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Abstract. In this note we consider the regularity at the boundary of the ex-
tensions to strictly pseudoconvex domain D of functions holomorphic in certain sub-
varieties of D. Using the construction of Henkin [6] we show that if 9D is sufficiently
smooth, M’ is a subvariety of some neighbourhood D’ of D such that M’ intersects
0D transversally and has no singular points on 9D, and fis in one of the spaces A% (M),
H>k(M) or A;(M), where M = M’nD, then there exists F e A¥(D), H®*(D) or
A;(D) respectively such that F|jr = f. We show that for some class of subvarieties
M’, F can be given by an explicit integral formula.

We give also a theorem on the approximation of functions in A% (M), H®-F ()
and A;(M) by functions holomorphic in a neighbourhood of M in M’.

1. Notations. Let D be a bounded domain in C* with ¢! boundary.
By 0(D) we denote the space of all functions holomorphic in D.

For every k = 0,1,2,...,set A¥(D) = 0(D) n¢*(D), where %*(D)
denotes, as usually, the space of all functions f of class ¢* in D such
that their derivatives of order <% extend continuously to D, and let
H>*(D) be the algebra of all functions holomorphic in D such that their
derivatives of order << k —1 extend continuously to ﬁ, and. the derivatives

of order %k are bounded in D. A*(D) and H®*(D) arc Banach algcbras
with the norm

Ifllp,x = 2 Sl})P 1D°fl,

lal<k
where « = (a;,...,,) €2Z% is a multiindex, |a| = ;4 ... +¢a, and
r
Hlel
D 7

0251 ... Oeln
[~

We write A(D) = A°(D) and H®(D) = H*°(D).
Similarly, we set A*(D) = 0(D) n%°(D).
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If ¢ is a positive real number, which is not an integer, and % is a non-
negative integer such that k<t< k-1, let A, (D) denote the space
of all funections f € A¥*(D) such that for every a € Z% with |a] = k, there
exists a constant ¢, > 0 such that

\D°f(2) — D°f(2')| < eulz—2'I""%, 2,2'€D.

4,(D) is a Banach space with the norm

Iflp,e = Wflpe+ D) sup [D%f(z) —D°f(2')l/le —2'|!%.

lal=k 2,2’eD

Let M’ be a closed analytic subvariety of a domain D in C™ and lef
M De a relatively compact subdomain of M’, such that M is a manifold
of class ¢! and contains no singular points of M’. Let A*(M),k = 0,1, 2, ...
be the subspace of @(M), defined in the following way: Let {(U,, ¢,)}\_,
be any finite collection of the local coordinate maps on M’, such that
for each ¢+ = 1,...,1, U, is contained in the set of regular points of M’
@;: U; — V,;is a biholomorphic mapping of U, onto an open neighbourhood

!

V; of zero in some C™, §(M n U,) is of class €', and such that oM < | J U,.
i=1

We say that feA*(M) if fool,p,nm € A¥(@:(U;nM)) for every

1 =1,...,1. This definition is independent of the choice of the family

{(U;, 9;)¥—;. We may introduce the norm in A*(M), setting

4
g = D 1f0@F loyarsnni-
t=l
With this norm A*(M) is a Banach space. It is easy to check that any
other choice of the maps (U, ¢}), ..., (U}, ¢1) gives an equivalent norm.

We define the spaces H*>* (M) and A,(M) in the similar way.

A bounded domain D < C" is called a domain with €* boundary if
there exists a neighbourhood U of 8D and a real-valued function ¢ € €*(U)
such that

(i) D = (D\NU)u{zeU: o(z) < 0},
(i1) grade(2) # 0 for z € 0D.
The function g is called a defining function for D. D is called strictly pseudo-
convex (with €* boundary, & > 2) if the function ¢ can be chosen in such
a way that it is strictly plurisubharmonic in a neighbourhocd of oD.
Moreover, if the defining function ¢ can be chosen so that g € €*(C™)
satisfies the condition limg(2) = + o0 and has a real hessian positive

definite at every point of C", and D = {z € C*: ¢(z) << 0}, then D is called
a Strictly convex domain with €* boundary ([6], p. 529).
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2. The extension operators. Let .D be a strictly pseudoconvex domain
in C® (with %* boundary), and let M’ be a complex subvariety of some
neighbourhood D’ of D such that M’ intersects 6D transversally and has
no singular points on ¢D. G. M. Henkin proved in [7] that if M’ is a complex
manifold and M = M' nD, then there exists a continuous and linear
extension operator

