
Acta Math., 202 (2009), 241–283
DOI: 10.1007/s11511-009-0037-8
c© 2009 by Institut Mittag-Leffler. All rights reserved

On the regularity of solutions
of optimal transportation problems

by
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1. Introduction

Given two topological spaces A and B, a cost function c:A×B!R and two probability
measures µ0 and µ1, respectively on A and B, Monge’s problem of optimal transportation
consists in finding, among all measurable maps T :A!B that push forward µ0 onto µ1

(hereafter T#µ0=µ1), in the sense that

µ1(E) =µ0(T−1(E)) for all E⊂B Borel, (1)

a map that realizes

min
{∫

A

c(x, T (x)) dµ0(x) :T#µ0 =µ1

}
. (2)

Optimal transportation has undergone a rapid and important development since the
pioneering work of Brenier, who discovered that when A=B=Rn and the cost is the
distance squared, optimal maps for the problem (2) are gradients of convex functions [1]
(see also [21] where the connection with gradients was first proved). Following this result
and its subsequent extensions, the theory of optimal transportation has flourished, with
generalizations to other cost functions [8], [16], more general spaces such as Riemannian
manifolds [25], applications in many other areas of mathematics such as geometric analy-
sis, functional inequalities, fluid mechanics, dynamical systems, and other more concrete
applications such as irrigation and cosmology.

When A and B are domains of the Euclidean space Rn, or of a Riemannian man-
ifold, a common feature to all optimal transportation problems is that optimal maps
derive from a (cost-convex) potential, which, assuming some smoothness, is in turn a
solution to a fully non-linear elliptic PDE: the Monge–Ampère equation. In all cases, the
Monge–Ampère equation arising from an optimal transportation problem reads in local
coordinates

det(D2φ−A(x,∇φ))= f(x,∇φ), (3)

where (x, p) 7!A(x, p) is a symmetric matrix-valued function, that depends on the cost
function c(x, y) through the formula

A(x, p) =−D2
xxc(x, y) for y such that −∇xc(x, y) = p. (4)

That there is indeed a unique y such that −∇xc(x, y)=p will be guaranteed by condition
(A1) given hereafter. The optimal map will then be

x 7−! y such that −∇xc(x, y) =∇φ(x).
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In the case A=0, equation (3) was well known and studied before optimal transportation
since it appears in Minkowski’s problem: find a convex hypersurface with prescribed
Gauss curvature. In the case of optimal transportation, the boundary condition consists
in prescribing that the image of the optimal map equals a certain domain. It is known
as the second boundary value problem.

Until recently, except in the particular case of the so-called reflector antenna, treated
by Wang [37] (see also [11] for C1 regularity), the regularity of optimal maps was
only known in the case where the cost function is the (Euclidean) squared distance
c(x, y)=|x−y|2, which is the cost considered by Brenier in [1], for which the matrix A
in (3) is the identity (which is trivially equivalent to the case A=0). Those results have
involved several authors, among them Caffarelli, Urbas and Delanoë. An important step
was made recently by Ma, Trudinger and Wang [24], and Trudinger and Wang [30], who
introduced a condition (named (A3) and (A3w) in their papers) on the cost function
under which they could show existence of smooth solutions to (3). Let us give right away
this condition that will play a central role in the present paper. Let A=Ω and B=Ω′

be bounded domains of Rn on which the initial and final measures will be supported.
Assume that c belongs to C4(Ω×Ω′). For (x, y)∈Ω×Ω′ and (ξ, ν)∈Rn×Rn, we define

Sc(x, y)(ξ, ν) :=D2
pkpl

Aij ξiξj νkνl (x, p), p=−∇xc(x, y). (5)

Whenever ξ and ν are orthogonal unit vectors, we will say that Sc(x, y)(ξ, ν) defines the
cost-sectional curvature from x to y in the directions (ξ, ν). As we will see in Defini-
tion 2.13, this definition is intrinsic. Note that this map is in general not symmetric, and
that it depends on two points x and y. The reason why we use the word sectional cur-
vature will be clear in a few lines. We will say that the cost function c has non-negative
cost-sectional curvature on Ω×Ω′ if

Sc(x, y)(ξ, ν) > 0 for all (x, y)∈Ω×Ω′ and all (ξ, ν)∈Rn×Rn such that ξ⊥ ν. (6)

A cost function satisfies condition (Aw) on Ω×Ω′ if and only if it has non-negative
cost-sectional curvature on Ω×Ω′, i.e. if it satisfies (6).

Under condition (Aw) and natural requirements on the domains Ω and Ω′, Trudinger
and Wang [30] showed that the solution to (3) is globally smooth for smooth positive
measures µ0 and µ1. They showed that (Aw) is satisfied by a large class of cost functions,
that we will give as examples later on. Note that the quadratic cost satisfies assumption
(Aw). This result is achieved by the so-called continuity method, for which a key ingre-
dient is to obtain a priori estimates on the second derivatives of the solution. At this
stage, condition (Aw) was used in a crucial way. However, even if it was known that not
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all cost functions can lead to smooth optimal maps, it was unclear whether the condition
(Aw) was necessary, or just a technical condition for the a priori estimates to go through.

In this paper we show that the condition (Aw) is indeed the necessary and sufficient
condition for regularity: one cannot expect regularity without this condition, and more
precisely, if Sc(x, y)(ξ, ν)<0 for (x, y)∈Ω×Ω′ and ξ⊥ν∈Rn, one can immediately build a
pair of C∞ strictly positive measures, supported on sets that satisfy the usual smoothness
and convexity assumptions, so that the optimal potential is not even C1, and the optimal
map is therefore discontinuous. This result is obtained by analyzing the geometric nature
of condition (6). Let us first recall that the solution φ of the Monge–Ampère equation is
a priori known to be cost-convex (in short c-convex), meaning that at each point x∈Ω,
there exist y∈Ω′ and a value φc(y) such that

−φc(y)−c(x, y) =φ(x),

−φc(y)−c(x′, y) 6φ(x′) for all x′ ∈Ω.

The function −φc(y)−c(x, y) is called a supporting function, and the function y 7!φc(y)
is called the cost-transform (in short the c-transform) of φ, also defined by

φc(y) = sup
x∈Ω

(−c(x, y)−φ(x)).

(These notions will be recalled in greater details hereafter.) We prove that condition (Aw)
can be reformulated as a property of cost-convex functions, which we call connectedness
of the contact set :

For all x∈Ω, the contact set Gφ(x) := {y :φc(y) =−φ(x)−c(x, y)} is connected. (7)

Assuming a natural condition on Ω′ (namely its c-convexity, see Definition 2.9) this
condition involves only the cost function, since it must hold for any φc defined through
a c-transform.

A case of special interest for applications is the generalization of Brenier’s cost
1
2 |x−y|

2 to Riemannian manifolds, namely c(x, y)= 1
2d

2(x, y). Existence and uniqueness
of optimal maps in that case was established by McCann [25], and further examined by
several authors, with many interesting applications in geometric and functional analysis
(for example [12] and [26]). The optimal map takes the form x 7!expx(∇φ(x)) for a
c-convex potential φ and is called a gradient map. Then, a natural question is the
interpretation of condition (Aw) and of the cost-sectional curvature in this context. We
show that for some universal constant K,

cost-sectional curvature from x to x=K · Riemannian sectional curvature at x.
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(We mean there that the equality holds for every 2-plane and actually K= 2
3 .) As a direct

consequence of the previous result, the optimal (gradient) map will not be continuous
for arbitrary smooth positive data if the manifold does not have non-negative sectional
curvature everywhere. Although the techniques are totally different, it is interesting
to notice that in recent works, Lott and Villani [23], and Sturm [27] have recovered
the Ricci curvature through a property of optimal transport maps (namely through the
displacement convexity of some functionals). Here, we somehow recover the sectional
curvature through the continuity of optimal maps.

We next investigate the continuity of optimal maps under the stronger condition of
uniformly positive cost-sectional curvature, or condition (As):

there exists C0> 0 such that

Sc(x, y, ξ, ν) >C0|ξ|2|ν|2 for all (x, y)∈Ω×Ω′ and all (ξ, ν)∈Rn×Rn, ξ⊥ ν.
(8)

We obtain that the (weak) solution of (3) is C1 or C1,α under quite mild assumptions
on the measures. Namely, for Br(x) the ball of radius r and center x, and µ1 being
bounded away from 0, we need µ0(Br(x))=o(rn−1) to show that the solution of (3) is
C1, and µ0(Br(x))=O(rn−p), p<1, to show that it is C1,α, for α=α(n, p)∈(0, 1). Those
conditions allow µ0 and µ1 to be singular with respect to the Lebesgue measure and µ0

to vanish.
This result can be seen as analogous to Caffarelli’s C1,α estimate [5] for a large class

of cost functions and related Monge–Ampère equations. It also shows that the partial
regularity results are better under (As) than under (Aw), since Caffarelli’s C1,α regularity
result required µ0 and µ1 to have densities bounded away from 0 and infinity, and it is
known to be close to optimal [35].

In a forthcoming work [22] we shall prove that the quadratic cost on the sphere
has uniformly positive cost-sectional curvature, i.e. satisfies (As). We obtain therefore
regularity of optimal (gradient) maps under adequate conditions.

The rest of the paper is organized as follows: in §2 we gather all definitions and
results that we will need throughout the paper. In §3 we state our results. Then each of
the subsequent sections is devoted to the proof of a theorem. The reader knowledgeable
about the subject might skip directly to §3.

Acknowledgments. At this point I wish to express my gratitude to Neil Trudinger
and Xu-Jia Wang, for many discussions, and for sharing results in progress while we were
all working on this subject. I thank Cédric Villani for fruitful discussions, and Philippe
Delanoë with whom we started to think about the problem of regularity for optimal
transportation on the sphere. I wish to thank Robert McCann, who first raised to me
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the issue of the connectedness of the contact set, in 2003. I gratefully acknowledge the
support of a French Australian exchange grant PHC FAST EGIDE No. 12739WA. I am
also grateful for the hospitality of the Center for Mathematics and its Applications at
the University of Canberra.

2. Preliminaries

2.1. Notation

Hereafter dVol denotes the Lebesgue measure of Rn and Br(x) denotes the ball of radius
r centered at x. For δ>0, we set classically Ωδ={x∈Ω:d(x, ∂Ω)>δ}. When we say
that a function (resp. a measure) is smooth without stating the degree of smoothness,
we assume that it is C∞-smooth (resp. has a C∞-smooth density with respect to the
Lebesgue measure).

2.2. Kantorovitch duality and c-convex potentials

In this section, we recall how to obtain the optimal map from a c-convex potential in the
general case. This allows us to introduce definitions that we will be using throughout
the paper. References concerning the existence of optimal map by Monge–Kantorovitch
duality are [1] for the cost |x−y|2, [16] and [8] for general costs, [25] for the Riemannian
case, otherwise the book [33] offers a rather complete reference on the topic.

Monge’s problem (2) is first relaxed to become a problem of linear programming;
one seeks now

I = inf
{∫

Rn×Rn

c(x, y) dπ(x, y) :π ∈Π(µ0, µ1)
}
, (9)

where Π(µ0, µ1) is the set of positive measures on Rn×Rn whose marginals are respec-
tively µ0 and µ1. Note that the (Kantorovitch) infimum (9) is smaller than the (Monge)
infimum of the cost (2), since whenever a map T pushes forward µ0 onto µ1, the measure
πT (x):=µ0(x)⊗δT (x)(y) belongs to Π(µ1, µ1).

Then, the dual Monge–Kantorovitch problem is to find an optimal pair of potentials
(φ, ψ) that realizes

J =sup
{
−

∫
φ(x) dµ0(x)−

∫
ψ(y) dµ1(y) :φ(x)+ψ(y) >−c(x, y)

}
. (10)

The constraint on φ and ψ leads to the definition of c- and c∗-transforms.
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Definition 2.1. Given a lower semi-continuous function φ: Ω⊂Rn!R∪{+∞}, we
define its c-transform at y∈Ω′ by

φc(y) = sup
x∈Ω

(−c(x, y)−φ(x)). (11)

For ψ: Ω′⊂Rn!R also lower semi-continuous, define its c∗-transform at x∈Ω by

ψc∗(x) = sup
y∈Ω′

(−c(x, y)−ψ(y)). (12)

A function is cost-convex, or, in short, c-convex, if it is the c∗-transform of another
function ψ: Ω′!R, i.e. for x∈Ω, φ(x)=supy∈Ω′(−c(x, y)−ψ(y)) for some lower semi-
continuous ψ: Ω′!R. Moreover in this case (φc)c∗=φ on Ω (see [33]).

