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Abstract

Superellipsoids ate parameterized solids which can appear like
cubes or spheres or octahedrons or 8-pointed stars or anything in
between. They can also be stretched, bent, tapered and combined
with boolean to model a wide range of objects. Columbia’s vision
group is interested in using superquadrics as model primitives for
computer vision applications because they are flexible enough to
allow modeling of many objects. yet they can be described by a few
(5-14) numbers. This paper discusses research into the recovery
of superellipsoids from 3-D information, in particular range data.

This research can be divided into two parts, a study of po-
tential error-of-fit measures for recovering superquadrics, and im-
plementation and experimentation with a system which attempts
to recover superellipsoids by minimizing an error-of-fit measure.

This paper presents an overview of work in both areas. In-
cluded are data from an initial comparison of 4 error-of-fit mea-
sures in terms of the inter-relationship between each measure and
the parameters defining the superellipsoid. Also discussed is an
experimental system which employs a nonlinear least square mini-
mization technique to recover the parameters. This paper discuss
both the advantages of this technique, and some of its major draw-
backs. Examples are presented, using both synthetic and range-
data, where the system successfully recovers superlliposids, in-
cluding “negative” volumes as would occur if superellipsoids were
used in a constructive solid modeling system.

1 Introduction

As a modeling primitive, superquadrics provide a natural exten-
sion to traditional CAD models, [Barr 81]. Recently they have
become the focus of a few computer vision research efforts, see

(Pentland 86a), [Pentland 87), [Bajcsy and Solina 87b), (Solina 87),
and [Boult and Gross 87b). Most of the research to date has con-

centrated on a subclass of superquadrics called superellipsoids

(hereafter SEs). The growing research interests in SEs can par-

tially be attributed to the fact that they can mocel a wide range of
object in a very compact form. Another contributing factor is the

underlying mathematical formulation which provides convenient

toois for their recovery.

The next section of this paper presents a mathematical def-
inition of superellipsoids and a little motivation for using SE's
in computer vision. Section 3 defines various error-of-fit measures
which couid be used in the recovery of SE's, and presents an initial
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comparison of these measures.

The current system is described in Section 4. Briefly it em-
ploys a nonlinear least square minimization technique on the inside-
outside function to recover the parameters. Oddly. this function
is one of the poorer error-of-fit measures considered, yet it is suf-
ficient to allow for reasonable (qualitive) recovery of SEs from
both synthetic and range data. A few examples of the results of
the system are then presented. The examples include the use of
very sparse data, synthetic multiple views and the recovery of a
negative superellipsoid from range data.

Previous papers by the authors, [Boult and Gross 87b] and
{Boult and Gross 87a], discuss a few other difficulties that are
encountered when modeling objects with superellipsoids, or at-
tempting to recover superquadrics from 3D data. These difficul-
ties include the general problems associated with non-orthogonal
representations, the difficulties of dealing with objects which are
not exactly representable with CSG operations on the primitives,
the need to recognize negative objects, and certain numerical in-
stabilities.

Some pros and cons of the approach as well as few conclusions,
and a discussion of work in progress at Columbia's vision lab
appear in the final section.

The main result in this paper is that there are problems and
biases with currently used error-of-fit measures, as well as with
two newly proposed measures. [t also suggests that even better
measures await definition, especially ones measuring error using
knowledge of the sensor direction. Another important result of
the research is that least square minimization, (even using a poor
error of fit measure), allows recovery of both pasitive and negative
instances of superellipsoids from depth data.

2 Background and Motivation

Mathematically, SE solids are a spherical product of two superel-
lipse curves (see [Gardiner 65]). Superellipse curves are simi-
lar to traditional ellipses except the terms in the definition are
raised to parameterized exponents (not necessarily integers), i.e.:
(f)* + (f)'l = 1. When ¢, the relative shape parameter is 1, the
curve describes an ellipse. As the relative shape parameter varies
from 1 down to 0, the shape becomes progressively squarish; as
it varies from 1 toward 2, the shape transforms from a ellipse to
a diamond shaped bevel. When the parameter is greater than
2. the shape becomes pinched and as the parameter approaches



Figure 1: Superellipsoids with relative shape parameter ¢; having
values .1. .5, 1, 1.5 and 2 (left to right), and ¢; having values .1,
.6 and 1 (top to bottom).

infinity, the shape approaches a cross.

The result of the spherical product of two such curves is con-
veniently represented in a parametric form, e.g., a supereilipsoid
can be represented as:
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The parameters a..a,, ¢, affect the size of the supereilipsoid along
the z,y and z axes (respectively) in the object centered coordi-
nate system. The parameters ¢, and ¢; effect the relative shape
of the superellipsoid in the latitudinal (zz) and longitudinal (zy)
directions, see figure 1. When the 5 parameters are all unity, the
superellipsoid is the unit sphere.