L: H®(M) - H*(D)
such that Lf e A(D) if f e A(M). K. Adachi [1] and M. Elgueta [4] proved
that Lf € A~ (D) provided f e A®(M) and 0D is of class ¥*. It is noted in
[5] that the proof given in [7] extends to the case when M’ has singular
points, if none of these are on dD.

In this note we show that L has the same properties with respect to
the spaces A*(M), H™*(M) and A,(M) under the assumption that D has
sufficiently smooth boundary:

THEOREM 1. Let D, M' and M be as above.

(a) Suppose that D is of class €**°, k = 1,2, ... and M’ n 0D contains
no singular points of M’'. Then L: H**(M) — H**(D) is a continuous
extension operator. Moreover, L(A"(M )) c A¥(D).

(b) Suppose that t > 0 s not an integer and k 18 a non-negative integer
such that k<<t<<k+1. Let 0D be of class €**°. Then L: A(M) ~ A,(D)
18 a continuous extension operator.

In the proof of the above theorem we use the same line of argument,
as presented in [7], and the regularity properties of Fornaess’ extension
operator (see [5]), which were investigated in [8].

As a corollary, we obtain the following approximation theorem:

THEOREM 2. Let M be a relatively compact subset of a reduced Stein
space X, such that 0 M consists of reqular points of X and M is strictly pseudo-
convex with a €* boundary, where k satisfies assumptions (a) or (b) of Theorem
1. Then there exists a neighbourhood M’ of M in X, such that:

(a) Every function f e A¥(M) can be approzvimated in the topology of
A* (D) by fumctions which are holomorphic in M'.

(b) For every function f € H™* (M) (resp. f € A,(M)) there exisis a se-
quence {f,} = O(M') such that f,(x) — f(x) for every © € M, and for every
n=1,2,. . Ifllar < flars (resp. 1 fullar, e < Ufllar,e)-

(For the definition of strict pseudoconvexity on Stein spaces, see
[5], p. 546.)

Theorem 2 generalizes some approximation theorems, obtained pre-

viously in the case, when D is a strictly pseudoconvex domain in C* ([6],
p. 631; [9], Theorem 1).
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E. L. Stout proved in [11] the existence of an integral formula for
functions which are holomorphic on certain hypersurfaces in strictly
pseudoconvex domains in C". More exactly, he showed that the following
holds:

Suppose that ¥ is a function defined and holomorphic in a neighboar-
hood D of the closure of a strictly pseudoconvex domain D in C*+! with
€* boundary, which is not identically zero, and is such that 4 = Z(F)nD
is non-empty and connected, dF(y) # 0 for all y e Z(F)n oD and Z(F)
intersects 0D transversally. (Here Z(F) = {y e D: F(y) = 0}.) Let &(¢, y)
be any function satisfying the properties of [6], Lemma 2.4, with respect
to the domain D. Then there exists a differential form IL({, y) of degree
(n, n —1) with respect to { and (0,0) with respect to ¥, defined in a neigh-
bourhood V of @D x D, such that the coefficients of L(Z, ) are smooth
in ¥V and holomorphic in y for each { near 0D, and that for every & e 0(4)
and for all y € 4,

L&, y) .
(L, y)"

This formula is valid also for » € H*(4); in this case, #({) denotes the
‘boundary values of 2 on 04 which exist a.e. with respect to the volume
measure on d4, in virtue of [10], Theorem 9, p. 37, and the definition of
H>(A).

wy) = [ WO
a4

Therefore the formula

Ph(y) = | B()

o4

L, v)

7 eD
o,y YT

defines an extension operator

P: H®(A) - 0(D).
Using the results of [7], [5] and [8], we shall show that under the special
choice of &(¢, y), P has the following properties:

THEOREM 3. P 48 a linear and continuous extension operator from
H>k(A), A¥(4), &k =0,1,..., and A,(A), >0, t #0,1,..., into the
corresponding function spaces in the domain D.

