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Abstract

Both the increased complexity of integrated circuits,

resulting in six or more levels of integration, and [he

increasing use of flip-chip packaging have driven the

development of integrated circuit (IC) failure analysis

[OOISthat can be applied to the backside of the chip.

Among these new approaches are focused ion beam

(FIB) tools and processes for performing chip

edits/repairs from the die backside. This paper

describes the use of backside FIB for a failure analysis

application rather than for chip repair. Specifically, we

used FIB technology to prepare an IC for inspection of

voided metal interconnects (“lines”) and vias.

Conventional FIB milling was combined with a supec-

enhanced gas assisted milling process that uses XeFz

for rapid removal of large volumes of bulk silicon.

This combined approach allowed removal of the TiW

underlayer from a large number of M 1 lines

simultaneously, enabling rapid localization and plan

view imaging of voids in lines and vias with

backscattered electron (BSE) imaging in a scanning

electron microscope (SEM). Sequential cross sections

of individual voided vias enabled us to develop a 3-d

reconstruction of these voids. This information

clarified how the voids were formed, helping us

identify the IC process steps that needed to be changed.

Introduction

Performing FIB circuit modification from the backside

of a chip has become routine for flip-chip packaged

ICs, where backside access to the chip is required if

electrical operation of the IC is to be preserved in the

original package [I-4]. Backside FIB modification is

also being considered for making repairs at lower-lying

nodes (e.g., M 1) in multi-layer non-flip-chip ICS that

would otherwise require elaborate circuit modification

from the front side. Beyond this, backside FIB sample

preparation techniques offer a powerful new capability

which failure analysts are just beginning to exploit.

This paper describes one such failure analysis

application: the use of backside FIB milling combined

with conventional FIB milling, imaging, and cross-

sectioning to enable the investigation of voiding and

etch defects in a 2-level metal (aluminum) CMOS

technology.

The goal of our study was to identify and image

voiding at the Ml level and in the Ml to M2 vias

without performing any reprocessing steps that would

introduce additional voiding or alter existing voids.

BackScattered electron (BSE) imaging performed at the

highest primary beam energies (say, 30-40kV) of most

scanning electron microscopes (SEMS) can often be

used to characterize voiding from the front side of the

chip [5], but with limited resolution and only in the

uppermost interconnect layers. The resolution of BSE

void images suffers even for the top level metal due to

the thickness and, for unplanarized technologies, the

roughness of the passivation layer covering it.

Obtaining crisp images of voids in vias or deeper levels

of metal from the front side is problematic because of

the thickness of overlying materials and the nonplanar

topography in some IC technologies. In our case, the

M 1 to M2 vias were formed from aluminum as part of

the M2 deposition, resulting in a highly nonplanar

topography that produced marked shadowing in the

SEM images of the vias. More important, however, the

presence of a TiW layer at the bottom of M 1 prevented

imaging of the voids in M 1 and in the vi=. The strong

backscattered signal from the TIW overwhelms the

signal from the aluminum interconnect, obscuring any

evidence of voiding. While FIB cross-sections through

vias or buried metal layers can be used to image voids,

only one location or via at a time can be studied, and

this technique obviously cannot be used to locate the

voids in the first place. Thus. it was necessary to

remove the TiW underplayer ‘in order to successfully

perform BSE imaging of the voids in Ml and in the M 1

to M2 vias. The backside FIB technique described in

this paper exposes long lengths of interconnects and
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Abstract

Given a ground set S = {.sI,... , Sk} and a family of its subsets S = {S1,... , S’m} C

2s, the classical set cover problem consists of finding the minimum number of sets F C 2s

that cover all the elements in the ground set S.

Given a finite set of “red” elements R, a finite set of “blue” elements B and a family

S ~ 2~uB, the red-blue set cover problem is to find a subfamily C c S which covers all

blue elements, but which covers the minimum possible number of red elements.

We note that RED-BLUE SET COVER is closely related to several combinatorial op-

timization problems studied earlier. These include GROUP STEINER TREE, DIRECTED

STEINER TREE, MINIMUM COLOR PATH, MININUJMMONOTONE SATISFYINGASSIGN-

MENT, SYMMETRICLABEL COVER, etc.

