterization of 
the nonlinear system (1) in a region R i f  the pair 
{A(x ) ,  B ( x ) }  i s  pointwise stabilizable in the linear sense 
for  all x E R. 

Definition 2 The SDC representation (2) i s  pointwise 
Hurwitz in a region R i f  the eigenvalues of A(x)  are in 
the open left half plane Re(s) < 0 for all x E R. 

Extended linearization control techniques represent a 
rather broad class of control design methods. The ap- 
plication of any linear control synthesis method to the 
linear-like SDC structure (2), where A(x)  and B ( x )  are 
treated as constant matrices, forms an extended lin- 
earization control method. This leads to a control law 
of the form U(.) = K ( z ) z  that renders the closed-loop 
SDC matrix A,-(z) = A(x )  + B ( z ) K ( x )  pointwise Hur- 
witz. While such techniques only guarantee local asymp- 
totic stability [3] provided that col{K(.)} E C ' ,  surpris- 
ingly, empirical experience shows that in many cases the 
domain of attraction of these techniques may be as large 
as the domain of interest, e.g. [5, 61. Nevertheless, given 
the lack of an apriori guarantee of either semiglobal or 
global asymptotic stability and given the wealth of well 
understood and theoretically supported nonlinear syn- 
thesis methods, extended linearization control techniques 
are usually not the method of choice when the only con- 
cern is to stabilize the system. 

However, the situation changes when in addition to sta- 
bility, the goal involves minimizing a performance index 
such as: 

J(x , ,u)  = 2 ~ ' Q ( z ) x  + u'R(x)u d t ,  ~ ( 0 )  = Z, (3) 
Ism 0 
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where Q ( z )  2 0 and R(z)  > 0 for all z with 
col{Q(.)},  col{R( . )}  E C’. In this case a recent workshop 
on nonlinear control 71 illustrated the fact that the per- 

(such as feedback linearization, control Lyapunov func- 
tions (CLF) and recursive backstepping) is highly prob- 
lem dependent, ranging, for any given method, from near 
optimal to very poor. 

It is well known [8] that the solution of the above prob- 
lem can be obtained by solving the following Hamilton- 
Jacobi-Bellman (HJB) partial differential equation: 

formance of common I y used nonlinear design techniques 

1 dV dV’ 1 
E f ( x )  - --B(x)R-’(x)B’(x)- + -x ’Q(x)x  = 0 (4) ax 2 ax dx 2 

with V(0)  = 0. If this equation admits a C’ nonnegative 
solution V ,  then the optimal control is given by 

and V ( z )  is the corresponding optimal cost (or storage 
function), i.e., 

V(z) = min 1 Tz’Q(z)z + u’R(z)u d t  (6) 
21 2 .  

0 

Unfortunately, the complexity of equation (4) prevents 
its solution except in some very simple, low dimensional 
cases. This has prompted the search for alternative, sub- 
optimal approaches to the problem, such as the SDRE 
approach [3]. Based on the linear-like parameteriza- 
tion (2), the SDRE method consists of solving pointwise 
along the trajectory the state-dependent algebraic Ric- 
cati equation: 

A’(s)P(s) + P(z)A(rc) 

- P(z)B(z)R-’(z)B’(z)P(z) + Q ( z )  = 0 (7) 
After obtaining P ( z ) ,  the positive definite (pointwise sta- 
bilizing) solution of (7), the suboptimal control law is 
given by 

In [9, lo], Johnson addresses the benefits of allowing the 
state weighting matrix Q to be negative definite or even 
indefinite in linear quadratic regulator (LQR) design. 
The only requirement on Q is that it has to  produce a 
stable closed-loop system, i.e., the closed-loop coefficient 
matrix has to be Hurwitz. Thus, Johnson’s relaxed LQR 
design procedure applied to  equation (2) would qualify 
as an extended linearization control technique. We will 
refer to  this method as the relaxed Q-SDRE method. 
Additionally, we will consider an LQR synthesis applied 
to (2) which imposes no requirements on Q and will refer 
to it as the general Q-SDRE method. The general Q- 
SDRE method is not an extended linearization control 
technique since the closed-loop SDC matrix is not guar- 
anteed to  be pointwise Hurwitz. 

