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BY
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1. Introduction. If a measurable or locally bounded function / satisfies
sufficiently many inequalities then often it happens that/has automatically much
stronger regularity properties such as continuity or differentiability.

We shall study this type of problem in detail in §§3-6 for the property of/
being (generalized) convex relative to a given (nonlinear) «-parameter family SFn
of functions. The corresponding results are summarized in §2.

As a somewhat different problem, we shall investigate in §7 the type of regularity
possessed by all measurable solutions of the inequality

% ajf(x + Tiy) Ï 0.
1 = 0

2. Summary. Let (a, b)={x: a<x<b} be a given finite open interval in R.
Following the terminology of Popoviciu [19], a given function/on (a, b) will be
called (« — l)-convex (or («— l)-convex in the sense of Jensen) if

(2.1) Alf(x) - 2 (- l)"~'("W+./A) ̂ 0
i = o \]l

for each choice of the numbers h>0 and a<x<b — nh. Here, « denotes a fixed
integer with «^2; (for «=1, (2.1) merely says that/is nondecreasing on (a, b)).
The following result is due to Ciesielski [3].

(2.2) Theorem. Let f be an (n—l)-convex function on (a, b) such that fis bounded
on at least one measurable subset A of (a, b) having a positive measure. Then f is
continuous on (a, b).

Here and further on, the notions of measure and measurability are always to
be interpreted in the sense of Lebesgue. It would not be enough, in Theorem 2.2,
that/be bounded below on (a, b) as follows from the example/(x)=^(x)2 with <j>
as a real-valued nonmeasurable function which is additive in the sense that
4>(x+y)=</>(x) + <f>(y) for all x, y e R. If n^3 it would not be enough that / be
bounded above on (a, b), since/(x) = — <f>(x)2 satisfies A|/(x) = 0 for any «. However,
as was shown by Ostrowski [13], iff is 1-convex (« = 2) and bounded above on a
measurable set of positive measure then/is continuous.
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If xu ..., x„ are distinct points in (a, b), let us denote by L(x)=L(xu ..., xn;
f\x) the unique polynomial of degree =n-\ such that L(xi) =f(xi),..., L(xn)
=f(xn). As is easily seen, property (2.1) may be rewritten as

(2.3) L(x0, x0 + h,..., x0 + (n - 1)A ; f\x0+nh) g f(x0 + «A),

holding when A>0 and a<x0<b-nh. The above can be generalized by replacing
the family of all ordinary polynomials of degree á « — 1 by a different family.

In the sequel all functions will be taken to be real-valued. Further, n denotes a
fixed integer with « ̂  2.

(2.4) Definition. By an «-parameter family !Fn on (a, b) we shall mean a collec-
tion J^ of continuous functions on (a, b) such that for every choice of the n distinct
points Xi,..., xn in (a, b) and every choice of the n real numbers yu..., yn there
exists a unique member Le^n satisfying

(2.5) L(xi) = Vi,..., L(xn) = yn.

In particular, two distinct members g1( g2 of J^ cannot be equal at more than
« — 1 distinct points.

Following Moldovan [10], the above unique function Le¿Fn will be denoted as

L(xi, ...,xn; yi,...,yn\x).

We further write

L(xi, ...,xn; f\x) = L(xi, ...,xn; f(xx),.. .,f(xn)\x).

Usually, we take the xt such that a < xx < ■ ■ ■ < xn < b. In the sequel, unless otherwise
stated, ^n will be understood to be a given «-parameter family in (a, b).

(2.6) Definition. A function / on (a, b) will be said to be weakly ^-convex
(or J^-convex in the sense of Jensen) if the inequality (2.3) holds for each choice
of the numbers A and xQ such that A > 0 and a<x0<b — nh.

The following result will be proved in §4. It is a generalization of the above
Theorem 2.2 due to Ciesielski.

(2.7) Theorem. Let the function fon (a, b) be weakly ^-convex. Suppose further
that f is bounded on a measurable subset A of (a, b) of positive measure. Then f is
continuous on (a, b).

The case « = 2 of Theorem 2.7 is due to Beckenbach and Bing [1]. Actually,
they only required that/be bounded above on A, thus generalizing a previously
mentioned result of Ostrowski [13].

If one is willing to assume that / is measurable then the condition that / be
weakly ^,-convex can be replaced by an even weaker condition. For a precise
statement, see Theorem 7.3.

(2.8) The following result gives some insight in the structure of an arbitrary
nonmeasurable weakly ^-convex function. The special case that k=\ and «=2
is due to Beckenbach and Bing [1].
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(2.9) Theorem. Let f be a given weakly ß^-convex function on (a, b). Let further
x0 and hx,...,hk be given real numbers. Then there exists a unique continuous
function g(zx,..., zk) on the strip a < x0 + 2 h¡Zj < b in Rk such that

(2.10) /(x0 + rxhx +■■■+ rkhk) = g(rx, r2,..., rk)

holds for each choice of the rational numbers rx,..., rkfor which

a < x0 + 2 rA < °-
(2.11) Definition. A function/on (a, b) is said to be ^-convex (or also strongly

^-convex) if

(2.12) Lixj,..., xn; f\xn+x) úf(xn+x)

holds whenever a < xx < ■ ■ ■ < xn < xn+x < b.
The property of ^-convexity was already studied by Tornheim [22], Hartman

[6], Morozov [12] and Moldovan [10], and for certain linear families ¿Fn by Popoviciu
[17], [18], [19], [20], Pólya [15], Karlin and Studden [7, pp. 375-466], and many
others; see also the study [24] of the associated linear differential operators.

(2.13) Lemma. In order that a function f on (a, b) be ^-convex, it is necessary
and sufficient that f be both continuous and weakly !Fn-convex.

(2.14) Let C(&n) denote the class of all (strongly) .^-convex functions on (a, b).
Observe that (2.12) holds with the equality sign when/e lFn, implying that

(2.15) JÇ c c(jg.
Let us now turn to the question what other regularity properties (besides con-

tinuity) are satisfied by all ^¡.-convex functions. Let A stand for any class of
continuous functions on (a, b) such that <f> £ A for at least one continuous function
<j>. By (2.15), in order that C(^) c A it is at least necessary that ^n <= A. Considering
the class ^.'={/'=/+«A,/e^} with </> fixed, we see that f,c A can never be a
consequence of the fact that J^ is an «-parameter family. The best one can hope
for is an implication of the type ^ <= A => C(«^,) "= A, with or without some weak
additional condition imposed on !Fn. Let us first review some known results in this
direction.

(2.16) Let x0 e (a, b) be fixed. It was shown by Tornheim [22, p. 462], that each
fe C(&~n) is differentiable at x0 as soon as each/e^, is differentiable at x0 and,
moreover, « ̂  3.

(2.17) This result was generalized by Hartman [6] as follows. Let x0e(a,b)
and let k ^ 0 denote an integer. Denote by r'c(xo) the class of continuous functions
/on (a, b) having at x0 a Taylor derivative of order k, in the sense that

(2.18) /(x) = 2 /'(xoXx-Xoy + oix-Xo)*
i = 0

as x tends to x0. Here,/'(x0) (/=0,..., k) denote constants.
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The function f(x)=x2+s sinx~s (e>0) has at x = 0 a second Taylor derivative
but the ordinary second derivative/"(0) does not exist. A stronger counterexample
of this kind may be found in [4, p. 277].

We shall say that a family ¡Fn has property To(x0) if ^c Fk(x0). We say that
&n has property Tk(x0) if, moreover, for each choice of the real numbers c0,...,ck
there is at least onefe 3Fn such that

(2.19) /i(x0) = ci,       (i = 0,l,...,A:).

