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1. Introduction. In this paper the reflection principle for harmonic functions

is extended to the more general class of p-harmonic functions. The case p = 2

has already been treated by R. J. Duffin [ l ] whose method of proof will be

used in part. The formula for the reflection of a biharmonic function at a straight

line segment in the plane was even previously known to H Poritsky [3] ; but he

did not indicate under which conditions such a continuation would have to exist.

A function w (%i, %2 % ' ' ' » χ n ) ι s c a l l e d p-harmonic in a region D of the n~

dimensional space, if it is of class C2P and satisfies the differential equation

tsPw = 0. We shall make use of the following well-known properties:

(I) w is analytic throughout D,

(II) The following representation always exists:

p-i

v-o

the functions u\9112 , , ^p-ι being harmonic in D; conversely such a sum is

always p-harmonic. As a consequence, the following decompositions are also

possible

w = f (%i, x2, •• f * n ) +x\~k g ( ^ ι > χ 2 , •••,%)» /c = 1, 2, . . . , p - 1 ,

f denoting a (p - A;)-harmonic, g being a A -harmonic function.

2. Reflection principle.

THEOREM. Let G denote a region of the n-dimensional space, the boundary

of which contains an open subset S of X\ = 0. If the function w (%i,#2 , , xn)

is p-harmonic in G and if w/x?" assumes the boundary value 0 on S, then w

can be continued analytically across S into the reflected domain G' by putting
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(2.1) »(-,uί,,...,^).(-l/f(
fe=o

REMARKS. In the boundary condition for w9 x?" cannot be replaced by any

smaller power of Xi This is clearly indicated by the example x?'1 \og{x2 + x2).

This function is p-harmonic in x\ > U, but cannot be continued analytically

into the origin*

For p = l (2.1) reduces to w (-%i, #2, , xn ) = ~ w (*i> χ2$ ' •> χn \ t n a t

is, the classical reflection principle of II. A. Schwarz.

In the case p = 2 we obtain the continuation formula of R J. Duffin [ 1 ] :

dw
w(—XιiX2> f%n}~~~w+%xι x\ Δw .

dxi

3. Proof.

We proceed in two steps:

(a) w can be continued analytically beyond S9

(b) the continuation can be extended to the whole of G' and is given by

(2.1).

We can prove ( a ) by complete induction with respect to p. It is well known

that ( a ) is true for p = 1. It remains to be shown that ( a ) holds for any positive

integer p, provided it is known to be valid for p — 1. R. J. Duffin [1] has carried

out this step for the special case p = 2. His reasoning can be extended to the

general case without essential change, although there arise some technical

complications (for example, the averaging operation has to be iterated p times).

Therefore, we refer to Duffin's work for the proof of ( a ) .

For the proof of (b) we introduce the notation v (xι9 Xi, , xn) for the

right hand side of (2.1).

From ( a ) we know that w is analytic on S, and from the boundary condition

we conclude further that the functions w/χP"k ( k = 0, 1, , p - 1) are also

analytic on S. Therefore v is analytic on G u S.

Moreover, each term χP*k Δk(w/χP'k) is a p-harmonic function. For we have,

indicating by superscript the degree of harmonicity,

AP\χP+k hk[f(P-k)/χp-kλ! = AP{χPι

+k(h(P)/χP+k) i = 0.
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Consequently, v is p-harmonic.

Now we shall prove that the Taylor developments of the functions w{-xi9

X2 9 * 9xn^ a n d v (χι> X2 9 •* xn ) a r e identical in an arbitrary point of S.

This will complete the proof of the theorem. For then we can immediately draw

the conclusion that w(-xί9x2 9 , xn ), being identical with v (x u x2 , , xn ),

can be continued into the whole of G. Therefore, (2.1) yields in fact a con-

tinuation of w (x i, x2 , , xn ) into the reflected domain G \

Let

(3.1) w~ Σ α V l V 2 , . . , r e x\ι xζ2 "*xζn

be the Taylor development of w at an arbitrary point of S, which we may assume

to be the origin of the coordinate system without losing generality. We are left

to prove that the development of v at the same point is given by

(3.2)

First we demonstrate a lemma which we shall use in the sequel:

LEMMA, (see [2, problem 137]). Let r, s, t denote arbitrary positive in-

tegers, such that t £ r. Then the identity

/l + s\
holds. (We define! ) = 0 for I + s < t).

