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ON THE REGULARITY PROBLEM OF COMPLEX

MONGE–AMPERE EQUATIONS WITH CONICAL

SINGULARITIES

by Xiuxiong CHEN & Yuanqi WANG

Abstract. — In the category of metrics with conical singularities along a
smooth divisor with angle in (0, 2π), we show that locally defined weak solu-
tions (C1,1

−solutions) to the Kähler–Einstein equations actually possess maximum
regularity, which means the metrics are actually Hölder continuous in the singu-
lar polar coordinates. This shows the weak Kähler–Einstein metrics constructed
by Guenancia–Păun, and independently by Yao, are all actually strong-conical
Kähler–Einstein metrics. The key step is to establish a Liouville-type theorem
for weak-conical Kähler–Ricci flat metrics defined over Cn, which depends on a
Calderon–Zygmund theory in the conical setting. The regularity of globally de-
fined weak-conical Kähler–Einstein metrics is already proved by Guenancia–Paun
using a different method.

Résumé. — Dans la catégorie des métriques à singularités coniques autour d’un
diviseur lisse avec angle strictement compris entre 0 et 2π, on montre que les solu-
tions faibles localement définies (au sens C(1,1)) des équations de Kähler–Einstein
sont de régularité maximale, ce qui implique que les métriques sont Höldériennes
dans les coordonnées polaires singulières. Ceci montre que les métriques de Kähler–
Einstein faibles construites par Guénancia-Păun, et Yao indépendamment, sont en
fait des métriques de Kähler–Einstein coniques au sens fort. Le point clé est d’éta-
blir un théorème de type Liouville pour les métriques Ricci-plates au sens faible sur
Cn, ce qui découle d’une théorie de Calderon–Zygmund dans un contexte conique.
La régularité des métriques de Kähler–Einstein coniques globalement définies avait
déjà été obtenue par Guénancia-Păun par une autre méthode.

1. Introduction

Consider the singular space (C × C
n−1, ωβ)(β ∈ (0, 1)), where ωβ is the

standard flat background metric with conical singularities along {0}×C
n−1,

Keywords: complex Monge–Ampère equations, conical singularity.
Math. classification: 35J75.
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written as

ωβ =
β2

|z|2−2β
dz ⊗ dz̄ +

n−1∑

j=1

dvj ⊗ dv̄j ,

where z ∈ C and vj are tangential variables to {0} × C
n−1. Geometrically,

this is a product of a flat two-dimension cone with Euclidean C
n−1. From

now on, we denote the singular divisor {0}×C
n−1 asD. In this introduction,

we take the balls to be centered at the origin, with respect to ωβ . For more

detailed notations, please refer to Section 2 of this article.

We want to understand the PDE theory in this space, using intrinsic

metric. For any domain Ω ∈ C×C
n−1, the complex Monge Ampere equation

take a simpler form

(1.1) det(φij̄) =
f

|z|2−2β
,

where

(1.2) ωφ =
√

−1∂∂̄φ

gives a Kähler metric in Ω with conical angle 2πβ along D. The Laplacian

operator of ωβ is

△β =
|z|2−2β

β2

∂2

∂z∂z̄
+

n−1∑

j=1

∂2

∂vj∂v̄j

.

Sometimes we also use the real laplacian of ωβ , denoted as ∆. Notice

that ∆ = 4∆β .

Definition 1.1. — For any constant λ > 0, suppose φ solves (1.1) with

f = eλφ+h, h ∈ C∞(Ω) and
√

−1∂∂̄h = 0,

then ωφ is a conical Kähler–Einstein metric with scalar curvature −nλ.

When λ = 0, ωφ is a conical Kähler–Ricci flat metric.

Remark 1.2. — Notice that the conical Kähler–Einstein metrics (along

smooth divisors) considered in all the references we know (including [1],

[2], [4], [6], [10], [14], [17], [18], [19], [20], [24], . . . ), can be written as in

Definition 1.1 near the D, under holomorphic coordinates.

To state our main results, we define the following.

Definition 1.3 (Weak-conical Kähler metrics). — A function u defined

in Ω is called a C1,1,β(Ω)-function if it satisfies

• u ∈ C2,α(Ω \D) ∩ Cα(Ω), for some 1 > α > 0;

ANNALES DE L’INSTITUT FOURIER



REGULARITY OF SINGULAR MONGE–AMPERE EQUATIONS 971

• −Kωβ 6
√

−1∂∂̄u 6 Kωβ over Ω \D. The minimum of all such K

is defined as our C1,1,β(Ω)-seminorm and denoted as [ · ]C1,1,β(Ω).

A closed positive (1, 1)-currrent ω defined in Ω is called a weak-conical

Kähler metric if ω admits a plurisubharmonic C1,1,β−potential (in the sense

of (1.2)) near any p ∈ Ω, and

ωβ

K
6 ω 6 Kωβ over Ω \D, for some K > 1.

Sometimes we call such metrics as L∞,β-metrics, with norm defined as the

C1,1,β(Ω)-seminorm in the previous paragraph with respect to the poten-

tials.