Finally, let us say that J^ has property T\(x0) if, moreover, two distinct solutions
fi-, f2 G^n of (2.19) cannot be equal at more than n — k — 2 distinct points x^x0.
For k = 0 these properties always hold.

Hartman [6, p. 138, p. 140], proved the following. Let 1 ̂ A;^«-2 and x0 e (a, b)
be fixed. Then C(ß~n) <=■ Tk(x0) as soon as ß~n has both properties T^(x0) and T\ ~ 1(x0).
Next assume that 3Pn has both properties rï_1(x0) and T2~2(x0). Then each fe
C(^n) has at xQ a Taylor derivative of order « — 2 and, moreover, one-sided Taylor
derivatives of order n — 1 (in an obvious sense). In the special case « = 2 the latter
result says that each fe C(^n) has one-sided derivatives at x0 as soon as &~n satisfies
property rj(x0). For a related result, see Peixoto [14].

(2.20) Let us briefly consider the important special case where ^„ is a linear
family. Here, J^ consists of all linear combinations

(2.21) f=CiUi+---+cnun

of a given set {uu ..., u„} of « linearly independent continuous functions on (a, b).
The condition (2.4) that #~n he an «-parameter family now can be expressed as the
condition that the determinant

U = det(Ul'""Un) = det («,(*,))
\Xi, ..., xnJ

he nonzero whenever xx < x2 < ■ ■ ■ < xn. By continuity, one may as well assume
that U> 0 whenever xx< ■ ■■ <xn.

In the present special case, L(x)=L(xu ..., xn; f\x) admits the explicit formula

(2.22) det i"1' • • " UnJ) = (f(x)-L(x))U.
\Xi, .. •, xn, XJ

Hence, the function/on (a, b) is ^-convex if and only if the determinant (2.22)
is nonnegative whenever xx < ■ ■ ■ < xn < x.

(2.23) Let us now impose the assumption that each u¡ has a continuous («- l)th
derivative u\n~1) and that, moreover,

(2.24) det (u? - »(x) ; /, j = 1,..., k) > 0,

for all A = l,..., «, (a<x<b). In particular, Ui(x)>0. Under this assumption, and
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provided ux,...,un and/have « derivatives, it follows from (2.22) and a result
of Pólya [15], see [16, p. 55], that/is J^-convex if and only if

(2.25) det (tt\-l\x)\ i, j = 1,..., « +1) ê 0

for all a < x < b ; here, un + x =/.
The differential inequality (2.25) generalizes the classical condition /" 2:0 for

(ordinary) convexity relative to the 2-parameter family of all linear functions
f(x) = cx+d.

Popoviciu [18] proved (under the assumption (2.24)) that every ^,-convex
function/has an absolutely continuous (n — 2)th derivative, hence, the derivative
yen - D^ exjsts almost everywhere. He proved this by showing that, locally, / has
a bounded (n-l)th divided difference, compare [11, p. 183].

For this same case, Karlin and Studden [7, p. 381, p. 462], established that an
^-convex function / does have everywhere a right continuous («—l)th right
derivative /(n_1)(x+0). Moreover, a specific expression 2y=o Oj(x)fw(x + 0)
(having (2.25) as its " derivative ") is shown to be nondecreasing. Similarly for the
left derivatives.

Actually, it would be largely sufficient to assume (2.24) only for k = n. For,
afterwards, one can always at least locally achieve the full property (2.24) by
replacing the w¡ by suitable linear combinations uf = 2/ ctfUf.

Let us now state some new results. Here, Ck denotes the class of real-valued
functions on (a, b) having everywhere a kth derivative. Further, ^n is again an
arbitrary (nonlinear) «-parameter family as in (2.4).

(2.26) Definition. Let k be a positive integer. We shall denote by Dk the
class of all/e Ck_x such that the derivative/*''"1' is of the form

(2.27) /« - »(*) = /« - »(*„) + f* m dt,       (a<x< b).
Jx0

Here, the function <f> on (a, b) is assumed to be locally bounded with at most
denumerably many discontinuities, all these of the first kind.

In particular, <j>(t — 0) and <£(? + 0) exist everywhere and, moreover, are equal
outside some finite or denumerable set D(<¡>). It follows that each/6 Dk has every-
where a left continuous left kth derivative fM(x—0) = (/>(x—0) and everywhere a
right continuous right kth derivative f{k\x+0)=<f>(x+0). Finally, the kth deriva-
tive /<fc)(x) exists at each point x outside the above denumerable set D(<f>).

(2.28) Definition. We shall say that the «-parameter family J*ñ satisfies condi-
tion C* if each fe !Fn has a continuous kth derivative, in such a way that the
function

(2.29) L<«( yx,..., yn\x) = (£) L(zi, -.., zn; yx,..., yn\x)

is jointly continuous in the « +1 variables yte R, xe (a, b), whenever zx< ■ • ■ <zn
are fixed.
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Actually, the latter property for one fixed set of z, is easily seen to imply the same
property for any other such set. In the linear case (2.21) condition C* is satisfied
as soon as each of the « functions ux has a continuous Ath derivative.

The proof of the following result will be given in §6. For a related result, see
Theorem 7.18.

(2.30) Theorem. Let l=k=n-l be a fixed integer. Let ß~n be an arbitrary
n-parameter family in (a, b) and suppose that ß~n satisfies the above condition C£.
Then we have for each ß^-convex function f on (a, b) that fe Dk; in particular, the
derivative f-k)(x) exists at all but denumerably many points.

3. Auxiliary results. Let « g 2 and let ß~n be an arbitrary «-parameter family
in (a, b). The following result due to Tornheim [22, p. 460], will turn out to be an
extremely useful result.

(3.1) Theorem. In its domain the function

L(xi,...,xn;yi,...,yn\x)

is jointly continuous in the 2«+1 variables xh yt and x.

Here, the domain may be defined by j>¡ e R and

a < Xi < ■ • ■ < xn < b,       a < x < b.

It follows that the continuity of the above F-function, regarded as a function of
x and xu...,xn (a<xt < ■ ■ ■ <xn<b, a<x<b), is at each point uniform with
respect to the "parameter" y = (yx,..., yn) as long as y is restricted to a bounded
subset of Rn. We further conclude that L is uniformly bounded as long as y is re-
stricted to a bounded set and xi + 1—x¡^8 (i=0, 1,...,«+1; x0 = a, xn+1=b),
a+S^x^b—8. Here, S denotes an arbitrary positive constant.

As an application of Theorem 3.1, we have the following result due to Morozov
[12, p. 83].

(3.2) Lemma. Letf andf2 be fixed distinct members ofß~n. Let k denote the number
of distinct zeros of f2 —f and let k' ¿k denote the number of those zeros near
which f2—fi does not change sign (a so-called loop root).

Then k + k' = n— 1. In particular, iff2—fi has «—1 zeros thenf2—fx must change
sign at each of these zeros.

Proof. Clearly, k^n-1 <co. Choose/3 eß~n such that:
(0 fs(x)=f2(x) at the k—k! ordinary zeros of f2—fu

(ii) f3(x)=f2(x)±e at the k! loop roots off2-f,
(iii) f3(x)=f2(x) at n-k further points.
By Theorem 3.1, choosing e>0 sufficiently small, we can make the maximum

deviation of/2 and/3 (in any compact interval) as small as we please. Choosing
moreover the ± signs according to the local sign of fx -f2, one attains a situation
where/3-/j has at least (k-k') + 2k' = k+k' zeros; hence, k+k' = n-l.
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(3.3) In the following Lemma 3.6, / denotes a fixed function on (a, b) while S
denotes a fixed set of n + 1 points x¡ ordered in such a way that a < xx < ■ ■ • < x„
<xn + 1<6. Further, for /'=1,...,«, «+1, put

(3.4) gi(x) = L(xx,..., x,_i, xi+1,..., xn+1; f\x)

and

(3.5) A = A(xi, • •., xn+1; /) =/(x¡)-gi(x().