Our first assumption on c will be:

(A0) The cost-function c belongs to C4(	Ω×	Ω′).

We will also always assume that Ω and Ω′ are bounded. These assumptions are not
the weakest possible for the existence/uniqueness theory.

Proposition 2.2. If c is Lipschitz and semi-concave with respect to x, locally uni-
formly with respect to y, and Ω′ is bounded , then φc is locally semi-convex and Lipschitz.
In particular, this holds under assumption (A0). The symmetric statement holds for ψc∗.

By Fenchel–Rockafellar’s duality theorem, we have I=J . One can then easily show
that the supremum (10) and the infimum (9) are achieved. Since φ(x)+ψ(y)>−c(x, y)
implies ψ>φc, we can assume that for the optimal pair in J we have ψ=φc and φ=(φc)c∗.
Writing the equality of the integrals in (9) and (10) for any optimal γ and any optimal
pair (φ, φc), we obtain that γ is supported in {(x, y):φ(x)+φc(y)+c(x, y)=0}. This leads
us to the following definition.

Definition 2.3. (Gradient mapping) Let φ be a c-convex function. We define the
set-valued mapping Gφ by

Gφ(x) = {y ∈Ω′ :φ(x)+φc(y) =−c(x, y)}.

For all x∈Ω, Gφ(x) is the contact set between φc and its supporting function

−φ(x)−c(x, ·).

Noticing that for all y∈Gφ(x), the function φ( ·)+c( · , y) has a global minimum at x,
we introduce/recall the following definitions:
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Definition 2.4. (Subdifferential) For a semi-convex function φ, the subdifferential of
φ at x, that we denote by ∂φ(x), is the set

∂φ(x) = {p∈Rn :φ(y) >φ(x)+p·(y−x)+o(|x−y|)}.

The subdifferential is always a convex set, and is always non-empty for a semi-convex
function.

Definition 2.5. (c-subdifferential) If φ is c-convex, the c-subdifferential of φ at x,
that we denote by ∂cφ(x), is the set

∂cφ(x) = {−∇xc(x, y) : y ∈Gφ(x)}.

The inclusion ∅ 6=∂cφ(x)⊂∂φ(x) always holds.

We now introduce two assumptions on the cost-function, which are the usual assump-
tions made in order to obtain an optimal map. For x=(x1, ..., xn) and y=(y1, ..., yn), let
us first introduce the notation

D2
xyc(x, y) = [∂xi∂yjc(x, y)]

n
i,j=1.

(A1) For all x∈	Ω, the mapping y 7!−∇xc(x, y) is injective on 	Ω′.

(A2) The cost function c satisfies detD2
xyc 6=0 for all (x, y)∈	Ω×	Ω′.

This leads us to the definition of the c-exponential map.

Definition 2.6. Under assumption (A1), for x∈Ω we define the c-exponential map
at x, which we denote by Tx, such that

Tx(−∇xc(x, y))= y for all (x, y)∈Ω×Ω′.

Moreover, under assumptions (A0), (A1) and (A2), and assuming that Ω′ is connected,
there exists a constant CT>0 that depends on c, Ω and Ω′, such that for all x∈Ω and
all p1, p2∈−∇xc(x,Ω′),

1
CT

6
|Tx(p2)−Tx(p1)|

|p2−p1|
6CT. (13)

Remark 1. The definition of c-exponential map is again motivated by the case where
cost = distance squared, where the c-exponential map is the exponential map. Moreover,
notice the important identity

[D2
xyc]

−1 =−DpTx|x,p=−∇xc(x,y). (14)
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Remark 2. Anticipating the extension to Riemannian manifolds, we mention at this
point that this definition is intrinsic, i.e. it defines the map T as a map going from
M×TM to M in a coordinate independent way. In this setting, the gradients should be
computed with respect to the metric g of the manifold.

Under assumptions (A1) and (A2), the mapping Gφ is single-valued outside of a
set of Hausdorff dimension less than or equal to n−1, hence, if µ0 does not give mass
to sets of Hausdorff dimension less than n−1, Gφ will be the optimal map for Monge’s
problem while the optimal measure in (9) will be π=µ0⊗δGφ(x). So, after having relaxed
the constraint that the optimal π should be supported on the graph of a map, one still
obtains a minimizer that satisfies this constraint.

Notice that Monge’s historical cost was equal to the distance itself: c(x, y)=|x−y|.
One sees immediately that for this cost function, there is not a unique y such that
−∇xc(x, y)=∇φ(x), hence assumption (A1) is not satisfied and, indeed, there is in gen-
eral no uniqueness of the optimal map.

We now state a general existence theorem, under assumptions that are clearly not
minimal, but that will suffice for the scope of this paper, where we deal with regularity
issues.

Theorem 2.7. Let Ω and Ω′ be two bounded domains of Rn. Let c∈C4(	Ω×	Ω′)
satisfy assumptions (A0)–(A2). Let µ0 and µ1 be two probability measures on Ω and Ω′.
Assume that µ0 does not give mass to sets of Hausdorff dimension less than or equal to
n−1. Then there exists a µ0-a.e. unique minimizer T of Monge’s optimal transportation
problem (2). Moreover , there is a c-convex φ on Ω such that T=Gφ (see Definition 2.3).
Finally , if ψ is c-convex and satisfies (Gψ)#µ0=µ1, then

∇ψ=∇φ µ0-a.e.

2.3. Notion of c-convexity for sets

Following [24] and [30], we here introduce the notions that extend naturally the notions
of convexity/strict convexity for a set.

Definition 2.8. (c-segment) Let p 7!Tx(p) be the mapping given in Definition 2.6.
The point x being held fixed, a c-segment with respect to x is the image by Tx of a
segment of Rn.

If for v0, v1∈Rn we have Tx(vi)=yi, i=0, 1, the c-segment with respect to x joining
y0 to y1 will be {yθ :θ∈[0, 1]}, where yθ=Tx(θv1+(1−θ)v0). It will be denoted [y0, y1]x.

Definition 2.9. (c-convex sets) Let Ω,Ω′⊂Rn. We say that Ω′ is c-convex with
respect to Ω if for all y0, y1∈Ω′ and x∈Ω, the c-segment [y0, y1]x is contained in Ω′.
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Remark. Note that this can be said in the following way: for all x∈Ω, the set
−∇xc(x,Ω′) is convex.

Definition 2.10. (Uniform strict c-convexity of sets) Given two subsets Ω and Ω′

of Rn, we say that Ω′ is uniformly strictly c-convex with respect to Ω if the sets
{−∇xc(x,Ω′)}x∈Ω are uniformly strictly convex, uniformly with respect to x. We say
that Ω is uniformly strictly c∗-convex with respect to Ω′ if the dual assertion holds true.

Remark 1. In local coordinates, Ω is uniformly strictly c∗-convex with respect to Ω′

reads

[Diγj(x)−Dpk
Aij(x, p)γk]τiτj > ε0> 0 for some ε0> 0, (15)

for all x∈∂Ω, p∈−∇xc(x,Ω′), unit tangent vector τ and outer unit normal γ.

Remark 2. When A does not depend on p, one recovers the usual convexity.

Remarks on the sub-differential and c-sub-differential. The question is to know if we
have, for all c-convex φ on Ω and all x∈Ω, ∂φ(x)=∂cφ(x). Clearly, when φ is c-convex
and differentiable at x, the equality holds. For an extremal point p of ∂φ(x), there will be
a sequence xn converging to x such that φ is differentiable at xn and limn!∞∇φ(xn)=p.
Hence, extremal points of ∂φ(x) belong to ∂cφ(x). Then it is not hard to show the
following result.

Proposition 2.11. Assume that Ω′ is c-convex with respect to Ω. Then the follow-
ing assertions are equivalent :

(1) For all c-convex φ on Ω and all x∈Ω, ∂cφ(x)=∂φ(x).
(2) For all c-convex φ on Ω and all x∈Ω, ∂cφ(x) is convex.
(3) For all c-convex φ on Ω and all x∈Ω, Gφ(x) is c-convex with respect to x.
(4) For all c-convex φ on Ω and all x∈Ω, Gφ(x) is connected.

Proof. We prove only that (4) implies (2). First, the connectedness of Gφ(x) implies
the connectedness of ∂cφ(x), since ∇xc is continuous. Then, for x0∈Ω and y0, y1∈Ω′,
assume that y0 and y1 both belong to Gφ(x0). Letting

h(x) =max{−c(x, y0)+c(x0, y0)+φ(x0),−c(x, y1)+c(x0, y1)+φ(x0)},

one has φ(x)>h(x) on Ω, with equality at x=x0. Hence ∂ch(x0)⊂∂cφ(x0). Since (4)
holds, ∂ch(x0) is connected, and as it is included in ∂h(x0) which is a segment, it is equal
to the segment [−∇xc(x0, y0),−∇xc(x0, y1)]. This shows that ∂cφ(x0) is convex.
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2.4. The Monge–Ampère equation

In all cases, for a C2-smooth c-convex potential φ such that (Gφ)#µ0=µ1, the conserva-
tion of mass is expressed in local coordinates by the following Monge–Ampère equation:

det(D2
xxc(x,Gφ(x))+D

2φ) = |detD2
xyc|

%0(x)
%1(Gφ(x))

, (16)

where %i=dµi/dVol denotes the density of µi with respect to the Lebesgue measure. (See
[24] for a derivation of this equation, or [12] or [14].) Hence, the equation fits into the
general form (3).

2.5. Generalized solutions

Definition 2.12. (Generalized solutions) Let φ: Ω!R be a c-convex function. Then
• φ is a weak Alexandrov solution to (16) if

µ0(B) =µ1(Gφ(B)) for all B⊂Ω. (17)

This will be denoted by
µ0 =(Gφ)#µ1.

• φ is a weak Brenier solution to (16) if

µ1(B′) =µ0(G−1
φ (B′)) for all B′⊂Ω′. (18)

This is equivalent to
µ1 =(Gφ)#µ0.

Alexandrov and Brenier solutions. First notice that in the definition (18), µ1 is
deduced from µ0, while it is the contrary in (17). As we have seen, the Kantorovitch
procedure (10) yields an optimal transport map whenever µ0 does not give mass to
sets of Hausdorff dimension less than n−1. Moreover, the map Gφ will satisfy (18) by
construction, and hence will be a weak Brenier solution to (16). Taking advantage of the
c-convexity of φ, one can show that whenever µ1 is absolutely continuous with respect
to the Lebesgue measure, (Gφ)#µ1 is countably additive, and hence is a Radon measure
(see [24, Lemma 3.4]); then a Brenier solution is an Alexandrov solution. Note that
if one considers µ0=(Gφ)#dVol, this will be the Monge–Ampère measure of φ. Most
importantly, for µ0 supported in Ω, (Gφ)#µ0=1Ω′dVol does not imply (Gφ)#dVol=µ0,
except if Ω′ is c-convex with respect to Ω (see [24]).
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2.6. Cost-sectional curvature and conditions (Aw) and (As)

A central notion in the present paper will be the notion of cost-sectional curvature

Sc(x, y).

Definition 2.13. Under assumptions (A0)–(A2), one can define on TxΩ×TxΩ the
real-valued map

Sc(x0, y0)(ξ, ν) =D4
pνpνxξxξ

[(x, p) 7!−c(x,Tx0(p))]|x0,p0=−∇xc(x0,y0). (19)

When ξ and ν are unit orthogonal vectors, Sc(x0, y0)(ξ, ν) defines the cost-sectional
curvature from x0 to y0 in directions (ξ, ν). Definition (19) is equivalent to the following:

Sc(x0, y0)(ξ, ν) =D2
ttD

2
ss[(s, t) 7!−c(expx0

(tξ),Tx0(p0+sν))]|t,s=0. (20)

The fact that (19) and (20) are equivalent follows from the following observation.