Remark 1.4. — Notice that for a function, being C1,1,β is stronger (away

from D) than being C1,1 in the usual sense, even in the smooth case (when

β = 1). Namely, we require the function to be C2,α away from the sin-

gularity. The C1,1,β and L∞,β spaces are really adapted to the conic case

only.

The above definition is the same as in [23] and [8], we just formulate it

here to include the definition of C1,1,β functions.

Definition 1.5 (CKS operators). — Similar to Definition 1.3, we say L

is a Conelike Kähler Second-order operator over a ball B, if L = Aij̄ ∂2

∂zi∂z̄j

such that

(1) Aij̄ ∈ Cα(B \D) is a Hermitian matrix valued function.

(2) −Kωij̄
β 6 Aij̄ 6 Kωij̄

β as Hermitian matrix functions over B, for

some constant K > 1.

We define the L∞,β
O -norm of a CKS operator L as the infimum of the

constant K in the item 2 above. The laplace operator of any weak conical-

Kähler metric is an elliptic CKS operator, but in general a CKS operator

does not have to be elliptic.

According to [6], if a conical Kähler–Einstein metric is in Cα,β for some

α > 0, then it is necessarily in Cα′,β for all α′ ∈ (0,min(1, 1
β

− 1)). The

fundamental problem is when α = 0, in other words, when the metric

tensor is barely L∞,β , does the metric actually possess higher regularity?

This is of course a core problem in the study of conical Kähler geometry.

In this paper, we prove

Theorem 1.6. — Let Ω be an open set in C
n. Suppose f ∈ C1,1,β(Ω),

f > 0. For any solution φ ∈ C1,1,β(Ω) to equation (1.1) such that
√

−1∂∂̄φ

is a weak conical metric, φ is actually in C2,α,β(Ω), for all α such that

0 < α < min( 1
β

− 1, 1).

TOME 67 (2017), FASCICULE 3



972 Xiuxiong CHEN & Yuanqi WANG

Remark 1.7. — Theorem 1.6 does not give any C2,α,β−norm bound

on φ, it only says φ has C2,α,β−regularity in the open set Ω. Actually,

the norm bounds and the apriori estimate are already proved in [8], from

page 13 to page 19. The point of Theorem 1.6 is the regularity, but not the

norm bounds.

Theorem 1.6 has an immediate corollary. For the sake of accuracy, we

prefer to state it in a more geometric way.

Corollary 1.8. — Any weak-conical Kähler–Einstein metric in a do-

main Ω ⊂ C × C
n−1 must be a Cα,β conical Kähler–Einstein metric, for

any 0 < α < min( 1
β

− 1, 1).

Remark 1.9. — Using Yau-type Schwartz lemmas and some tricky

oberservations, Guenancia–Păun constructed weak-conical Kähler–Einstein

metrics in [14]. Yao also independently constructed weak-conical Kähler–

Einstein metrics in [24], using interesting tricks. Corollary 1.8 implies when

the divisor D is smooth, both Guenancia–Păun and Yao’s weak-conical

Kähler–Einstein metrics are (strong) conical metrics i.e. they are all Hölder

continous metrics.

Remark 1.10. — Very recently, we learned that the regularity of glob-

ally defined weak-conical Kähler–Einstein metrics is already proved by

Guenancia–Păun in [14] using a different method. Corollary 1.8 is a lo-

cal regularity result. Jeffres–Mazzeo–Rubinstein also have an edge calculus

approach to the local regularity in [17].

In Theorem 1.6 and Corollary 1.8, we only assume the underlying met-

ric tensor is L∞,β . A crucial step is to prove the following Liouville type

theorem:

Theorem 1.11 (Strong Liouville Theorem). — Suppose ω is a weak-

conical Kähler metric over C
n, and ω satisfies

(1.3) ωn = ωn
β ,

ωβ

K
6 ω 6 Kωβ over C

n \D,

for some K > 1. Then, there is a linear transformation L which preserves

{z = 0} and ω = L⋆ωβ .

Remark 1.12. — This strong Liouville Theorem is first proved by Chen–

Donaldson–Sun in [6], with the additional assumption that ω is a metric

cone. Later, assuming ω has Cα,β-regularity for some α > 0 instead of

being a metric cone, the Liouville Theorem is proved by the authors in

Theorem 1.14 in [8].

ANNALES DE L’INSTITUT FOURIER



REGULARITY OF SINGULAR MONGE–AMPERE EQUATIONS 973

This strong Liouville theorem is much harder, since we assume the un-

derlying metric tensor is only L∞,β . In particular, we can not take any more

derivatives to the Einstein equation (1.3) globally, so existing methods are

not sufficient anymore. For this purpose, we need to develop W 2,p−estimate

in the conical settings. In [10], Donaldson developed the Schauder theory

for conical Laplace operator, and used that to deform the cone angle of con-

ical Kähler–Einstein metrics. In this paper, we establish the corresponding

conical W 2,p-theory. The definition of W k,p,β(k = 1, 2) is given in Section 2.

To prove the W 2,p,β−estimate, it sufficies to consider the following set of

second order operators of non-purely normal (1, 1)−derivatives as in [10].