Superellipsoids can also be defined implicitly as the the vol-
ume where the SE inside-outside function is negative, where the
SE inside-outside function is given by:

o
fawn = ((2)%+ (W) + (2)*

where
#,2) =1, then Z.y, % is on the surface,
if { f(%,4.3) <1, then 2, §, # is inside the volume,
#,2) > 1, then %, ¢, 2 is outside the volume.

(2)

These equations define superellipsoids ( hereafter referred to as
SEs) which are probably the simplest of a family of surfaces called
superquadrics. SE’s are the only superquadrics which can be made
into a convex solid. One can also define superhyperboloids of one
or two sheets and supertoroids, see (Barr 81]. In addition to the
variety of shapes defined by the basic superquadrics, Barr also dis-
cusses the application of angle-preserving transforms which allow
translation, rotation, bending and twisting. With the addition
of tapering and traditional boolean combination operations, su-
perquadrics become a powerful modeling tool, see Figure 2 for
some examples generated using SuperSketch, [Pentland 86b].

While translation, rotation, bending and tapering are impor-
tant modifications to basic SE primitives, they will not be cogsid-
ered in the remainder of the paper. Future work will examine the

Figure 2: Examples of SE’s deformed by bending and tapering

effect of these deformations on error-of-fit measures and potential
implementations.

Definitions in hand, let us now discusses some of the rational
for using SE’s for object recognition. In short, they are flexible
enough to represent a wide class of objects, but are simple enough
to be recovered from 3-D data. Their functional form and inside-
outside function provides a useful tools to aid in their recovery.

Traditional constructive solid modeling systems use boolean
operations to combine primitives, such as, spheres, cylinders, and
rectangular solids. By extending the primitive shapes to SEs,
we allow the user to easily produce a continuum of forms. from
spheres, to cuboids with rounded corners, to cubes. to diamond
shapes. Such objects are difficult to model with traditional con-
structive solid geometry (hereafter CSG) systems. Making them
primitives simplifies the job of the designer for any problem that
contains objects with these properties.!

However, adding flexibility above that of a traditional CSG
system is not the only reason to choose superquadrics. For added
flexibility, one could make the primitives of the system General-
ized Cylinders or Generalized Cones. see [Brooks and Binford 80].
The problem with GCs is that recovering them is a difficult pro-
cess, partially because each GC may require hundreds of pa-
rameters to describe it. The number of parameters necessary
to define a GC depends on the complexity of the cross section
function, the spine, and sweeping function. As in [Brooks 85},
[Rao and Nevatia 86], or [Ponce, Chelberg and Mann 87], one gen-
erally has to greatly restrict the class of GCs allowed before one
can reliably recover them.

It is interesting to note that superellipsoids and supertoroids
can be defined as a subclass of GC; SEs are those straight spined
GCs with their cross section and sweeping functions defined by
superellipses,? If the SEs are bent or tapered, these deforma-
tions are applied to the spine and sweeping function respectively.

'A simple CAD asystem has been developed by A. Pentland, see
[Pentland 86b] that combines SEs (constrained to only those that are convex
solids) with CSG type operations plus bending and tapering. The ease with
which people became accustomed to modeling with this system may be tied
to their own internal representation of the objects. [Pentland 86a) presents
arguments to motivate the use of superquadrics as modeling primitives by
showing correspondences to human vocalization of object descriptions.

3The sweeping rule is highly nonlinear, and always goes to zero. The au-
thors do not know of any system which can recover a subset of GC containing
this class.



Thus superquadrics provide a restriction which may allow effi-
cient recovery as well as a simpler set of “limb equations”(after
[Ponce, Chelberg and Mann 87]). In addition, they provide math-
ematical properties (the explicit parametric definitions, inside-
outside function (implicit definition) acd a normal surface duality
principle) which do not exist for most classes of GCs.

The inside-outside function provides a useful tool for recov-
ery, because it provides a simple way to determine which of the
data points are inside the surface. Furthermore, the value of
the function grows as points are moved further from the surface.
Thus it can be used in conjunction with a minimization tech-
nique to recover the surface. However, the inside-outside function
is not a euclidean “error of fit” measure (see the following sec-
tion), and therefore direct minimization of it will not necessarily
provide satisfactory results. (However, in two independent imple-
mentations this technique has produced satisfactory results, see
[Bajesy and Solina 87b] and [Boult and Gross 87b), and section
4.)

Canonical superquadrics (except the supertoroids) have a de-
sirable duality property. The superquadric normal vectors lieon a
dual superquadric form; that is, if the normal vectors were trans-
lated to the origin, they would generate another superquadric
of the same class such that the normal of the new surface (if
translated to the origin) would produce a copy of the original
superquadric (except for a translation). One can easily derive
the form of the normal surface as a spherical product as well
as its own inside-outside function, see [Barr 81]. Note that the
inside-outside function for the surface normals might be used to
find superquadrics fitting surface normal information as would be
available from shape-from-X methods.