Another alternative to the SDRE method [ll] is to  relax 

‘LLsd,e = -R-’ (Z) B’ (X)P( Z)Ic (8) 

to required symmetry of the P ( z )  matrix and solve the 
following state-dependent Riccati equation 

A ’ ( z ) P ( z )  + P ’ ( x ) A ( z )  

- P‘(z)B(z)R-’(z)B‘(z)P(z) + Q(z)  = 0 (9) 
in conjunction with the symmetry condition 

with the control again being in the form of (8). Defining 

so7ving the HJB equation and, at the present time, is as 
computationally difficult as solving equation (4). We will 
refer to  this method as the nonsymmetric-SDRE method 
which is also not an extended linearization control tech- 
nique. 

The intent of this paper is to  address the “recoverability” 
a given nonlinear state feedback law. In the next section, 
we define what is meant by “recoverable” and provide 
the necessary and sufficient conditions that must exist 
to make recoverability possible by some extended lin- 
earization control technique, and in particular, the SDRE 
control technique. In Section 3, we illustrate the recov- 
erability concept with an example. The paper is then 
concluded with a summary section. 

- av’ = P(z ) z ,  it is easy to  show that this is equivalent to  a 

2. Recoverability by Extended Linearization 
Techniques 

Consider the system (l), the factorization (2), and a 
given nonlinear state feedback control law of the form 
U = k ( z ) ,  k (0)  = 0, where IC( . )  E C’. Since we assume 
that k(.) is C1, we know that k ( z )  can be represented 
nonuniquely as 

k ( z )  = K ( z ) z  (11) 

Definition 3 A continuously differentiable (C’) control 
law U = k ( x ) ,  k ( 0 )  = 0 i s  said to be recoverable by ex- 
tended linearization control in a region R (i.e., is said to 
be EL-recoverable in a region R ) i f  there exists a point- 
wise stabilizable SDCparameterization { A ( z ) ,  B ( z ) }  and 
an underlying linear control synthesis method which, 
based on  {A(z ) ,  B ( z ) } ,  is capable of producing a state- 
dependent gain K ( z )  satisfying k ( z )  = K ( z ) z  for all 
5 E R. 

In particular, we have the following. 

Definition 4 A Clcontrol law U = k ( z ) ,  k ( 0 )  = 0 is 
said to be SDRE-recoverable in a region R i f  there exist a 
pointwise stabilizable SDCparametrization { A ( z ) ,  B(z ) } ,  
a pointwise nonnegative definite state weighting matrix 
Q ( x )  , and a pointwise positive definite control weighting 
matrix R(z)  such that the resulting state-dependent gain 
K ( z )  = -R-’(z)B(z)’P(z) satisfies k ( z )  = K(z)z  for 
all x E Q. 
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Theorem 1 A Clcontrol law U = k ( z ) ,  k ( 0 )  = 0 
is  EL-recoverable in a region R i f  and only i f  there 
exist a control law SDC parameterization k ( z )  = 
K ( x ) x  and a pointwise stabilizable SDC parameteriza- 
tion { A ( z ) , B ( x ) }  such that A ( x )  + B ( z ) K ( x )  is point- 
wise Hurwitz in 0. 

Proof: Necessity follows from the fact that extended 
linearization control laws are of the form U(.) = K ( x ) z  
with A,l(x) = A(z)  + B ( z ) K ( z )  being pointwise Hur- 
witz for some pointwise stabilizable pair { A ( x ) ,  B ( z ) }  
satisfying (2).  On the other hand, if k ( z )  can be written 
as K ( z ) z  with A(z)  + B ( z ) K ( x )  being pointwise Hur- 
witz for some pair { A ( z ) , B ( z ) }  satisfying (2),  then the 
control law U(.) can be recovered by simply using pole 
placement pointwise for the pair { A ( z ) ,  B(z)} .  0 