(1.4) T =

{
∂2

∂wi∂r
, 1 6 i 6 2n− 2;

∂2

∂wi∂wj

, 1 6 i, j 6 2n− 2;

1

r

∂2

∂wi∂θ
, 1 6 i 6 2n− 2

}
,

where r = |z|β , and the θ is the angle of z. There will be more detailed

definition in Section 2.

Following Chap. 9 of [12], we define a class of operators T as

(1.5) Tf = DNβ,Bf, D ∈ T,

where Nβ,Bf is the Newtonian potential of f , defined by convolution with

the Green’s function as in Definition 2.5.

Actually, the operator T and its dual T ⋆ are both very similar to the

singular integral operators considered by Calderon–Zygmund in [3], and by

Stein [21] (see Theorem 1 in [21, Section 2.2]). Though our conical case is

different from the classical cases on several aspects, the really surprising

thing is: the proof of Theorem 9.9 in [12] proceeds well in our case, after

overcoming several analytical difficulties. Namely, the following W 2,p,β-

estimate is true.

Theorem 1.13. — Suppose L is an elliptic CKS operator defined over

B(2). Suppose there is a sufficiently small constant δ0 such that

|L− ∆β |
L

∞,β

O

6 δ0, over B(2).

Suppose u ∈ C2(B(2) \D) ∩W 2,p,β [B(2)] is a classical-solution to

Lu = f in B(2) \D, f ∈ Lp[B(2)], ∞ > p > 2.

Then

[u]W 2,p,β ,B(1) 6 C(|f |Lp,B(2) + |u|W 1,p,B(2)),

TOME 67 (2017), FASCICULE 3



974 Xiuxiong CHEN & Yuanqi WANG

where C only depends on n, β, p. In particular, we have

[u]W 2,p,β ,B(1) 6 C(|∆βu|Lp,B(2) + |u|W 1,p,B(2)).

The following Sobolev-imbedding Theorem in the conical category is also

crucially needed in the proof of Theorem 1.6.

Theorem 1.14. — Let u ∈ W 1,2(B(2)) ∩C2(B(2) \D) be a weak solu-

tion to ∆βu = f in B(2), f ∈ Lp, p > 2n. Then for all α < min
{

1 − 2n
p
,

1
β

− 1
}

, we have u ∈ C1,α,β(B(1)) and

|u|1,α,β,B(1) 6 C(|u|W 1,2,B(2) + |f |Lp,B(2)).

Convention of the constants

The “C”’s in the estimates mean constants independent of the object

estimated, suppose the object satisfies the conditions and bounds in the

correponding statement. In some cases we say explicitly what does the

“C” depend on. When we don’t say anything to the “C”, we mean it can

depend on the conditions and bounds in the corresponding statement, for

example, like the C1,1,β-bound on the given potential, or the Cα−bound

on the given metric given away from the divisor, or the C1,1,β-bound on

the given volume form f , or the quasi-isometric constant of ω with respect

to ωβ , . . . and so on.

Distances and Balls

In most of the cases, we use distance and balls defined by the model cone

metric ωβ , unless otherwise specified. The balls are usually centered at the

origin or some point on the divisor. In this case, the conic balls are exactly

the balls with respect to the Euclidean distance in polar coordinates.

The model cone metric ωβ is exactly the usual Euclidean metric in the

following coordinate (see Remark 2.3 in [9]).

ξ = zβ = reiv, v = βθ ∈ (−βπ, βπ].

The tangential coordinates are as usual.

This coordinate is only defined on Wβ × C
n−1, where Wβ is the wedge of

angle 2πβ in C. Thus in this coordinate, the conic balls are exactly the

Euclidean balls.

ANNALES DE L’INSTITUT FOURIER



REGULARITY OF SINGULAR MONGE–AMPERE EQUATIONS 975

The only big exception is in Section 3, where we use the Euclidean metric

ωE in the polar coordinates. The reason is that it’s super convenient for

using the cube decomposition which is necessary in Calderon–Zygmund

theory. ωE and ωβ are quasi-isometric to each other i.e.

βωβ 6 ωE 6
ωβ

β
.

Thus the distances defined by them are equivalent.

Acknowledgement

We would like to thank Mihai Păun for pointing out that the global

version of Corollary 1.8 is already proved in the newest version of [14]

using a different method.

2. The L2-estimate

In this section, we fix the necessary notations and prove the L2-estimate

of the conical Laplace equation in Lemma 2.7. This is the first step toward

a full W 2,p,β−theory for all p ∈ (1,∞).

Let r = |z|β and θ be just the angle of z from the positive real axis. In

the polar coordinates r, θ, wi, 1 6 i 6 2n− 2, ωβ can be written as

ωβ = dr2 + β2r2dθ2 +

2n−2∑

i=1

dwi ⊗ dwi,

where r is the distance to the divisor D = {0} ×C
n−1, θ is the usual angle

of the variable z, and wi are the tangential variables.

Notice in the polar coordinates we have β2gE 6 ωβ 6 1
β2 gE , where gEuc

is Euclidean metric in the polar coordinates i.e.