Proposition 2.14. The definition of Sc(x0, y0)(ξ, ν) is intrinsic, i.e. depends only
on (x0, y0)∈Ω×Ω′ and on (ξ, ν)∈Tx0(Ω)×Tx0(Ω), but not on the choice of local coordi-
nates around x0 or y0. Moreover, it is symmetric: letting c∗(y, x)=c(x, y) and T∗ be
the c∗-exponential map, the identity

Sc(x0, y0)(ξ, ν) =Sc∗(y0, x0)(ν̃, ξ̃) (21)

holds with
ν̃=DpTx0(p0)·ν and ξ̃= [DqT

∗
y0(q0)]

−1 ·ξ,

with p0 as above and q0=−∇yc(x0, y0). Notice that whenever ξ⊥ν, one has ξ̃⊥ν̃.

The proof is deferred to the appendix.

Remark. The intrinsic nature of the cost-sectional curvature tensor has been ob-
served independently in [20].

We are now ready to introduce the conditions:

(As) The cost-sectional curvature is uniformly positive, i.e. there exists C0>0 such
that for all (x, y)∈Ω×Ω′ and all (ν, ξ)∈Rn×Rn with ξ⊥ν,

Sc(x, y)(ξ, ν) >C0|ξ|2|ν|2.

(Aw) The cost-sectional curvature is non-negative: (As) is satisfied with C0=0.

Remark on the symmetry of the conditions on c. Let c∗(y, x):=c(x, y). From Propo-
sition 2.14, one checks that if c satisfies (Aw) (resp. (As)) then c∗ satisfies (Aw) (resp.
(As) with a different constant). Conditions (A0) and (A2) are also clearly satisfied by c∗

if satisfied by c.
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2.7. The Riemannian case

The construction of optimal maps has been extended in a natural way to smooth compact
Riemannian manifolds by McCann in [25] for Lipschitz semi-concave costs. All the above
definitions can be translated unambiguously to the Riemannian setting. In particular,
the notions of c-exponential map and c-convexity are intrinsic notions (see Remark 2 after
Definition 2.6). The definition of cost-sectional curvature (2.13) extends also naturally
to the Riemannian setting. Since it has been proved in Proposition 2.14 that the value
of the cost-sectional curvature is coordinate-independent, this gives sense to conditions
(Aw) and (As) on a Riemannian manifold. However, one needs to restrict to the set of
pairs (x, y) such that c is smooth in a neighborhood of (x, y), and this becomes an issue
for costs that are functions of the distance: Indeed, on a compact manifold, the distance
cannot be smooth on the whole of M×M (due to the cut-locus). Hence the Riemannian
case requires to weaken somehow assumption (A0). For x in M , we let Domx be the set
of y such that c(x, y) is smooth at (x, y). As developed by the author in [22], and with
P. Delanoë in [15], but also by Y. Kim and R. McCann [20], or by C. Villani in [34], the
relevant geometric condition on M that replaces (A0) is the following:

For all x∈M , T−1
x (Domx) =−∇xc(x,Domx) is convex.

A case of interest is when c( · , ·)= 1
2d

2( · , ·) with d( · , ·) being the distance function
(quadratic cost). Then, the c-exponential map is the exponential map, the mapping Gφ
is x 7!expx(∇gφ), the gradient ∇gφ being relative to the Riemannian metric g. (We
recall that gradient mappings were first introduced by X. Cabré [2], to generalize the
Alexandrov–Bakelman–Pucci estimate on Riemannian manifolds.) Then, for x in M , we
have Domx=M \cut-locus(x). In [22], we address the problem of the quadratic cost on
the sphere, as well as the cost c(x, y)=− log |x−y|, that appears in the design of optimal
reflector antennas. To establish our regularity results, we need to show a priori that T (x)
remains uniformly far from the boundary of Domx. This is precisely the object of [15].

2.8. Previous regularity results for optimal maps

The regularity of optimal maps follows from the regularity of the c-convex potential
solution of the Monge–Ampère equation (16), the former being as smooth as the gradient
of the latter. It thus falls into the theory of viscosity solutions of fully non-linear elliptic
equations [10]; however, the Monge–Ampère equation is degenerate elliptic. A very
complete reference concerning the regularity theory for the quadratic case are the lecture
notes by J. Urbas [32]. Two types of regularity results are usually sought for this type
of equations.
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Classical regularity. Show that the equation has classical C2 solutions, provided
the measures are smooth enough, and assuming some boundary conditions. Due to the
log-concavity of the Monge–Ampère operator, and using classical elliptic theory (see for
instance [18]), C∞ regularity of the solution of (16) follows from C2 a priori estimates.

Partial regularity. Show that a weak solution of (16) is C1 or C1,α under suitable
conditions. We mention also that W 2,p regularity results can be obtained.

The Euclidean Monge–Ampère equation and the quadratic cost. This corre-
sponds to the case where the cost function is the Euclidean distance squared

c(x, y) = |x−y|2

(or equivalently c(x, y)=−x·y), for which c-convexity means convexity in the usual sense,
Gφ(x)=∇φ(x) and equation (16) takes the following form:

detD2φ=
%0(x)

%1(∇φ(x))
. (22)

Here again, we have %i=dµ0/dVol, i=0, 1. Classical regularity has been established by
Caffarelli [3], [6], [7], [9], Delanoë [13] and Urbas [31]. The optimal classical regularity
result, found in [3] and [9], is that for Cα-smooth positive densities, and uniformly strictly
convex domains, the solution of (22) is C2,α(	Ω). Partial regularity results have been
obtained by Caffarelli [4], [5], [6], [7], where it is shown that for µ0 and µ1 having densities
bounded away from 0 and infinity, the solution of (22) is C1,α. Due to counterexamples
by Wang [35], those results are close to optimal.

The reflector antenna. The design of reflector antennas can be formulated as a
problem of optimal transportation on the unit sphere with cost equal to − log |x−y|.
The potential (height function) φ: Sn−1!R+ parameterizes the antenna A as follows:
A={xφ(x):x∈Sn−1}. Then the antenna is admissible if and only if φ is c-convex on
Sn−1 for c(x, y)=− log |x−y|, and Gφ(x) yields the direction in which the ray coming
in the direction x is reflected. This is the first non-quadratic cost for which regularity
of solutions has been established. Wang [36], [37] (see also Guan and Wang [19] where
the results are extended to higher dimension) has shown classical C2 (and hence C∞)
regularity of solutions of the associated Monge–Ampère equation when the densities
are smooth. In a recent work, with totally different techniques, Caffarelli, Huang and
Gutiérrez [11] have shown C1 regularity for the solution (i.e. continuity of the optimal
map) under the condition that the measures µ0 and µ1 have densities bounded away from
0 and infinity. This application will also be addressed by our forthcoming paper [22].
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General costs and the conditions (As) and (Aw). Recently an important step
was achieved in two papers by Ma, Trudinger and Wang . They gave in the first paper
[24] a sufficient condition ((As), called (A3) in their paper) for C2 (and subsequently
C∞) interior regularity. In the second paper [30], they could lower this condition down
to (Aw) (condition (A3w) in their paper) to obtain a sufficient condition for global C2

(and subsequently C∞) regularity, assuming uniform strict c-convexity and smoothness
of the domains. Note that the result under (Aw) recovers the results of Urbas and
Delanoë for the quadratic cost. We mention that the results obtained in [24] and [30]
have been exposed by Trudinger in [28].

Theorem 2.15. ([28], [30]) Let Ω and Ω′ be two bounded domains of Rn. Assume
that Ω and Ω′ are uniformly strictly c- and c∗-convex with respect to each other. Let c
and c∗ satisfy (A0)–(A2) and (Aw) on Ω×Ω′. Let µ0 and µ1 be two probability measures
on Ω and Ω′ having densities %0 and %1. Assume that %0∈C2(	Ω) and %1∈C2(	Ω′) are
bounded away from 0. Then, for a c-convex φ on Ω such that (Gφ)#µ0=µ1, we have

φ∈C3(Ω)∩C2(	Ω).

We also mention the continuity result obtained in [17] concerning optimal transporta-
tion between boundaries of uniformly convex domains, that might have some connections
with the present work.

3. Results

We present some answers to the following four questions:
(1) Is there a sharp necessary and sufficient condition on the cost function which

would guarantee that when both measures have C∞-smooth densities, and their supports
satisfy usual convexity assumptions, the solution of (16) (and hence the optimal map) is
C∞-smooth?

(2) Is there a necessary and sufficient condition on the cost function and on the data
under which optimal maps are continuous?

(3) What are the cost-functions for which connectedness of the contact set (7) holds?
(4) When the cost is set to be the squared distance of a Riemannian manifold, what

is the meaning of conditions (Aw) and (As) in terms of the Riemannian metric?

3.1. Condition (Aw), connectedness of the contact set and regularity issues

Answer to questions (1) and (3): (Aw) is necessary and sufficient for regularity of
optimal maps. Moreover, (Aw) is equivalent to the connectedness of the contact set.
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In the following theorem, “smooth” means C∞-smooth. This is for simplicity, and
one can lower the smoothness assumptions on the domains and the measures, see [30].

Theorem 3.1. Let Ω and Ω′ be two bounded domains of Rn. Let c be a cost function
that satisfies (A0)–(A2) on Ω×Ω′. Assume that Ω and Ω′ are smooth, uniformly strictly
c- and c∗-convex with respect to each other. Then, the following assertions are equivalent :

(1) the cost function c satisfies (Aw) in Ω×Ω′;
(2) for smooth strictly positive probability measures µ0 and µ1 in 	Ω and 	Ω′, there

exists a c-convex potential φ∈C1(Ω) such that

(Gφ)#µ0 =µ1;

(3) for smooth strictly positive probability measures µ0 and µ1 in 	Ω and 	Ω′, there
exists a c-convex potential φ∈C∞(	Ω) such that

(Gφ)#µ0 =µ1;

(4) for all c-convex φ in Ω and all x∈Ω,

∂cφ(x) = ∂φ(x);

(5) for all c-convex φ in Ω and all x∈Ω, the set

{y :φ(x)+φc(y) =−c(x, y)}

is c-convex with respect to x;
(6) continuously differentiable c-convex potentials are dense among c-convex poten-

tials for the topology of local uniform convergence.
Hence, if condition (Aw) is violated at some points (x0, y0)∈Ω×Ω′, there exist

smooth positive measures µ0 and µ1 on Ω and Ω′ such that there exists no C1 c-convex
potential satisfying (Gφ)#µ0=µ1.

Remark. Setting c∗(y, x)=c(x, y), we have seen that Sc>0 implies Sc∗>0. Hence,
all of those assertions are equivalent to their dual counterpart.

We can add the following equivalent condition for (Aw).

Theorem 3.2. Under the assumptions of Theorem 3.1, condition (Aw) holds if and
only if for any x0∈Ω and any (y0, y1)∈Ω′, letting φ̄ be defined by

φ̄(x) =max{−c(x, y0)+c(x0, y0),−c(x, y1)+c(x0, y1)},

we have that , for any yθ∈[y0, y1]x0 (see Definition 2.8),

φ̄(x) >−c(x, yθ)+c(x0, yθ)

holds in Ω.
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In other words, fθ(x)=−c(x, yθ)+c(x0, yθ), which is the supporting function that
interpolates at x0 (non-linearly) between

f0(x) =−c(x, y0)+c(x0, y0) and f1(x) =−c(x, y1)+c(x0, y1),

has to remain below max{f0, f1}.

Remark 1. The function φ̄ furnishes the counterexample to regularity when (Aw) is
not satisfied, since for a suitable choice of x0, y0 and y1, φ̄ cannot be approximated by
C1 c-convex potentials.

Remark 2. As shown by Propositions 5.1 and 5.12, a quantitative version of Theo-
rem 3.2 holds to express condition (As).