3 Comparison of four “Error of fit” mea-
sures

The recovery of superellipsoids from depth data has recently been
the subject of research in various labs, e.g. see [Pentland 87,
[Bajcsy and Solina 87b}, and [Boult and Gross 87b]. Each of the
approaches has something in common: at some point they define
some measure of the “error of fit” (hereafter EOF), and they use
a nonlinear minimization technique to recover the parameters of
the superellipsoid starting from an initial estimate.d It is well
known, from work on fitting curves to points in the plane, that
different EOF functions can result in radically different curve es-
timations, e.g. see [Pratt 87), [Sampeon 82), (Bookstein 79] and
[Turner 74]. On close examination of Columbia’s initial system
to recover SEs, it became apparent that the EOF function being
used was not even proportional to sensor errors (determined using
synethic data). The purpose of this section is to examine some of
the measures of the error of fit used by these researchers as well as
some measures not yet used in minimization procedures, While

3There are many differences in the details of the algorithms. The work of
[Bajesy and Solina 87b] and [Boult and Gross 87b) differ mostly in minor de-
tails, and both are driven mainly by the minimisation approach with oaly mi-
nor effort to derive good initial estimates of the parameters. The approach ia
(Pentland 87] is radically different using a detailed nonadaptive initial search
of the parameter space (at 64,000 locations), but still maintains the mini-
mization of some error of fit measure after that initial search through the
parameter space.
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Figure 3: Drawing showing the intuitive meaning of measures.
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rotation and translation are not going to be considered herein.
they are easily added to any of the measures under consideration.

In particular, this section considers 4 measures of error of fit.
This section defines each of these mathematically and also gives

a brief intuitive description in 2 dimensional physical/geometrical
terms.

3.1 EOF;: Mean-square-value of the inside-outside
function

The first measure to be considered is. in some sense, the simplest.
It is directly based on the inside-outside function which can be
used to implicitly define the SE.

1 s 2
EOF = ~ > (1 - flziyizia, .64, a,,.a,)) (3)
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where z,, yi, z; are the given depth data points converted to a sin-
gle viewpoint, and where f(:;,y.',z,-; €1.,€3,8:,8y,8,) = f(z,y,2)
where €, €3, 6:,ay, a, are parameters in equation 2. A rough in-
tuitive definition of this measure, see figure 3, is as a power of the
ratio of the length of two line segments. The exponent to which
the ratio is raised depends on the squareness-roundness in the zz
direction and is given by ﬁ- The denominator of the ratio is the
length of the line segment between the data point and the center
of the SE. The numerator is the length of that portion of the above
mentioned line segment connecting the center of the SE with that
point on the surface in the direction of the data point. Given this
intuitive definition, it is obvious that the measure can decrease
if the object size grows even if the actual distance to the surface
increases. Additionally, for small values of ¢;, this measure can
be quite large (or small depending on ratio), and computation-
ally unstable. This will be borne out through the computational
evaluation in later sections.




3.2 EOF: “Corrected” mean-square inside-outside
measure

The second measure to be considered is a modified version of the
first to remove some its most undesirable properties: the rapid
grown of EOFy for small values of ¢, and some of its biases. The
new measures is given by:

EOF2 = ;ll' Z (1 - j:!’(l';,y-‘-Zivfhfz-anﬂy‘a.v))z (4)
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where terms are as defined for EOFy

The intuitive definition of this measure is as the same ratio
as for EOF) except that the power to which the ratio is raised is
simply 2. Thus, this measure gives a type of “relative error” in a
radial direction, however, it greatly effects measurements in the z
direction (the drawing above ignores that direction). As before, it
is obvious that the measure can decrease if the object size grows
even if the actual distance to the surface increases. Note that to
date this particular measure has not been used in a SE recovery
system.

3.3 EOF;: a % minimal volume” function

Another EOF function, used by {Bajcsy and Solina 87b), is
EOF; =

- 2
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where terms are as defined for EOF.*

A variant of this error of fit measure was heuristically first
motivated in [Bajcsy and Solina 87b] by the idea that there are
many surfaces which might fit data from a single view, and the
system should recover the surface of minimal volume. The actual
equations 10 and 11 in {Bajcsy and Solina 87b}, as well as similar
equations in [Bajecsy and Solina 87a), suggest a multiplicative fac-
tor of @, -, - @, rather than \ /@ -G,z - ;. However, this is not in
keeping with the heurstic definition, and the latter form appears
in [Solina 87]. While not reported here, experimental compar-
isons have found the the factor of a; - a, - a, results in a meausre
wehich has similar properties, but exaggerates the poor behavior
of EOF;.