(2.1) gE = dr2 + r2dθ2 + +

2n−2∑

i=1

dwi ⊗ dwi.

We denote ωE as the Kähler form of gE . We will be frequently using the po-

lar coordinates in most of the following content, as in this nice coordinates,

the conical metrics are quasi-isometric to the Euclidean metric gE . We first

define the space W 1,p,β(B) as usual W 1,p-space in the polar coordinates,

∞ > p > 2.

TOME 67 (2017), FASCICULE 3



976 Xiuxiong CHEN & Yuanqi WANG

Definition 2.1 (W 2,p,β−space). — Given p > 2, and a ball B, a func-

tion u is said to be in the space W 2,p,β(B) if the following holds. We can

understand the polar coordinates as the intrinsic coordinates of ωβ .

• u ∈ W 2,p
loc [B \ D] where W 2,p

loc [B \ D] is the usual Sobolev space in

the holomorphic coordinates.

• |z|2−2β ∂2u
∂z∂z̄

∈ Lp(B), the Lp(B)−space is the usual Lp−space in

the polar coordinates (so are the “Lp(B)”’s in the following);

• |z|1−β ∂2u
∂z∂wj

∈ Lp(B), for all 0 6 j 6 2n− 2;

• ∂2u
∂wi∂wj

∈ Lp(B), for all 0 6 i, j 6 2n− 2;

• u ∈ W 1,p,β(B).

The norm and seminorm are written as

(2.2)

[u]W 2,p,β(B) =

∣∣∣∣|z|2−2β ∂2u

∂z∂z̄

∣∣∣∣
Lp(B)

+

2n−2∑

j=1

∣∣∣∣|z|1−β ∂2u

∂z∂wj

∣∣∣∣
Lp(B)

+

2n−2∑

i,j=1

∣∣∣∣
∂2u

∂wi∂wj

∣∣∣∣
Lp(B)

.

|u|W 2,p,β(B) = [u]W 2,p,β(B) + |u|W 1,p,β(B).

Lemma 2.2. — For any ball B, W 2,p,B(B) is a (complete) Banach space.

Remark 2.3. — This completeness lemma is used in the definition of

Nβf for f ∈ Lp, p > 2, as in Lemma 2.7. We present a full proof for the

convenience of the readers, though it’s straightforward.

Proof of Lemma 2.2. — Without loss of generality, we assume B is the

unit ball (centered at the origin). We only consider the case W 2,2,β(B), the

proof for all p is exactly the same. It suffices to construct a limit. Suppose

{uk} is a Cauchy-Sequence of W 2,2,β(B), then in the sense of W 1,2,β(B),

uk admits a limit denoted as u. Then it remains to show u is actually in

W 2,2,β(B).

Denote BR and the radius of R, and TR(D) as the turbular neighborhood

of D with radius R (as in Definition 2.1). Over B1− ǫ
2

\ T ǫ
2
(D), we deduce

that {∆βuk} is a Cauchy-Sequence in L2[B1− ǫ
2

\ T ǫ
2
(D)]. Then we apply

the interior elliptic estimate to the pair of domains

B1− ǫ
2

\ T ǫ
2
(D), B1−ǫ \ Tǫ(D).

By Theorem 8.8 in [12], we deduce

|uk − ul|2,2,B1−ǫ\Tǫ(D))

6 C(ǫ)
[
|uk − ul|1,2,B1− ǫ

2
\T ǫ

2
(D) + |∆βuk − ∆βul|0,2,B1− ǫ

2
\T ǫ

2
(D)

]
.

ANNALES DE L’INSTITUT FOURIER
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Thus, {uk} is a Cauchy-Sequence in the usual Sobolev space W 2,2(B1−ǫ \
Tǫ(D)). Then, by the completeness of the usual Sobolev spaces, and the

diagonal sequence trick, there exists a limit function in W 2,2
loc (B \D), which

can be nothing else than u, with the following property.

lim
k→∞

|uk − u|2,2,B1−ǫ\Tǫ(D) = 0, for any ǫ > 0.

Since over B1−ǫ \ Tǫ(D), the W 2,2,β(B1−ǫ \ Tǫ(D))-norm is weaker than

the usual W 2,2(B1−ǫ \ Tǫ(D))−norm, and {uk} is a Cauchy-Sequence in

W 2,2,β(B), we deduce the following by the Minkovski inequality

(2.3) |u|W 2,2,β(B1−ǫ\Tǫ(D))

6 lim sup
k

{|u− uk|W 2,2,β(B1−ǫ\Tǫ(D)) + |uk|W 2,2,β(B1−ǫ\Tǫ(D))}

= lim sup
k

|uk|W 2,2,β(B1−ǫ\Tǫ(D)) 6 C,

where C does not depend on ǫ. Since ǫ is arbitrary, (2.3) implies

(2.4) |u|W 2,2,β(B) 6 C < ∞, then u ∈ W 2,2,β(B).

The proof of Lemma 2.2 is complete. �

To study the W 2,p,β-estimate, we quote the heat kernel formula in [9].

