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Abstract 

Superellipsoids are parameterized solids which can appear like 
cubes or spheres or octahedrons or 8-pointed stars or anything in 
between. They can also be stretched. bent. tapered and combined 
with boolean to model a wide range of objects. Columbia's vision 
group is interested in using superquadrics as model primitives for 
computer vision applications because they are flexible enough to 
allow modeling of many objects. yet they can be described by a few 
(.5-14) numbers. This paper discusses research into the recovery 
of superellipsoids from 3-D information. in particular range data. 

This research can be divided into two parts. a study of po­
tential error-of-fit measures for recovering superquadrics, and im­
plementation and experimentation with a system which attempts 
to recover superellipsoids by minimizing an error-of-fit measure. 

This paper presents an overview of work in both areas. In­
cluded are data from an initial comparison of 4 error-of-fit mea­
sures in terms of the inter-relationship between each measure and 
the parameters defining the superellipsoid. Also discussed is an 
experimental system which employs a nonlinear least square mini­
mization technique to recover the parameters. This paper discuss 
both the ad~'antages of this technique. and some of its major draw­
backs. Examples are presented. using both synthetic and range­
data, where the system successfully recovers superlliposids. in­
cluding "negative~ volumes as would occur if supereWpsoids were 
used in a constructive solid modeling system. 

1 Introduction 

As a modeling primitive. superquadrics provide a natural exten­
sion to traditional CAD models, [Barr 81). Recently they have 
become the focus of a few computer vision research efforts, see 

[Pentland 86a), [Pentland 87), [Bajcsy and Solina 8ib], (Solina 87J, 
and (Boult and Gross 8ibJ. ~fost of the research to date has con· 
centrated on a subclass of superquadrics called superellipsoids 
(hereafter SEs). The growing research interests in SEs can par­
tially be attributed to the fact that they can mocel a wide range of 
object in a very compact form. Another contributing factor is the 
underlying mathematical formulation which provides convenient 
tools for their recovery. 

The next section of this paper presents a mathematical def­
in.ition of superellipsoids and a little moti~tion for using SE'! 
in computer vision. Section 3 defines various error-of-fit measures 
which could be used in the recovery of S£'s, and presents an initial 
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comparison of these measures. 

The current system is described in Section 4. Briefly it em­
ploys a nonlinear least square minimization technique on the inside­
outside function to recover the parameters. Oddly. this function 
is one of the poorer error-of-fit measures considered, yet it is suf­
ficient to allow for reasonable (qualitive) recovery of SEs from 
both synthetic and range data. A few examples of the results of 
the system are then presented. The examples include the use of 
very sparse data, synthetic multiple views and the recovery of a 
negative superellipsoid from range data_ 

Previous papers by the authors, [Boult and Gross 8Tb] and 
iBoult and Gross 8TaJ, discuss a few other difficulties that are 
encountered when modeling objects with superellipsoids. or at­
tempting to recover superquadrics from 3D data. These difficul­
ties include the general problems associated with non-orthogonal 
represen tations, the difficulties of dealing with objects which are 
not exactly representable with CSG operations on the primitives, 
the need to recognize negative objects, and certain numerical in­
stabilities. 

Some pros and cons of the approach as well as few conclusions, 
and a discussion of work in progress at Columbia's vision lab 
appear in the final section. 

The main result in this paper is that there are problems and 
biases with currently used error-of-fit measures, as well as with 
two newly proposed measures. It also suggests that even better 
measures await definition, especially ones measuring error using 
knowledge of the sensor direction. Another important result of 
the research is that least square minimization, (even using a poor 
error of fit measure), allows recovery of both positive and negative 
instances of supereWpsoids from depth data. 

2 Background and Motivation 

~Iathematically, S£ solids are a spherical product of two superel­
!ipse curves (see (Gardiner 65]). SupereWpse curves are simi­
lar to traditional ellipses except the terms in the definition are 
raised to parameterized exponents (not necessarily integers), i.e.: 

(;)f + (t)f = 1. When €, the relative shape parometeris 1, the 
curve describes an ellipse. As the relative shape parameter varies 
from 1 down to D, the shape becomes progressively squarish; as 
it varies Cram 1 toward 2, the shape transforms from a ellipse to 
a diamond shaped bevel. When the parameter is greater than 
2. the shape becomes pinched and as the parameter approaches 



Figure 1: Superellipsoids with relative shape parameter EI having 
values .1, .5. 1. 1.5 and 2 (left to right), and £2 having values .1. 
.6 and 1 (top to bottom). 

infinity, the shape approaches a cross. 

The result of the spherical product of two such curves is con­
veniently represented in a parametric form. e.g., a superellipsoid 
can be represented as: 

[

a" . cos
q 

1] • cos" W 1 -!!. < 1J < !!. 
.i(1],w)= av,cos"1J·sin"w , 2 - - 2 

''1 -If<W<lf, (1) a, . Sin 1J - -

for any fixed positivea",av,az.€I. and E2' 

The parameters a". av' a, affect the size of the superellipsoid along 
the z. y and z axes (respectively) in the object centered coordi­
nate system. The parameters EI and £2 effect the relative shape 
of the superellipsoid in the latitudinal (zz) and longitudinal (zy) 
directions, see figure 1. When the 5 parameters are all unity, the 
superellipsoid is the unit sphere. 