The rough intuitive definition of £O F; is simply the square
of the “relative error” in the radial direction multiplied by the
square-root of volume of the cube bounding the SE (which is
meant to be a crude approximation to the SE itself). The advan-
tage of this is that in a pure relative error measure, the absolute
error in the radial direction was divided by a term containing the
the radial distance to the surface in some direction. Thus with
the points inside the object, the object could grow and reduce
EOF, or EOF; (with respect to one point) while the absolute
error would grow. By multiplying by the volume of the bound-
ing rectangular solid, this behavior is curtailed. However, this

YActually, there a few minor differences betweea this definition and the
ones in [Bajcsy and Solina 87b]. The first difference is the maltiplication by
L which normalises by the number of data points. The second difference
is that they use a homogeneous transformation to deal with rotation and
translation, thus the derivation of EOF) in that paper is not given in terms
of the f above, but this formulation can be easly shown to be equivalent.

behavior is replaced with the possibility of reducing the measure
by keeping the relative error in the radial direction constant, but
reducing the size of the SE (i.e.. the measure is sensitive to scale).

3.4 EOF;: A measure based on true euclidean dis-
tance

A final test measure is defined as the mean distance between each
data point and the corresponding point on the surface of the su-
perquadric on the line connecting the data point and the center
of the SE. In equation form this becomes:

EOF‘ = %Zf:l...n lf" - (ﬂ
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and 3(-,-) is defined as in equation 1, and the relative signs’ of
Z,, ¥i, Zi, the i data point, are used to determine the correct
spherical quadrant of the arctan.

This measure overestimates the minimal distance of a point
from the SE, especially for squarish ones. However. it is a true
euclidean distance measure, and thus is not effected by overall
scaling of the problem. There are probably better euclidean based
measures, however, the only better measures currently known to

the authors do not have a functional form defining them, and thus
are difficult to minimize.

N

3.5 Evaluation of the Different Error of Fit Mea-
sures

This section begins the analysis of the various error of fit measures.
The main vehicle for presentation will be graphical, with running
commentary giving one interpretation of the results. The reader
is advised to draw her/his own conclusions.

The evaluation is in terms of two properties of the measures:
parameter bias, and shape of crossections of the error surface.
The parameter bias makes it difficult to compare two potential
solutions and also generally affects the minimization by shifting
the location of the minima The relation of the measure (in terms
of the scale of values) to the RMS error of data is a by product of
the experiment to determine bias. The shape of cross sections of
the error surface is important because it affects both the possibil-
ity of minimization (in particular, is it relatively concave?), and
the rate of convergence of iterative minimization techniques (how
large is the gradient?).

3.5.1 Determination of Measure Bias

To compare the parameter bias, each measure will be computed
using the “correct” values of the 5 parameters (i.e. the parameters
used to generate a surface). Of course, because of the noise in the



data points, these parameters will generally not be those param-
eters for which a given measure is minimized. (More about that
later). The different cases considered in this section should give
the reader a good intuitive feeling for how the different measures
are biased (with respect to the true RMS error) as the parameters
defining an SE are varied. To cut down on the amount of analy-
sis, certain symmetries have been anticipated, in particular ay is
assumed to be identical to a;. The discussions in this section are
a review of the computational experiment. and only represent a
small sample of the experimenta] data.

Each of the “bias™ graphs show a sequence of computational
experiments where a single parameter is varied over some range.
The values are scaled, ard the pattern of the scaled values often
provide a good feel for the bias of measure. The scale values
themselves show the relative difference in the size of the error
measure (using the “correct” answer) with respect to the RMS
error added to the data.

The data in each graph was computed as follows:

Step 1 An initial set of parameters for the SE, error range, and
sensor direction (z,y, or z) are chosen. (Only z direction
presented here). Also, a parameter is chosen to vary in the
iterations. Each iteration generates one data point on the
graph for each of the different measures, computed in steps
2 through 5.

Step 2 For a given set of SE parameters (i.e. each iteration),
500 points are generating on the surface of the SE assum-
ing a uniform pseudo-random distribution of angles on the
viewing hemisphere for the chosen sensor direction.

Step 3 For each data point, a pseudo-random noise value is com-
puted assuming a uniform distribution in a predetermined
range. The noise is added to the data point in the direction
of the sensor. The value is directly added to the variable
used to compute the RMS measure.

Step 4 Using the exact value of the set of parameters for this
iteration, and the noisy data computed in steps 2 and 3,
the value of each of the measures FOFy, EOF;, EOF; and
EOF; is computed and recorded.

Step 5 For each measure (including RMS) the recorded values
are examined and the maximum of a measure is used to

re-scale its value into {0,1) and the value is entered on the
graph.