We further show that unless P=NP, even the restriction of RED-BLUE SET COVER

where every set contains only one blue element can not be approximated to within
qrjogl-~ n ) , where 6 = 1/log log’ n, for any constant c. < 1/2 (where n = S). This

extends results of Dinur and Safra and answers an open question of Motwani and Gold-

wasser, placing LABEL COVER in the class MMSA3,

We give integer programming formulations of the problem and use them to obtain a

2@ approximation algorithm for the restricted case of RED-BLUE SET COVER in which

every set contains only one blue element.
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1 Introduction and summary of results

Let 1?= {rI,..., rP} and B = {bl, . . .. bp} be two (disjoint) finite sets, and let S ~ 2~uB be a family

of subsets of R U B. We call the elements of B Mue elements and the elements of R red elements.

The RED-BLUE SET COVER problem is to find a subfamily C = {Sil,..., Sim} G S wKIch covers all

blue elements, and which covers the minimum possible number of red elements. If the total number

of red elements contained in the sets of this subfamily is denoted by 1, then

l=min{lRfl(UjS~j)l I UjS~j ~13},

In the rest of the paper, we denote by n the size of the family S,

n = 1S[.

Note that every instance of RED-BLUE SET COVER may be transformed into an equivalent one

where every set contains only one blue element. Namely, given a set S ~ S, make a copy of S,

denoted by Sb, for each blue element b ~ S, and remove all other blue elements from Sb. We will use

this observation later. The RED-BLUE SET COVER problem arose naturally in considering certain

data mining problems. We describe some of these considerations in section 6. However, our reasons

for investigating the red-blue set cover problem come fkom complexity and approximation algorithm

theory.

We relate RED-BLUE SET COVER to several problems investigated in the literature. These

include the group Steiner tree, minimum monotone satisfying assignment and minimum color path

problems. Most of these are special cases of RED-BLUE SET COVER and these reductions supply

our hardness results. Two of our reductions place the label cover problem in the class MMSA3. This

extends the recent results of Goldwasser and Motwani [13] and Dinur and Safra [7], who showed

that LABEL COVER was either in MMSA3 or in MMSA4. The strongest hardness result we obtain

shows that unless P=NP the special case of RED-BLUE SET COVER where every set contains only

one blue element cannot be approximated to within 0(210g1-&‘)? where 6 = 1/ log loge n, for any

constant c < 1/2. The result is obtained via a polynomial-time approximation-preserving reduction

from SYMMETRICLABEL COVER.

On the other hand, we provide a polynomial-time 2@ approximation algorithm for the same

restriction of RED-BLUE SET COVER. The approximation algorithm is based on combining a simple

greedy algorithm and rounding a linear relaxation of the problem. The ideas can be extended to

obtain a 2@-approximation algorithm when lSizyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn BI < k. A O(nl–lj~ log n)-approximation

algorithm for the RED-BLUE SET COVER problem restricted \Si n RI < k is also presented. We

also consider a number of other natural linear programming formulations and discuss their merit in

the context of obtaining polynomial time approximation algorithms. All our positive results (linear

formulations, approximation algorithm) apply as well to the weighted version of RED-BLUE SET

COVER, where each red element has a nonnegative weight associated with it, and the goal is to

minimize the total weight of red elements in a cover of B by the sets from S.

2 Related problems

RED-BLUE SET COVER contains the classical set cover and several known generalizations of this

problem as its special cases.

Set cover. The SET COVER problem (Johnson [16]) can be viewed as the RED-BLUE SET COVER

problem where each set S c S contains exactly one red element, and no red element is contained

in more than one set. The goal is to cover all blue elements using the minimum possible number of
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subsets from S. This reduction shows that the RED-BLUE

as the classical SET COVER problem.

Group Steiner and directed Steiner problems.

SET COVER problem is at least as “hard”

Another special case of RED-BLUE SET

COVER is the (rooted, unweighed) group Steiner problem for trees studied by Garg, Konjevod

and Ravi [12]. Let a tree G = (V, l?) be given together with a family of subsets of vertices g =

{91}”””, 9m}j called grouPs. Let one vertex v E V be marked as the root. We call all vertices

belonging to some group terminals. The objective of GROUP STEINER TREE is to find a subtree

of G that contains the root and at lesst one vertex of each group, such that it has the minimum

possible number of edges. This problem can be modeled by RED-BLUE SET COVER. Let B = (7, let

R = E, and for each path P horn the root to a vertex v of some group g let SP be the set formed

by the edges of F’ and by g. We define S to be the family of all sets of the form SP for a path from

the root to one of the terminals. The resulting RED-BLUE SET COVER instance is equivalent to the

original GROUP STEINERTREE instance.