(3.6) Lemma. If Dj = 0 for one value j then g¡(x)=g/x) and D{=0 for all i.
Suppose not. Then the A are of alternating sign

(3.7) sgn(A) = (-l)T, + 1-ii,       0-=l,...,«+l),

where e = sgn (Dn + X)= ±1. Moreover, if 1 á i <j g « +1 í«e« g¡(x)—g¡(x) / 0 outside
S in such a way that

,. „ sgn {g,(x)-g/x)} = e if x > xn+x,
(3.8)

= (-l)"-1£       if X < xx.

Proof. The first assertion is rather obvious. In the second case, if i<j then
gi—gj has the « — 1 zeroes

Xi, . . ., Xi_iJ  Xi + 1, . . ., X]-i\ Xj + X, ..., xn + 1

at which it must change sign, by Lemma 3.2. Further, g¡(x)—g/x) is equal to + D¡
at x=Xj and equal to —A at x=x¡. These remarks easily imply (3.7) and (3.8).
The following result is an immediate corollary.

(3.9) Lemma. Let T be any subset of (a, b) and let f be a function on T which is
convex in the sense that

(3.10) L(x1,...,xn;/|x)^/(x),

whenever Xj ̂  • • ■ ̂  xn ̂  x are all in T. Then

(3.11) (-l)'-iL/-(x)-L(x1,...,xn;/|x)] ^ 0

as soon as xx< • ■ ■ <xn andx are all in T. Here, i is chosen such that x¡Sx^x(+lt
(Oái'^«; x0 = a, xn + x = b).

The following Lemma extends a result of Moldovan [10, p. 53]. A certain special
case due to Popoviciu [17, p. 56] was used by Ciesielski [3] in proving Theorem 2.2.

(3.12) Lemma. Let xx<x2< ■ ■ ■ <xN be a fixed set of N>n points in (a, b).
Let f be any function on (a, b) such that

(3.13) L(xt, xi + x,..., xi+n-x; j\xi+n) s f(xi+n)

for all i= 1,2,..., N—n. Then

(3.14) L(x(l, xi2,..., x,n ; f\xm) ^ f(xm),

whenever 1 ̂  ix < i2 < ■ ■ ■ < in á m ^ N.
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Proof. Since (3.14) is obvious for m = in, we may assume that in<m. The proof
goes by induction with respect to M=m — it, where M^n. By (3.13), the assertion
does hold for M=n; thus, let M=n+l. There exists at least one index ii<s<m
with s £ {ii, i2,..., in; m}. Let the « +1 numbers xh,..., xin and xs he reordered
as xTl<xT2< ■ ■ ■ <xTn+1. Thus, rt—ii and rn+1 = m — l = ri + M— 1. By induction,

L(XT2, . ..,Xrn + i;f\xm)  ^ f(xm)
and

L(xTl,..., x,B;/K+x) ¿ /(XrB+1)-

In the notation of Lemma 3.6, replacing there {xi,..., xn+1} by {xri,..., xrn + 1},
we are given that gi(xm)^f(xm) and that i)n+1^0; here, xm>xTn+1. It must be
shown that gt(xm) úf(xm) where 2?¿j-¿n+l is chosen such that r,=s.

One may as well assume that g¡^gi in which case Dn+X >0 and e=l. Applying
(3.8) with i= 1 and x=xm, one obtains that

gj(xm) < gi(xm) ^ f(xm),

which is the desired result.

(3.15) Lemma. Let E and F be measurable subsets of R such that p(E) <oo,
where p denotes Lebesgue measure. Then both

<p\r) = p(rE n F)       and      </<r) = p((r + E) n F)

are continuous functions ofreR.

Proof. The proof that <j> is continuous is analogous to the proof in [5, p. 266],
of the well-known fact that <l> is continuous. Letting p(A, B)=p(AAB), one has

\p(crE n F)-p(rE n F)| ^ P(crE n F, rE n F) g |r|p(cF, F).

Using the regularity of p, it follows that the latter right-hand side tends to 0 as c
tends to 1.

(3.16) Lemma. Let B denote a measurable subset of R of positive measure, and
let {/-,} be a dense sequence in R. Then, for almost all he R, we have r¡h e B for at
least one index j andrk + h e Bfor at least one index k.

Proof. Let M > 0 he arbitrary, and let F denote the measurable set consisting of all
numbers A such that |A|<M and r¡h$B for each index j. Then the function
<p(r)=p(rEn B) satisfies j>(r,) = 0 for all/; hence, by Lemma 3.15, <£(/) = 0 for all
real numbers r; therefore p(E)=0. For, otherwise, take r such that re0 = b0 with
e0 ̂  0 and b0 as density points of F and B respectively. The proof of the second
assertion is completely analogous.

4. Proof of Theorem 2.7. Let the function / on (a, b) be weakly J^-convex,
that is, (2.3) holds whenever a<x0<x0+nh<b. Applying Lemma 3.12 with
Xi = x0 + i(h¡q), i=0, 1,..., N, it follows that

(4.1) f(x) = L(xi,...,xn;f\x)
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whenever the numbers xx< ■ ■ ■ <xn^x in (a, b) are rationally comparable in the
sense that, for a suitable number «,¿0,

x, = x — rji with rte Q,       (i = 1.«).

Here, Q stands for the field of rational numbers.
Next, applying Lemma 3.9, we have for each z=0, 1,..., « that

(4.2) r_iT + i-if(x) ^ f-i)n + i-<L(Xu ..., Xn- f\x)

whenever xx< ■ ■ ■ <xn and x are rationally comparable and, further, xi = x^xi+1;
(x0 = a and xn+x=b).

(4.3) Now assume also that / is bounded on some measurable set of positive
measure. Let E denote the (nonempty and closed) set of points x e (a, b) such that
each neighborhood of x contains a measurable subset of positive measure on which
/is bounded. Let further

a! = inf {x: x e E},   b' = sup {x: x e E},       (a ^ a' < b' g b).

Note that both a' and b' are accumulation points of E.
(4.4) We assert that in the interval (a', b) the function/is locally bounded below.

Let a' <x0<b he given and choose points z¡ e E such that a' < zx < ■ ■ ■ < zn < x0.
Choose 8>0 such that Zi>Zj_i+38, (z'=l,..., «+1; z0 = a, zn + 1 = x0). Next,
choose At c (z¡ — S, z¡ + 8) as a measurable set of positive measure on which / is
bounded, (i=l,...,»). Observe that, for xteAt (i=l,...,«), we always have
a + 28 < xx < x2 < ■ ■ ■ < xn < x0 and x¡ + x — x¡ > 8 (/= 1,...,«— 1). It follows from
Theorem 3.1 that, for x¡ restricted to At (so that/(x¡) = v¡ is bounded) and for x
restricted to a compact subinterval of (a, b), the function L(xx,..., xn; f\x) is
uniformly bounded in xl5..., xn and x.

In view of (4.1) and these remarks, we see that in proving that/is locally bounded
below at x0 it suffices to prove the following. Given a number x (in some neigh-
borhood of x0) there always exists a number «^0 such that, for each /= 1,..., «,
we have x — r(/z e At for at least one rational number r¡. In fact, almost all numbers
h have this property as follows from Lemma 3.16 applied with B = x — A{.

(4.5) We further assert that/is locally bounded above in the interval (a', b'),
(hence, it is locally bounded there). The proof is completely analogous to the proof
of (4.4), choosing zte E (/= 1,...,«) such that

a' < zx < • • • < z„_i < x0 < z„ < b'.