Remark 3. The implications (1)⇒ (2), (1)⇒ (3) and (1)⇒ (6) belong to Trudinger
and Wang in [30]. We show here that condition (Aw) is necessary: if it is violated at
some point, one can always build a counterexample where the solution to (16) is not
C1 even with C∞-smooth positive measures and good boundary conditions (hence the
optimal map is not continuous). Moreover, condition (Aw) is equivalent to a very natural
geometric property of c-convex functions.

3.2. Improved partial regularity under condition (As)

Partial answer to question (2): There is partial (i.e. C1 and C1,α) regularity under
(As), requiring much lower assumptions on the measures than what is needed in the qua-
dratic case. There cannot be C1 regularity without (Aw). When only (Aw) is satisfied,
the question of C1 regularity remains open, except for the case c(x, y)=|x−y|2 treated
by Caffarelli [7].

Let us begin by giving the two integrability conditions that will be used in this
result. The first one reads:

For some p∈ ]n,+∞] and Cµ0 > 0,

µ0(Bε(x))6Cµ0ε
n(1−1/p) for all ε> 0 and x∈Ω.

(23)

The second condition reads:

For some f : R+!R+ with limε!0 f(ε) = 0,

µ0(Bε(x))6 f(ε)εn(1−1/n) for all ε> 0 and x∈Ω.
(24)

In order to appreciate the forthcoming theorem, let us mention a few facts on these
integrability conditions (the proof of this proposition is given at the end of the paper).
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Proposition 3.3. Let µ0 be a probability measure on Rn.
(1) If µ0 satisfies (23) for some p>n, then µ0 satisfies (24).
(2) If µ0∈Lp(Ω) for some p>n, then µ0 satisfies (23) with the same p.
(3) If µ0∈Ln(Ω), then µ0 satisfies (24).
(4) If µ0 satisfies (24), then µ0 does not give mass to sets of Hausdorff dimension

less than or equal to n−1, hence (24) guarantees the existence of an optimal map.
(5) There are probability measures on Ω that satisfy (23) (and hence (24)) and which

are not absolutely continuous with respect to the Lebesgue measure.

Then our result is the following.

Theorem 3.4. Let c be a cost function that satisfies assumptions (A0)–(A2) and
(As) on Ω×Ω′, Ω and Ω′ being bounded domains uniformly strictly c- and c∗-convex
with respect to each other. Let µ0 and µ1 be probability measures respectively on Ω and
ω′⊂Ω′, with ω′ c-convex with respect to Ω. Let φ be a c-convex potential on Ω such that
(Gφ)#µ0=µ1. Assume that µ1>mdVol on ω′ for some m>0.

(1) Assume that µ0 satisfies (23) for some p>n. Let

α=1−n
p

and β=
α

4n−2+α
.

Then, for any δ>0, we have
‖φ‖C1,β(Ωδ) 6 C,

and C depends only on δ>0, on the constant Cµ0 in (23), on m, on the constants in
conditions (A0)–(A2) and (As), and on CT in (13).

(2) If µ0 satisfies (24), then φ belongs to C1(Ωδ) and the modulus of continuity of
∇φ is controlled by f in (24).

As an easy corollary of Theorem 3.4, we can extend the C1 estimates to the boundary
if the support of the measure µ0 is compactly contained in Ω.

Theorem 3.5. Assume, in addition to the assumptions of Theorem 3.4, that µ0 is
supported in �ω, with ω compactly contained in Ω. Then, if µ0 satisfies (24), φ∈C1(�ω),
and if µ0 satisfies (23), φ∈C1,β(�ω), with β as in Theorem 3.4.

Remark on the conditions on Ω and Ω′. Our result holds true for µ0 supported in
any subset ω of Ω (hence not necessarily c∗-convex), and µ1 supported in any subset ω′ of
Ω′ c-convex (but not necessarily strictly) with respect to Ω. Hence, what we need is the
existence of supersets Ω and Ω′ uniformly c- and c∗-convex with respect to each other, in
order to use the results of [30]. The only point where we need this condition is during the
proof of Proposition 5.6, where we rely on Theorem 3.1 to assert that ∂φ=∂cφ. However,
in [24], Ma, Trudinger and Wang proved the following theorem.
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Theorem 3.6. ([24]) Let c satisfy (A0)–(A2) and (As) on Ω×Ω′, Ω′ being c-convex
with respect to Ω. Then, for C2-smooth positive probability measures µ0 and µ1 on Ω
and Ω′, the c-convex potential φ such that (Gφ)#µ0=µ1 is C2-smooth inside Ω.

Using this result, Proposition 4.4 yields that for all c-convex potentials φ on Ω,
∂cφ=∂φ. Hence, we could have relaxed the assumptions of Theorem 3.4 on Ω and Ω′,
only requiring Ω′ to be c-convex with respect to Ω (i.e. no c∗-convexity on Ω and no
strict c-convexity of Ω′). Note that the proof of Theorem 3.6 has been completed later
on by Trudinger and Wang in [29], relying in part on our Proposition 5.1 (which is an
independent result). Thus, we can now state the following result.

Theorem 3.7. The results of Theorem 3.4 hold assuming only for Ω and Ω′ that
Ω′ is c-convex with respect to Ω.

We mention that the results of Kim and McCann [20], obtained simultaneously with
those of [29] but using different techniques, also allow for completion of the proof of
Theorem 3.6, under the assumption that Ω′ and Ω are c- and c∗-convex with respect to
each other. This allows one to drop the strict convexity assumption in Theorem 3.4.

Remark on the integrability conditions. The integrability conditions on µ0 and µ1 are
really mild: we only ask that µ1 be bounded from below, and that µ0(Br)6rn−p for p>1
(p>1 yields C1,α regularity) (see conditions (23) and (24) and the subsequent discussion).
The continuity of the optimal map is also asserted in the case µ0∈Ln (that implies
(24)), which is somehow surprising: indeed D2φ∈Ln does not imply φ∈C1, but here
det(D2φ−A(x,∇φ))∈Ln implies φ∈C1. In a forthcoming work, we shall show that our
result adapts to the reflector antenna, hence improving the result obtained independently
by Caffarelli, Gutiérrez and Huang [11] on reflector antennas. Moreover, our techniques
yield quantitative C1,α estimates: the exponent α can be explicitly computed. Finally,
our continuity estimates extends up to the boundary (Theorem 3.5). This is achieved
through a geometric formulation of condition (As).

A fully satisfactory answer would include a general result of partial regularity under
condition (Aw). This result is expected in view of the Euclidean case (since the quadratic
cost is really the limit case for condition (Aw)). Note that, in view of counterexamples
given in [35], the results under (Aw) cannot be as good as under (As), and cannot be
much better than Caffarelli’s results [7] that require densities bounded away from 0 and
infinity.
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3.3. Conditions (Aw) and (As) for the quadratic cost of a Riemannian
manifold

We refer the reader to Remark 2 after the definition of the cost-sectional curvature (19),
where the intrinsic meaning of (19) on a manifold is discussed.

Partial answer to question (4): When the cost is the Riemannian distance squared,
the cost-sectional curvature at y=x equals (up to a multiplicative constant) the Rie-
mannian sectional curvature.

Theorem 3.8. Let M be a C4 Riemannian manifold. Let c(x, y)= 1
2d

2(x, y) for all
(x, y)∈M×M . Let Sc be given by (19). Then, for all ξ, ν∈TxM ,

Sc(x, x)(ν, ξ)
|ξ|2g|ν|2g−(ξ ·ν)2g

=
2
3
· sectional curvature of M at x in the 2-plane (ξ, ν).

Hence, if (Aw) (resp. (As)) is satisfied at (x, x), the sectional curvature of M at x is
non-negative (resp. strictly positive).

Corollary 3.9. Let M be a compact Riemannian manifold. If the sectional cur-
vature of M is not everywhere non-negative, there are smooth positive measures on M

such that the optimal map (for the cost function c(x, y)= 1
2d

2(x, y)) is not continuous.

At the end of the proof of Theorem 3.8, we give a counterexample to regularity for
a 2-dimensional manifold with negative sectional curvature.

This observation closes (with a negative answer) the open problem of the regularity of
optimal gradient maps when the manifold does not have non-negative sectional curvature
everywhere. There is a partial converse assertion in the special case of constant sectional
curvature: The quadratic cost on the round sphere Sn−1 satisfies (As). This will be the
object of a forthcoming work [22]. Hence our previous result can be adapted to this
Riemannian case.

3.4. Examples of costs that satisfy (As) or (Aw)

We repeat the collection of costs that was given in [24] and [30].
• c(x, y)=

√
1+|x−y|2 satisfies (As).

• c(x, y)=
√

1−|x−y|2 satisfies (As).
• c(x, y)=(1+|x−y|2)p/2 satisfies (As) for 16p<2 and |x−y|2<1/(p−1).
• c(x, y)=|x−y|2+|f(x)−g(y)|2, f, g∈C4(Rn; R) convex (resp. strictly convex) with

|∇f |, |∇g|<1, satisfies (Aw) (resp. (As)).
• c(x, y)=±|x−y|p/p, p 6=0, satisfies (Aw) for p=±2 and (As) for −2<p<1 (for the

cost −|x−y|p/p only).
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• c(x, y)=−log |x−y| satisfies (As) on

(Rn×Rn)\{(x, x) :x∈Rn}.

• The reflector antenna problem ([36]) corresponds to the case c(x, y)=−log |x−y|
restricted to Sn. As pointed out in [30], this cost satisfies (As) on

(Sn−1×Sn−1)\{(x, x) :x∈Sn−1}.

• As shown in the forthcoming paper [22], the squared Riemannian distance on the
sphere satisfies (As) on the set

(Sn−1×Sn−1)\{(x,−x) :x∈Sn−1}.

Note that it is the restriction to Sn−1 of the cost c(x, y)=θ2(x, y), where θ is the angle
formed by x and y. (For those two cases, see §2.7 where the meaning of conditions (Aw)
and (As) on a Riemannian manifold is discussed).

4. Proof of Theorem 3.1

We begin with the following uniqueness result of independent interest.

Proposition 4.1. Let µ and ν be two probability measures on Ω and Ω′, with Ω
and Ω′ being connected domains of Rn. Assume that either µ or ν is positive Lebesgue
almost everywhere in Ω (resp. in Ω′). Then, among all pairs of functions (φ, ψ) such
that φ is c-convex and ψ is c∗-convex , the problem (10) has at most one minimizer , up
to an additive constant.

The proof of this proposition is deferred to the end of the paper.

4.1. Condition (Aw) implies connectedness of the contact set

We will begin with the following lemma.

Lemma 4.2. Let φ be c-convex. Let {φε}ε>0 be a sequence of c-convex potentials
that converges uniformly to φ on compact sets of Ω. Then, if p=−∇xc(x0, y)∈∂φ(x0),
(x0, y)∈Ω×Ω′, there is a sequence {xε}ε>0 that converges to x0 and a sequence {yε}ε>0

that converges to y such that pε=−∇xc(xε, yε)∈∂φε(xε). Finally , pε converges to p.
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Proof. Let y=Tx0(p), i.e. p=−∇xc(x0, y). Since φ and φε are c-convex and c is
semi-concave, there exist K, r>0 such that

φ̃(x) :=φ(x)+ 1
2K|x−x0|2+c(x, y) and φ̃ε(x) :=φε(x)+ 1

2K|x−x0|2+c(x, y)

are convex on Br(x0) compactly contained in Ω. One can also assume, by subtracting a
constant, that φ̃(x0)=0, and that φ̃(x)>0 on Ω. Finally, one can assume (by relabeling
the sequence) that on Br(x0) we have |φε−φ|6ε.

Consider then
φ̃δε = φ̃ε+ 1

2δ|x−x0|2−ε.

We have φ̃δε(x0)60, and on ∂Bµ(x0), with µ6r,

φ̃δε(z) > φ̃(z)+ 1
2δµ

2−2ε> 1
2δµ

2−2ε.

By taking µ=ε1/3 and δ=4ε1/3, we get that φ̃δε has a local minimum in Bµ(x0), hence
at some point xε∈Bµ(x0) we have

∂φε(xε)3−∇xc(xε, y)−K(xε−x0)−δ(xε−x0).