Superellipsoids can also be defined implicitly as the the vol­
ume where the SE inside-outside function is negative, where the 
SE inside-outside function is given by: 

( .l. .l.) ~ .l. 
f( z, y. z) = (~)" + (~)" 'I + (~)" 

where 
f(z, y, z) = 1, then x. y. i is on the surface. 
fez. y. i) < 1. then X. y, z is inside the volume. 
f(z.Y.i) > 1. then x.fJ.z is outside the volume. 

(2) 

These equations define superellipsoids (hereafter referred to as 
SEa) which are probably the simplest oia. family ofsurfaces called 
superquadrics. SE's are the only superquadrics which can be made 
into a convex solid. One can also define superhyperboloids of one 
or two sheets and supertoroids. see [Barr 81J. In addition to the 
variety of shapes defined by the basic superqua.drics. Bur also dis­
cusses the application of angle-preserving transforIllS which allow 
translation. rotation. bending and twisting. With the addition 
of tapering and traditional boolean combination operations. 5U­

perqua.drics become a powerful modeling tool. see Figure 2 for 
some ~xamples generated using SuperSketch. (Pentland 86bJ. 

While translation. rotation. bending and tapering are impor­
tant modifications to basic SE primitives. they will not be corrid­
ered in the remainder of the paper. Future work will examine the 

Figure 2: Examples of SE's deformed by bending and tapering 

effect of these deformations on error-of-fit measures and potential 
implementations. 

Definitions in hand. let us now discusses some of the rational 
for using SE's for object recognition. In short. they are fiexible 
enough to represent a wide class of objects. but are simple enough 
to be recovered from 3-D data. Their functional form and inside­
outside function provides a useful tools to aid in their recovery. 

Traditional constructive solid modeling systems use boolean 
operations to combine primitives, such as. spheres. cylinders. and 
rectangular solids. By extending the primitive shapes to SEs, 
we allow the user to easily produce a continuum of forms. from 
spheres. to cuboids with rounded corners, to cubes. to diamond 
shapes. Such objects are difficult to model with traditional con­
structive solid geometry (hereafter CSG) systems. Making them 
primitives simplifies the job of the designer for any problem that 
contains objects with these properties.1 

However. adding flexibility above that of a traditional CSG 
system is not the only reason to choose superquadric8. For added 
flexibility. one could make the primitives of the system General­
ized Cylinders or Generalized Cones. see [Brooks and Binford 80J. 
The problem with GCs is that recovering them is a difficult pro­
cess, partially because each GC may require hundreds of pa­
rameters to describe it. The number of parameters necessary 
to define a GC depends on the complexity of the cross section 
function. the spine. and sweeping function. As in [Brooks 85), 
[Rao and Neva.tia 86). or [Ponce. Chelberg and Mann 87), one gen­
erally has to greatly restrict the class of GCs allowed before one 
can reliably recover them. 
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It is interesting to note that superellipsoids and supertoroids 
can be defined as a subclass of GC; SEa are those straight spined 
GCs with their cross section and sweeping functions defined by 
superellipsel!.2 If the SEs are bent or tapered. these deforma­
tions are a.pplied to the spine and sweeping function respectively. 

'A oimple CAD 'r-~m hu been developed by A. Pentl~d. see 
[Pentl~d 8Sb] that com bins SEa (con.trained to only thoee that are convex 
oolida) ,..jth CSG type opentioM plua bending and tapering. The e&lle ,..jth 
which people became &CClUtomed to modelinl ,..jth thi •• ynem may be tied 
to their own in~flIaJ repre.enuUon of the objec1.a. [Pent1&nd 86&] prs<:Ilu 
&rlumenu to motivate the ue of .nperqtu.dric:a u modeling primitives by 
.ho,..jng corr .. pondencs to bumu voc&lliation of object description .. 

'The ... ""pinll rule it highly nonlinu.r. ud al .. aYI gos to lero. The au­
thon do not kno .. of ~y system which can recover a nbeet of GC containing 
thit d ..... 



Thus superquadricB provide a restriction which may allow effi­
cient recovery as well as a simpler set of "limb equations"(after 
[Ponce, Chelberg and ~iann 87]). In addition. they provide math­
ematical properties (the explicit parametric definitions, inside­
outside function (implicit definition) and a normal surface duality 
principle) which do not exist for most classes of GCs. 

The inside-outside function provides a useful tool for recov­
ery, because it provides a simple way to determine which of the 
data points are inside the surface. Furthermore, the value of 
the function grows as points are moved further from the surface. 
Thus it can be used in conjunction with a minimization tech­
nique to recover the surface. However, the inside-outside function 
is not a euclidean "error of fit" measure (see the following sec­
tion), and therefore direct minimization of it will not necessarily 
provide satisfactory results. (However, in two independent imple­
mentations this technique has produced satisfactory results. see 
[Bajcsy and Solina 87b) and [Boult and Gross 8Th), and section 
4.) 

Canonical superquadrics (except the supertoroids) have a de­
sirable duality property. The superquadric normal vectors lie on a 
dual superquadric form; that is, if the normal vectors were trans­
lated to the origin, they would generate another superquadric 
of the same class such that the normal of the new surface (if 
translated to the origin) would produce a copy of the original 
superquadric (except for a translation). One can easily derive 
the form of the normal surface as a spherical product as well 
as its own inside-outside function, see [Barr 81]. Note that the 
inside-outside function for the surface normals might be used to 
find superquadrics fitting surface normal information as would be 
available from shape-from-X methods. 