This theorem says that if a variety M has a special form, as de-

scribed above, then the extension operator from Theorem 1 can be given
by an explicit integral formula.

3. Proofs of the Theorems. We recall first one construction given
by Fornaess in [5]. Let D be a strictly pseudoconvex domain in C* with
¢* boundary, and let y: D — C™, m >n, be a biholomorphic mapping
of some neighbourhood D of D onto a closed complex submanifold (D)
of C™, such that there exists a strictly convex domain € < C™ with #*
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boundary, such that (D) = €, p(D\D) c C"\C, and y(D) intersects &C
transversally. Let ¢ € €%(C™) be a defining function for C. Set

1) f(& 2 = Z al)(&—2) (a8 £ (2,
and let

(2) (L, y) = fly(), v(¥), ¢ yeD.
Then

n

D, y) = D) (G—u)P;(L, ),

i=1
where

m

Pi(t,y) = D elw(O) Fy(E, )

i=1
with convenient functions F e o(D xD). Let F, i C, be the functions

holomorphic in C™ X C™ and C™ respectively, such that F,j(y) C), »(¥))

= F;(,,y) for {,yeD and §y(t) =¢ for teD, i=1,...,m,
j=1,...,n. For § zeC™ set

§i(8,2) = 2 ei(OFy(&,2), j=1,..,m.

{ml

Let

(n—1)! 2 177G (&, )0 A (6, VA AL(§)A - AL, (8)

(27i)" (r(&, 2)" '

(&,2) ¢f71(0). It is proved in [5] that @(Z,y) satisfies the properties
of [6], Lemma 2.4, and that for every & e H*®(D) and for all y e D,

(3) hy) = [ RQE(W(L), ),
oD

K(&,2) =

where £ (() denotes the boundary values of & on 9D. Therefore, for every
h € H*(y(D)), the formula

EBh(z)= [ WEK(E2), 260,
¥(5D)
defines an extension operator
R: H°°(1,u ) - 0(0).

Moreover, E is the linear and continuous extension operator from H*(y(D))
to H*(C) such that R(A(yp(D))) = 4(C), [5], Theorem 4, p. 563. Fornaess
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proved also, that for every strictly pseudoconvex domain D < C" with
%* boundary, there exist a neighbourhood D of D, a number m > %, a map-
ping y: D - C™, and a strictly convex domain ¢ = C™, with the properties
described above.

It was shown in [8], Theorem 1, that, under the assumption on the
regularity of 4D as in Theorem 1, B maps H**(y (D)) into H>*(C), A*(y(D))
into 4*(C) and A,(zp(D)) into A4,(C) linearly and continuously.

Proof of Theorem 1. Following Henkin [7] we consider first the
case when D is a strictly convex domain in C" and M’ = {2,,, = ...

. = 2, = 0}nD’, where D’ is some neighbourhood of D. Let M = M' A D,
and let ¢ be a defining function for D. Set

(&, 2) = D) e()(&—2)

and let
k
v 2 (1T e (E)A Adoy(£)A dE
o6, = UL & W
(277) (f(€, 2))
where dé = d&,A ... Ad&,. Then, for k €e H*(M), the formula
(4) Ih(z) = [R(§C(E2), zeD,
oM

defines ([7], Theorems 1 and 2), thelinear and continuous extension operator
L: H*(M) - H®(D) such that L(4(M)) c A(D). Note that Henkin’s
extension operator (4) coincides with that in (3) if we identify M with the
domain in C* and let y(2, ..., 2;) = (21, --«, 2, 0, ..., 0) € C*. Therefore
the operator L satisfies the conclusion of Theorem 1 if D is strictly convex
and M is a plane section of D.