Then we have |(K+δ)(xε−x0)| small, and, due to (A1) and (A2), there exists yε close
to y such that ∇xc(xε, yε)=∇xc(xε, y)+K(xε−x0)+δ(xε−x0). Thus, −φε(x)−c(x, yε)
has a critical point at xε. This implies that pε=−∇xc(xε, yε)∈∂φε(xε). Finally, since
xε!x and yε!y, we conclude that pε!p.

Now we prove that ∂cφ=∂φ. In order to do this, we must show that if φ is c-convex
and −φ( ·)−c( · , y) has a critical point at x0, then this is a global maximum.

We first have the following observation.

Lemma 4.3. Let φ be c-convex. Assume that −φ−c( · , y) has a critical point at x0

(i.e. 0∈∂φ(x0)+∇xc(x0, y)) and that it is not a global maximum. Then φ is not differ-
entiable at x0.

Proof. Indeed, −φ( ·)−c( · , y) has a critical point at x0, but φ(x0)+φc(y)=−c(x0, y)
does not hold. However, there is a point y′ such that φ(x0)+φc(y′)=−c(x0, y

′). Hence,
−∇xc(x0, y),−∇xc(x0, y

′)∈∂φ(x0), and we have ∇xc(x0, y) 6=∇xc(x0, y
′) by (A1).

We now consider the following assumption:
(D) C1 c-convex functions are dense in the set {φ c-convex on Ω:Gφ(Ω)⊂Ω′} for

the topology of uniform convergence on compact sets of Ω.

Proposition 4.4. Assume that assumption (D) holds. Let p=−∇xc(x0, y)∈∂φ(x0)
with φ c-convex. Then −φ( ·)−c( · , y) reaches a global maximum at x0.
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Proof. Assume the contrary, i.e. −φ(x1)−c(x1, y)>−φ(x0)−c(x0, y) for some x1∈Ω.
By (D), there exists a sequence of C1 c-convex potentials {φε}ε>0 that converges to φ. By
Lemma 4.2, there is a sequence {xε}ε>0 such that xε!x0 and ∇φε(xε)!−∇xc(x0, y).
Let yε be such that ∇φε(xε)=−∇xc(xε, yε). Then yε!y. Since φε is C1, by Lemma 4.3,
xε, the critical point of −φε( ·)−c( · , yε), is necessarily a global maximum. Finally, since
φε converges locally uniformly to φ, we see that −φ( ·)−c( · , y) reaches a global maximum
at x0.

Lemma 4.5. Assume that Ω and Ω′ are bounded , uniformly strictly c- and c∗-convex
with respect to each other. Assume that c satisfies (A0)–(A2) and (Aw) on Ω×Ω′. Then
(D) holds.

Proof. As we will see, this result is implied immediately by the result of [30] com-
bined with Proposition 4.1. Let φ be c-convex and set µ1=(Gφ)#1ΩdVol. Note that,
by Proposition 4.1, φ is the unique, up to a constant, c-convex potential such that
(Gφ)#1ΩdVol=µ1. Consider a sequence of smooth positive densities {µε1}ε>0 in Ω′ such
that µε1dVol converges weakly-∗ to µ1, and has the same total mass as µ1. Consider φε
such that (Gφε)#1ΩdVol=µε1dVol. From [30], φε is C2-smooth inside Ω. Then, by Propo-
sition 4.1, up to a normalizing constant, φε is converging to φ and ∇φε is converging to
∇φ on the points where φ is differentiable.

Hence, under the assumptions of Lemma 4.5, we have ∂φ(x)=∂cφ(x). In view of
Proposition 2.11, the equality ∂φ(x)=∂cφ(x), for all φ and x, is equivalent to the c-
convexity of the set

Gφ(x) = {y :φ(x)+φc(y) =−c(x, y)}.

This shows that condition (Aw) is sufficient.

4.2. Condition (Aw) is necessary for smoothness and connectedness of the
contact set

We now show that if (Aw) is violated somewhere in Ω×Ω′, then there exists a c-convex
potential for which we do not have ∂φ=∂cφ. Assuming this, in view of Lemma 4.5 and
Proposition 4.4, this implies that this potential cannot be a limit of C1-smooth c-convex
potentials. Hence, considering the sequence {φε}ε>0 used in the proof of Lemma 4.5,
this sequence is not C1 for ε smaller than some ε0. This implies in turn that there
exists smooth positive densities µ0 and µ1 in Ω and Ω′ such that the c-convex potential
φ satisfying (Gφ)#µ0=µ1 is not C1-smooth.
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Assume that for some x0∈Ω, y∈Ω′, p=−∇xc(x0, y), and for some unit vectors ξ
and ν in Rn with ξ⊥ν, one has

D2
pνpν

[p 7!D2
xξxξ

c(x,Tx(p))]>N0> 0. (25)

Let y0=Tx0(p−εν) and y1=Tx0(p+εν), with ε small, and recall that y=Tx0(p). Hence
y is the ‘middle’ of the c-segment [y0, y1]x. Let us define

φ̄(x) =max{−c(x, y0)+c(x0, y0),−c(x, y1)+c(x0, y1)}. (26)

(This function will be used often in the geometric interpretation of (As) and (Aw). It is
the “second simplest” c-convex function, as the supremum of two supporting functions.
It plays the role of (x1, ..., xn) 7!|x1| in the Euclidean case.)

Note first that ξ⊥ν implies that ξ⊥∇xc(x0, y1)−∇xc(x0, y0). Consider near x0 a
smooth curve γ(t) such that γ(0)=x0 and γ̇(0)=ξ, and such that for t∈[−δ, δ] one has

f0(γ(t)) :=−c(γ(t), y0)+c(x0, y0) =−c(γ(t), y1)+c(x0, y1) =: f1(γ(t)).

Such a curve exists by the implicit function theorem, and it is C2-smooth. On γ, we have

φ̄= 1
2 (f0+f1),

since f0=f1 on γ. Then we compare 1
2 (f0+f1) with −c(x, y)+c(x0, y). By (25), we have

1
2 [D2

xξxξ
c(x0, y0)+D2

xξxξ
c(x0, y1)]>D2

xξxξ
c(x0, y)+c(ε,N0),

where c(ε,N0) is positive for ε small enough. Then, of course,

∇xc(x0, y) = 1
2 [∇xc(x0, y0)+∇xc(x0, y1)].

Hence we have, for ε small enough,

[−c(γ(t), y)+c(x0, y)]−φ̄(γ(t))

= [−c(γ(t), y)+c(x0, y)]− 1
2 (f0+f1)(γ(t))

= 1
2

[
1
2 [D2

xxc(x0, y0)+D2
xxc(x0, y1)]−D2

xxc(x0, y)
]
·(γ(t)−x0, γ(t)−x0)+o(t2)

= 1
2

[
1
2 [D2

xξxξ
c(x0, y0)+D2

xξxξ
c(x0, y1)]−D2

xξxξ
c(x0, y)

]
t2+o(t2)

> 1
2c(ε,N0)t2+o(t2).

This will be strictly positive for t∈[−δ, δ]\{0} small enough, and of course the dif-
ference −φ̄−[c(x, y)−c(x0, y)] vanishes at x0. Obviously, the function φ̄ is c-convex,
−φ̄( ·)−c( · , y) has a critical point at x0, and this is not a global maximum. Hence, from
Proposition 4.4, (D) cannot hold true.

The proof of Theorems 3.1 and 3.2 is complete.
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5. Proof of Theorem 3.4

5.1. Sketch of the proof

The key argument of the proof is the geometrical translation of condition (As): assume
that a c-convex φ is not differentiable at x=0, hence, for some pair y0, y1, −φ( ·)−c( · , y0)
and −φ( ·)−c( · , y1) both reach a maximum at x=0. (From Theorem 3.1, under (As),
all critical points of −φ( ·)−c( · , y) are global maxima.) Consider yθ in the c-segment
with respect to x=0 joining y0 to y1. As we will see in Proposition 5.1, the function
−φ( ·)−c( · , yθ) will reach a maximum at x=0, and condition (As) implies moreover that
for θ∈[ε, 1−ε] this maximum will be strict in the following sense: we will have

−φ(x)−c(x, yθ) 6−φ(0)−c(0, yθ)−δ|x|2+o(|x|2),

with δ>0 depending on |y1−y0| and C0>0 in condition (As), and bounded from below
for θ away from 0 and 1.

Then, by estimating all supporting functions to φ on a small ball Bη(0) centered
at 0, we will find that for y in a Cη neighborhood of {yθ}θ∈[1/4,3/4], C>0 depending on
δ above, −φ( ·)−c( · , y) will reach a local maximum in Bη(0). Hence Gφ(Bη(0)) contains
a Cη neighborhood of {yθ}θ∈[1/4,3/4]. This is Proposition 5.6. Once this is shown, we
can contradict the bound on the Jacobian determinant of Gφ.

We now enter into the rigorous proof of Theorem 3.4, which is articulated in three
parts.

5.2. Part I. Geometric interpretation of condition (As)

This proposition is the geometrical translation of assumption (As). Actually, as we will
see in Proposition 5.12, the result of Proposition 5.1 is equivalent to assumption (As) for
a smooth cost function.

Proposition 5.1. Let c be a cost function that satisfies (A0)–(A2) and (As) on
Ω×Ω′. For x0∈Ω and y0, y1∈Ω′, let {yθ}θ∈[0,1] be the c-segment with respect to x0

joining y0 to y1, in the sense of Definition 2.8, and assume that Ω′ is c-convex with
respect to x0. Let

φ̄(x) =max{−c(x, y0)+c(x0, y0),−c(x, y1)+c(x0, y1)}.

There exist constants δ0, C>0 and γ such that for all ε∈
]
0, 1

2

[
, all θ∈[ε, 1−ε] and all

x∈Ω such that |x−x0|6Cε,

φ̄(x) >−c(x, yθ)+c(x0, yθ)+δ0θ(1−θ)|y1−y0|2|x−x0|2−γ|x−x0|3,
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with lower bounds on δ0 and C and an upper bound on γ that depend on the bounds in
assumptions (A0)–(A2) and (As), on an upper bound on |y1−y0|, and on CT in (13).

Shifting and rotating the coordinates, we can assume that x0=0 and that

∇xc(0, y0)−∇xc(0, y1)

is parallel to e1. Then, we observe the following fact.

Proposition 5.2. Subtracting from c a smooth function x 7!λ(x) that depends only
on x does not change the map solution of the optimal transportation problem, and the
new cost c(x, y)−λ(x) will still satisfy assumptions (A0)–(A2) and (Aw). The optimal
potential will be changed according to the rule φ 7!φ+λ. If moreover the function λ is
affine, this modification does not change the bounds in assumptions (A2) and (As).

Using Proposition 5.2, we can subtract from c the affine function given by

λ(x) =∇xc(0, y0)·(x−x1e1),

so that the new cost c will satisfy

∇xc(0, y0) =−ae1 and ∇xc(0, y1) =−be1 (27)

for some a 6=b from assumption (A1) (we will assume hereafter that b>a). Note that (27)
is equivalent to

y0 =Tx=0(ae1) and y1 =Tx=0(be1).

We then have, for all θ∈[0, 1],

−c(x, yθ)+c(0, yθ) = [θb+(1−θ)a]x1− 1
2D

2
xxc(0, yθ)·(x, x)+o(|x|2). (28)

We now have the following lemma, which is the point where we use assumption (As).

Lemma 5.3. Under the assumptions and with the notation of Proposition 5.1, in
particular assuming (As), for all x∈Rn and all θ∈[0, 1], letting a and b be defined
through (27), one has

−D2
xxc(0, yθ)·(x, x) 6−[(1−θ)D2

xxc(0, y0)+θD
2
xxc(0, y1)]·(x, x)−δ|x|2+∆|x1|2,

where

δ= 1
4C0|b−a|2θ(1−θ) and ∆ =

∆2
0

C0
|b−a|2θ(1−θ),

with C0 given in assumption (As) and ∆0 depending on

‖c( · , ·)‖C4(Ω×Ω′) and ‖[Dxyc]−1‖L∞(Ω×Ω′).