A similar reduction can be used to transform any instance of DIRECTED STEINERTREE (see for

example Charikar et al. [6]) into an instance of RED-BLUE SET COVER. However, in general, the

RED-BLUE SET COVER instance will have exponentially many sets (since there may be exponentially

many paths from the root to the terminals in a directed graph). Thus our reduction is only polynomial

in the case where there are only polynomially many root-terminal paths in the directed Steiner

instance,

Minimum color path. Krumke and Wirth [17] discuss approximability of the following problem

given a graph G = (V, E) with a function c : 1?+ C, where C is a finite set of colors, find a spanning

tree of G whose edges are labeled with minimum possible number of colors. They show that the

problem is as hard to approximate as set cover, and complement this result by an greedy algorithm

whose approximation guarantee (2 log IVI) essentially matches that of set cover.

This problem can be naturally generalized to the case where a feasible solution is a more general

subgraph, for instance a forest satisfying connectivity requirements between given pairs of vertices.

However, this problem (rein-color generalized forest) is at least as diificult to approximate as RED-

BLUE SET COVER. Even the simplest case where only one pair of vertices {s, t} ~ V is given and

the goal is to find an s-t path that uses fewest colors contains RED-BLUE SET COVER as a special

case. This problem was first considered in [15].

The reduction is as follows: given an instance of RED-BLUE SET COVER we construct an equiv-

alent instance of MINIMUMCOLOR PATH. First we create one color for each red element. Then we

create some vertices of G. Let there be a vertex vi for each blue element bi, and another vertex b..

We denote b. by s and bl~l by t, For each set S containing bi, we add a path between vi-l and Z+

whose length is equal to the number of red elements in S. We arbitrarily assign to each of the edges

in this path one of the red elements in S and color the edge with the corresponding color. Clearly,

every s-t path in this graph defines a collection of sets (the paths chosen between pairs of vertices

vi_ 1 and vi) and these sets form a red-blue cover. The cost of the cover is equal to the number of

different colors used in the s-t path. Similarly, every red-blue cover defines an s-t path of equal cost.

3 Hardness of approximation

We continue our discussion on relating RED-BLUE SET COVER to other combinatorial optimization

problems and as corollaries obtain stronger non-approximability results for RED-BLUE SET COVER

and related problems.

Let us use 111 <A 112 to denote that the problem 111 can be polynomial time reduced in an

approximation-preserving way to I_Iz.We also use III ~A HZ to denote 111<A IIz and IIz <A 111.

2
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Symmetric label cover. The label cover problem (see, for example, Arora and Lund [4])

was originally defined in order to make easier the use of the PCP theorem in proving approximation

hardness of SET COVER and related problems. One variant of this problem is described in Dodis and

Khanna [9], where it is called symmetric label cover.

A complete bipartite graph G = (U, W) (where U and W are the two parts of the bipartition

of G of n vertices each) is given, together with two finite sets A and B (called the label sets), and

for each edge uw 6 U x W, a (non-empty) relation &W ~ A x 1?. A feasible solution is a pair of

mappings (label assignments) (~, +), # : U ~ 2A, @ : W ~ 2B such that each edge uw is consistent,

that is there exists a pair (a, b) E +(u) x @(w) such that (u, b) c &W. The objective is to minimize

XKU 19XU)I+ Z@ Iww)l.
As discussed in [9] unless P = NP, even SYMMETRIC LABEL COVER cannot be approximated to

within 0(2’Og’-6n) , where 6 =1/ loglogcn, for any constant c < 1/2, where n = max{[Al, [Bl, [Ul}.

We use this to obtain the following result:

Theorem 3.1. SYMMETRICLABEL COVER <A RED-BLUE SET COVER. Thus, unless P=NP, RED-

BLUE SET COVEILcannot be approximated to within a ~acio~ 0(210g’-3’) , whe~e J = 1/ log loge n,

for any constant c < 1/2, and where n = [S[.