Proof of the lemma. Differentiating the identity

/ = 0

t times with respect to xy putting x = 1 and dividing by t\ we get (3.3) for the

special case s = 0. By complete induction with respect to s and making use of

the relation

\ Z I \ v I \ * x
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the general case is easily established.

As a first step in the proof of (3.2) we now verify that the operator (2.1)

transforms the function

v\ V2 vn ί Ί \ v\ v\ V2 VΏ
Xί X2 " * X n i n t 0 ^ ""•*•' x ι X2 * # ' Xn ' V ι ' Vl<> ' " * ' V n

being arbitrary positive integers and p <_ v\ < 2p — 1. Putting this function

into (2.1) we obtain

p.ί

( _ i ) p ^ ( - D

k=o

where

Σ, i-Dk (k\Y2

 xp+k d2k (x"1-1'^ xζ2... x"nή/d

and

p!

s2=(-i)p T (-i)k(k!)-2xfk T
k-o kί<k;

We have

[3.4)

because of
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since the inner sum in the last expression vanishes for I < vγ — p and equals

(-1) for I - vx - p (see solution of problem 141 in [2 ]) .

In order to prove that S2 = 0 we consider now the sum σ of all terms in S2 be-

longing to an arbitrary but fixed set of values (k2 > k3, , kn ) £ (0, 0, ., 0) .

In the following we shall denote by Aί9 A2 and Λ3 factors which do not depend

on the summation index. Putting ά* = k2 + k3 + + kn, we have

Vrp+2/c*

- •

where

and

But since

«»>
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by means of (3.3), we conclude that σ ' = 0 . Furthermore, we observe that the

summation over k in (3.6) may be extended from k = A;* to k - vx - p + 2&* be-

( k\
j J = 0 in all terms with index k lying in the interval k* <^k < I. There-

fore σ " = 0 . Consequently σ = 0 and, finally, S2 = 0 . Combining this with (3.4),
we obtain the stated property of the operator (2.1).

We now apply the transformation (2.1) to the series (3.1). This may be

carried out term by term. Putting

we have to prove that

(3.8) bVιV2...VΛ-i-DVlaVιVa...VΛ.

From the boundary condition we infer that d w/dx^ = 0 (& = 0,1, , p - 1)

on S. Since this holds in all points of S it follows that av. v2 ••• v ~ 0 ^ 0 Γ

v\ < p - 1 and arbitrary !̂ 2, ^3, , vn. On the other hand, it is easy to see

that the operator (2.1) never decreases the number of factors %ι in a term.

Therefore we have also bVγ v2 vn =0 for vx < p - 1 and arbitrary v2i
 P3> * *> vn

This proves (3.8) for vγ <. p — 1.

We have verified above that the term

v2...ι/n xχ *2

is transformed into

(-1) a * *aVχ

for p <. 1̂1 < 2p - 1 and arbitrary v2, vZy , vn% Since (2.1) never decreases

the number of factors %χ9 terms of order > 2p in %ι cannot contribute to the

coefficients bVχ v ... v , where p <̂  V\ < 2p ~ 1, and (3.8) is thus demonstrated

for p < vx < 2p - 1.

Finally, we observe that both w(-xι$ x2f , xn) and t>(^i,%2> *''» χn)

are p-harmonic functions. Using the differential equation (and eventually dif-

ferentiating it) any derivative of order >_ 2p in xx can be expressed as a linear

combination of derivatives of the orders V\ - 2, vx - 4, , vγ - 2p in % ι# If

the equality of the latters has already been shown, it follows that the first ones
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also have to be equal. By complete induction we thus are able to assert the

validity of (3.8) in the remaining range vx >_ 2p. This completes the proof.
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