One further applies (4.2) with i=n— 1.
(4.6) Let a' < x0 < b. We assert that

(4.7) lim inf/(x) ^ f(x0) ;       lim sup/(x) Z f(x0).
ÏJÏ0 X \ Xo

First, choose the closed intervals Ax,..., An^x such that

a' < Ax <■ ■ ■ < An-X < min (x0, b'),
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(in an obvious notation). By (4.5),/is bounded on each interval At. Using Theorem
3.1, we see that for each e>0 there exists a number S>0, depending only on e
and x0, such that

(4.8) \L(xi,.. .,xn-i, x0;f\x)-f(x0)\ < e

as soon as xt e A{ (i= 1,...,«— 1) and \x—x0\ < 8. Further, since At is an interval,
we have for each number h = x—x0^0 that xi = x0 — rih is in At for some rational
number rt, (i= 1,...,« — 1). We are now in a position to apply (4.2) (with i=n if
x>x0, with i=n— 1 if x<x0) to the rationally comparable points #i< •■ • <xn-i
<xn = x0 and x = x0 + h. Using (4.8), one immediately obtains (4.7).

(4.9) Next we assert that, for a'<x0<b', we have

(4.10) lim sup/(x) í f(x0) ;       lim inff(x) Z f(x0).
X I XQ X f x0

The proof of (4.10) is completely analogous to the proof of (4.7). One chooses
closed intervals Au..., An_2 and An such that a'<Ai< ■ ■ ■ <An_1<x0<An.
Afterwards, one applies (4.2), with i—n—2 or i—n—l, to a set of rationally com-
parable points x=x0 + h, xi = x0 — riheAi when i+n — l, xn-i = x0.

(4.11) End of proof. By the second inequality (4.7), / is bounded above in
some left neighborhood of x0 as soon as a' <x0< b. By (4.4), / is also bounded
below there. This proves that b' = b. In a similar way, since f(x) = (—l)nf(—x) is
convex with respect to the «-parameter family ßn = {g:geßrv} in the interval
( — b, —a), we also have b"'=.b, that is, a' = a. We can now conclude from (4.7)
and (4.10) that/is continuous in the entire interval (a', b') = (a, b).

(4.12) Remark. In Theorem 2.7 and in its proof one could replace the property
of A being "measurable and of positive measure" by the property of A being
"a nonempty open set less some set of first category". Thus, it would be sufficient
for the continuity of the weakly .^-convex function / that / be bounded on a
Borel measurable set of second category, compare [8, p. 211]. An analogous
modification of Theorem 2.2 was also indicated by Ciesielski [3].

5. Proof of Theorem 2.9. Let / be an arbitrary weakly J^-convex function on
(a, b); no further assumptions will be made. Let x0 and hx,..., hk be given num-
bers. Without loss of generality we may take the h¡ as being positive.

Let Q denote the field of rational numbers, so that Qk is the collection of all
A-tuples r = (/i, ■ ■ -,rk) of rational numbers. Define

(5.1) g(r) = f(x0 + rxhi +■■■+ rkhk)

when r eE(~\ Qk. Here, F denotes the open strip in Rk consisting of all A-tuples
r=(rx,..., rk) of real numbers such that a<xQ + ^f}=i r¡h}<b. We must prove that
g can be uniquely extended to a continuous function on all of F. Since the domain
F n Qk of g is dense in F, it suffices to prove that g is uniformly continuous on
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K n Qk whenever K is a compact subset of Ê. In fact, it suffices that for any
v=l,...,k,for any subset K of E of the form

(5.2) K = {r = (rlt..., rk): a, g r, S /S, (/ = 1,..., k)},

and for any number e > 0, there exists a constant 8 > 0 (depending on v, K, and e),
such that

(5.3) \g(r+Xvev)-g(r)\ < e,

whenever both r and r+Xvev are in Kc\ Qk and |AV| < 8. Here, ev e öfc has com-
ponents Sj 0'= 1,..., k), while Av is a scalar, Av e g.

(5.4) We shall first establish that g (as defined by (5.1)) is locally bounded on its
domain F n Qk. It suffices to prove that g is bounded on K n Qk whenever K
is a subset of E of the form (5.2). The proof goes by induction with respect to k.
Thus, let /c^l and suppose that assertion (5.4) is true when k is replaced by a
smaller positive integer.

Let Pi (z'= 1.n) be fixed rational numbers such that ak ̂  px < p2 < ■ ■ ■ < pn Sßk.
By induction, (replacing x0 by x0 + pA), the quantity

(5.5) v¡ = g(rx, ...,rk.x, Pi)

is bounded as long as (rx,..., rfc_1; p¡) e K n Qk.
Next, we apply (4.2) with xlf...,xn and x replaced by

fc-i
*i = ^o+ 2 rihi + Pihk,       (i = 1,..., «)

and
fc-i

x = Xo+ 2 rjhj + rkhk,
1=1

respectively. Here /-j,..., rk are taken as rational numbers such that

r = (rx, ...,rk)eK.

Observe that X!<x2< ■ ■ • <xn and that the «+1 numbers xx,...,xn and x are
rationally comparable. In this way, (4.2) and (5.1) yield that

(5.6) (-1)»+1-'SÍ» Ú (-lT + i-'L(xx,..., xn; yx,. ..,yn\x)

whenever reKn Qk. Here, the integer i is to be chosen such that O^z'^« and
PiúrkÚPi +1, (po = «k and />„ + i=ßk).

As to the right-hand side of (5.6), the variables x and xt are restricted to a com-
pact subinterval of (a, b) while the quantities yt (as defined by (5.5)) are uniformly
bounded. Moreover, |xi+1-xi| = |/)j+1-pi|«fc>8 (z'=l,..., k) for some positive
contant 8. It follows from Theorem 3.1 that the right-hand side of (5.6) is uniformly
bounded for each fixed choice of the set of rational numbers {pu ...,/>„} in [ak, ßk].
Varying this set, one easily obtains from (5.6) that g is bounded on K n Qk.
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(5.7) In establishing the assertion (5.3) we shall take v = k for convenience.
Let K be the compact subinterval of F defined by (5.2). Let 77 denote the projection

(5.8) n(r) = x0+2 rjhj
i = x

of F onto (a, b). Let [a',b'] denote the 7r-projection of K, a<d<b'<b. Let
l<i<¡n be a fixed integer and choose numbers zu.. .,zt-i, zi+1,.. .,z„ such that

a < Zi < ■ ■ ■ < Zi-i < a' < V < zl+i < • • • < z„ < b.

Take r¡ > 0 so small that the mutual distances between the latter « + 3 numbers are
all = 3V.

For each point r e K(~\ Qk, choose A, = Xt(r) e Q in some fixed manner such that

|7r(r)+ Xjhk-zj\ < r?,       (/= 1,...,«;/ # /')•

Clearly, each X¡(r) is bounded.
Consider a point reKr\ Qk and define xi = xl(r)=Tr(r). For /=1,...,«, j+i,

define xj = -n(r) + Xj(r)hk. We want to apply (4.2) with these x} and with x=ir(r)
+ Xhk (X e Q) so as to prove (5.3) with v = k.

Observe that a'^x^b', while Ix,-^ <r¡ whenjV/. Consequently, we have

(5.9) a < Xi < ■ • • < x^i < a' < Xi < b' < xi + i < • ■ ■ < xn < b,

in such a way that \xj + i—x}\ >7ifor/=0, 1,..., «; (x0 = a and xn + i = b). It follows
from assertion (5.4) that the quantity

y; = f(Xj(r)) = g(r+Xj(r)ek),

(/= 1,..., «; A¡(r)=0) is a bounded function of r e K n Qk. Here, we did use the
fact that Xj(r) itself is bounded, that K is compact, and that a+f]<Xj(r)<b — r¡
for all /.