Denote x = (r, θ, x) and y = (r′, θ′, x′), where x is the tangential projection

of x. Denote R = |x− x′|. The heat kernel is

(2.5) H(x, y, t)

=
1

(4πt)n
e− r2+ŕ2+R2

4t

{
∑

k, −π<β[θ−θ′]+2kβπ<π

e
rr′ cos(β[θ−θ′]+2kβπ)

2t

+K

(
rr′

2t
, β[θ − θ′]

)
+

1

2

∑

k, β[θ−θ′]+2kβπ=±π

e− rr′

2t

}
,

where

(2.6) K(
rr′

2t
, β[θ − θ′])

=
sin π

β

πβ

∫ ∞

0

e− rr′

2t
cosh y

[cos π
β

−cos[θ−θ′] cosh y
β

]

[cosh y
β

−cos β[θ−θ′]−π

β
][cosh y

β
−cos β[θ−θ′]+π

β
]
dy.

In the above formula, we actually abused the notation a little bit, as

in [9]. To be precise, the “θ − θ′” means the unique angle in (−π, π] which

is mod 2π equivalent to θ − θ′.

TOME 67 (2017), FASCICULE 3



978 Xiuxiong CHEN & Yuanqi WANG

We define the Green function of ωβ as

Γ(x, y) = −
∫ ∞

0

H(x, y, t)dt.

The following lemma is true.

Lemma 2.4. — For any x /∈ D, we have

lim
ǫ→0

∫

∂Bx(ǫ)

∂Γ(x, y)

∂νy

dy = 1.

Proof of Lemma 2.4. — It sufficies to notice that, by the assumption

that x /∈ D, we have rx > 0 (rx = r, we just add the sub x to emphasize

its dependence on x). Then, when k 6= 0, we deduce

(2.7) e− r2+r′2

4t e
rr′ cos(β[θ−θ′]+2kβπ)

2t 6 e−
(r−r′)2+2(1−cos βπ)rr′

4t 6 e− a
t ,

where a is a positive constant depending on x, especially rx (the distance

from x to D). Then, by defining

(2.8) ΓE

= −
∫ ∞

0

1

(4πt)n
e− r2+ŕ2+R2

4t

{
∑

k 6=0,

−π<β[θ−θ′]+2kβπ<π

e
rr′ cos(β[θ−θ′]+2kβπ)

2t

+K

(
rr′

2t
, β[θ − θ′]

)
+

1

2

∑

k,β[θ−θ′]+2kβπ=±π

e− rr′

2t

}
dt,

we obtain when y ∈ Bx( rx sin βπ
2 ) and β[θ − θ′] 6= ±π mod 2βπ that

(2.9) |∇yΓE |

6

∫ ∞

0

∣∣∣∣∇y

{
1

(4πt)n
e− r2+ŕ2+R2

4t




∑

k 6=0
−π<β[θ−θ′]+2kβπ<π

e
rr′ cos(β[θ−θ′]+2kβπ)

2t




+K
(rr′

2t
, β[θ − θ′]

)}∣∣∣∣dt

6 C

∫ ∞

0

(
1

tn
+

1

tn+ 1
2

+
1

tn+1

)
e− a

t dt 6 Ca.

By continuity, we have for all x /∈ D and y ∈ Bx( rx sin βπ
2 ) ⊂ Wβ × C

n−1

that

(2.10) |∇yΓE(x, y)| 6 Ca.

ANNALES DE L’INSTITUT FOURIER
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Notice that

(2.11)

Γ(x, y) = −
∫ ∞

0

1

(4πt)n
e− r2+ŕ2+R2

4t e
rr′ cos(β[θ−θ′])

2t dt+ ΓE .

= −
∫ ∞

0

1

(4πt)n
e−

|x−y|2

4t dt+ ΓE .

= − 1

4πnρ2n−2
Γ(n− 1) + ΓE ,

where ρ = |x−y| and Γ(n) is the Gamma-function. Using (2.10), we deduce

lim
ǫ→0

∫

∂Bx(ǫ)

∂ΓE(x, y)

∂ρ
dy = 0.

Moreover, we have Γ(n)S(2n−1)
2πn = 1, where S(2n−1) is the area of (2n−1)-

dimensional unit sphere. Then we compute

(2.12) lim
ǫ→0

∫

∂Bx(ǫ)

∂Γ(x, y)

∂ρ
dy

= lim
ǫ→0

∫

∂Bx(ǫ)

∂ΓE(x, y)

∂ρ
dy +

1

2πnǫ2n−1
Γ(n)S(2n− 1)ǫ2n−1

= 1. �

Definition 2.5. — We denote Nβ,Ωf as the Newtonian potential of f

over Ω i.e.

Nβ,Ωf =

∫

Ω

Γ(x, y)f(y)dy.

Lemma 2.6 (Green Representation). — Suppose u ∈ W 2,2,β
c (Cn) ∩

C2(Cn \ D), then the Green’s representation formula holds for u i.e. for

all x /∈ D, we have

(2.13) u(x) = Nβ,Cn(∆βu)(x).