Prooj. Let an instance of SYMMETRICLABEL COVER be given using the notation above. We con-

struct an instance of RED-BLUE SET COVER such that (1) each feasible red-blue cover corresponds

to a label assignment of equal cost and (2) each feasible label assignment corresponds to a red-blue

cover of no greater cost.

For each edge uw G U x W, define a Mue element bUW.For each pair (u, a) G U x A define a

red element TUa,and for each pair (w, b) ● W x B a red element rWb. Finally, for each quadruple

(u,w,a,b) E 27x W x A x B such that (a,b) ~ I&, define a set ~UW.b= {bUW,rU.,rUW}.

Consider now a feasible red-blue cover C. We define a label assignment (+, ~) in the following

way:

@(u) = {a e A I r.. c USECS}, @(w)= {b c B I rwb E USE~S}.

Each blue element bUWis covered by a set in C. This means that in the cover, there is a set of the

form f%wab~ in which c~e~ (a! b) c &W. This implies consistency of the edge uw because %wab

contains rUaand rwb, and hence (a, b) G +(u) x @(w). Since

the total number of labels used for elements of U is equal to the number of red elements in the cover

that correspond to elements of U. Similarly, the number of labels used for W is equal to the number

of red elements corresponding to W, and thus the cost of the label assignment is equal to the cost

of the red-blue cover.

On the other hand, from a feasible label assignment we can construct a red-blue cover C of

no greater cost. Given a label assignment, we include in C exactly those sets Suwab such that

(a, b) G @(u) x #(w). Consider a blue element buw. Since uw is consistent, there will be at least

one pair (a, b) E 4(u) x +(w) such that (a, b) E RkW?which means that buw gets covered by the set

SUwabCC.

Let r.a c lJ~~c S (respectively, ‘rWb~ u~~c S). Then clearly a ~ #(u) (resp. b E +(w)). Hence

‘3



Finally, note that in the above reduction [S[ ~ m114, where m = max{[Al, [B[, IU[}. This implies

the theorem since a polynomial increase in the problem size can be neutralized by adjusting J. •l

An alternate way of showing inapproximability of RED-BLUE SET COVER is to use two-prover

proof systems and was pointed out to us by Feige [10].

Minimum monotone satisfying assignment (MMSA). This problem wss independently

introduced by Alekhnovich, Buss, Moran and Pitassi [3] and by Goldwasser and Motwani [13] (under

the name AND-OR scheduling). The problem MMSAk is specified by a monotone formula (that is,

a formula that uses no negations) of depth k (the formula has k levels of alternating AND and OR

gates, where the top level consists of an AND gate). The goal is to find a satisfying assignment that

minimizes the number of variables set to TRUE. General MMSA places no restriction on the formula

depth. Note that MMSA2 is the problem of determining the minimum satisfying assignment for a

monotone formula in conjunctive normal form and is equivalent to SET COVER. The variables in the

instance of MMSA2 are in one-to-one correspondence with the sets in the SET COVER instance. The

topmost AND gate corresponds to requiring that every element of the ground set must be covered,

and the OR gates underneath to allowing an element to be covered by any of the sets that contain

it.

Analogously, MMSA3 is equivalent to RED-BLUE SET COVER. Variables correspond to red

elements. There is an OR gate for each blue element, and AND gates below an OR gate correspond

to the sets that cover the corresponding blue element, Finally, a lowest-level conjunction contains

a variable iff the red element corresponding to the variable appears in the set corresponding to the

conjunction. Now the topmost AND gate requires that every blue element must be covered, the

layer of OR gates says that a blue element may be covered by any of the sets that contain it, and

the final layer of AND gates allows a set to be included in the cover only if all the red elements that

it contains have been counted by the objective function.

Alekhnovich’ et. al. [3] show that (unrestricted) MMSA is at least as hard to approximate as

LABEL COVER. Goldwasser and Motwani [13] reduce label cover to MMSA4, and Dinur and Safra [7]

further show a reduction horn MMSA3 to LABEL COVER. Denote RED-BLUE SET COVER by RBSC,

LABEL COVER by LC and SYMMETRICLABEL COVER by SLC. Then we have

MMSA3 ~~ LC SA MMSA4.