Before beginning the description of the initial results, it is
necessary to make a few comments about the graphical presenta-
tion of the results. First note that each graph contains 5 different
marks which are used to show the scaled value of the measures.
Also, each graph has a legend with scaling factors. Thus in fig-
ure 4, the computed value of EO F; for ¢y = .5 is approximately
.64 x .176, and when ¢;, = 1.8 is approximately .91 x .176. Look-
ing at the tick-marks allows one to obtain a feel for the measure’s
bias as the parameter varies, and the scaling provides a means of
relating the measure to the actual RMS error. For space consid-
erations, only a few examples are presented here. However, the
running commentary in this section is based on the analysis of
over 500 of the above computational experiments.

The interest in bias factors stems from their importance in
comparing the realtive quality of two potential solutions. For
example, if the bias in a parameter P is toward larger values then
if two candidate sets of parameters differ only in parameter P,
the it can occur that the set with the larger P value may report
a larger measure but have a smaller actual RMS error. Thus to
properly compare two potential solutions, one needs to be able to
estimate the bias in each of the parameters in which they differ.

The reader should recall that these graphs are not showing
the shape of the error surface near the correct solution, and the

non-monotonic behavior does not mean that minimization will be
difficult.

The first graphical display for the bias experiment is in fig-
ure 4, and involves the bias of the measures with respect to the
parameter €, the squareness-roundness in the zy direction. The
first thing that should strike you about the graph is that all of
the measures clump together, and none of them show a particu-
larly smooth bias. There is a general trend toward having a large
measure for €, but locally it is far {rom monotonic. Thus, the
result of the minimization process on all the measures will gen-
erally report some value which overestimates the error (even if
it could be scaled) and the overestimate is a generally increasing
(but nonmonotonic) function ey.

One interpretation of the clumping of the measures is that
the observed bias is caused by measurement in the radial direction
when the sensor error is in an axial direction. This interpretation
suggests that no radial measure will be bias-free and provides an
impetus to attempt to derive measures in the sensor direction.

The scales of the measured values were generally close to the
RMS error, with EO Fy very close (by accident), and EQOF; EOF,
off by a factor of 2. Although not evident from the examples
presented here, EO F3 is greatly effected by scaling. If all sizes in
the example were multiplied by a factor of 100 (say meters into
mm) then EO F3 would increase by a factor of 1000000. On the
otherhand, EO Fy would decrease (by a much smaller amount) as
the scale was increased.

The second example in the bias determination experiment
is shown in figure 5. The most striking feature of this graph
radically different behavior of the measures. Note that EOF,
follows the RMS error rather well, showing that it is not biased
with respect to ¢;,. EOF; and EQOF; (which differ only in scale)
show the same nonmonotonic but generalling increasing bias as
they did for ¢,,. (Close examination shows qualitatively similar
small scale perturbations in EOF;, EOF3; and EOFy. Again,
these are probably biases inherent in any axial measure.) While
the other measures show a bias for larger values, EOF} has a
significant, and apparently monotonic, bias for smaller values.

A second fact to consider in this example is the relative scales
of the measure. A glance at the scaling factors in the legend
suggest that only EQF, is closly linked to the actual RMS error.
The other measures are all off by at least an order of magnititude,
or more.

The third example in the bias determination experiment is
shown in figure 6. The most striking feature of this graph is the
clear separation of the measures. EQF; tracks the RMS error
rather well, showing that it is not biased over this range of a..



EOF, is also rather unbiased, with the exception of very small val-
ues of a., which have a negative bias. Both of the aforementioned
measures show non-monotonicity in what bias they do have, but
the deviations (when appropriately scaled) from the RMS error
are not very significant. £OF; on the other hand. shows a strong,
almost monotonic, bias toward smaller values of a.., as does EO F3.
The bias of EQ F3 for smaller values might be attributied to the
“volume” factor which is the only difference between it and EO F;.
While not shown here, the above patterns are still present when
the sensor direction is changed to the z axis, although the rates
of change of the bias (i.e. slopes of curves) are smaller.

The final example from the bias experiment, is shown in fig-
ure 7. Again there is a rather noticeable difference between the
measures. This time it is EOFy which display virtually no particu-
lar bias, although there are some obvious local non-monotonicities.
The other three measures all show a strong bias for larger a, val-
ues, with the bias in EQ Fj slightly less than in the other measures.
While one might have predicted a bias in £O F; for small values
of a,, the greater bias of the underlying EOF; factor dominates
the “volume” term (but the latter probably provides the mitigat-
ing factor in the bias as compared with EOF; and EOF,). To
the eye, the bias trend in all but EOF, appear linear, and antic-
ipation/compensation might be possible. Again, the experiments
with the sensor direction along the z axis have similar overall char-
acteristics, though the slopes of the bias “curves” were smaller.

As mentioned, there were also numerous test cases included
in the experiment which were not reported here. To summarize
the results, little characteristic difference was found to be caused
by changes in the sensor direction, although many minor varia-
tions did occur. As mentioned above, many of the measures also
displayed a bias in terms of overall scale of the problem.