It follows from these remarks, together with Theorem 3.1, that the continuity
in x of the function

Lr(x) = L(xi(r),. ..,xn(r);f\x)

is uniform in both x and r as long as a' ^x^b' and r e KC\ Qk. Hence, letting
Lf(s)=Lr(rr(s)), we have that the continuity in í of the function L*(s) on F is uniform
in both r and j as long as r eKn Qk and seK. Observing that

L*(r) = Lr(Xi(r)) = yt = g(r),

we conclude that, for each number e > 0, there exists a number 8 > 0 (depending
only on e and K) such that

(5.10) \L*(s)-g(r)\ < e   when   r,seKnQk   and    \r-s\ < 8.

We are now in a position to use (4.2) with xx = xx(r),..., xn = xn(r) as above and
with

x = Tr(r+Xek) = x((r)+Xhk.
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In particular, xlt..., xn and x are rationally comparable. Moreover, as long as
r + Xeke K we have either x(^x<x(+1 or xi_1<x^xi depending on y = sgn (A).
We conclude from (4.2) that

og(r + Xek) = af(Xi(r) + Xhk) ̂  <jLr(Xi(r) + Xhk)

= oL*(r+Xek) ^ ag(r) + e,

provided both r and r + Xek are in K n Qk, and further A is a rational number
satisfying |A|<8. Here, we used (5.10). Further, a is defined by CT=(-l)n + 1-|+y
with y = sgn (A). Since i can be both even and odd, (5.11) immediately yields the
desired uniform continuity (5.3).

(5.12) Remark. Observe that in the above proof we did not use (2.3) in its full
strength, but only for values «>0 of the form h = rh¡ for some re Q and some
j=l,...,k.

Theorem 2.9 and its proof would remain valid if throughout the ring Q of rational
numbers is replaced by the ring Q' of rational numbers of the form m-2~k with m
and k as integers. Accordingly, (2.3) would only be needed for h = 2~k (k=\,
2,...).

6. Strongly convex functions. Let ^n be a given «-parameter family on (a, b).
A function/on (a, b) is said to be ^-convex (or strongly J^-convex) when (2.12)
holds for each choice of the numbers xx < ■ ■ ■ < xn +1 in (a, b). If so then, by Lemma
3.9, we even have that

(6.1) (-l)n+1-fAx) Ú (-ir+1-^x1,...,xn;f\x),

whenever a<Xi< ■ ■ ■ <xn<b. Here, O^z'^n is chosen such that xi = x^xi+1,
(x0 = a and xn+x = b).

As was observed by Moldovan [10, p. 63], an ^-convex function/is always
continuous; (to prove continuity at x0 one simply applies (6.1) and Theorem 3.1
with xn=x0 or xn_j = x0). The converse part of Lemma 2.13 can be seen as follows.

Let the function / on (a, b) be continuous and weakly ^-convex. By Theorem
3.1, the left-hand side of (2.12) is a jointly continuous function of xx,..., xn and
xn+1 as long as Xj< • ■ ■ <xn. By (4.1), we have (2.12) as soon as the numbers
x1<--.<xn+1 are rationally comparable, hence, also without this restriction;
that is,/is (strongly) J^-convex.

The main purpose of the present section is to prove Theorem 2.30. In the proof
we shall make essential use of the following Theorem 6.2, which is a special case
of a result of Butzer and Kozakiewicz [2]. Here, V„ denotes the operator defined
by

(v\g)(x) = [g(x+h)-g(x-h)]l(2h).

(6.2) Theorem. Let k be a fixed positive integer and let f be a function defined on
the open subinterval J of R such that V£/(x) is uniformly bounded as long as X is
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restricted to a compact subinterval of J and A is sufficiently small. Suppose further
that the following limit exists almost everywhere in J.

(6.3) lim Vkf(x) = <p(x).
h 10

Then f admits throughout J a (k—l)th derivative and, moreover, this derivative is
given by

(6.4) /<"- "(x) = fk - "(xo) + f* <b(t) dt,      for all xeJ.
Jxo

In the sequel, / will denote a fixed .^-convex function on (a, b). Further, Í2
will denote the collection of all ordered «-tuples X=(xx, ..., xn) consisting of n
distinct numbers in (a, b), Xi < x2 < ■ ■ ■ < xn. The /th element x{ of X will also be
denoted as xt(X). Let further

(6.5) L(X\x) = L(xi,..., xn;f\x)       for Xeù,xe (a, b).

More precisely, L(X\ ■) denotes the unique member geß~n such that for the points
Xi=Xi(X) one ha.sf(xi)=g(xi), i- 1,..., «.

Let zx < ■ ■ ■ < zn he fixed numbers in (a, b). We shall repeatedly make use of the
obvious relation

(6.6) L(X\y) = L(zx, ...,zn; yx,..., yn\y),

where yt=L(X\zt), i= 1,..., «. Observe that, by Theorem 3.1, the right-hand side
of (6.6) is a continuous function of the « +1 variables yx,..., yn and y. Similarly,
since/is continuous, the function F(A"|;c) on Qx(a, b) is jointly continuous in
X and x when O is given the natural topology it inherits when regarded as a subset
of (a, b)n.

In Q, we shall further employ the partial ordering defined by

(6.7) X' = X"       iff      xt(X') = xt(X")       for i = 1,...,«.

We write X = x if xt(X) ^ x for all /". We write X<x if x,(X)<x for all /. We
write X-> x if each x¡(X) tends to x, and so on. The following lemma is a crucial
step in the proof.

(6.8) Lemma. Let z e (a, b) and X', X" e Q. Then

(6.9) L(X'\z) ¿L(X"\z) ¿f(z)       whenever X' = X" < z.

Proof. The second inequality follows from (6.1) with i=n. Next, let X' - X" <z.
Put Xi(X')=x¡ and x¡(X")=x'¡; hence x\^x", (i= 1,..., «). Consider further the
«-tuples

Xt = {x'x,. ..,x[, x'Ui, ...,*„} e Q,       (i = 0, 1,..., «).

Clearly, X' = Xn<Xn.x= ■ ■ ■ =X0 = X"; thus it suffices to prove that L(Xi\z)
SL(Xi-x\z) for /=!,..., n. Let i be fixed.
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In the notation of Lemma 3.6, replacing

(x1;..., X(_i, Xj, x¡, xi+1,..., xn}       by {Xi,..., xn+1},

we know that A + i^O (by (6.1) with i=n) and we must prove that gi+x(z)^gi(z),
where z>xn+x. But this is an immediate consequence of Lemma 3.6, in particular
of (3.8) if A+i>0.

(6.10) The following result holds for every «-parameter family J^. Though we
shall not use it in the proof of Theorem 2.30, it does stress the central idea behind
the proof. Moreover, it has an independent interest of its own. One can prove
analogous results for the case that X=(xx,..., xn) does not converge to a single
point but to an «-tuple Xo = (x°,..., x°) having one or several groups of equal
elements x°.

Recall that L(X\x) is defined by (6.5), where/is a_/zxeß? .^-convex function on
(a, b).

(6.11) Theorem. To each xe(a,b) there correspond unique members gx(-)
andg^() of J^, such that

(6.12) lim L(X\y) = gx(y)      and       lim L(X\y) = g¿(y)

holds for each y e (a, b). Moreover, there exists a finite or denumerable set D in
(a, b) such that

(6.13) lim L(X\y) = gx(y)      for each x $ D and each y,
X->x

(x, y e (a, b)). In particular, g~ =g+ for each x $ D.