In contrast, combining the reduction of Theorem 3.1 and the above correspondence between RED-

BLUE SET COVER and MINIMUMMONOTONESATISFYINGASSIGNMENTwith the results in [7, 13],

we have

MMSA3 <A LC <A SLC <A RBSC -A MMSA3,

showing that LC -A MMSA3 and thus precisely placing LABEL COVER in the MMSA hierarchy.

Corollary 3.2. MMS& -A LG.

4

4 Linear programming relaxations

Consider the following natural formulation of the RED-BLUE SET COVER problem,
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min ~ yr

r

(1)
yr~xs b’(r, S): 7-CS

E
Xs>l ‘db EB

S3b

x c {o,1}1~1,

This formulation is not very useful to us because the gap between the optimal integral and

fractional solutions may be huge. As the following example shows, the objective function value of the

linear relaxation of 1P (1) can be as much as Q(n) times smaller than the value of the optimal solution.

Consider B = {r}, B = {bl,..., bn} and the family S = {S1,..., Sri}, where S~ = {r} U B \ {b~}. All

feasible integral solutions must cover the red element r, and so have cost 1, but the linear program

may assign the value l/(n – 1) to each set and so the objective function value is only l/(n – 1).

We can improve the linear relaxation of 1P (1) by restricting the set of instances considered to

those where each set contains only one blue element (as described earlier). If this assumption is

satisfied, we may use the following inequality for each pair (r, b) E R x l?:

Note that these inequalities are not valid in general. There maybe feasible integral sohtions that

violate some of these inequalities (namely, those where more than one set covers some blue element).

However, in this case, all but one of the sets covering b can be discarded without increasing the cost

of the solution. In this way one obtains a “minimal” solution of no greater cost which satisfies these

inequalities. We refer to this improved integer program as 1P (1)’.

The new inequalities help eliminate some bad examples like the one described above. However,

before discussing this improved formulation further, let us consider a different relaxation of the red-

blue set cover problem. To give some intuition, we turn to the integer program used for approximating

the rooted group Steiner problem by Garg, Konjevod and Ravi [12].

For a set of vertices S c V, let J(S) denote the set of all edges with exactly one endpoint in S.

(2)

4.1 Improved Formulations

1P (2) requires that each cut separating some group from the root vertex be covered by at least one

edge. In view of the transformation fkom the group Steiner problem on a tree to the red-blue set

cover, this has a clear interpretation. We need to cover each blue element g. A cut around the group

corresponds to a set of red elements hitting all the sets that contain g.

To simplify notation, we write & for the family of all sets that contain b, and %b for the family

of all sets of red elements which form a hitting set for ~b. Since one of the sets in ~b must be chosen,

5
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we must pay for at lead one red element horn each hitting set for &. Defining % = U&~ %!byields

the following formulation.

(3)

Without variables corresponding to sets, we need to describe how to interpret a solution to 1P (3),

namely how to determine which sets in S should be included in the cover given a feasible O-1 solution

y*. We include in the cover all those sets S such that y: = 1 for all r 6 S. To show that this indeed

produces a feasible red-blue cover, suppose that some blue element 13is left uncovered. That means

that for every S 3 b there is a rs E S such that y~~ = O. But these red elements form a hitting

set H ~ %b for &. Since none of the terms in the inequality corresponding to H has value 1, this

inequality is violated by the given solution Y*.

The linear relaxation of 1P (3) is a hard problem itself. There are exponentially many constraints,

and the separation or&le (see Grotschel, Lov&z and Schrijver [14]) needs to be able to solve a hitting

set problem. (The question that a separation oracle needs to answer is: Does there exist a blue

element b c B and a hitting set for & whose cost, as defined by the given fractional solution Y*,

is less than 1?) Since HITTING SET is SET CoVE~ on the dual set-system, we can only provide

an approximate separation oracle with a factor of log-t, where t is the maximum number of sets

containing any pair of one red and one blue element (a simple upper bound on t is n = [S1.)

However, this allows us to find a feasible solution to the linear program which is at most log t times

more expensive than the optimal one.

Lemma 4.1. An a-approximate separation oracle O can be used to find in polynomial time an ct-

approximate solution to the linear relaxation of a 0-1 covering problem Ax ~ 1.