Note in particular that under (A0) and (As), C0 is bounded away from 0 and infinity.
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We will also need the following elementary estimates, that we state without proof.

Lemma 5.4. Under the assumptions and with the notation of Proposition 5.1, for
all x∈Rn and all θ, θ′∈[0, 1],

1
2 |D

2
xxc(0, yθ)·(x, x)−D2

xxc(0, yθ′)·(x, x)|6C1|θ−θ′||x|2, (29)

where C1 depends on |b−a|, ‖[Dxyc]−1‖L∞(Ω×Ω′) and ‖c( · , ·)‖C3(	Ω×	Ω′).

Lemma 5.5. Let [t0, t1]⊂R and f belong to C2([t0, t1],R).
(1) If f ′′>α, we have, for all t0, t1∈R,

θf(t0)+(1−θ)f(t1) > f(θt0+(1−θ)t1)+ 1
2αθ(1−θ)|t1−t0|

2.

(2) In all cases, we have

|θf(t0)+(1−θ)f(t1)−f(θt0+(1−θ)t1)|6 1
2‖f‖C2(t0,t1)θ(1−θ)|t1−t0|

2.

Proof of Lemma 5.3. We apply the first part of Lemma 5.5 to the function

f : t 7−!−D2
xxc(0,Tx=0(te1))·(x′, x′),

where x′ is equal to (0, x2, ..., xn), and hence x′⊥e1. From assumption (As), f satisfies
f ′′>C0|x′|2. Then, by choosing t0=a and t1=b (note that yθ=Tx=0((θb+(1−θ)a)e1)),
we obtain that

−D2
xxc(0, yθ)·(x′, x′) 6−[(1−θ)D2

xxc(0, y0)+θD
2
xxc(0, y1)]·(x′, x′)

− 1
2C0|x′|2θ(1−θ)|b−a|2.

To conclude the lemma, we have to control the terms where x1 appears. For this, we
apply the second part of Lemma 5.5 to

g: t 7−!D2
xxc(x,Tx(te1))·(x, x)−D2

xxc(x,Tx(te1))·(x′, x′),

for which we have |g′′|62∆1|x1||x|, where ∆1 depends on ‖c( · , ·)‖C4 and ‖[Dxyc]−1‖L∞ .
This yields

−D2
xxc(0, yθ)·(x, x) 6−[(1−θ)D2

xxc(0, y0)+θD
2
xxc(0, y1)]·(x, x)

+θ(1−θ)|b−a|2
(
− 1

2C0|x′|2+∆1|x1||x|
)

6−[(1−θ)D2
xxc(0, y0)+θD

2
xxc(0, y1)]·(x, x)

+θ(1−θ)|b−a|2
(
− 1

2C0|x|2+(∆1+C0)|x1||x|
)
.
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We set ∆0=∆1+C0. Using a standard argument we have

∆0|x||x1|6 1
4
C0|x|2+

∆2
0

C0
|x1|2,

and we obtain

−1
2
C0|x|2+∆0|x||x1|6−1

4
C0|x|2+

∆2
0

C0
|x1|2.

This concludes the proof of Lemma 5.3.

Proof of Proposition 5.1. Using the general fact that for f0, f1∈R and 06θ61,

max{f0, f1}> θf1+(1−θ)f0,

we have, using (28),

φ̄(x) > (θb+(1−θ)a)x1− 1
2 [θD2

xxc(0, y1)+(1−θ)D2
xxc(0, y0)]·(x, x)+o(|x|2).

We now use assumption (As) through Lemma 5.3 to handle the second term of the
right-hand side. This yields the intermediate inequality

φ̄(x) > (θb+(1−θ)a)x1− 1
2D

2
xxc(0, yθ)·(x, x)+δ|x|2−∆|x1|2+o(|x|2), (30)

with δ and ∆ given in Lemma 5.3. In order to eliminate the term −∆|x1|2 in the right-
hand side, we proceed as follows: we first write (30) for some θ′∈[0, 1], and then change
it into

φ̄(x) > (θb+(1−θ)a)x1− 1
2D

2
xxc(0, yθ)·(x, x)+δ|x|2+ 1

2 [D2
xxc(0, yθ)−D2

xxc(0, yθ′)]·(x, x)

+((b−a)(θ′−θ)−∆x1)x1+(δ′−δ)|x|2+(∆−∆′)|x1|2+o(|x|2),

where δ′=δ(θ′) and ∆′=∆(θ′) as in Lemma 5.3. We now have to control the terms

T1 =((b−a)(θ′−θ)−∆x1)x1,

T2 = 1
2 [D2

xxc(0, yθ)−D2
xxc(0, yθ′)]·(x, x),

T3 =(δ′−δ)|x|2+(∆−∆′)|x1|2.

The term T1 can be cancelled through an appropriate choice of θ′. We first choose ε>0
small (but fixed). Taking θ∈[ε, 1−ε], we choose θ′ such that

θ′= θ+
x1∆
b−a

= θ+
x1

C
, (31)
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with
C =

b−a
∆

=
C0

θ(1−θ)|b−a|∆2
0

. (32)

Since θ∈[ε, 1−ε], this choice of θ′ is possible if we restrict to |x1|6Cε. Note that C0 is
bounded away from 0, hence C is bounded away from 0 for |b−a| bounded (we do not
need C to be bounded from above). Note also that θ′ will depend on x1 but θ has been
fixed before.

The second term T2 is controlled using Lemma 5.4: we have

|T2|6C1|θ′−θ||x|2.

For the third term T3, we note, from the definition of δ and ∆ in Lemma 5.3, that

|∆−∆′|6 |b−a|2 ∆2
0

C0
|θ′−θ| and |δ−δ′|6 |C0||θ′−θ|.

Hence, using (31),
|T2+T3|6C2|x|3,

where C2 depends on the bounds in assumptions (A0), (A2) and (As), and on |b−a|. We
conclude that, for a suitable choice of θ′,

|T1+T2+T3|6C2|x|3. (33)

We now have, for all θ∈[ε, 1−ε] and all x∈Ω with |x|<Cε,

φ̄(x) > (θb+(1−θ)a)x1− 1
2D

2
xxc(0, yθ)·(x, x)+δ|x|2−C2|x|3+o(|x|2).

Using (28), this leads to

φ̄(x) >−c(x, yθ)+c(0, yθ)+δ|x|2−C2|x|3+o(|x|2).

We now notice that all the terms in o(|x|2) are error terms in the second order Taylor
expansion (28). Under assumption (A0), c belongs to C3(	Ω×	Ω′), hence there exists γ
such that the above inequality still holds true when replacing −C2|x|3+o(|x|2) by −γ|x|3.
The constant γ will depend on the bounds in (A0), (A2) and (As), and on |b−a|. From
Lemma 5.3, we have δ= 1

4C0θ(1−θ)|b−a|2. Using now (13), we have

1
CT

|y1−y0|6 |b−a|,

and letting δ0=C0/4C2
T, we conclude the proof of Proposition 5.1.
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5.3. Part II. Construction of supporting functions

We let Nµ(B) denote the µ-neighborhood of a set B, and we use Proposition 5.1 to prove
the following result.

Proposition 5.6. Let φ be c-convex. Let c, Ω and Ω′ satisfy the assumptions of
Theorem 3.4. Let x0, x1∈Ω, y0∈Gφ(x0) and y1∈Gφ(x1). Then, there exist constants
C,C ′, C ′′>0 and xm∈[x0, x1], such that , if Nη([x0, x1])⊂Ω and

|y1−y0|>max{|x1−x0|, C|x1−x0|1/5}> 0, (34)

then
Nµ

({
yθ, θ∈

[
1
4 ,

3
4

]})
∩Ω′⊂Gφ(Bη(xm)),

where

η=C ′
(
|x1−x0|
|y1−y0|

)1/2

, (35)

µ=C ′′η|y1−y0|2. (36)

Here {yθ}θ∈[0,1]=[y0, y1]xm denotes the c-segment from y0 to y1 with respect to xm.
Under assumptions (A0)–(A2) and (As), the constants C and C ′ are bounded away
from infinity and C ′′ is bounded away from 0.

Remark. If x0, x1, y0 and y1 satisfying (34) cannot be found, then φ is Hölder
continuous with exponent 1

5 .

Without loss of generality, we will assume that φ(x0)=φ(x1): indeed, as remarked
in Proposition 5.2, by subtracting from the cost function c an affine function λ that
depends only on x, we will not modify the map solution of the optimal transportation
problem, and the optimal potential φ will be changed into φ+λ. Hence one can subtract
a suitable affine function from c so that φ(x0)=φ(x1). Notice that, as λ is chosen affine,
the gradient of the “new” potentials are deduced from the “old” ones just by adding
the constant vector ∇xλ. Hence this does not change the continuity properties of ∇φ,
neither does it change the derivatives of c of order greater than 1.

As y0∈Gφ(x0) and y1∈Gφ(x1) we have, using (11), for all x∈Ω,

−c(x, y0)+c(x0, y0)+φ(x0) 6φ(x),

−c(x, y1)+c(x1, y1)+φ(x1) 6φ(x),

with equality at x=x0 in the first line, at x=x1 in the second line. Since φ(x0)=φ(x1),
the difference between the supporting functions

x 7−!−c(x, y0)+c(x0, y0)+φ(x0) and x 7−!−c(x, y1)+c(x1, y1)+φ(x1)
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will vanish at some point xm in the segment [x0, x1]. Without loss of generality, we can
add a constant to φ so that at this point both supporting functions are equal to 0. Hence

−c(xm, y0)+c(x0, y0)+φ(x0) = 0, (37)

−c(xm, y1)+c(x1, y1)+φ(x1) = 0. (38)

Lemma 5.7. Under the assumptions made above, and assuming moreover that

|y1−y0|> |x1−x0|,

we have, for all x in the segment [x0, x1],

φ(x) 6C3|x1−x0||y1−y0|,

where C3 depends only on ‖c( · , ·)‖C2(Ω×Ω′).

Proof. Using (37) and (38), we have

H =φ(x0) 6−∇xc(xm, y0)·(x0−xm)+ 1
2‖c‖C2 |x0−xm|2, (39)

H =φ(x1) 6−∇xc(xm, y1)·(x1−xm)+ 1
2‖c‖C2 |x1−xm|2. (40)

By Proposition 2.2, the potential φ is semi-convex, with D2φ>−‖D2
xxc‖L∞(Ω×Ω′)I. Ap-

plying the first part of Lemma 5.5 to the function f : t 7!φ(x0+t(x1−x0)) on [0, 1], for
which f ′′>−D2φ·(x1−x0, x1−x0), we find that

φ(x) 6H+C|x1−x0|2 for all x∈ [x0, x1], (41)

where C=C(‖c‖C2(Ω×Ω′)). Then we consider two cases.
The first case is when −∇xc(xm, y0)·(x0−xm) and −∇xc(xm, y1)·(x1−xm) are not

both positive: let us assume for example that −∇xc(xm, y0)·(x0−xm) is negative. Then
we have, using (39), H6 1

2‖c‖C2 |x0−xm|2, and using (41), we get that

φ(x) 6
(
C+ 1

2‖c‖C2(Ω×Ω′)

)
|x1−x0|2 for all x∈ [x0, x1].

Thus we can conclude using |x1−x0|6|y1−y0|.
The second case is when −∇xc(xm, y0)·(x0−xm) and −∇xc(xm, y1)·(x1−xm) are

both positive. This implies that

−∇xc(xm, y0)·(x0−xm) 6−∇xc(xm, y0)·(x0−x1),

−∇xc(xm, y1)·(x1−xm) 6−∇xc(xm, y1)·(x1−x0).
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Combining with (39) and (40), we have

2H 6−∇xc(xm, y0)·(x0−x1)−∇xc(xm, y1)·(x1−x0)+‖c‖C2 |x0−x1|2

6 |∇xc(xm, y0)−∇xc(xm, y1)||x0−x1|+‖c‖C2 |x0−x1|2

6 ‖c‖C2(|x1−x0||y1−y0|+|x0−x1|2).

Using |x1−x0|6|y1−y0|, and then (41), we conclude.