In order to pass to the general case when D is a strictly pseudocon-
vex domain in C"* and M’ a complex subvariety of some neighbourhood D’
of D, without singular points on 0D, and which intersects 0D transversally,
we proceed as in [7]. First we verify that the following theorem on the
separation of singularities holds:

THEOREM 4. Suppose that 0D is of class €%, where k satisfies the hy-
pothesis of Theorem 1 (a) or (b), and let M = M'NnD. For every ¢ > 0 there
exists a covering {IM} of OM by domains M,> M, i =1,..., N = N(e),
and continuous linear operators L;: A(M) > A(M)), i =1, ..., N, where
A denotes A%, H™* or A, respectively, so that

N

(@) f(2) = 3 (Lf)(2) for fe A(M) and z € M,

i=1

(b) for every i =1, ..., N, diam(M\ M) < «.
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The construction of the operators L, is the same as in [7], Theorem 3
-and Lemma 12; therefore, we give only the necessary modifications:

1° If @D is of class %*, then the same is true for aD,, 9D,, dM, and
oM, (for definitions, see [7], p. 562-563). Moreover, the domains M, and
M, in M’ can be chosen in such a way that ,\ M and dM, do not contain
singular points of M’, and the same is true for I7,.

2° Combining [3], Theorems 1 and 3, and the proof of [6], Theorem
1.2, and assuming that the constants o and J from [7], Lemma 11, are
chosen sufficiently small, we conclude, that the operators R?, R, » = 1, ...
..sy N, defined in [7], p. 563, are continuous and linear as the operators

between the following spaces:

RS: A(M, ) > A(M, A8, 3615
ER;: A(M,_,) — A(H, “Sco,aom),
Rl: A(M, ) - A(My n M)

(for further description, see [7]). This implies that the operators LJ:
AM, )~ A(M,) and L': A(M,_)) — A(M,) (see [7], Lemma 12) are
continuous. (We use here the fact that if @, @' <« C* areopenand ¢’ = =« @
the convergence of the sequence {f,} = 0(@) uniformly on compact subsets
of G implies the convergence of {f, |5} in any of the spaces A @)

The end of the proof of Theorem 1 goes also the same line as the
final part of the proof of the Main Theorem in [7]: the only modification
that we need is that the operator L defined in [7], p. 566, is now linear
and continuous operator L: A (M NGh) -~ A(G%) in virtue of the result
just established for the case of strictly convex domain D and the plane
section M of D.

Proof of Theorem 2. By [5], Theorems 9 and 10, there exist an
open Stein neighbourhood M’ of M, a non-negative integer m, a holo-
morphic mapping y: M’ — C™ which maps D’ biholomorphically onto
a closed subvariety of C™, and a strictly convex domain ¢ = C™ such that
2C is of the same regularity as oM, y(M) c C, w(M'\ M) = C"\C, and
w(M') intersects 90 transversally. We can assume that 0 € C. Let F € A*(C).
If F (2) =F(rz), 0<r<1, and {r,}is asequence such that 7,1, then
F, —F in the | |l ;-norm. Since C is convex, it is a simple consequence
of the Oka—Weil approximation theorem, that every function F, can be
approximated in || ||¢;-norm by polynomials. The conclusion now follows.
from Theorem 1.

The proof for the spaces H**(M) and A,(M) is similar.

Proof of Theorem 3. Let D, m, v and C for the domain D be construc-
ted as above, and choose @({, ¥) for D to be defined as in (2). It follows
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from the results of [5] and the proof of [11], Theorem II.1, that there
exists a differential form L(§, z) of degree (n, n —1) with respect to £ and
(0, 0) with respect to 2, defined and smooth in a neighbourhood of y(94) x
x O, with coefficients holomorphic in 2, such that for every y € D and every
h e H*(A4),

L(&, v w L&, v(¥)
w(5£) f(&, )

where g = (p|5)~" and f is defined by (1). Therefore, in order to prove
the theorem, it is sufficient to show that if

B = [ meoT 2,
¥(34) '

he H“(w(d)), ze(, then P is a continuous extension operator from
H>*y(4)), A¥(p(4)) or A,y(4)) to the corresponding function spaces
in the domain C.