A final comment about the bias experiments. The graphical
presentation makes it very easy to overlook the absolute scal-
ing parameters in the legend. However, if one were interested in
converting from one measure into an approximate RMS measure,
even knowing the bias characteristic would not be useful unless
one could also compute the scaling factors. As shown in the next
section, many of the measures can have significant scale changes
in the neighboorhood of the correct solution, thus estimation of
the scale factors from this experiment is unlikely.

3.5.2 Analysis of croes sections of error-of-fit surface

This section discusses experiments which attempts to determine
the structure of the error-of-fit surface by examining one dimen-
sional slices through that multi-dimensional surface. The exper-
iment considered both the structure in a small neighborhood of
the correct parameter value and the larger scale structure (say
variations of 10-100%). The local structure provides insight into
how the measures err (i.e. it shows location of measures minima).
The large scale structure provide insight into the likelyhood of suc-
cessful minimization when reasonable initial estimates are used as
starting values. Because global properties are of more importance,
only the experiments using a wide range of values will be reported
here, even though some of the conclusion are more readily made
by examination of the experiments in small neighborhoods.

As in the reporting of the bias experiments, the presentation

will be graphical with commentary. Each graph was generated as
follows:

Step 1 Parameters defining SE and sensor direction are chosen.
Using these parameters, 500 points are generated on the
surface of the SE assuming a uniform pseudo-random dis-
tribution of angles on the viewing hemisphere for the cho-
sen sensor direction. For each data point, a pseudo-random
noise value is computed assuming a uniform distribution in
a predetermined range. The noise is added to the data point
in the direction of the sensor. The value is directly added
to the variable used to compute the RMS measure.

Step 2 A parameter is chosen to vary, as well as the range of vari-
ation. For each iteration point (10-20 spanning the chosen
range) the experimental values for each measure are gen-
erated using the current value of the variable parameter,

and the correct values of the remaining parameters, and are
recorded.

Step 3 For each measure (including RMS) the recorded values
are examined and the maximum of a measure is used to re-
scale its value into the interval [0,1] and the value is entered
on the graph.

Note the above procedures result in the correct location of
the minima occuring in the center of each graph.

Probably the most surprising result is that when rotations
and translations are ignored (as in the results reported here), all
of the measures generated relatively concave cross sections. Thus,
minimization of any of them (given correct rotations and trans-
lations) should be straight forward. The main difference between
the measures was the degree of concavity, which would effect the
efficiency of the minimization.

The first presented crossection, figure 8, shows the cross sec-
tion as ¢, is varied. The clear separation of EQF}, and higher
curvature suggest that it is the preferred measure in this example.
Note that since a:,ay and a, are fixed. the structure of EOF,
and EOF; is identical; they differ only in a scaling factor. Fi-
nally, EOF; does show some concavity, but the dramatic scale
differences make the minima very shallow. While not shown, the
separation of the measures is even greater when the errors are
along the z axis.

It is worth pointing out that EQOF;, EOF; and EOF, all
have their minima to the left (i.e. smaller parameter value) than
the underlying surface, while £O F) overestimates the parameter.
(The detailed analysis of the local region which is not presented
shows that the minima of FO Fy is the closest to the parameter
value defining the actual underlying surface.) The reader might
want to compare this with the results of the bias experiment for
the same parameter.

The second croes section presented in figure 9. shows all of the
measures are very asymetric about their minima. In addition, al-
though it cannot be seen from this graph, all of the measures have
their minima above the “correct™ value. The dramatic changes in
scale for EOF, make it appear flat on this graph, but it does have
a shape similar to the other measures, just more dramatic.

[t is also obvious (though barely visible) that £0 Fy has the



sharpest minima, although minimization of any of the measures
with a starting value above the true solution looks like a good
idea. Again, EOF has its minima closest to the correct value.
The asymmetric shape of this curve is even more pronounced when
the errors in the data are along the z axis.

A comment also is in order regarding the vast differences in
scales between the measures. As one can see from the legend in
figure 9, the relative scales differ by orders of magnitude. From
a practical point of view, those measures which routinely have
a wide numerical range (EQFy, EOF; and depending on scaling
poasibly EOF3) present more numerical problems, and show a
greater sensitivity to roundoff errors.

A third cross section, see figure 9, shows a case where the
relative shape of all of the measures is almost identical, with EO F,
just slightly outperforming the other measures in the concavity
analysis. Also. note that all of the measures again overestimate
the correct underlying parameters (by about 1%-2%). When the
error was in the direction of the z axis, all measures were very
sharply concave. and the minima were very close to the correct
value.

The final cross sections, see figures 11 and 11 show the struc-
ture of the error surfaces for some of the parameters used in the
bias experiments. Note that in these cases, EQFy is a clear win-
ner.