We now assume the following: letting Γ be defined by

Γ =
(
γ2

δ30
212C3

)1/5

, (42)

with C3(‖c‖C2(Ω×Ω′)) defined in Lemma 5.7, x0, x1, y0 and y1 satisfy

|y1−y0|>max{Γ|x1−x0|1/5, |x1−x0|}. (43)

Hence, the constant C in Proposition 5.6 will be equal to Γ.
We next state the following result, from which the proof of Proposition 5.6 will follow

easily.

Lemma 5.8. Let xm be defined as above. For y∈Ω′, consider the function

fy(x) =−c(x, y)+c(xm, y)+φ(xm).

Under the assumptions made above, there exist η and µ as in Proposition 5.6, such that
for all y∈Nµ

({
yθ, θ∈

[
1
4 ,

3
4

]})
∩Ω′,

φ−fy > 0 on ∂Bη(xm)∩Ω. (44)

Before proving this lemma, we first show how it leads to Proposition 5.6.

Proof of Proposition 5.6. By construction, fy(xm)=φ(xm). Hence, if we have φ>fy
on ∂Bη(xm), then φ−fy will have a local minimum inside Bη(xm), and for some point
x∈Bη(xm), we will have −∇xc(x, y)∈∂φ(x). Using Theorem 3.1, we have ∂φ(x)=∂cφ(x),
and this implies that y∈Gφ(x)⊂Gφ(Bη(xm)).

We now prove the main lemma.

Proof of Lemma 5.8. Using (37) and (38), and then Proposition 5.1 centered at xm,
we obtain

φ(x) >max{−c(x, y0)+c(xm, y0),−c(x, y1)+c(xm, y1)}

>−c(x, yθ)+c(xm, yθ)+δ0θ(1−θ)|y0−y1|2|x−xm|2−γ|x−xm|3 =Φ(x)
(45)
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for ε>0, for all θ∈[ε, 1−ε], |x−xm|6Cε, and with {yθ}θ∈[0,1] being the c-segment with
respect to xm joining y0 to y1. Then, for y∈Ω′, we have

−c(x, y)+c(xm, y) =−c(x, yθ)+c(xm, yθ)

+
∫ 1

0

[∇yc(xm, yθ+s(y−yθ))−∇yc(x, yθ+s(y−yθ))]·(y−yθ) ds

6−c(x, yθ)+c(xm, yθ)+C4|y−yθ||x−xm|,

where C4=‖D2
xyc‖L∞(Ω×Ω′). Combining this with Lemma 5.7 to estimate φ(xm), we get

fy(x) =−c(x, y)+c(xm, y)+φ(xm)

6−c(x, yθ)+c(xm, yθ)+C4|y−yθ||x−xm|+C3|x1−x0||y1−y0|=Fy(x).
(46)

Inequality (44) will be satisfied if we have, for Fy and Φ defined in (45) and (46),

Fy(x) 6Φ(x) (47)

on the set {x:|x−xm|=η}, for some η>0. First, we restrict θ to
[
1
4 ,

3
4

]
, (i.e. we take ε= 1

4

in (45)). Then (47) reads
3
16δ0|y0−y1|

2η2−γη3 >C4|y−yθ|η+C3|x1−x0||y1−y0|. (48)

Inequality (48) will be satisfied if the three following inequalities are satisfied:
1
16δ0|y0−y1|

2η2 >C3|x1−x0||y1−y0|,
1
16δ0|y0−y1|

2η2 >C4|y−yθ|η,
1
16δ0|y0−y1|

2η2 > γη3.

In order to satisfy the first inequality, we define η by

η2 =
16C3

δ0

|x1−x0|
|y1−y0|

.

In order to satisfy the second inequality, we define µ by

µ=C5η|y1−y0|2,

where C5=δ0/16C4 (note that C5 is bounded away from 0), and consider y∈Ω′ such that
|y−yθ|6µ. The third inequality will then be implied by

γη6 1
16δ0|y0−y1|

2,

which is equivalent to
γ2

δ30
163C3|x1−x0|6 |y1−y0|5,

and we recognize here assumption (43). The constants C, C ′ and C ′′ in Proposition 5.6
are defined by C=Γ from assumption (43), C ′=(16C3/δ0)1/2 and C ′′=C5. Then, for
all y∈Nµ

{
yθ, θ∈

[
1
4 ,

3
4

]}
∩Ω′, the function fy(x)=−c(x, y)+c(xm, y)+φ(xm) will satisfy

fy6φ on the boundary of the ball Bη(xm). This proves Lemma 5.8.
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5.4. Part III. Continuity estimates

Proposition 5.9. Let φ be c-convex with Gφ(Ω)⊂Ω′. Let c, Ω and Ω′ satisfy the
assumptions of Theorem 3.4, and let (Gφ)# be as in Definition 2.12.

• If (Gφ)#dVol satisfies (23) for some p>n, then φ∈C1,β
loc (Ω), with β(n, p) as in

Theorem 3.4.
• If (Gφ)#dVol satisfies (24), then φ∈C1

loc(Ω).

We first state the following general result, whose proof is deferred to the appendix.

Lemma 5.10. Let Ω′ be c-convex with respect to xm∈Ω and let y0, y1∈Ω′. There
exist C, µ0>0 depending on c, Ω and Ω′ such that , for all µ∈(0, µ0),

Vol(Nµ([y0, y1]xm)∩Ω′) >C Vol(Nµ([y0, y1]xm)).

Proof of Proposition 5.9. Consider

Ωδ = {x∈Ω : d(x, ∂Ω)>δ}.

In order to have Nη([x0, x1])⊂Ω, it is enough to have
(1) x0, x1∈Ωδ,
(2) |x0−x1|< 1

2δ,
(3) η< 1

2δ.
If y0∈Gφ(x0) and y1∈Gφ(x1) satisfy (34) in Proposition 5.6, with |y1−y0|>C|x1−x0|1/5,
then η6E|x1−x0|2/5, with η defined in Proposition 5.6, and E being a constant depend-
ing only on C ′ and C ′′ in Proposition 5.6. Hence, for |x1−x0|2/56δ/2E, it follows that
Nη([x0, x1])⊂Ω, and Proposition 5.6 applies. We now set

Rδ = inf
{
δ

2
,

(
δ

2E

)5/2}
, (49)

and in the remainder of the proof, we chose x1, x0∈Ωδ such that |x1−x0|6Rδ. From
Proposition 5.6, we will have

Nµ
{
yθ, θ∈

[
1
4 ,

3
4

]}
∩Ω′⊂Gφ(Bη(xm)). (50)

From Lemma 5.10, and the definition of µ in (36), there exist C,C ′>0 such that

Vol
(
Nµ

{
yθ, θ∈

[
1
4 ,

3
4

]}
∩Ω′

)
>C|y1−y0|µn−1 =C ′|y1−y0|ηn−1|y1−y0|2(n−1). (51)

C1,β estimates for data with bounded density. If the Jacobian determinant of the
mapping Gφ is bounded (in other words, if (Gφ)#dVol has a density bounded in L∞ with
respect to the Lebesgue measure), then, for some C and C ′,

Vol(Gφ(Bη(xm)))6C Vol(Bη(xm))=C ′ηn. (52)
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Using (50) with (51) and (52), we find for some C and C ′ that

|y1−y0|2n−1 6Cη=C ′
(
|x1−x0|
|y1−y0|

)1/2

,

which yields finally, for another constant C6>0,

|y1−y0|6C6|x1−x0|1/(4n−1).

From this, we readily deduce that Gφ is single valued, moreover Gφ∈C1/(4n−1)
loc (Ω). Since

−∇xc(x, yi)=∇φ(xi), i=0, 1, and ∇xc is Lipschitz, this also yields φ∈C1,1/(4n−1)
loc (Ω).

C1,β estimates for data satisfying (23). We can refine the argument: Let again
ν=(Gφ)#dVol and F be defined by

F (V ) = sup{Vol(Gφ(B)) :B⊂Ω is a ball of volume V }

=sup{ν(B) :B⊂Ω is a ball of volume V }.
(53)

Then, by Proposition 5.6, we have F (Vol(Bη(xm)))>Vol
(
Nµ

{
yθ, θ∈

[
1
4 ,

3
4

]}
∩Ω′

)
, which

yields, using (51) and the definition of η in (35),

F

(
ωnC

n
5

|x1−x0|n/2

|y1−y0|n/2

)
>C7|x1−x0|(n−1)/2|y1−y0|(3n−1)/2 (54)

for some C7 bounded away from 0, with ωn being the volume of the n-dimensional unit
ball. Assume that F (V )6CV � for some �∈R. Note that ν∈Lp implies the (stronger)
bound F (V )=o(V 1−1/p), hence it is natural to write �=1−1/p for some p∈]1,+∞], and
the condition

F (V ) 6CV 1−1/p (55)

is then equivalent to condition (23) for ν. We obtain from (54) and (55) that

|y1−y0|2n−1+(1−n/p)/2 6C8|x1−x0|(1−n/p)/2.

We see first that we need p>n, and, setting α=1−n/p, we obtain

|y1−y0|6C9|x1−x0|α/(4n−2+α).

This yields Hölder continuity for Gφ. Then we use that ∇φ(x)=−∇xc(x,Gφ(x)) and the
smoothness of c to obtain a similar Hölder estimate for ∇φ.

C1 estimates for data satisfying (24). We only assume condition (24) for

ν=(Gφ)#dVol,
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which we can rewrite under the following form:

F (V ) 6 [f(V 2/n)]2n−1V 1−1/n, (56)

for some increasing f : [0, 1]!R+, with limV!0 f(V )=0, F being defined in (53). Consis-
tently with (43), we can assume that, as x1 goes to x0, |x1−x0|/|y1−y0| also goes to 0.
Using (56) in (54), we get, for some C10 and C11 bounded away from 0 and infinity,

f2n−1

(
C10

|x1−x0|
|y1−y0|

)
> (C11|y1−y0|)2n−1.

Hence we get that |y1−y0| goes to 0 when |x1−x0| goes to 0. Then, the modulus of
continuity g of Gφ in Ωδ satisfies the following:

For all u6Rδ, either g(u)6max{u,Γu1/5} or

f

(
C10

u

g(u)

)
>C11g(u),

which is equivalent to

u> f−1(C11g(u))
g(u)
C10

,

which in turn is equivalent to
g(u) 6ω(u),

where ω is the inverse of z 7!f−1(C11z)z/C10. It is easily checked that limr!0+ ω(r)=0.
This shows the continuity of Gφ. Finally, we have ∇φ(x)=−∇xc(x,Gφ(x)), and the
continuity of ∇φ is asserted.

Remark. The power β=α/(4n−2+α) is not optimal for example if n=1 and p=+∞,
for which the C1,1 regularity is trivial, but note that in order to obtain this bound, we
had to assume (43). Hence, the conclusion should be: either φ is C1,1, or φ is C1,1/5, or
φ is C1,β . Note that β6 1

7 for n>2.

In Proposition 5.9, we use a bound on (Gφ)#dVol. However, in Theorem 3.4, we only
have (Gφ)#µ1=µ0, and as we we do not want to assume that µ1∈L1(Rn), this does not
imply necessarily that (Gφ)#µ1=µ0 (see Definition 2.12 and the subsequent discussion).
Hence we need the following proposition to finish the proof of Theorem 3.4.

Proposition 5.11. Let φ be c-convex on Ω, with Gφ(Ω)⊂Ω′. Assume that

(Gφ)#µ0 =µ1.

Assume that µ1>mdVol on Ω′. Then, for all ω⊂Ω, we have

µ0(ω) >mVol(Gφ(ω)),

and hence
(Gφ)#dVol 6

1
m
µ0.
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Proof. In Ω′ we consider

N = {y ∈Ω′ : there exist x1 6=x2 ∈Ω such that Gφ(x1) =Gφ(x2) = y}.

Then
N = {y ∈Ω′ :φc is not differentiable at y}.