Proof of Lemma 2.6. — First, since x /∈ D and u ∈ C2(Cn \ D), then

when ǫ0 such that Bx(ǫ0) ∩D = ∅, the following

Nβ,Cn∆βu =

∫

Bx(ǫ0)

Γ(x, y)∆βu(y)dy +

∫

Cn\Bx(ǫ0)

Γ(x, y)∆βu(y)dy

is well-defined pointwisely for all x ∈ C
n \D.

Lemma C.1 implies for u ∈ W 2,2,β
c (Cn) ∩ C2(Cn \D) that

∫

Cn\D

v∆ωu ω
n = −

∫

Cn\D

(∇ωv · ∇ωu) ωn for any conical metric ω,

then (2.13) follows from the well known derivation of formula (2.17) in

page 18 of [12], and Lemma 2.4. �
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In the conical case, the operator T (as defined in 1.5) might not be

self adjoint because there is one special direction. Nevertheless, this could

compensated by the good properties of T ⋆. For any f, g ∈ Cα,β
c (B), we

have

(2.14)

∫

B

(Tf)gdx =

∫

B

fT ⋆gdy.

It’s easy to show that

T ⋆g = −Dyj

∫

B

DxΓ(x, y)g(x)dx,

where yj is a tangential varible in the y-component, and Dx is an order 1

differential operator in the x-component.

Notice Dx can not be integrated by parts in general, since div ∂
∂r

6= 0 and

div{ 1
r

∂
∂θ

} 6= 0. Nevertheless, Lemma 3.3 guarantees that T ⋆ is densely de-

fined in L2(B), which leads to our necessary L2−estimate. The proof of the

following crucial L2−estimate is almost the same as proof i of Theorem 9.9

in [12]. Nevertheless, since it concerns the correct choice of the Hessian op-

erator to integrate by parts toward, we still present a detailed proof. The

Hessian operator we choose here leads to the necessary W 2,p,β-estimate

when p is large.

Lemma 2.7. — Given a ball B, suppose f ∈ L2(B), then Nβ,Bf is well-

defined. Moreover,

|Tf |2L2(B) 6 C

∫

B

f2,

and

|T ⋆f |2L2(B) 6 C

∫

B

f2.

Proof of Lemma 2.7. — For any sequence ǫk > 0 such that ǫk → 0, we

consider the smoothing of cutoffs of f with parameter ǫk, denoted as fǫk
.

The point is that the smoothing and cutoffs work well in the conical case.

Namely, the approximation functions fǫk
are in C∞

c (B), and

lim
k→∞

|fǫk
− f |L2(B) = 0.

The space C∞(B) is of compact supported smooth functions in the polar

coordinates, not holomorphic coordinates.

Step 1. — Then we consider wǫk
= Nβ,Bfǫk

. Then, by the work in Don-

aldson (also see [9]), Nβ,Bfǫk
∈ C2,α,β(B), thus it makes sense to consider

Hessian of ωǫk
in some sense. It sufficies to prove

(2.15)

∫

B

f2
ǫk
ωn

β =

∫

Cn

|∆wǫk
|2ωn

β =

∫

Cn

|∇1,1,βwǫk
|2ωn

β ,
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where the ∇1,1,β is the Hessian operator whose components are exactly

those in the seminorm (2.2). This choice integrates well with Definition 1.3.

Then, the integration by parts proceeds line to line as in proof (i) of The-

orem 9.9 in [12]. For the sake of a self-contained proof, and of emphasizing

the operator ∇1,1,β we choose, we include the detail here. Denote

∆0,β =
|z|2−2β

β2

∂2

∂z∂z̄
, ω0,β =

β2

|z|2−2β

√
−1

2
dz ∧ dz̄.

Then

(2.16) ∆ = 4∆0,β +

2n−2∑

j=1

∂2

∂y2
j

.

Denote AR as the polycylinder of radius R. To be precise, we define

(2.17) AR = DR ×BR,

where D(R) is the disk with radius R in the z-component of Cn (centered

at the origin), and BR is the ball with radius R in D = {0} × C
n−1 (also

centered at the origin). Let R be large enough such that A(R) ⊃ suppf ,

then

(2.18)

∫

B(R)

∫

D(R)

(∆wǫk
)2ω0,β ∧ dy1 . . . ∧ dy2n−2

= 16

∫

B(R)

∫

D(R)

(∆0,βwǫk
)2ω0,β ∧ dy1 . . . ∧ dy2n−2

+ 8

2n−2∑

j=1

∫

B(R)

∫

D(R)

(∆0,βwǫk
)wǫk,jjω0,β ∧ dy1 . . . ∧ dy2n−2

+

2n−2∑

i,j=1

∫

B(R)

∫

D(R)

wǫk,iiwǫk,jjω0,β ∧ dy1 . . . ∧ dy2n−2.

Ignoring the constant coefficient temporarily, it suffices to deal with the

second term above. Since f ∈ C∞
c (B), and Donaldson’s Schauder estimate

in [10] is smooth in the tangential directions, we have

(2.19)
∂

∂xj

∆0,βwǫk
∈ C0[A(R)].