Proof. Use O as if it were an exact separation oracle and apply the ellipsoid algorithm. The algorithm

will finish when no more hitting sets of size less than 1 can be found. Let Z* be the resulting candidate

solution to the covering problem. Let

x: = min{x~ “ a, 1}, for all i.

Then x’ is a feasible solution to the covering linear program. (Otherwise, there exists an inequality

whose left-hand side adds up to less than 1. Since no term in this inequality was rounded to 1, all of

them were originally smaller than l/a, and further, the sum of all of these terms was smaller than

I/a. However, if there existed a hitting set of cost less than l/a, the approximation algorithm would

have found a hitting set of size less than 1.) Finally, the cost of Z’ is at most a times the cost of

x*. ❑

We next describe an extension of 1P (3). Instead of constraints based on hitting sets (covers), we

can use multiple hitting sets (multicovers). For instance, we can form constraints corresponding to

sets of red elements which contain at least two elements horn each set in & for some b. We may set

the right-hand side of such a constraint to 2, because every feasible solution must contain at least

two red elements from such a set.

In the same way we can form k-hitting set constraints for a blue element b, where k is any positive

integer no greater than the minimum number of red elements contained in a set that covers b. (In

6



fact, the minimum number of red elements contained in a set is not the critical obstacle to deriving

valid inequalities. We defer the details to the full version of the paper.)

The separation algorithm this time needs to solve a multicover problem, that is find a minimum-

cost family of sets such that each element of the ground set is covered at least k times by the

family. Efficient approximation algorithms for multicover problems were described by Dobson [8]

and by Rajagopalan and Vazirani [18]. The approximation guarantees achieved are log kn and log n,

respectively, where n is the number of elements in the ground set.

In order to write the constraints for this 1P, we denote the family of all k-hitting sets by Wk.

(4)

These inequalities are a strict superset of the inequalities used in 1P (3). For example, let

S1 = {rl, r2, b}, S2 = {r2, r~, b}, S3 = {7-3,rl, b}. Then 1P (3) has 3 inequalities,

Y1 +!/2 21

Y2+93 21

Y3+ ‘W >~,

and so the solution VI = y2 = y3 = 1/2 is feasible. However, 1P (4) also includes the inequality

because the set R = {rl, T-2,r3} hits every cover for b twice,

However, in some special cases, such as group Steiner problem on trees, the two formulations are

equivalent.

Lemma 4.2. For an insiance of the group Steiner problem on a tree, every inequality of 1P (4)can

be written as a convex combination of inequalities of 1P (3’).

4.2 Hitting-set LP versus improved simple LP

We relate LP (1)’ and LP (3) by showing that every fractional solution g of LP (l)’ also satisfies all

inequalities of LP (3). This implies that the improved simple LP (1)’ is a better formulation than

the hitting set LP (3), despite its conciseness.

Let y be a fractional

containing a fixed b c B.

solution to LP (l)’. Let H be a hitting set of red elements for all sets

Then for every r G H, g, z ~s2{r,6} xs. Thus,

~te~ ~ W2~3s21.
r~H rcli s~{r,b} S3b

The next-to-last inequality is satisfied because every set S a b contains a red element in H and so

the variable xs appears in the double sum.

Even though we cannot prove any “good” bounds on the integrality gap of either of the two

linear formulations, it is easily seen that LP (1)’ sometimes gives an objective function value at least

a factor log n higher (thus, better) than the hitting set LP (3), unless NP~TIME(n”IIOg 10gnJ). (As
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before, n = ISI.) For suppose that the values of the two LPs were always within a logarithmic factor

of each other. Then, since LP (1)’ always has a higher objective value than LP (3), we could use

the optimum value of LP (1Y as an approximation to the optimal solution of LP (3). However, since

this optimum is hard to approximate, there must be an instance where the two linear relaxations’

optimal values differ by at least a logarithmic factor.

4.3 Multi-element inequalities and set cover

The inequalities described above are special cases of a class that completely specifies the optimal

value of an instance of RED-BLUE SET Covmz. Obviouslyj the inequalities we will now describe

can only be of restricted use since they are hard to separate, but some of their special cases may be

useful in practice.