Hence, Vol(N)=0 and Vol(Gφ(ω)\N)=Vol(Gφ(ω)). Moreover, on Gφ(ω)\N , G−1
φ is

single valued. Then G−1
φ (Gφ(ω)\N)⊂ω. Hence,

µ0(ω) >µ0(G−1
φ (Gφ(ω)\N))=µ1(Gφ(ω)\N) >mVol(Gφ(ω)\N) =mVol(Gφ(ω)).

Proof of the boundary regularity. This part is easy: under the assumptions of Theo-
rem 3.5, the density µ0 satisfies (23) with p>n (resp. satisfies (24)). Hence, Theorem 3.4
applies and φ∈C1,β

loc (Ω) (resp. φ∈C1
loc(Ω)). Since Ω2 is compactly contained in Ω, we

conclude the boundary regularity on Ω2. This proves Theorem 3.5.

Remark. This proof of the boundary regularity is very simple because we have inte-
rior regularity even when µ0 vanishes. This is not the case for the classical Monge–Ampère
equation, where the boundary regularity requires that both Ω and Ω′ are convex, and is
more complicated to establish (see [6]).

We now show that there is indeed equivalence between assumption (As) at a point
x and the conclusion of Proposition 5.1. This is a quantitative version of Theorem 3.2.

Proposition 5.12. Assume that at a point x0, for all y0 and y1, we have

φ̄(x) >−c(x, y1/2)+c(x0, y1/2)+δ0|y0−y1|2|x−x0|2+O(|x−x0|3)

with φ̄ as above, where y1/2 is the ‘middle’ point of [y0, y1]x0 . Then, the cost function
satisfies assumption (As) at x0 with C0=Cδ0, for some constant C>0 that depends on
the bound in (A2).

Proof. The proof follows the same lines as the proof of Theorem 3.1, and is omitted
here.

6. Proof of Theorem 3.8

We consider condition (Aw) at (x0, y=x0). We recall that

Sc(x0, x0)(ξ, ν) =−D2
pνpν

D2
xξxξ

[(x, p) 7! c(x,Tx0(p))]
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for any ν and ξ in Tx0M . Let us first take a normal system of coordinates at x0, so that
we will compute

Q=−D2
ttD

2
ss[(x, p) 7! c(Tx0(tξ),Tx0(sν))].

Let us write a finite difference version of this operator. We first introduce

y− =Tx0(−hν), y+ =Tx0(hν), x− =Tx0(−hξ) and x+ =Tx0(hξ).

We use the usual second-order difference quotient, for example

D2
xξ,xξ

c(x,Tx0(p))= lim
h!0

c(x+, x0)−2c(x0, x0)+c(x−, x0)
h2

.

(Of course we have c(x0, x0)=0.) We will have, as h goes to 0,

lim
h!0

1
h4

( ∑
i,j=+,−

c(xi, yj)−2
∑
i=+,−

(c(xi, x0)+c(yi, x0))
)

=−Q.

Rearranging the terms, we find that the bracket in the left-hand side is equal to∑
i,j=+,−

[c(xi, yj)−c(xi, x0)−c(yj , x0)].

Each of the terms inside the bracket has a simple geometric interpretation: consider the
triangle with vertices (x0, xi, yj) whose sides are geodesics. This is a right-angled triangle.
If the metric is flat, by Pythagoras’ theorem, the term inside the brackets is 0. In the
general case, a standard computation shows that it is equal to − 1

6�(x0, ξ, ν)h4+o(h4),
where �(x0, ξ, ν) is the sectional curvature at x0 in the 2-plane generated by ξ and ν.
Hence, we get that Q= 2

3�(x, ξ, ν).
Now, to reach the more general formula of Theorem 3.8, we use the following ex-

pansion of the distance that Cédric Villani communicated to us.

Lemma 6.1. Let M be a smooth Riemannian manifold. Let γ1 and γ2 be two unit
speed geodesics that leave a point x0∈M . Let θ be the angle between γ̇1(0) and γ̇2(0)
(measured with respect to the metric), let � be the sectional curvature of M at x0 in the
2-plane generated by γ̇1(0) and γ̇2(0). Then we have

d2(γ1(t), γ2(t))= 2(1−cos(θ))
((

1− 1
6�

(
cos2

(
1
2θ

))
t2+O(t4)

)
t2

)2
.

Then, we obtain easily, following the same lines as in the case above, that

Sc(x0, x0)(ξ, ν) = 2
3�(x0, ξ, ν)(|ξ|2g|ν|2g−(ξ, ν)2g),

where ( · , ·)g and | · |g denote the scalar product and the norm with respect to g, respec-
tively. This proves Theorem 3.8.
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6.1. Counterexample to regularity for a manifold with negative curvature

Consider the 2-dimensional surface H={(x, y, z):z=x2−y2}⊂R3, endowed with the Rie-
mannian metric inherited from the canonical metric of R3. Then H has negative sectional
curvature around 0. For r sufficiently small, Ω=H∩Br(0) is c-convex with respect to
itself. Consider the function

φ̄(x) =max
{
− 1

2d
2(X,X0),− 1

2d
2(X,X1)

}
,

where X0=(0, a,−a2) and X1=(0,−a,−a2). Then, as shown by our proof of Theo-
rem 3.1, for a small enough, no sequence of C1 c-convex potentials can converge uni-
formly to φ̄ on Ω. Let µ0 be the Lebesgue measure of Ω, and µ1= 1

2 (δX0 +δX1). We have
(Gφ̄)#µ0=µ1. Let µε1∈C∞(	Ω) be a positive mollification of µ1 such that its total mass
remains equal to 1, and which preserves the symmetries with respect to x=0 and y=0.
Let φn be such that (Gφn)#µ0=µn. Then, for n large enough, φn is not differentiable at
the origin. Indeed, for symmetry reasons, 0 belongs to the subdifferential of φn at 0; on
the other hand, φn converges uniformly to φ̄, and we know, from the fact that (Aw) is
violated at 0, that −φ̄−c( · , 0) does not reach its global maximum on Ω at 0.

7. Appendix

Proof of Proposition 2.14. We first prove the “intrinsic” part. In order to show
this, we consider a C2 curve γ in Ω defined in a neighborhood of 0, such that

γ(0)=x0, (57)

γ̇(0)= ξ. (58)

We then consider the quantity

Qγ =D2
ttD

2
ss[(s, t) 7! c(γ(t),Tx0(p0+sν))]|t,s=0.

We show that this quantity is independent of the choice of γ. We have

Qγ =D2
ss[s 7!D2

ξξc(x0,Tx0(p0+sν))+Dxc(x0,Tx0(p0+sν))·γ̈(0)]

=D2
ss[s 7!D2

ξξc(x0,Tx0(p0+sν))−(p0+sν)·γ̈(0)]

=D2
ss[s 7!D2

ξξc(x0,Tx0(p0+sν))],

where the second equality follows from the very definition of the c-exponential map.
Hence, the value of the curvature is independent of γ̈(0), and therefore of the choice of γ
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as long as it satisfies (57) and (58). One can now choose a system of geodesic coordinates
around x0, which yields the equivalence of the definitions (19) and (20). Then, the
second part of Proposition 2.14 follows by taking the c-geodesics with respect to y0 as
new coordinates around x0, which yields

Sc(x0, y0)(ξ, ν) =D2
pνpνqξ̃qξ̃

[c(Ty0(q),Tx0(p))]|q0=−∇yc(x0,y0),p0=−∇xc(x0,y0), (59)

where ξ̃ is chosen such that
DqT

∗
y0(q0)·ξ̃= ξ.

The condition ξ⊥ν nows readsDqT
∗
y0(q0)·ξ̃⊥ν, or equivalently [Dx,yc]−1 ·(ν, ξ̃)=0. Then,

identity (21) follows by a symmetric argument.

Proof of Proposition 3.3. We prove only the last point, the other points being ele-
mentary. Consider on Rn a measure locally equal to µ0=Ln−1⊗µ, where Ln−1 is the
(n−1)-dimensional Lebesgue measure, and µ is a probability measure on [0, 1] equal to the
derivative of the Devil’s staircase. Then, µ /∈L1. On the other hand, for all [a, b]⊂[0, 1],
µ([a, b])6|b−a|α for some α∈(0, 1]. Then, for x=(x1, ..., xn),

µ0(Br(x))6Crn−1µ([xn−r, xn+r])6Crn−1+α =Crn(1−1/p)

for some p>n. Hence µ0 /∈L1
loc and µ0 satisfies (23) for some p>n.

Proof of Proposition 4.1. We know (see [33, Chapter 2]) that there exists a proba-
bility measure π on Rn×Rn, with marginals µ and ν, such that∫

Rn

φ(x) dµ(x)+ψ(x) dν(x) =−
∫
c(x, y) dπ(x, y),

and moreover, there exists a c-convex potential φ̄ such that

supp(π)⊂{(x,Gφ̄(x)) :x∈Rn}.

Let us decompose π as π=µ⊗γx, where for µ-a.e. x∈Rn, γx is a probability measure on
Rn and γx is supported in Gφ̄(x). Hence, we have∫

Rn

∫
Rn

(φ(x)+ψ(y)−c(x, y)) dγx(y) dµ(x) = 0.

This implies that y∈Gφ(x) for µ-a.e. x and γx-a.e. y. Since y∈Gφ̄(x) γx-a.e. for µ-a.e. x,
we deduce that

Gφ̄(x)∩Gφ(x) 6= ∅

for µ-a.e. x (and hence for Lebesgue-a.e. x, since µ>0 a.e.). This implies that ∇φ=∇φ̄
Lebesgue-a.e., and that φ−φ̄ is constant. This shows that φ is uniquely defined up to a
constant. Now, the pair (ψc∗, ψ) can only improve the infimum (10) compared to (φ, ψ),
hence it is also optimal. Hence, ψc∗ is also uniquely defined up to a constant. If ψ is
c∗-convex, then (ψc∗)c=ψ, and ψ is thus uniquely defined.
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Proof of Lemma 5.10. From (A1) and (A2), for all xm∈Ω, ψ: y 7!−∇xc(xm, y) is a
diffeomorphism from Ω′ to −∇xc(xm,Ω′). Then,

ψ(Nη([y0, y1]xm
)∩Ω′) =ψ(Nη([y0, y1]xm))∩ψ(Ω′).

Letting pi=−∇xc(xm, yi), i=0, 1, using (A1) and (A2), there exists C>0 such that

NCη([p0, p1])⊂ψ(Nη([y0, y1]xm
)).

Moreover, as Ω′ is c-convex with respect to xm, ψ(Ω′) is a convex set.
Then we claim the following: for U⊂Rn convex and for u, v∈U , the function

r 7−! Vol(Nr([u, v])∩U)
Vol(Nr([u, v]))

is non-increasing. Indeed, by the convexity of U , for w∈[u, v], if w+w′∈Br(w)∩U , then
w+θw′∈Bθr(w)∩U for θ∈[0, 1]. From this the claim easily follows.

Hence, we have

Vol(ψ(Nη([y0, y1]xm)∩Ω′))>Vol(NCη([p0, p1])∩ψ(Ω′))

>
Vol(NCη([p0, p1]))Vol(N1([p0, p1])∩ψ(Ω′))

Vol(N1([p0, p1]))
,

whenever η is small enough so that Cη61. By compactness, one has

Vol(N1([p0, p1])∩ψ(Ω′))
Vol(N1([p0, p1]))

>C(Ω′).

Moreover, for C>0, there exists a constant C ′>0 such that

Vol(NCη([p0, p1]))>C ′Vol(Nη([p0, p1]))

for all η>0. Then, as ψ is a smooth diffeomorphism, one has

Vol(Nη([y0, y1]xm
)∩Ω′)

Vol(Nη([y0, y1]xm))
>C(c,Ω,Ω′)

Vol(ψ(Nη([y0, y1]xm)∩Ω′))
Vol(ψ(Nη([y0, y1]xm)))

.
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[13] Delanoë, P., Classical solvability in dimension two of the second boundary-value prob-
lem associated with the Monge–Ampère operator. Ann. Inst. H. Poincaré Anal. Non
Linéaire, 8 (1991), 443–457.

[14] — Gradient rearrangement for diffeomorphisms of a compact manifold. Differential Geom.
Appl., 20 (2004), 145–165.
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