3 Comparison of four "Error of fit" mea­
sures 

The recovery of superellipsoids from depth data has recently been 
the subject of research in varioWl labs, e.g. see [Pentland 87], 
[Bajcsy and Solina 87b), and [Boult and Grosa 87b). Each of the 
approaches has something in common: at some point they define 
some measure of the "error of fit" (hereafter EO F), iUld they use 
a nonlinear minimization technique to recover the parameters of 
the supereUipsoid starting from an initial estimate. J It is well 
known, from work on fitting curves to points in the plane, that 
different EOF functions can result in radically different curve es­
timations, e.g. see [Pratt 87), [Sampson 82), (Bookstein 79] and 
[Turner 74). On close examination of Columbi&'a initial system 
to recover SEa, it became app&rent that the EOF function being 
used was not even proportional to sen.sor erron (determined using 
synethic data). The purpose of this section is to examine some of 
the m~ures of the error of fit U!ed by these researchen as well a! 

some measures not yet used in minimiza.tion procedures. While 

'There ue muy dift'eru".,. in the del.&ila of Ihe usorilhma. The work of 
[B~ja,. &nd Solin 87b] ud [Boult &nd G ... 87b] di1I'er ma.L1y in minor d~ 
taib, ud both ue driyen m&illly bYlhe minimisalioa ~ppro&ch with only mi· 
nor effort \0 deriye &ood initial eslim~~ of Ihe p&r~mekrL The appro&elo iA 
[penll~nd 87] ia radie&lly di1I'ereill uiD3 ~ deL&iled noudapli .... initial .u.rd 
of Ihe p&ra.meler sp&ee (u 6.,000 loaUoIU). but still oainl&in. tbe mini· 
mizalion of some error of fit muaure aile< tbd inilw &ureh tbroup Ibe 
p&nmeler !p&ce. 
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Figure 3: Drawing showing the intuitive meaning of measures. 
1 

(This is an x-y cross section of an SE) EO Fl :::: (a
l 
~a,) 'i , 

EOF2 :::: (al~alf, EOF3 :::: (a r • all' a.). (al~alr, EOF. = d1 

rotation and translation are not going to be considered herein. 
they are easily added to any of the measures under consideration. 

In particular, this section considers 4 measures of error of fit. 
This section defines each of these mathematically and also gives 
a brief intui tive description in 2 dimensional physical/geometrical 
terms. 

3.1 EOF1 : Mean-square-value of the inside-outside 
function 

The first measure to be considered is. in some sense, the simplest. 
It is directly based on the inside-outside function which can be 
used to implicitly define the SE. 

EOF1 =.!. L (1- i(Zi,Yi,Zi;£I,f2,a r ,all ,a.)f (3) 
n i=I. .. n 

where :ri, Yi. Zj are the given depth data points converted to a sin­
gle viewpoint, and where j(Zid/i,Zi;£I,fl,ar,all,a.) = f(:r,y,z) 
where fl' fl' ar , all' a. are parameters in equation 2. A rough in­
tuitive definition of this measure, see figure 3, is as a power of the 
ratio of the length of two line segments. The exponent to which 
the ratio iJ raised depends on the squareness-roundness in the :rz 
direction and iJ given by -Jr. The denomina.tor of the ratio is the 
length of the line segment between the data point and the center 
of the SE. The numerator iJ the length of that portion of the above 
mentioned line segment connecting the center of the SE with that 
point on the surface in the direction of the data point. Given this 
intuitive definition, it is obvious that the measure can decrease 
if the object size grows even if the actual distance to the surface 
increases. Additionally, for small values of flo this measure can 
be quite large (or small depending on ratio). and computation­
ally unstable. This will be borne out through the computational 
evaluation in later sections. 



3.2 EOFJ : "Corrected" mean-square inside-outside 
measure 

The second meaaure to be considered is a modified version of the 
first to remove some its most undesirable properties: the rapid 
grown of EOFI for small values of fb and some of its biases. The 
new measures is given by: 

(4) 

where terms are as defined for EOF1 

The intuitive definition of this measure is as the same ratio 
as for £OFI except that the power to which the ratio is raised is 
simply 2. Thus. this measure gives a type of "relative error" in a 
radial direction. however. it greatly effecta measurements in the z 
direction (the drawing above ignores that direction). As before, it 
is obvious that the measure can decrease if the object size grows 
even if the actual distance to the surface increases. Note that to 
date this particular measure haa not been used in a SE recovery 
system. 

3.3 EOF3: a " minimal volume" function 

Another EOF function, used by [Bajcsy and Solina 87b], is 

EOF3= 

~ 2:;:I ... n ("jar' a v ' a, . (1 - i" (Zi' !Ii, Z;, (I. (1, ar• all' a,)) r 
(5) 

where ter!I1.5 are aa defined for EO Fl' 4 

A variant of this error of fit measure waa heuristically first 
motivated in [Bajcsy and Solina 87b] by the idea that there are 
many surfaces which might fit data from a single view, and the 
system should recover the surface of minimal volume. The actual 
equations 10 and 11 in [Bajcsy and Solina 87b]. aa well aa silnilar 
equations in [Bajcsy and Solina 87a], suggest a multiplicative fac­
tor of ar · av' a, rather than "jar' avz . a,. However. this is Dot in 
keeping with the heurstic definition, and the latter form appears 
in [Solina 87]. While not reported here. experimental compar­
isons have found the the factor of ar . ay • a, results in a meausre 
wchich haa similar properties, but exaggerates the poor behavior 
of £OF3. 