We will show below that it’s convenient to do integration by parts over

these polycylinders, in our case.
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Using the condition (2.19) and Lemma 2.5 in [22] (see Appendix C), the

tangential derivatives ∂
∂yj

can be integrated by parts. Hence

(2.20)

2n−2∑

j=1

∫

B(R)

∫

D(R)

(∆0,βwǫk
)wǫk,jjω0,β ∧ dy1 . . . ∧ dy2n−2

= −
2n−2∑

j=1

∫

B(R)

∫

D(R)

(∆0,βwǫk,j)wǫk,jω0,β ∧ dy1 . . . ∧ dy2n−2

+

2n−2∑

j=1

∫

∂(B(R)×D(R))

(∆0,βwǫk
)wǫk,jnjω0,β ∧ dy1 . . . ∧ dy2n−2.

wǫk
∈ C2,α,β [A(R)] implies the tangential-normal mixed derivatives

∇0,βwǫk,j are in L∞[A(R)]. Moreover, ωβ is a product metric of ω0,β with

the Euclidean metric in the tangential directions along D. Then, again,

Lemma 2.5 in [22] and Fubini’s Theorem imply we can integrate the ∆0,β

on the first C-slice by parts to obtain

(2.21) −
2n−2∑

j=1

∫

B(R)

∫

D(R)

(∆0,βwǫk,j)wǫk,jω0,β ∧ dy1 . . . ∧ dy2n−2

=

2n−2∑

j=1

∫

B(R)

dy1 . . . ∧ dy2n−2

∫

D(R)

|∇0,βwǫk,j |2ω0,β

−
2n−2∑

j=1

∫

B(R)

dy1 . . . ∧ dy2n−2

∫

∂D(R)

<ν,∇0,βwǫk,j>βwǫk,jω0,β ,

where ν is the outer-normal of ∂D(R) with respect to ω0,β . Theorem 1.11

in [9] and the compactly supported property of f implies

(2.22) |∇0,βwǫk,j | ∈ O(|x|−2n), wǫk,j ∈ O(|x|−2n+1),

|∆0,βwǫk
| ∈ O(|x|−2n).

Thus, combing (2.20) and (2.21), using (2.22), let R → ∞, then the

boundary terms all tend to 0, and we obtain the following as in proof (i)

of Theorem 9.9 in [12].

(2.23)

2n−2∑

j=1

∫

Cn

(∆0,βwǫk
)wǫk,jjω0,β ∧ dy1 . . . ∧ dy2n−2

=

2n−2∑

j=1

∫

Cn

|∇0,βwǫk,j |2ω0,β ∧ dy1 . . . ∧ dy2n−2.
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Handling the term
∑2n−2

i,j=1

∫
B(R)

∫
D(R)

wǫk,iiwǫk,jjω0,β ∧ dy1 . . . ∧ dy2n−2

in (2.18) in the similar and easier way, let R → ∞, then the boundary

terms all tend to 0, and we deduce from (2.18) and (2.23) that

(2.24)

∫

Cn

(∆wǫk
)2ω0,β ∧ dy1 . . . ∧ dy2n−2

= 16

∫

Cn

(∆0,βwǫk
)2ω0,β ∧ dy1 . . . ∧ dy2n−2

+ 8

2n−2∑

j=1

∫

Cn

|∇0,βwǫk,j |2ω0,β ∧ dy1 . . . ∧ dy2n−2

+

2n−2∑

i,j=1

∫

Cn

|wǫk,ij |2ω0,β ∧ dy1 . . . ∧ dy2n−2.

Thus identity (2.15) is true for Newtonian potentials of compactly sup-

ported smooth functions.

Step 2. — By Young’s inequality, since Γ(x, y),∇Γ(x, y) ∈ L1(B), (by

Donaldson’s work [10], also see [9]), we conclude

(2.25)
|wǫk1

− wǫk2
|L2(B) 6

∣∣∣∣
∫

B

Γ(x, y)(fǫk1
(y) − fǫk2

(y))dy

∣∣∣∣
L2(B)

6 |fǫk1
− fǫk2

|L2(B),

and

(2.26)
|∇wǫk1

−∇wǫk2
|L2(B) 6

∣∣∣∣
∫

B

[∇xΓ(x, y)](fǫk1
(y)−fǫk2

(y))dy

∣∣∣∣
L2(B)

6 |fǫk1
− fǫk2

|L2(B).

Then, since fǫk
→ f in the L2(B)-sense, then wǫk

is a Cauchy-Sequence

in W 2,2,β(B)−space. Thus, by the completeness of the W 2,2,β(B)−space,

there exists a w ∈ W 2,2,β(B) such that

lim
k→∞

|wǫk
− w|W 2,2,β(B) = 0.

Then, we define w = Nβ,Bf . By (2.26), (2.15), and (2.25), the proof of

Lemma 2.7 for |Tf |L2(B) is complete.

The proof for |T ⋆f |L2(B) is simply by using (4.3) (let p = 2) with T and

T ⋆ interchanged. �

Remark 2.8. — The feature of the ∇1,1,β operator we consider in (2.15)

is: it is just the usual real Hessian in the tangential direction of D, it

contains all the mixed derivatives. But, in the normal direction of D, it only

contains the complex (1, 1) derivative. This is the one of the main points of
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this article: with this slightly weaker Hessian, we obtain W 2,p,β−estimates

for all p ∈ (1,∞). We don’t think any W 2,p−theory for the real Hessian

∇2 (of ωβ) could be true when p is large.