4 The Current System

This section presents some of the details of our current system for
the recovery of superquadrics from 3-D information. The basis of
our system is the minimization of EQOF). Note that one of the ad-
vantages of minimizing the a measure based on the inside-outside
function is that it requires little extra effort to incorporate multi-
ple views, assuming one knows the sensor position for each view
(to convert points to a common coordinate system). However,
such an approach will not take error distributions into account,
and the errors in conversion may be exaggerated by the fitting
process.

Given 3-D information about a SE in canonical position, one
can use a nonlinear minimization technique to recover the 5 pa-
rameters needed to define it. Qur system uses a Gauss-Newton
iterative nonlinear least square minimization technique, (for ex-
ample see [Hageman and Young 70]). If the SE is not in canonical
position, the system must also recover estimates of the transla-
tion and rotation necessary to put the information on the surface
of a canonical SE. There are obviously many approaches to deal
with the translation and rotation. The two most obvious are: the
use of a pair of transforms (one for translation and one for rota-
tion) and the use of a homogeneous transform that combines both
translation and rotation. Our system uses the first approach.

For the remainder of this section let Cy = cos8 and 55 =

sinf. Thus given a canonical SE surface defined as § = i(n,w)
with an inside-outside function f = f(z.y, z), the translated and

rotated SE solid §is given by

t:
§= RoR4RyS + | t,
.

) (8)

where 8,4, and ¢ are the Euler angles expressing pitch, yaw and
roll respectively, Rg R4 Ry are the associated rotation matrices and
t:.t,.t, are the translation in the z,y, and z directions respec-
tively. The definition of the rotation matrices and Euler angles
can be found in many standard texts on computer graphics, e.g.,
[Rogers and Adams 76}, as well as in the computer vision litera-
ture e.g., see [Tsai 86], or [Bolle and Murthy 86).

Given the data for a general SE the system minimizes:

EOFI(‘I»‘Z» Gz,Qy. 0z, 82,2y, t:.0.¢, ¥) =

L 2
Tiztin (1 = f(zivyi.zi, €1, €2, 02,8y, 0., 1, ty.t:,o,é.w)) .
(9)
where z;,y;,2; are the given data points from a single viewpoint,
and where f(zi,yi, 2, €61, €2,82,ay, 8., 8,1y, 1..0,6,¢) = f(£.7, })
and

z z~t:
yl= RT y-t,
z z -t
where (10)
CoCy¢ S¢SeCq ~ CySq CySsCs + Sy S,
RT = CeSe 5¢,SaS¢ +CyCs S5¢85Cs — CySe
_SO 5¢.Ca C(,Cﬂ

To employ the Gauss-Newton iteration, the system must com-
pute the Jacobian of the transformation, and thus also needs the
partial derivatives of f(z.y,z) with respect to the 11 parame-
ters, (5 shape, 3 rotation and 3 translation), which were obtained
symbolically.

The initial implementation of the system recovered only the
5 shape parameters. Using synthetic data with up to 10% uni-
formly distributed noise, the system could start the minimization
procedure from a canonical position (all 5 parameters = 1) and in
most cases was still able to recover the underlying surface within
the error of the data. Moreover, the convergence was generally
quick, requiring < 15 iterations. These results are reported be-
cause, if though some other means one was able to compute the
local coordinate system of the SE (or out very good bounds on
it), the stability of the algorithm would be greatly increased.

When the system was extended to handle 11 parameters (i.e.
5 shape and 6 position/orientation), things became more com-
plicated. For most of the examples presented, even when pre-
sented with very poor estimates for starting values, the system
was quickly able to find an SE that had low “error of fit". Un-
fortunately, the solutions proposed by the system often seemed
to be nonintuitive. However, when examined closely, many of
these solutions proved themselves to be reasonable (though not
the most reasonable) interpretations of the data. The differences
could generally be traced to the nonintutative behavior of error-
of-fit measure. For example, when presented with the range data
(from the Utah range database, [UTAH 85]) for a coke can minus
the concave portion of the bottom end, the system initially pro-
posed a solution with EQF, = .0078. However, the parameters



described an object that is slightly beveled along its long axis,
and rather round in the other direction. The length of the object
was far larger then expected. The exaggerated length was caused
by two factors:

1. the model is assumed to be intersected with a negative ellip-
soid at the top, and cut by the ground plane at the bottom,
and

2. the “error of fit” measure used by the system is an underes-
timate, and biased toward larger objects, see Section 3 for
further discussion of this problem.

When examined closely, the proposed object (assuming the vol-
ume terminates when it intersects another object in the scene)
does seem to be a reasonable fit to the data, but still a cylinder
seems intuitively to be a better fit. If forced to look for a cylin-
drical object, the system finds an SE with EOF) of .17. Oddly
enough, the system converged to a can more readily if data from
the negative ellipsoid was not removed. As reported in the next
section, the use of a different error-of-fit measure resulted in better
recovery.