The rough intuitive definition of EOF3 is simply the square 
of the ~re1a.tive error" in the radial direction multiplied by the 
square-root of volume of the cube bounding the SE (which is 
meant to be a crude approximation to the SE itaelf). The advan­
tage of this is that in a pure relative error measure, the absolute 
error in the radial direction WM divided by a term containing the 
the radial distance to the surface in some direction. Thus with 
the points inside the object. the object could grow and reduce 
EOFI or EOF1 (with respect to one point) while the absolute 
error would grow. By multiplying by the volume of the bound­
ing redangular solid. this behavior is curtailed. However, this 

• "C\U~y. there a fe .. minor differeDce. bet-..D thit delinitioD and Ibe 
on .. in [Bajay aDd SaliDa 87b]. The lint differe"co .. the multipliatioD by 
1. .... hicb Dormalius by tbe Dumber of da~ poin\a. The oecoDd differeDu 
i~ Ihal Ibey .,.., a bomose .. eou. tranrlormatioD 10 de&! ";tb ro~lion a .. d 
Irau~lio .. , tb ... tbe derivation of EOF, in Ibat p.per .. not sive .. in ternu 
of the i above. but lhit formul&lion a .. be uaUy .boWl! 10 be equlvaltnt. 

behavior is replaced with the possibility of reducing the measure 
by keeping the relative error in the radial direction constant. but 
reducing the size of the SE (i.e .. the measure is sensitive to scale). 

3.4 EOF4 : A measure based on true euclidean dis­
tance 

A final test measure is defined as the mean distance between each 
data point and the corresponding point on the surface of the su­
perquadric on the line connecting the data point and the center 
of the SE. In equation form this becomes: 
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EOF. = k L:l ... n Izi - til 
(6) 

where 

qi = s\'1,w), w = (tan- 1 (~)t;), 
~,·rl 

'1 = (tan- 1 (.!a.:..!L. "in<'(w»)~) , a.-z. 

(7) 

and .i(',') is defined as in equation 1, and the relative signs' of 
Z i. !Ii, Zi, the i 'll data point, are used to determine the correct 
spherical quadrant of the arctan. 

This measure overestimates the minimal distance of a point 
from the SE, especially for squarish ones. However. it is a true 
euclidean distance measure, and thus is not effected by overall 
scaling of the problem. There are probably better euclidean baaed 
measures. however. the only better measures currently known to 
the authors do not have a functional form defining them, and thus 
are difficult to minimize. 

3.~ Evaluation of the Different Error of Fit Mea­
sures 

This section begins the analysis of the various error of fit measures. 
The main vehicle for presentation will be graphical, with running 
commentary giving one interpretation of the results. The reader 
is advised to draw her/his own conclusions. 

The evaluation is in temu; of two properties of the measures: 
parameter biu. and shape of crossections of the error surface. 
The parameter biM ma.kes it difficult to compare two potential 
solutions and also generally affecta the minimization by shifting 
the location of the minima.. The relation of the measure (in ter!I1.5 
of the scale of values) to the RMS error of data is a by product of 
the experiment to determine biaa. The shape of croes sections of 
the error surface is important because it affects both the poesibil­
ity of minimization (in particular, is it relatively concave?), and 
the rate of convergence of iterative minimization techniques (how 
large is the gra..d.ient?). 

3.6.1 Determination oC Meuure Biu 

To compare the parameter biM, each measure will be computed 
using the "correct" values of the 5 parameters (i.e. the parameters 
used to generate a surface). Of course, because of the noise in the 



data points, these parameters will generally not be those paramo 
eters for which a given measure is minimized. (),fore abou t that 
later). The different cases considered in this section should give 
the reader a good intuitive feeling for how the different measures 
are biased (with respect to the true R)'IS error) as the parameters 
defining an SE are varied. To cut down on the amount of analy· 
sis, certain sy=etries have been anticipated, in particular a y is 
assumed to be identical to a". The discussions in this section are 
a review of the computational experiment. and only represent a 
small sample of the experimental data. 

Each of the "bias~ graphs show a sequence of computational 
experiments where a single parameter is varied over some range. 
The values are scaled, and the pattern of the scaled values often 
provide a good feel for the bias of measure. The scale values 
themsel ves show the rela.tive difference in the size of the error 
measure (using the "correct" answer) with respect to the RMS 
error added to the data. 

The data in each graph was computed as follows: 

Step 1 An initial set of parameters for the SE, error range, and 
sensor direction (x,y, or z) are chosen. (Only x direction 
presented here). Also, a parameter is chosen to vary in the 
iterations. Each iteration generates one data point on the 
graph for each of the different measures, computed in steps 
2 through 5. 

Step 2 For a gh'en set of SE parameters (Le. each iteration), 
500 points are generating on the surface of the SE assum· 
ing a uniform pseudo-random distribution of angles on the 
viewing hemisphere for the ch06en sensor direction. 

Step 3 For each data point, a pseudo-random noise value is com· 
puted assuming a uniform distribution in a predetermined 
range. The noise is added to the data point in the direction 
of the sensor. The value is directly added to the variable 
used to compute tile R)'IS measure. 

Step 4 Using the exact value of the set of parameters for this 
iteration, and tile noisy data computed in steps 2 and 3, 
the value of each of the measures EO Flo EO F1 , EO F3 and 
EO F4 is computed and recorded. 

Step 5 For each measure (including RMS) the recorded values 
are examined and the maximum of a measure is used to 
re-scale its lialue into [0,1) and the value is entered on the 
graph. 