Note that Theorem 1 gives the necessary and sufficient 
conditions for the existence of an extended linearization 
control method which is capable of recovering a given 
control law U = k(x), k ( 0 )  = 0. However, this does not 
mean that U can be recovered using a specific extended 
linearization control technique, since the underlying lin- 
ear control synthesis method for a specific EL-control 
technique may restrict pole placement, as is the case for 
the SDRE method. To obtain SDRE-recoverability, a 
given control law must additionally satisfy the following 
pointwise minimum-phase property ([12], page 108) in- 
herited from Kalman’s Inequality [13] in the underlying 
LQR synthesis method. 

Pointwise Minimum-Phase Property : Pointwise, 
the zeros of the loop gain K ( x )  [SI - A(x)]-’ B ( z )  lie in 
the closed left half plane R e ( s )  5 0. Thus, we have the 
following: 

Theorem 2 A Clcontrol law U = k ( z ) ,  k (0)  = 0 
is SDRE-recoverable in a region R i f  and only i f  (1) 
there exist a control law SDC parameterization k ( x )  = 
K ( x ) x  and a pointwise stabilizable SDC parameteriza- 
tion { A ( z ) ,  B ( x ) }  such that A ( x )  + B ( z ) K ( z )  is  point- 
wise Hunuitz in R and (2) the gain K ( x )  satisfies the 
pointwise minimum-phase property in R. 
Proof: For necessity, due to the underlying LQR syn- 
thesis method, we have the fact that for any pointwise 
stabilizable pair { A ( z ) , B ( s ) } ,  SDRE control is of the 
form U(.) = K ( x ) z  where K ( x )  = -R-l(z)B’(z)P(x) 
and can only produce ( 1 )  an A,l(z) = A(x)  + B ( z ) K ( z )  
that is pointwise Hurwitz and (2) a gain K ( z )  that 
satisfies the pointwise minimum-phase property. Going 
the other way, if k ( z )  can be written as K ( z ) z  with 
A(z)  + B ( z ) K ( z )  being pointwise Hurwitz in R and with 
K ( x )  satisfying the pointwise minimum-phase property 
in R for some pair { A ( z ) , B ( z ) }  which is pointwise sta- 
bilizable in R,  then there exist a pointwise nonnegative 
definite Q ( z )  and a pointwise positive definite R(x)  such 
that -R-lB’(z)P(z) = K ( x )  in R. 0 

Theorems 1 and 2 provide the necessary and sufficient 
conditions for recoverability. However, it may be diffi- 
cult to apply these theorems due to the fact that there 
are an infinite number of SDC parameterizations. A more 
practical concept of recoverability follows. 

Definition 5 Given a selected pointwise stabilizable 
SDCparameterization {A(z ) ,  B ( z ) } ,  a Clcontrol law U = 
k(x), k ( 0 )  = 0 is  said to  be EL{A,B)-recoverable in a re- 
gion R i f  there exists an  underlyzng linear control syn- 
thesis method which, based on  { A ( z ) ,  B ( z ) } ,  is  capa- 
ble of producing a state-dependent gain K ( z )  satisfying 
k ( x )  = K ( x ) z  fo r  all z E R. 

Definition 6 Given a selected pointwise stabilizable 
SDCparameterization {A(z ) ,  B ( z ) } ,  a Clcontrol law U = 
k ( x ) ,  k ( 0 )  = 0 is  said to be SDRE{A,B)-recoverable in 
a region R i f  there exist a pointwise nonnegative defi- 
nite state weighting matrix Q ( x )  and a pointwise positive 
definite control weighting matrix R(z) such that the re- 
sulting state-dependent gain K ( z )  = - R - l ( x ) B ( z ) ’ P ( z )  
satisfies k ( z )  = K ( x ) z  for all x E R. 