Consider two blue elements, bl and ~. We may change our problem by replacing t.q and b2 by

a single blue element b12. We say that b12 is covered by any set that contains both bl and ~, and

add a new set S’ij = Si U Sj for each pair of sets Si and Sj such that bl ~ Si and bz E Sj. This

change creates a new instance of the red-blue set cover. Since both bl and b2 will be covered in any

feasible solution to the original instance, multi-hitting inequalities for the new instance are valid for

the original instance of RED-BLUE SET COVER

We will describe these inequalities in more detail in the full paper, but let us consider here the

last inequality generated by this procedure in the special case of a set cover problem, where, every

set contains a unique red element. First, all blue elements are merged into one. Then, for every

subfamily C ~ S that covers all blue elements we add a new set Se. Let us denote the cost of the

optimal set cover by Z*. The inequality produced has aU the variables corresponding to red elements

on its left-hand side, and since every cover contains at least Z* red elements, the right-hand side of

the inequality is Z*. Hence thk is a k-hitting set constraint where k = z*. Thus, the cost of the

optimal solution to this linear program is equal to the cost of the optimal integer solution of the set

cover problem.

5 Approximation Algorithms.

We begin the section with some simple propositions that yield approximation algorithms for restricted

cases of the RED-BLUE SET COVERproblem.

Proposition 5.1. The following statements hold:

(l.) The RED-BLUE SET COVER problem when restricted to instances in which Vi, ISil =2, has a

log n approximation algorithm.

(2?.) The RED-BLUE SET COVER problem when ISi ~ RI < k has a O(nl-l/k logn)-approxirnation

algorithm.

Proo}. Proof of Part (1) follows by direct arguments from SET COVER. We sketch proof of Part

(2) for k = 2. First by preprocessing we ensure that vi, Si n R are not identical. Then, for each

@}, we treat as if {r;, r?} covers {bj,...Si ={r~, r~,l$,... , s , /$} and perform a greedy set cover.

There is a loss of lg n factor horn the optimum. The optimum, however, can presumably do much

better by exploiting the overlap between ri’s. Letting K denote the optimal value of the modified

instance, we know that the standard greedy heuristic for set cover will out a solution of value no more

than K lg n. We claim that the optimum for the original RED-BLUE SET COVER instance is ~ ~.

This is because the maximum overlap it can achieve (because of the preprocessing) is precisely K’

s.t. (~’) = K, which makes K’ = O(w). This implies a O(filg n)-approximation algorithm. El
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Next we give a polynomial time approximation algorithm for the restriction of RED-BLUE SET

COVER where each set contains only one blue element, with guarantee 2@. The approximation

algorithm is based on the linear relaxation of 1P (1)’ discussed earlier. We denote by n the number

of sets S E S. Since every instance of RED-BLUE SET COVER may be reduced to one where every

set contains only one blue element, the algorithm is applicable to any instance of RED-BLUE SET

COVER. However, since the reduction (Section 1) may incresse the number of sets, the performance

of our algorithm is 2A (where lSizyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn B[< k);and hence in general is not o(n).

The algorithm first solves the linear relaxation of 1P (l)’, producing the optimal solution (z*, y“).

Let us call the blue elements b c B that appear in more than @ sets S G S, bad, and all the other

blue elements, good.

The algorithm proceeds in two phases. In the first phase, we multiply g’ by @, and then round

down to O or 1. Denote the resulting vector of red-element values by y’ We include in the cover all

the sets S such that y; = 1 for all r c S. The cost of this step is at most @ times the cost of the

optimzd red-blue cover.

We claim that the first phase covers all the blue elements. Fix a b ~ B and consider a hitting set

H for the sets containing & Since b is contained in fewer than W sets, at least one of the variables

y,, r G H must have value at least I/@. This variable will be rounded to 1, hence the rounded y’

will satisfy this inequality. Given a O-1 solution to LP (3), we have seen how to construct a cover of

no larger cost, so we apply that procedure to cover the good elements. Since each set S 6 S contains

only one blue element, there can be no more than @ bad blue elements.

In the second phase, we include in the cover the set of smallest cost that covers b, for every bad

blue element b. Since every blue element is covered by the optimal solution, every set added to the

cover in the second phase costs no more than the optimal solution, and thus the cost of the second

phase is no more than @.