(6.14) For the moment, let a<z<b be fixed and restrict x to the interval a<x<z.
Consider the functions

(6.15) fe(x) = sup{L(X\z): Iei),ISr}
and

(6.16) fe(x) = inf{L(Z|z): Xe Cl, x Ú X < z}.

Each of these functions is obviously nondecreasing so that ^""(x+0) and <j>Z(x—0)
exist. Since L(X\z) is a continuous function of X, we have that <?>¿"(x) = ^¿"(x—0)
is continuous to the left, similarly, ^2+(x) = ^2+(x+0). It follows from Lemma 6.8
that

(6.17) lim L(A'lz) = fe(x)       and        lim L(X\z) = ^+(x).
Xf X X\x

It also follows from Lemma 6.8 that

•fe"(x) Ú H(x) úf(z)       and       fê (x)-i fe (y)       when x < y,
(choose Xe ù such that x< X<y). Letting y j x or x f y these in turn yield that

¿í(x-0) S fe(x) Ú tf(x) Ú ̂ -(x+0).
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Consequently, the set

(6.18) Dz = {x: a < x < z, &•(*) Í #(*)}

is finite or denumerable. In fact, Dz is precisely the set of points x e (a, z) where the
nondecreasing functions <f>z and <j>z make a jump. Moreover, <f>z(x) = <f>£(x—0)
everywhere; similarly, <f>z(x)=<j>z(x+0). Finally, from Lemma 6.8, (6.15), (6.16),
and (6.18), we conclude that

(6.19) lim L(X\z) = 4>z(x)       whenever x £ Dz, x < z.
X-.X

(6.20) Proof of Theorem 6.11. By (6.17), the limits (6.12) exist when x<y, in
which case, g*(y)=<&7(x) and gx~(y) = <f>ï(x). Applying (6.6), with a<zx<--
<zn<b fixed, and putting Z)2l u • • • u D2n = D one easily obtains all the stated
assertions as long as x<zx. But note that zx can be arbitrarily close to b.

(6.21) Proof of Theorem 2.30. We now assume that the «-parameter family
ß~n satisfies condition C* described in (2.28), with k as an integer satisfying
l^k = n-l.

Let a<zx< ■ ■ ■ <zn<b he arbitrary but fixed. It follows from (2.29) and (6.6)
that the derivative

L«XX\y) = (£)kL(xx,...,xn;f\y)

(with X={xx,..., xn}) can be represented as a jointly continuous function O of y
and the « quantities y,=L(X\zi). That is,

(6.22) Vk\X\y) = <í>(L(X\zx),..., L(X\zn); y),

for all X e Q. and all y e (a, b). Here, <1> is a continuous function on Rn x (a, b).
Let / be a fixed compact subinterval of (a, b) and choose the above points zt

to the right of I. As long as Zis in /, each quantity L(X\zt) is bounded; this follows
from (6.9) with X' to the left of land z = zx. Hence, by (6.22), there exists a constant
M (depending on / only) such that

(6.23) \Lm(X\y)\ í M,

as long as X and y are in /. As a further consequence, we have that the right-hand
side of (6.22) is uniformly continuous jointly in terms of the n+ 1 quantities L(X\z¡)
and v, as long as X and y are in /. We now conclude, from (6.19) and (6.22), that

(6.24) lim    Lm(X\y) = <j>(x)       whenever x i D, x < zx.
X-*x;y-*x

Here,

(6.25) <i(x) = ®(K(x),..., <j>l(x) ; x),
while D=DZl u • • • u DZn is a finite or denumerable set; (to begin with one obtains
(6.24) only for points x interior to /; but afterwards one can vary the interval /).
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From the known properties of the functions <j> and fet it follows that the function </>
defined by (6.25) is locally bounded and has only discontinuities of the first kind
in the interval (a, zx). Moreover, <f>(x) is continuous at each point x £ D with
x<zx.

For the moment, let x e (a, b) and « > 0 be fixed. Let Xh = {xx,..., xn} denote the
n-tuple defined by

x, = x-kh + (i-l)(2h),       (i = 1,...,«).

Since L(Xh\Xi)=f(Xi) for z'= 1,..., « and n^k +1, we have

(V£/)(x) = (2A)-**2 (-lr1-^. * J/txO

= v-khL(Xh\x) = Uk\Xh\yh),

for some number yh satisfying |yh — x\ <kh.
In this way we obtain from (6.23) that V£/(x) is uniformly bounded as long as

xe I and « is sufficiently small. Moreover, (6.24) yields that

(6.26) lim (V£/)(x) = <f>(x)       whenever x $ D, x < zx.
h J, 0

We now conclude from Theorem 6.2 that/admits a (k - l)th derivative of the form
(6.4) throughout (a, zx). From the above properties of </>, and since zx is arbitrary,
this proves that/belongs to the class Dk described in (2.26).

(6.27) The above results (2.30), (6.8), and (6.11) concern the analytic properties
of a function which is known to be convex relative to a given «-parameter family
of functions. The referee kindly pointed out that there exist interesting parallels
between these analytic results and certain geometric results due to J. Haller, O.
Haupt, A. Kneser, N. Lane, P. Scherk and K. Singh, as reported in [23, p. 184;
198 ff. ; 230; 399 ff.]. Here, one is given an «-parameter family &n of planar curves
and further a curve B with the property that each member of J^ intersects B in at
most « points. One is interested, among other things, in establishing the existence
or uniqueness of curves in J^ which are tangent curves or higher order osculating
curves to B.

7. Miscellaneous results. We know from Theorem 2.2 that a function / on
(a, b) is continuous if

(7.1) Alf(x) ^ 0       fora<x<¿>-««

holds for each « > 0 and, moreover,/is bounded on some measurable set of positive
measure. By Theorem 2.7, the analogous result holds when (7.1) is replaced by

(7.2) L(x, x + h,..., x+(n-l)h; f\x+nh) £f(x+nh),

with L as the interpolating function relative to a given «-parameter family 3Fn
in (a, b).
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The question arises in how far (7.1) or (7.2) can be weakened if/is known to be
measurable. The following is one result in this direction.

(7.3) Theorem. Let f be a given measurable function on (a, b). Let {mk} be a
given increasing sequence of integers and suppose that (7.2) holds for each h = 2~m"
(k = 1, 2,... ; a<x<b — nh). Then there exists a (continuous) ^-convex function g
such that f(x)—g(x) almost everywhere.

(7.4) Remark. Actually, by Lemma 3.12, (7.2) for all « = 2~m* is equivalent
to (7.2) for all h = 2~k. It is easy to describe all the functions/satisfying (7.2) for
each « = 2 " k (k = 1, 2,... ). Namely, let Q' denote the set of all binary numbers
r=p-2"Q with p and q as integers. Within each coset x+ Q', choose/equal to a
(continuous) J^-convex function g (for instance, g e J^), possibly using different
functions g in different cosets; see (5.12).

One can easily attain that the function/thus constructed is locally bounded with-
out being measurable, hence, in Theorem 7.3 the assumption that/be measurable
is essential. By choosing the same function g for each coset x+Q' disjoint from a
given null set, one sees that the assertion of Theorem 7.3 cannot be strengthened.
On the other hand (by an obvious modification of the proof below) it would suffice
to require the condition (7.2) of Theorem 7.3 only for almost all a<x<b—nh
(and each/z = 2-"•*).

(7.5) Proof of Theorem 7.3. It suffices to prove the existence of a continuous
function g equal to / almost everywhere. For, afterwards, g is easily seen to be
J^-convex, compare the proof of Lemma 2.13 at the beginning of §6.