Before beginning the description of the initial results, it is 
necessary to make a few comments about the gra.phical presenta· 
tion of the results. First note that each graph contains 5 different 
marks which are used to show the scaled value of the measures. 
Also, each graph has a legend l,L>ith scaling fQctor~. Thus in fig. 
ure -4, the computed value of EO Fl for (ry = .5 is approximately 
. 64 x .176, and when ("11 = 1.8 is approximately .91 x .176. Look· 
ing at the tick· marks allows one to obtain a feel for the measure's 
bias as the parameter v'aries, and the scaling provides a means of 
relating the measure to the actual R.\{S error. For space consid· 
erations, only a few examples are presented here. However. the 
running commenta.ry in this section is based on the analysis of 
over 500 of the above computational experiments. 
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The interest in bias factors stems from their importance in 
comparing the realtive quality of two potential solutions. For 
example, if the bias in a parameter P is toward larger values then 
if two candidate sets of parameters differ only in parameter p. 
the it can occur that the set with the larger P value may report 
a larger measure but halie a smaller actual R:"IS error. Thus to 
properly compare two potential solutions, one needs to be able to 
estimate the bias in each of the parameters in which they differ. 

The reader should recall that these graphs are not showing 
the shape of the error surface near the correct solution, and the 
non-monotonic behavior does not mean that minimization will be 
difficult. 

The first graphical display for the bias experiment is in fig­
ure 4, and involves the bias of the measures with respect to the 
parameter £"11' the squareness-roundness in the xy direction. The 
first thing that should strike you about the graph is that all of 
the measures clump together, and none of them show a particu· 
larly smooth bias. There is a general trend tov,,-ard having a large 
measure for ("II' but locally it is far from monotonic. Thus, the 
result of the minimization process on all the measures will gen· 
erally report some value which overestimates the error (even if 
it could be scaled) and the overestimate is a generally increasing 
(but non monotonic) function (rl/' 

One interpretation of the clumping of the measures is that 
the observed bias is caused by measurement in the radial direction 
when the sensor error is in an axial direction. This interpretation 
suggests that no radial measure will be bias-free and provides an 
impetus to attempt to derilie measures in the sensor direction. 

The scales of the measured values were generally close to the 
R:..rS error, with EOFI very close (by accident), and EOF3 EOF~ 
off by a factor of 2. Although not evident from the examples 
presented here, EO F3 is greatly effected by scaling. If all sizes in 
the example were multiplied by a factor of 100 (say meters into 
mm) then EOF3 would increase by a factor of 1000000. On the 
otherhand, EOFI would decrease (by a much smaller amount) as 
the scale was increased. 

The second example in the bias determination experiment 
is shown in figure 5. The most striking feature of this graph 
radically different behavior of the measures. l'i ote that EO F4 
follows the R~{S error rather well, showing that it is not biased 
with respect to (r,' EOF1 and EOF3 (which differ only in scale) 
show the same nonmonotonic but generalling increasing bias as 
they did for ("11' (Close examination shows qualitatively similar 
small scale perturbations in EOF1 , EOF3 and EOF4• Again, 
these are probably biases inherent in any axial measure.) While 
the other measures show a bias for larger values, EO F1 has a 
significant, and apparently monotonic, bias for smaller values. 

A second fact to consider in this example is the relative scales 
of the measure. A glance at the scaling factors in the legend 
suggest that only EO F4 is cl06ly linked to the actual RMS error . 
The other measures are all off by at least a.n order of magnititude, 
or more. 

The third example in the bias determination experiment is 
shown in figure 6. The most striking feature of this graph is the 
clear separation of the measures. EO F2 tracks the R~IS error 
rather well, showing that it is not biased over this range of Gr' 



EO F4 is also rather unbiased. with the exception of very small val­
ues of a,., which have a negative bias. Both of the aforementioned 
measures show non-monotonicity in what bias they do have, but 
the deviations (when appropriately scaled) from the RMS error 
are not very significant. EO Fl on the other hand, shows a strong. 
almost monotonic, bias toward smaller values of a,., a.s does EO F3 . 

The bias of EO F3 for smaller values might be attributied to the 
~volume" factor which is the only difference between it and EO Fl. 
\Vhile not shown here, the above patterns are still present when 
the sensor dire:tion is changed to the z axis, although the rates 
of change of the bias (Le. slopes of curves) are smaller. 

The final example from the bia.s experiment, is shown in fig­
ure 7. Again there is a rather noticeable difference between the 
measures. This time it is EO Fl which display virtually no particu­
lar bias, although there are some obvious local non-monotonicities. 
The other three measures all show a strong bias for larger a, val­
ues, with the bias in EOF3 slightly less than in the other measures. 
While one might have predicted a bia.s in EOF3 for small values 
of a., the greater bias of the underlying EOFl factor dominates 
the "volume" term (but the latter probably provides the mitigat­
ing factor in the bia.s a.s compared with EOFl and EOF4 ). To 
the eye, the bias trend in all but EOF1 appear linear, and antic­
ipation/compensation might be possible. Again, the experiments 
with the sensor direction along the z axis have similar overall char­
acteristics, though the slopes of the bia.s ~curves" were smaller. 

As mentioned, there were also numerous test cases included 
in the experiment which were not reported here. To summarize 
the results, little characteristic difference was found to be caused 
by changes in the sensor direction, although many minor varia­
tions did occur. As mentioned above, many of the measures also 
displayed a bias in terms of overall scale of the problem. 