Corollary 1 Given a selected pointwise stabilizable SDC 
parameterization { A ( x ) ,  B(z )} ,  a Clcontrol law U = 
k ( x ) ,  k (0)  = 0 is  EL{A,B}-recoverable in a region s1 i f  
and only i f  there exists a control law SDC parameteriza- 
tion k ( z )  = K ( z ) z  such that A(z)  + B ( z ) K ( x )  is  point- 
wise Hurwitz in R. 

Corollary 2 Given a selected pointwise stabilizable SDC 
parameterization { A ( z ) , B ( z ) } ,  a Clcontrol law U = 
k ( x ) ,  k ( 0 )  = 0 is  SDRE{A,~)-recoverable in a region R 
i f  and only i f  (1) there exist a control law SDCparame- 
terization k ( z )  = K ( z ) z  such that A ( z )  + B ( z ) K ( x )  is  
pointwise Hurwitz in R and (2) the gain K ( x )  satisfies 
the pointwise minimum-phase property in R. 

The proofs of Corollaries 1 and 2 are similar to those 
of Theorems 1 and 2, respectively, differing only due to 
the fact that the SDC pair { A ( z ) ,  B ( z ) }  is now given. Fi- 
nally, we provide the following lemma and theorem which 
will be used in Section 3. 

Lemma 1 Given an  SDC matrix A o ( x ) , c d { A 0 ( . ) }  E 
C1, any other SDC matrix A l ( z ) , c o l { A l ( . ) }  E C1 can 
be written in the form A(z) = A,(z) + a(,) where 

Proof: We can rewrite Al(z)  as A,(z) + [Al(z!- A,(z)]. 
Letting a(,) = [Al(z) - A,(z)] we have that A ( x ) x  = 0 
since Al(z)z  = A,(z)z = f(z). U 

Theorem 3 Assume that A , ( x ) ,  col{A,(.)} E C1 is  an 
SDC parametrization of (1) such that A,(x) is  pointwise 
non-Hurwitz in a region R. Let Xi(x), i = 1, .  . . , r be the 
unstable eigenvalues of A,(z) having the respective mul- 
tiplicities of rn i ( z ) , i  = 1,. . . , r  with rn i ( z )  5 n. 
Let Ei(x) be the set of all linearly independent eigenvec- 
tors corresponding to each Xi(.). Finally, let Si(.) = 
s p a n { E i ( z ) } .  Then, i f  for  some x E R, z # 0 ,  we have 
that x E R Si(.) for  some 1 5 i 5 T ,  there is  no SDC 
parametrization of (1) that is  pointwise Hurwitz an all 

Proof: Without loss of generality, assume that there 
exists z* E R n span { E l ( z * ) }  and consider any other 
SDC matrix of the form: 

A(z)z = 0.  

of 0. 

A(z) = A,(z) + a(,) (12) 
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with A(z)z = 0 for all z. After evaluating (12) at the 
point z*, postmultiplication of (12) by z* yields 

(13) A(z*)z* = Ao(z*)z* + A(z*)x* 
= A,(z*)z* = X ~ ( Z * ) X *  

Hence, X,(z*) is also an eigenvalue of A(z*). Since 
z* E R ,  R e [ X l ( z * ) ]  2 0 .  Thus, A(z) cannot be point- 
wise Hurwitz in all of R,  and from Lemma 1, there is no 
SDC parameterization that can be pointwise Hurwitz in 
all of R. 0 

3. Recoverability Example 

Consider the following nonlinear regulator problem: 

subject to  

It can be shown that the optimal control law is given by: 

with the corresponding optimal storage function: 

Using the SDC parameterization: 

where col{Ao(.)},B(.) E C1, it can be shown that the 
solution of the corresponding SDRE is given by: 

P(z )  = [ ;] p (19) 

where 

with associated control action: 
r 

Thus u s d y e  E uopt only when 1.5 z2e-211 << 1. On 
the other hand, if 1.5 z2e-"lI >> 1 then >> 1. 
For instance, starting from the initial condition z(0) = 
[-2 21 we have that Joptimal = 33.55 and Jsdre = 
154.73. Note here that initially .5 ~ 2 e - " ~  = e2 E 7.4 

so the difference between Jsdre and Joptimal is not sur- 
prising. 