Our algorithm does not provide an upper bound on the integrality gap of any of the linear

relaxations we have proposed so far. However, it is easy to amend LP (1)’ to provide such a bound.

We add to 1P (1)’ another inequality for each b c B. Let pb = mins~~ lSflR1. Then the inequality

is valid for all b E B. Denote the resulting improvement of 1P (l)’ by 1P (l)”. These added inequalities

guarantee that the second phase of the algorithm costs no more than@ times the optimal fractional

solution, and thus the integrality gap of 1P (1)~~is no more than 2@ We thus have

Theorem 5.2. The RED-BLUE SET COVER problem restricted to instances where each set contains

only one blue element, flSi n B/ = 1) can be approximated within a factor of 2@.

6 Practical motivation

We conclude the paper with a few practical motivations for the RED-BLUE SET COVER problem

and more generally its relation to classification problems.

6.1 Fraud and Anomaly Detection

Our original motivation for considering RED-BLUE SET COVER arose in the context of a data mining

project. The goal of the project was to detect possible fkaud/anomaly in Medicare/Medicaid data

(claims). The project was undertaken at the Los Alamos National Laboratory and was sponsored by

the HCFA (Health Care and Finance Agency) and the New York State University research Foundation
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[1, 2]. More details about this and related anomaly detection projects at the laboratory can be

found at http: //www. C3. lanl. gov. There is a large data base of records (claims). Each record4 is

a vector in feature space, with real/Boolean values correspond to individual features. The goal is

to use the information that is available from known fraudulent records to identify possible anomaly

in records for which no apriori information is available. Automating this process is complicated

by the fact that misclassifying a good record (false positives) often amounts to possible law suits

and other legal problems and thus needs to be avoided at all costs. Using standard terminology

from classification literature, we wish to build a model for determining the validity of a claim, that

uses known information. As training data we have a small subset of claims that are labeled as

valid (red) claims or fraudulent (blue) claims5. A number of classification methods were used to

design classification of the red and the blue points. These included Cluster analysis, classification

and regression tree (CART), logistic regression. E&h of the classification scheme yields subsets

containing both red and blue elements. The goal is to design a new classifier that is complete

(meaning that all blue points are covered) and minimally inconsistent (i.e. misclassifies minimum

number of red elements).

6.2 Information Retrieval

This example is a slight variation of the example discussed in [11]. A typical problem in this area

consists if classifying a kargecorpus of documents. Such a classification might be related to grouping

articles found during a web search (e.g. classifying news articles based on subject topic). We view

each word in our vocabulary as a feature and represent an article as a O-1 vector in this feature

space. Typically, the number of features is huge (on the order of 105) and it is intuitively clear that

most documents have only a small number of relevant features. Thus a natural way to overcome

the computational bottleneck of classifying in such a large feature space is to combine the results of

algorithms that classify documents bssed on very small subsets of feature space. In this example, we

have elements of different colors (corresponding to the subjects) and our goal is construct a combined

classifier.

6.3 Relationship to General Classification and Learning

RED-BLUE SET COVER can be thought of as a restricted form of a more general machine learn-

ing/ckwsification problem [19]. In this setting sets R and 13 can be regarded as a set of elements,

each of which has an m-dimensional vector of Boolean values. Component i of the vector for element

z equals true iff x G S;. Component i can be considered a Boolean variable Zi. The goal is to

construct a Boolean function ‘H of m variables, so that H applied to the vector for each blue element

is true, and the number of red elements whose vector maps to true is minimized. What makes the

problem nontrivial is that the space of Boolean functions under consideration is very limited. So, let

G’ be a collection of m-variable Boolean functions. Let us say that a given Boolean function 74 covers

an element x G R U E) iff W applied to the vector for element x is true. The G-Boolean-Classification

Problem is to find a function % c G that satisfies the constraint that ?4 covers all blue elements,

and the number of red elements covered is minimized.

RED-BLUE SET COVER can also be viewed as a problem of classifying (or predicting) by com-

bining the classification results (or predictions) of subordinate classification algorithms also referred

to as “experts” in the learning theory literature [11, 5].

4Each record is a line item claim

5Such a data is obtained in a variety of ways includhg past history, sample checks, etc.
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