A final comment about the bias experiments. The graphical 
presentation makes it very easy to overlook the absolute scal­
ing parameters in the legend. However, if one were interested in 
converting from one measure into an approximate R~fS measure, 
even knowing the bia.s characteristic would not be useful unless 
one could also compute the scaling facton. As shown in the next 
section, many of the measures can have significant scale changes 
in the neighboorhood of the correct solution, thus estimation of 
the scale factors from this experiment is unlikely, 

3.5.2 AnalYllis of croes sections of error-of-fit lurf'ace 

This section discusses experiments which attempta to determine 
the structure of the error-of-fit surface by examining one dimen­
sional slices through that multi-dimensional surface. The exper­
iment considered both the structure in a small neighborhood of 
the correct parameter value and the larger scale structure (say 
variations of 10-100%). The local structure provides insight into 
how the measures err (i.e. it shows location of meaaures minima). 
The large scale structure provide insight into the llkelyhood of suc­
cessful minimization when reasonable initial estimates are used as 
starting values. Because global properties are of more importance, 
only the experiments using a wide range of values will be reported 
here, even though some of the conclusion are more readily made 
by examination of the experiments in small neighborhoods. 

As in the reporting of the bia.s experiments, the presentation 
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will be graphical with commentary. Each graph was generated as 
follows: 

Step 1 Parameters defining SE and sensor direction are ch06en. 
Using these parameters, 500 points are generated on the 
surface of the SE assuming a uniform pseudo-random dis­
tribution of angles on the viewing hemisphere for the cho­
sen sensor direction. For each data point, a pseudo-random 
noise value is computed a.ssuming a uniform distribution in 
a predetermined range. The noise is added to the data point 
in the direction of the sensor. The value is directly added 
to the variable used to compute the RMS measure. 

Step 2 A parameter is chosen to vary, a.s well a.s the range of vari­
ation. For each iteration point (10-20 spanning the chosen 
range) the experimental values for each measure are gen­
erated using the current value of the variable parameter. 
and the correct values of the remaining parameters, and are 
recorded. 

Step 3 For each measure (including RMS) the recorded values 
are examined and the maximum of a measure is used to re­
scale its value into the interval [0,1J and the value is entered 
on the graph. 

~ote the a.bove procedures result in the correct location of 
the minima occuring in the center of each graph. 

Probably the most surprising result is that when rotations 
and translations are ignored (as in the results reported here), all 
of the measures generated relatively concave cross sections. Thus, 
minimization of any of them (given correct rotations and trans­
lations) should be straight forward. The main difference between 
the measures was the degree of concavity, which would effect the 
efficiency of the minimization. 

The first presented cr06section, figure 8, shows the cr06S sec­
tion as fro is varied. The clear separation of EOF4 , and higher 
curvature suggest that it is the preferred measure in this example. 
Note that since a r , all and a. are fixed. the structure of EO Fl 
and EOF3 is identical; they differ only in a scaling factor. Fi­
naily, EOF1 does show some concavity, but the dramatic scale 
differences make the minima very shallow. While not shown, the 
separation of the meaaures is even greater when the errors are 
along the z axis. 

It is worth pointing out that EOFl , EOF3 and EOF4 all 
have their minima to the left (i.e. smaller parameter value) than 
the underlying surface, while EO F\ overestimates the parameter. 
(The detailed analysis of the local region which is not presented 
shows that the minima of EO F. is the cl06est to the parameter 
value defining the actual underlying surface.) The reader might 
want to compare this with the results of the bia.s experiment for 
the same parameter. 

The second croea section presented in figure 9. shows all of the 
meaaures are very asymetric about their minima. In addition, al­
though it cannot be seen from this graph, all of the measures have 
their minima above the "correct" value. The dramatic changes in 
scale for EOF\ make it appear fla.t on this graph. but it does have 
a shape similar to the other measures. just more dramatic. 

It is also obvious (though barely visible) that EOF4 has the 



sharpest minima, although minimization of any of the mea.sures 
with a starting value above the true solution looks like a good 
idea. Again, EO F4 has its minima cl06est to the correct value. 
The a.symmetric shape of this curve is even more pronounced when 
the errors in the data are along the z axis. 

A comment also is in order regarding the vast differences in 
scales between the measures. As one can see from the legend in 
figure 9, the relative scales differ by orders of magnitude. From 
a practical point of view, th06e measures which routinely have 
a wide numerical range (EOFI , EOF1 and depending on scaling 
possibly EO F3) present more numerical problems, and show a 
greater sensitivity to roundoff errors. 

A third crOlls section, see figure 9, shows a case where the 
relative shape of all of the measures is alm06t identical, with EO F4 
just slightly outperforming the other measures in the concavity 
analysis. Also. note that all of the measures again overestimate 
the correct underlying parameters (by about 1 %-2%). When the 
error was in the direction of the z axis, all meas ures were very 
sharply concave. and the minima were very clOlle to the correct 
value. 

The final cross sections, see figures 11 and 11 show the struc­
ture of the error surfaces for some of the parameters used in the 
bias experiments. :-;ote that in these cases, EOF4 is a clear win­
ner. 

4 The Current System 

This section presents some of the details of our current system for 
the recovery of superquadrics from 3-D information. The basis of 
our system is the minimization of EO Fl' Note that one of the ad­
vantages of minimizing the a measure based on the inside-outside 
function is that it requires little extra effort to incorporate multi­
ple views, assuming one knows the sensor pOllition for each view 
(to convert points to a common coordinate system). However, 
such an approach will not take error distributions into account, 
and the erron in conversion may be exaggerated by the fitting 
process. 