Further insight can be gained by using Theorems 1 and 
3. From the necessity part of Theorem 1,  we know that 
for the given control law (16)  to  be recoverable by any 
extended linearization control method, there has to  ex- 
ist both K ( z )  such that K ( z ) z  = - 2 2  and {A(z) ,  B ( z ) }  
such that A(%) + B ( z ) K ( z )  is pointwise Hurwitz. Select- 
ing the SDC parameterization (18)  and K = [ 0  -11 
yields: 

$x2 l l  - ex' 

It can be easily seen that 

is non-Hurwitz in the region .5 z2e-"1 2 1. 

We will now use Theorem 3 to  show that there exist 
no parameterizations {A(z) ,  B ( z ) }  of the above problem 
that will yield a closed-loop A,l(z) which is Hurwitz ev- 
erywhere. Let 

where E >> 1. For z E R, the eigenvalues of Aci(z) in (23)  
are A1 = $ 2 2  and A2 = $ x 2 c 2 .  It can be easily verified 
that 

z * =  [2: ,2] ,  E > 1  (24)  

is such that z* E R n s p a n { E 1 ( z * ) } .  From Theorem 3 
we have that there exixts no SDC parametrization of the 
closed-loop system that can be Hurwitz in all of R. Hence 
the optimal control law cannot be globally recovered by 
any extended linearization control method, including the 
SDRE method and the relaxed Q-SDRE method. 

We now use two control methods which are not extended 
linearization control techniques t o  recover uopt. The first 
method is the general Q-SDRE method where we allow 
Q(z) to  be negative definite or even indefinite pointwise 
over part of the state space. Setting 

yields 

and U = -0.5 * R-lB'(z)P(z)z = - 5 2  = uopt. Note 
that in this case Q ( x )  is pointwise nonnegative definite 
only in the region R = {z: 0 . 5 ~ 2 e - ~ ~  5 l }  and this is pre- 
cisely the region where uopt is recoverable via the stan- 
dard SDRE method. 

The second method is the nonsymmetric-SDRE method. 
For this simple problem, we can obtain a closed-form 
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analytic solution of the Riccati equation (9) in conjunc- 
tion with the symmetry condition (10) using the symbolic 
software package Macsyma. Selecting the parameteriza- 
tion (18) and choosing Q and R according to (14), i.e., 

Q = [ o  0 0  , ] ; , = I  

four symmetric P(x )  solutions of (9) were obtained, one 
of which was pointwise positive definite and represented 
the SDRE solution for the standard SDRE method. How- 
ever, the symmetric positive definite solution did not sat- 
isfy the symmetry condition (10). Additionally, the fol- 
lowing two nonsymmetric P ( x )  solutions were obtained 
where c1 is an arbitrary constant: 

Substituting P~(z) into (lo), it was found that no con- 
stant c1 could satisfy the symmetry condition. Upon sub- 
stituting P~(z) into (lo), the symmetry condition was 
satisfied with c1 = 1. Thus, 

which yields 

4. Summary 

Necessary and sufficient conditions for the recoverability 
of a given nonlinear state feedback law by extended lin- 
earization control techniques, and in particular, by the 
SDRE method, have been presented. An example was 
provided to  illustrate the fact that there exist nonlin- 
ear state feedback laws which are unrecoverable using 
EL-control methods. The example also showed that by 
relaxing the Hurwitz requirements on the closed-loop co- 
efficient matrix of the underlying linear control synthesis 
method (in this case, the LQR synthesis method), recov- 
erability can be achieved. Finally, it was illustrated in 
the example that the nonsymmetric SDRE method pro- 
vides an alternative approach to solving the Hamilton- 
Bellman-Jacobi equation. While presently this approach 
is just as difficult as solving the HBJ equation, there are 
structural differences between the nonsymmetric-SDRE 
method and the HBJ equation. Therefore it may be 
worthwhile investigating numerical approaches for solv- 
ing or approximately solving the nonsymmetric SDRE in 
conjunction with the symmetry condition. 
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