Since / is measurable, each subinterval of (a, b) contains a measurable set A
of positive measure on which/is bounded. By Lemma 3.16, we have for almost all
x that x — r e A for some r e Q'. The usual reasoning, as in (4.4) and (4.5), now
yields the existence of a null set N (that is, p(N) = 0) such that / is bounded on
each set

Ie = {x: a + c è x ^ b-c, x$N},       (c > 0).

One may assume that N+Q' = N.
(7.6) Using the above boundedness, a standard reasoning (see (4.6) and (4.9))

yields that
lim   f(x+r)=f(x)       for each x^A^,

r-»0;reQ'

the limit holding uniformly when x is restricted to a set Is (e > 0).
(7.7) Next, consider the functions

f'(x) = ess lim inff(y);      f"(x) = ess lim sup/(y).
y — x y->x

It is well known and easily shown thatf'(x)úf(x)úf"(x) for almost all x e (a, b).
Moreover, the function/' is lower semicontinuous while/" is upper semicontinuous.
In fact, these assertions would hold for an arbitrary function/ measurable or not.
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It suffices to prove that f'(x) =f"(x) for each xe(a,b). For, then/'=/"=g
is a continuous function equal to/almost everywhere.

Let x0 e (a, b) be fixed, and choose e>0 such that a + e<x0<b — e. Let -q>0 be
arbitrary but fixed and choose 8 = 8(s, r¡) as a positive constant such that

\f(x+r)-f(x)\ < -q       whenever xele, re Q', \r\ < 8.

This is possible by (7.6).
Let U be any neighborhood of x0. Since fis measurable there exists a measurable

subset A of U of positive measure such that f(x)>f"(x0)-r) throughout A. One
may assume that A^IE and further that all points of A are density points of A.

Let B denote the set of points y such that y=x+r for some xe A and some
r e Q' with |r| < 8. It follows that

Ay) > f"(x0) - 2r¡       for each y e B.

Let B' denote the complement of B. By the definition of B, we have p(B' n (A + r))
=0 for each re Q' with |r| < 8, hence (by Lemma 3.15), for each real number r
with |r| = 8. It follows that each density point of B' is at a distance = 8 from each
(density) point of A. Therefore, almost all points y, within a distance S from the
set A, are in B and thus satisfy f(y)>f"(x0) — 2r¡. Since S>0 is fixed and A^U
can be arbitrarily close to x0, we conclude that f'(x0)>f"(x0) — 2?j. But 77>0 is
arbitrary, thus, f'(x0) =f"(xQ).

(7.8) Let us now consider a somewhat different generalization of the relation

(7.9) Aif(x) = 2 (- tr~'(H)ñ*+M = 0,
i=o \JI

namely, the relation
n

(7.10) 2 aiAx+Tjf) ^ 0      for each y e B.
y = o

Here, T0, Tx,...,Tn denote given linear transformations in/?-dimensional Euclidean
space Rp. We shall assume that T¡ — Tk is nonsingular whenever/#k; for example,
Fjy=j-y for each y e Rp. Further, a0, ax,...,an denote given real numbers not
all zero.

A (real-valued) function /is said to satisfy (7.10) in an open subset U of Rp
if it is defined on U and, moreover, the inequality (7.10) holds for each pair x e Rp,
yeB such that x+T,y e U, (j=0, 1,..., ri).

Here, B denotes a subset of Rp, usually close to the origin. It would in general
be a serious loss of generality to take F as a full neighborhood of 0. For instance,
if n is odd and (7.9) had to hold for all small A then it would have to hold with the
equality sign for all A.

We shall henceforth also assume that

(7.11) a0 + ax-\-+an = 0,
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so that the a¡ have both signs. Namely, (7.11) is at least a necessary condition in
order that each bounded solution of (7.10) be measurable or that each measurable
solution be continuous. For example, if 2 a, = 1 (say) then, for any bounded func-
tion g and any constant c^(2 \a¡\) sup \g\, the function f(x) = c+g(x) would
satisfy (7.10), (irrespective of the particular structure of (7.10)). On the other
hand, (7.11) is not quite sufficient for a measurable solution to be continuous,
compare (7.18).

A measurable subset B of R" will be said to be of positive upper density at 0
if there exists a positive constant e>0 and a sequence {8¡} of positive numbers with
8¡ j 0, such that, for all i,

{yeB:\y\< 8f} ä e(St)*.

As an important example, take B as a nonempty open cone with vertex 0. The
following theorem generalizes a result of Kurepa [9, p. 16].

(7.12) Theorem. Let f satisfy (1'.10) in the open set t/<=/?p; with B as a measurable
subset of R" having a positive upper density at 0. Suppose further that f is bounded
on a measurable subset A of U of positive measure. Then f is bounded on some non-
empty open set V<^ U such that V contains almost all points of A.

Moreover, if fis also measurable on U then it is locally bounded everywhere in U.

Proof. Put/(x) = a;/(x) 0 = 0, 1,..., «), thus,

(7.13) 2/(x + F;y)^0
1 = 0

if ye B and x+F,y e U (y'=0, 1,..., «). Here, each function/ is bounded on A.
Since üj can have both signs it suffices to show (as to the first assertion) that each
f¡ is bounded below on an open set containing almost all points of A ; (similarly
for the second assertion). For definiteness, let us do this for the function/,. Intro-
ducing x' = x + T0y, one may assume that T0 = 0. One may also assume that p(B) <oo.

For each xe U, consider the points xj = Tj~1x (j—1,...,«) and the sets

Cx = H Tf-\A-x) = f) (F-M-x;);       Bx = B n Cx.
1=1 i=i

We claim that the set
V = {xeU: p(Bx) > 0}

has all the required properties. In the first place, p(Bx) is a continuous function
of xx,..., x„ and hence of x, so that V is an open subset of U. Further, let x e V
so that Bx is nonempty; if y e Bx then yeB and x+T¡y e A (j= 1,..., «); applying
(7.13) it follows that/, is bounded below on V.

Finally, we have for almost all x e A that x¡ — Tj 1x is a density point of the set
Tj~1A (j= 1,..., «), so that 0 is a density point of Cx. But this in turn implies that
xe V since x e A <= U and B has a positive upper density at 0.
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(7.14) Let us now assume that/is measurable. (Conjecture: this assumption is
automatically satisfied.) We must show that /0 is locally bounded below. We
may assume that T0 = 0 and that U is bounded. Let x0 e U be given, and let 28
denote its distance to the boundary of U. Let W={x: \x — x0\ <8}.

Put S min, \\T,-\\-1 = e and B£ = {yeB: \y\<e}. If y e Be then \T,-y\<8, hence,
x + T¡y e U for each xeW, (/= 1,..., «). There further exists a measurable set
A<=U such that/is bounded on A while the complement A' of A in U satisfies

p(A')2\à*(Tj)\-1 < p(B*).

In order to prove that/0 is bounded below on W it suffices to show, by (7.13)
with To = 0, that for each x e IF there exists y e B£ such that x + T,y e A (j= 1,..., «).
If not then for some xeW and for each y e Be we have x+T}yeA' for some
/= 1,..., «. This is easily seen to be impossible.

The following result is concerned with the "classical" case (7.1).

(7.15) Theorem. Let U be an open connected subset of R". Let f be a function
on U which is bounded on some measurable subset AofU of positive measure.

Let B be a nonempty open cone in Rp with vertex 0 and suppose that A%f(x) = 0
whenever heB and [x, x + nh]^U; here, «2:2. Then the function f is continuous
throughout U.

Proof. It suffices to consider the case that U is convex. Let F denote the set of
points x0e U at which/is locally bounded. In view of Theorem 7.12, applied to
(7.9), we have that F is a nonempty open set.