Given 3-D information about a SE in canonical pOlition, one 
can use a nonlinear minimization technique to recover the 5 pa.­
rameters needed to define it. Our system uses a Gauss-Newton 
iterative nonlinear least square minimization technique. (for ex­
ample see (Hageman and Young 70]). If the SE is not in canonical 
p06ition, the system must a.lso recover estimatel of the transI&­
tion and rotation necessary to put the information on the surface 
of a canonical SE. There &n obviously ma.ny approaches to deal 
with the translation and rotadon. The two most obvious a.re: the 
use of a pair of trans forma (one for translation and one for rot&­
tion) and the use of a homogeneous transform that combines both 
translation and rotation. Our system uses the first a.pproach. 

For the remainder of this section let G, = c0l8 and S, = 
sin8. Thus given a canonical SE surface defined as ; = i{f) • ..,) 
with an inside-outside function! = !(z,l/.z), the translated and 
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rotated SE solid .i is given by 

,. R,R.R.' + [:: 1 ' (8) 

where 8,4>. and tb are the Euler angles expressing pitch. yaw and 
roll respectively, RsRt/>R", are the associated rotation matrices and 
tr . tv' t. are the translation in the z, II, and z directions respec­
tively. The definition of the rotation matrices and Euler angles 
can be found in many standard texts on computer graphics, e.g .• 
[Rogers and Adams 76), as well as in the computer vision litera­
ture e.g., see (Tsai 86), or (Bolle and ~lurthy 86). 

Given the data for a general SE the system minimizes: 

EOFI( It. (1, ar • all' a., tr , t ll • tz • 8. t/J,!Ii) = 
L.=l. .. n (1- i(X',II,.Z;,ll,f2,ar,all,a"tr,ty,t,,8,¢,tb»)1. 

(9) 
where z.,y.!z; are the given data points from a single viewpoint. 
and where !(x., II;, z;. fl' (1. ar , all' az, tr , ty, t" 8, ¢, tb) = !(x. y, z) 
and 

S"'S,C. - C",St/> 
S",S,St/> + C",G. 

S'4IG, 

(10) 

To employ the Gauss-Newton iteration, the system must com­
pute the Jacobian of the transformation, and thus also needs the 
partial derivatives of j( x. II, z) with respect to the 11 parame­
ten, (5 shape. 3 rotation and 3 translation). which were obtained 
symbolica.lly. 

The initial implementation of the system recovered only the 
5 shape parameten. Using synthetic data with up to 10% uni­
formly distributed noise, the system could start the minimization 
procedure from a canonical position (all 5 parameters = 1) and in 
mOlt cases was still able to recover the underlying surface within 
the error of the data.. Moreover, the convergence was generally 
quick, requiring < 15 iterations. These results are reported be­
cause, if though some other means one was able to compute the 
local coordinate system of the SE (or out very good bounds on 
it). the stability of the algorithm would be greatly increased. 

When the system was extended to handle 11 parameters (i.e. 
5 shape and 6 position/orientation), things became more com­
plicated. For moet of the examples presented, even when pre­
sented with very poor estimates for starting values, the system 
was quickly a.ble to find an SE that had low ~error of fit". Un­
fortunately, the solutions proposed by the system often seemed 
to be nonintuitive. However, when examined c101ely. many of 
these solutiollA proved themselves to be reasonable (though not 
the moet reasona.ble) interpretations of the data. The differences 
could genera.lly be traced to the nonintutative behavior of error­
of-fit measure. For example, when presented with the range data 
(from the Utah range database. [UTAH 85)) for a coke can minus 
the concave portion of the bottom end, the system initia.lly pro­
p06ed a solution with EO FI = .0078. However, the parameters 



described an object that is slightly beveled along its long axis, 
and rather round in the other direction. The length of the object 
was far larger then expected. The exaggerated length was caused 
by two factors: 

1. the model is assumed to be intersected with a negative ellip­
soid at the top, and cut by the ground plane at the bottom, 
and 

2. the ~error of fit" measure used by the system is all underes­
timate, and biased toward larger objects, see Section 3 for 
further discussion of this problem. 

\Vhen examined cloeely, the propoeed object (assuming the vol­
ume terminates when it intersects another object in the Bcene) 
does seem to be a reasonable fit to the data, but still a cylinder 
seems intuitively to be a better fit. If forced to look for a cylin­
drical object, the system finds an SE with EOF1 of .17. Oddly 
enough, the system converged to a can more readily if data from 
the negative ellipsoid was not removed. As reported in the next 
section. the use of a different error-of-fit measure resulted in better 
recovery. 

Currently. the system obtains initial estimates of the transla.­
tion parameters from the centroids of the original data and derives 
bounds from sensor information and overall data (maximum vari­
ation in any data). However. there are many problems with these 
estimates especially if the number of data points is small or if 
the system is only given a partial view of an object. These esti­
matel! are obviously much better if multiple views of the object 
are available_ The estimates also assume that the data. is seg­
mented. an assumption with which the authors feel particularly 
uncomfortable. The system derives estimates of rotation angles 
and length scales from moments of inertia and bounds on the 
length parameters from sensor information and overall data.. Be­
cause the moments of inertia require second order moments, the 
estimates are plagued with more difficulties than the estimates of 
the translation parameters. The estimates of both the rotation 
and length scales are very poor if an object (after segmentation) 
is the result of boolean combinations. 