Currently, the system obtains initial estimates of the transla-
tion parameters from the centroids of the original data and derives
bounds from sensor information and overall data (maximum vari-
ation in any data). However, there are many problems with these
estimates especially if the number of data points is small or if
the system is only given a partial view of an object. These esti-
mates are obviously much better if multiple views of the object
are available. The estimates also assume that the data is seg-
mented. an assumption with which the authors feel particularly
uncomfortable. The system derives estimates of rotation angles
and length scales from moments of inertia and bounds on the
length parameters from sensor information and overall data. Be-
cause the moments of inertia require second order moments, the
estimates are plagued with more difficulties than the estimates of
the translation parameters. The estimates of both the rotation
and length scales are very poor if an object (after segmentation)
is the result of boolean combinations.

The system also estimates bounds on the maximum values for
each parameter, deriving these estimates from knowledge of the
“sensor” and the data values. If during the minimization process,
any parameter attempts to stray beyond its allowed boundary, the
system stochastically “pushes” it back toward its initial value.

4.1 A Few Examples from Our Current System

The first example in figure 13, is & synthetic SE with noisy syn-
thetic data from multiple views. The actual parameters of the
superquadric are (1.59, .39, 1, 2, 3, 1.5, 2.5, 3.5, .1, .1, .1).% The
noise in the underlying object was uniformly distributed over the
interval [-.15, +.15) and then added to the z (depth) value of a
point. The 1000 data points were randomly distributed on the
surface before noise was added. The system recovered an SE with
parameters (1.8, .3, 1, 2, 3.58, 1.49, 2.5, 3.47, .079, .09, .101). The

3In this example and hereafter the parameters will always be pre-
sented as a 1] vector with assocation implied by order givea by:
€1,€3,05,8y,04, 85, by, 8,0,0,9.

error (as measured by EQ Fy) of the reconstruction wasf.079. The
system required 7 iterations from the initial values to find the so-
lution.

Figure 14, is the recovery of the same synthetic SE as in
example 1. However. this time this system was given 1000 data
points from one view of the object. Under these conditions, the
recovered parameters were (2.09, .67, 1, 1.94, 3.36, 1.43, 2.53,
4.3, .075, .07, .08). The error (as measured by EOF}) of the
reconstruction was .169. Unsurprisingly, the reconstruction from
multiple views is superior.

The final three examples presented, show the fitting of ac-
tual range data from the Utah range database. Figure 15 shows
the elliptical indentation on the bottom of a soda can. The object
which is defined by 590 data points. The system recovered the pa-
rameters (1.29, .955, .939, .930, .277. -.096, -1.53, 2.07, -.05,0,0),
and had EQ Fy = .0293. Figure 16 shows a quasi-spherical object
which is defined by 859 data points. The system recovered the
parameters (.994, .951, 1.19, 1.13, 1.13, .4729, 1.437, -1.457,-.05,
-.04, 0) and EOF, = .021. Figure 17 shows the cylindrical por-
tion of a soda can defined by 1645 data points. When using the
above described estimations techniques, the system recovered the
parameters ( 2.0, .88, 1, 1.3, 19.59, -.19, -1.69, -.834, -.04,.05, 0)
and with EOF, = .0079. When the inside-outside function was
modified to include an extra multiplicative factor of aca,a,. the
result was the bottom object in figure 17.

5 Conclusions and Future Direction

The main resuit in this paper is that there are problems and
biases with currently used error-of-fit measures, as well as with
two newly proposed measures. Still, the newly proposed measures
often fared better than currently used measures

The analysis also suggests that even better measures await
definition, especially error of fit measures which make use of knowl-
edge of a sensor error model (direction).

The paper also summarizes results which demonstrate that
even with a poor EOF measure the system can recognize both
positive and negative superquadrics from depth data on only part
of the surface. (The latter an important consideration if SE's are
to be used with CSG operations.)

Future plans for the system also include extensions to incorpo-
rate surface derivative information. This will be accomplished by
minimizing a sum with (some variant of) both the inside-outside
function and a differentiated form of the inside-outside function.

Of course, one of the most important avenues for future re-
search will be attacking the segmentation problem, our current
plans are to attempt at least two approaches: pure growing of
superquadrics from small data patches, and a skeletonization (to
find axis) followed by both growing and splitting of superquadric
solids.

A final avenues of research will be in using SE's for integra-
tion of multi-sensor (possible muiti-modal) information, including
some model of sensing errors. Part of this work will undoubtedly
look into the use of edges in an intensity image /range image as




they relate to limb-equations.
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Figure 13: Example recovering 11 parameters using noisy syn-

thetic data from single views
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Figure 14: Example recovering 11 parameters using noisy syn-

thetic data from single views

Figure 15: Reconstruction of a negative ellipsoid from real range
data

Figure 16: Reconstructed sphere from actual range data
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Figure 17: Example using real range data example of soda can,
best fit surface with standard inside-outside function.(top) and
with function multiplied by aaya, (bottom).