On any straight segment S in U having a direction A e B the function/is («— 1)-
convex allowing us to employ the known one-dimensional results. In particular,
we have from Theorem 2.2 that/is continuous on S as soon as S n F is nonempty.

We shall first prove that (E+B)n U<=E. Let x0e E and he B he such that
x0 + h e U; we must prove that/is locally bounded at x0 + h. Let F be a convex
neighborhood of x0 on which / is bounded and consider « equidistant hyperplanes
Ht perpendicular to A which meet V. A line segment S in the direction A and
sufficiently close to x0 will meet Hi in a point xt (i=l,..., «). Considering the
usual (one-dimensional) interpolating polynomial F based on the set {xx,..., xn},
it follows from (6.1) with i=n that /is locally bounded below at x0 + h, compare
(4.4). In proving that / is locally bounded above at x0 + A, consider the point
xn+x=x0 + ( 1 + e)h e U (for e > 0 sufficiently small) and draw straight lines through
xn+x in directions A' sufficiently close to A so that they will meet Ht in a point
xteV, (i=l,.. .,n). Considering the interpolating polynomial based on the
set {xx,..., *„_!, xn+x}, it follows from (6.1) with /=«— 1 that/is locally bounded
above at x0+h, compare (4.5). This proves our assertion.

In a similar way, using (6.1) with /=0 and /'= 1, one obtains that (E-B) n t/<=F.
Any pair of points x0, y0 in U can be connected by a chain {xk, k= 1,..., N;
*jv = v0} in U such that xk + x-xke Bkj (-B) for A = 0, l,...,N— 1. It follows
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that E= U. In other words,/is locally bounded throughout U, hence, by Theorem
2.2,/is continuous along any straight line segment S in a direction he B.

The usual proof of such continuity, see (4.6) and (4.9), applied to S even yields
uniform continuity of / along L, at least locally near x0. More precisely, given
x0 e U there exists a convex neighborhood V of x0, F<= U, such that, for each
e>0 there exists a positive number 8>0 such that \f(x+h)—f(x)\ <e as soon as
x e V, h e B u (-B), \h\ < 8. Since B is an open cone this in turn easily implies
that/is continuous at x0.

(7.16) Assumption. From now on we shall restrict ourselves to the casep=l.
Let a0,..., an be given nonzero numbers satisfying (7.11). Let further F0 = 0<F1
< ■ ■ ■ <Tn. Let B be a given measurable subset of [0, +oo) having a positive
density at 0. Finally, let / denote a real-valued function on the open interval
U=(a, b) in R such that (7.10) holds whenever yeB and a<x<b-Tny.

By the index k of the relation (7.10) we shall mean the integer /c^0 such that
the numbers

(7.17) br=  2 a,T},       (r = 0, 1,...),
1 = 0

satisfy or=0 for O^rgk and bk+x^0. In other words, 2"=0 ßyg(x + F,v)=0
holds for each polynomial of degree :£ k but not for all polynomials of degree
k+1. Note that fcá»-l.

We shall also use the numbers defined by

Aj = a,+ai+1+- • • +an,      (j = 0, 1,..., «).

Thus A0 = 0, Ax= -a0^0, /ln=an#0.

(7.18) Theorem. Assume (7.16) and further that fis measurable.
(I) lfk = 0 then fis monotonie.

(II) If f has at least one point of discontinuity then k = 0 and either A¡ ä 0
(j = 1,..., n) or AjSO (J= 1,..., n). In all other cases f is continuous throughout
(a, b).

(Ill) If k~Zl then the derivative f(k~^ exists everywhere and admits the repre-
sentation

(7.19) /*"»(*) =/<k"1>(x0)+ f m dt,       (all a<x<b),
Jxo

with e<f> as a nondecreasing function. Here, e = sgn (bk+x)= ±1.

Observe that (III) implies the existence everywhere of a left continuous left
derivative fik)(x-0)=<f>(x-0) and a right continuous right derivative/(fc)(x+0)
=(j>(x+0). Moreover, /<w(x) exists except at the denumerably many points where
j> makes a jump. It is also an easy consequence of (7.19) that sf is a continuous
(k+ l)-convex function, compare (2.1).
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(7.20) Proof of Theorem 7.18. It follows from the second assertion of Theorem
7.12 that/is locally bounded. Hence, / defines a distribution S in the sense of
Schwartz [21].

Let C° denote the collection of all infinitely differerentiable functions \\> on
(a, b) having a compact support K^ <=■ (a, b). Let </ieCm and let y > 0 he so small
that K^,^(a, b-Tny). For such y define

G Ay) - 2 a* \Ax + Tiy)Kb(x)dx = 2 a, [f(z)4>(z-T,y)dz.
i = o      J j=o      J

Clearly, near 0 the function G#(y) is infinitely differentiable with

g<;>(0) = br(-iy jf(z)r\z)dz = fcs°¥,

compare (7.17). Since br=0 for O^r^k, bk+x^0 this implies that

(7.21) G¿y) ~ cyk+1S« + iy       for y j 0,

where c=bk+i/(k+ 1)!, sgn (c) = sgn (bk + x) = e.
Now consider ibeC" with ¡/< = 0. Multiplying (7.10) by </j and integrating, we

have that 6>(v)^0 when y e B, K*<=(a,b-Tny), (y>0). It follows from (7.21)
that

eS(k+1)<f> ^ 0       whenever the C^, tb = 0.

We now conclude, [21, p. 28, p. 54], that eS'-k + 1) behaves as a nonnegative measure,
while eSm behaves as a nondecreasing <f>. It follows [21, p. 52], that eS behaves as
a function of the form

(7.22) g(x) = P(x)+ i" dtx Í'1 dt2 ■ ■ ■ Ç*'1 <t>(tk) dtk.
J XQ J Xq Jxq

Here, P denotes a unique polynomial of degree = A — 1 (depending on x0). For
definiteness, let e=l, that is, bk+x>0. We now have that there exists a null set N
such set

(7.23) f(x) = g(x)       if x i N, a < x < b.

If A = 0 theng = (f> is nondecreasing and g(x-O)^g(x)^g(x + 0). If A^l then g
is continuous.

Let a<x<b be fixed. Choose 0£/^« fixed for the moment. For almost all
v e B we have that x+(Tj — T¡)y i N for all j^i. For such values y, using (7.10)
(with x replaced by x—Txy) and (7.23), we have

(7.24) 0 è 2 "lAx+W-Tdy) =    ¿    aig(x+(Tj-Ti)y) + aJ(x).
i = 0 j = 0;j*i
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In other words, given x and i, (7.24) holds for almost all y e B (sufficiently close
to 0). Letting y j 0, this gives

(7.25) Ai[g(x+0)-g(x-0)] + ai[f(x)-g(x+0)] ^ 0,

(z'=0, 1,..., «). If g is continuous at x we conclude from (7.25) that/(x)=g(x),
since öj can have both signs. This yields assertion (III), and further (I) if g is
continuous everywhere.

Consider now the case that k=0 and that

O = {x:g(x-0) <g(x+0)}

is nonempty. Recall that f(x)=g(x) if x<£ D. Applying (7.24) for points x $ D,
then letting x ! x0, and afterwards letting y j 0 (y e B), one obtains that, for each
point x0 e A

^[g(x0+0)-g(x0-0)] ^ 0,       (i = 0,..., «),

hence, ^¡ä0 (z'=0,..., «). Thus a0= — Ax<0 and an=^4n>0. Applying (7.25)
with z'=0 and z"=«, we find that g(x-0)S/(x)gg(x+0) for all x, so that /is
monotonie.

By the way, in any case where ^¡^0 for all i we must have /c = 0, and (7.10)
holds for any nondecreasing function / as follows from a simple summation by
parts.
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