The system also estim&tes bounds on the m&Ximum values for 
each parameter. deriving these estimates from knowledge of the 
"sensor" and the data valuee. If during the minimization procesa, 
any parameter attempta to stray beyond ill allowed boundary. the 
system stochastically '"pnshee" it bac.lt toward ita initial value. 

4.1 A Few Examples from Our Current System 

The first ex&mpie in fipre 13, i. a .ynthetic SE with noily Iyn­
thetic data from multiple view1. The actual panmeters of the 
superquadric &.re (1.S9 •. 39, 1.2.3, I.S. 2_S. 3.S •. 1 •. 1, .1).s The 
noise in the underlying object wv uniformly diatributed over the 
interval [-.lS, +.lSJ and then added to the z (depth) value of a. 
point. The 1000 data points were randomly distributed on the 
surface before noise WiU added. The system recovered an SE with 
parameters (1.8 •. 3. 1.2.3.58,1.49,2.5,3.47, .079 •. 09 •. 101). The 

$1.. tb.i. exunple ud hereaItft the po.ra.me~n will ahnya be pre­
oen~d u a 11 vector with uoociatioll implied by order give.. by: 
ll, fl, 4., 4,,11 •• t.l'l t" t' l 'I •• fl. 
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error (as measured by EO F\) of the reconstruction wasf .079. The 
system required 7 iterations from the initial values to find the so­
lution. 

Figure 14, is the recovery of the same synthetic SE as in 
example 1. However. this time this system was given 1000 data 
points from one view of the object. Under these conditions. the 
recovered parameters were (2.09 .. 67. 1. 1.94, 3.36. 1.43. 2.53, 
4.3 .. 075, .07, .08). The error (as measured by EOFd of the 
reconstruction was .169. Unsurprisingly. the reconstruction from 
multiple views is superior. 

The final three examples presented. show the fitting of ac­
tual range data from the Utah range database. Figure 15 shows 
the elliptical indentation on the bottom of a soda can. The object 
which is defined by 590 data points. The system recovered the pa­
rameters (1.29, .955, .939, .930, .277. -.096, -1.55. 2.07. -.05,0.0). 
and had EO F\ = .0293. Figure 16 shows a quasi-spherical object 
which is defined by 859 data points. The system recovered the 
parameters (.994 •. 951, 1.19, 1.13. 1.13 • .4729. 1.437. -1.457.-.05. 
-.04. 0) and EO F\ = .021. Figure 17 shows the cylindrical por­
tion of a soda can defined by 1645 data points. When using the 
above described estimations techniques, the system recovered the 
parameters ( 2.0, .88. 1. 1.3. 19.59, -.19, -1.69, -.834, -.04 •. 05. 0) 
and with EO Fl = .0079. When the inside-outside function was 
modified to include an extra multiplicative factor of arava •. the 
result was the bottom object in figure 17. 

5 Conclusions and Future Direction 

The main result in this paper is that there are problems and 
biases with currently used error-of-fit measures. as well as with 
two newly proposed measures. Still, the newly proposed measures 
often fared better than currently used measures 

The analysis alao suggests that even better measures await 
definition, especially error of fit measures which make use ofknowl­
edge of a sensor error model (direction). 

The paper also summarizes results which demonstrate that 
even with a poor EOF measure the system can recognize both 
pOlitive and negative superquadrics from depth data on only part 
of the surface. (The latter an important consideration if SE's are 
to be u.ed with CSG operations.) 

Future plans for the system alao include extensions to incorpo­
rate surface derivative information. Thia will be accomplished by 
minimizing a sum with (some variant of) both the inside-outside 
function and a differentiated form of the inside-outside function. 

Of course. one of the most important avenues for future re­
search will be attacking the segmentation problem, our current 
pl&l1l are to attempt a.t leut two approa.ches: pure growing of 
superquadrics from small data patches, and a skeletonization (to 
find axil) foilowed by both growing and splitting of superquadric 
solids. 

A finaJ avenues of research will be in using SE·. for integr&­
tion of multi-sensor (possible multi-modal) information, including 
some model of sensing errors. Part of this work will undoubtedly 
look into the use of edges in an intensity image /range image as 



they relate to limb·equations. 
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Figure 8: Cross 6&tion of error 6urface as olle varies {,« with 
corr&t parameters: Iz: = l,(r~ = 1, ar = .1,a~ =.1 and a, =.1 
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Figure 9: Cross 8&Lion of error surface as one varies ax with cor· 
rect parameters: lrz = .I,l",v = .1, a", = 70,a v = 70 and a z = 70 
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Figure 
10: Cross section of error surface as oue varies a, with correel 
parameter: In = 2,trv = .1, ar = IOO,a u = :'100 and u, = 500 

6 
Values of a r 

Figure II: Cross section of error surface as one varies llr wilh 
{rz = .5,£.rv = .5, ar = I.O,a v =.1 and a, =.1 
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Figure 12: Cross section of error surface as one varies a, with 
(r. = .5, €,,~ = .5, a" = .1, a y = .1 and az = 1.0. 

Figure 13: Example recovering 11 parameters using noisy syn­
thetic data from single views. 

Figure 14: Example recovering 11 parameters using noisy syn­
thetic data' from single views 
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Figure 15: Reconstruction of a negative ellipsoid from real range 
data 

Figure 16: Reconstructed sphere from actual range data 
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Figure 17: Example using real range data example of soda can, 
best fit surface with standard inside-outside function.(top) and 
with function multiplied by a"a lla. (bottom). 