It follows from the properties of f(£, z) [5], that for every h € H™(yp( A))
Ph extends holomorphically across 80\1,0(34) Therefore it is sufficient
to verify the required smoothness of Pk at the boundary of € near an arbi-
trary point &, € y(84). Fix such a &,. Set A = Z(F) nD. Choose a neigh-
bourhood V of &, in C™ such that no singular points of ¢(A4) are in V,
and that the set A ny~!(V) is contained in some coordinate neighbourhood
Uofyp~!(&)in A, which is mapped biholomorphically onto a neighbourhood
of zero in C" by some function ¢. There exists a strictly convex domain
¢ < C™ with smooth boundary, such that ( = ¢, ( =< V and € ndC is
a neighbourhood of £, in dC. We can assume also that if ¢ and § denote
the defining functions of the domains ¢ and € respectively, then o = 0
in a neighbourhood of &, in C™. Therefore the function

2) = D &l (&—2)

=1
is cqual to f(&, 2) for £ in some neighbourhood W of &,, with W =< V,
and z e C™. Choose a € function y, 0 < x < 1, which is supported in W and
which is equal to one ii. a neighbourhood of &,. Clearly the function

= L(§, 2)
P h(2) = )[1—
1w>w£([ A0
is #* in a neighbourhood of &,, and it rests to prove that
= _ (6,2) _ L(§, 2)
Bae) = [ Mo o B(E) 16 Ty

. v(84) WIBNW f(&,2)"
has the desired smoothness property for z near &,. Note that E — oy~ (C)
is a strictly pseudoconvex domain in C™ with smooth boundary and that
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¢ = yog~! is a biholomorphic mapping of some neighbourhood Eof E

onto a closed complex submanifold_f;’:(E’) of some neighbourhood C, of 5,
such that ¢ () < &, $(E\E) < C,\C(, and §(E) intersects ¢ transversally.
Therefore it is sufficient to prove the following lemma:

LeEMMA 5. Let B, B < C, y: B —~C™, 0, 0, and f be as above. Let
K (&, 2) be a differential form of degree (n, n—1) with respect to & and (0, 0)
with respect to z, defined in a neighbourhood V of w(0E) x &, such that its
coefficients are smooth in V and holomorphic with respect to 2. Let h be in
H**(y(B)), A¥(p(E)) or 4,(p(B)).

Then the function

- K -
h(2) = fh(e) (5, 2)

T o ? EC,
vOE) (&, 2)

belongs to H**({), A*(C) or A,(C) respectively.
This lemma can be proved by means of [2], Theorem A, [3], Theorems

1 and 3, and the results of [5] and [8]. The way of the proof is similar
to that given in [8], and we do not yield the details here.

Note. It follows from [3] and [8] that Lemma 5, and Theorem 3 are
valid  also under less restrictive assumption on the differentiability of
0D. However, the precise statement of the.result would be somewhat
complicated, therefore we consider here only the ¥* case.

Note. It is shown in [4], Theorem 2, that if D is a strietly convex
domain in C* and M = {zeD: 2., = ... = 2, = 0} is a plane section
of D, then every function f € A*(D) such that f|,, = 0, can be represented
in the form

F(?) = 21 i (R)+ oo +2,1,(2), zeD,

with convenient functions f; e A®(D), ¢ = k41, ..., n. This result is then
used in [4] in the proof of the existence of the extension operator from
A®(M) to A®(D), as announced in the introduction. We remark that
the corresponding theorem for the spaces considered in this note is not
true in general, as can be shown by the following simple example:

Let B = {(21,2,) € C*: [2,°+ [22° < 1}, M = {(21,0): || <1}, and
let h be any function which is in H*(U), but not in A(U), where U denotes
the unit disc in C, centered at 0; then set f(z,, 2,) = h(2,) 2,
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