3. The Calderon–Zygmund inequalities

In this section, we use the Euclidean metric ωE in the polar coordinates

to define the distances and balls, for the sake of the cube-decomposition.

We show that with the help of Theorem 1.11 in [9], the Calderon–Zygmund

theory in [3] works suprisingly well in the conical setting, after overcoming

a technical difficulty. Namely, the main technical difficulty is that T is

not selfadjoint. However, as presented below, this difficulty can be easily

overcomed, by observing that T ⋆ (the dual of T ) also possess similar good

properties as the Calderon–Zygmund singular integral operators. We follow

the proof of Theorem 9.9 in [12], and define µT f (t) , m{x ∈ K0|f(x) > t}.

Lemma 3.1. — Let B be a ball with finite radius. The operator T is

weakly-(1, 1) bounded i.e. for any f ∈ L2(B), we have

(3.1) µT f (t) 6
C

t
|f |L1(B),

and

(3.2) µT ⋆f (t) 6
C

t
|f |L1(B),

where C only depend on β and n.

Proof of Lemma 3.1. — In the polar coordinates, with respect to the Eu-

clidean metric, we consider a cube K0 (with respect to the Euclidean met-

ric) big enough so that the following holds. For every K in the first [ (10n)10n

β
]

(the smallest integer bigger than (10n)10n

β
) dyadic cut of K,

∫
K

|f | 6 t|K|.
Exactly as in Theorem 9.9 in [12], we consider the dyadic cuts of K0 subject

to f and t. Then we obtain cubes Kl, l = 1, 2 . . . such that

(3.3) t|Kl| 6
∫

Kl

|f | 6 22nt|Kl|, for all l,

and

(3.4) f 6 t almost everywhere over G = K0 \ F,

where F = ∪lKl.
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Then we consider the “good” and “bad” decomposition of f as f = g+ b

such that

g =

{
f, over G;

1
|Kl|

∫
Kl

|f |, over Kl.

and

b =

{
0, over G;

bl,
1

|Kl|

∫
Kl
bl = 0.

Thus, (3.3) and (3.4) imply

(3.5) |g|L∞(K0) 6 22nt.

We have

(3.6) µT f (t) 6 µT g(
t

2
) + µT b(

t

2
).

As in the proof Theorem 9.9 in [12], by Lemma 2.7, we estimate µT g( t
2 ) as

(3.7) µT g 6
4

t2

∫

K0

g2 6
22n+2

t

∫

K0

g 6
22n+2

t

∫

K0

|f |.

(3.8) Tbl =

∫

Kl

DΓ(x, y)bl(y)dy

is well-defined when x /∈ Kl. At this stage, actually for any D ∈ T, there

exists a D
′ ∈ M (see Definition 3.4) such that

(3.9) DΓ(x, y) = D
′Γ(x, y).

This is by the translation invariance of the model metric ωβ in the directions

tangential to D. To see this, for example, take D = ∂2

∂rx∂xj
∈ T, where both

the derivatives act on x. Notice that in (2.5), in the D-tangential directions,

the heat kernel only depends on |x− y|, which means

(3.10)
∂2

∂rx∂xj

Γ(x, y) = − ∂2

∂rx∂yj

Γ(x, y).

Notice that the biggest feature of D
′ is that the two derivatives are dis-

tributed to different variables, and Lemma 3.5 holds for them.

Hence, using 1
|Kl|

∫
Kl
bl = 0, we have

(3.11) Tbl(x) =

∫

Kl

[D′Γ(x, y) − D
′Γ(x, ȳ)]bl(y)dy,

where ȳ is the center of Kl, and x /∈ Bȳ( 1010Dl

β
), Dl is the diameter of Kl.
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Case 1. — Suppose dist(ȳ, {z = 0}) < β2dist(ȳ,x)
1000 , then using Lemma 3.5,

we have

(3.12) |Tbl|(x) 6

∫

Kl

C|y − ȳ|ρ0

|x− ȳ|2n+ρ0
|bl|dy 6 CDρ0

l

∫

Kl

|x− ȳ|−(2n+ρ0)|bl|dy.

Case 2. — Suppose dist(ȳ, {z = 0}) > β2dist(ȳ,x)
1000 , then using Lemma 7.5

in [9] (with the condition P (y) > β4|x−y|
100100 ), we have

(3.13)

|Tbl|(x) 6

∫

Kl

C|y − ȳ|
|x− ŷx|2n+1

|bl|dy 6 CDl

∫

Kl

|x− ŷx|−(2n+1)|bl|dy

6 CDl

∫

Kl

|x− ȳ|−(2n+1)|bl|dy,

where ŷx is a point in the line segment connecting y and ȳ. Thus,

(3.14)

∫

K0\Bȳ(
1010Dl

β
)

|Tbl(x)|dx

=

∫

{K0\Bȳ(
1010Dl

β
)}∩{dist(ȳ,{z=0})<

β2dist(ȳ,x)
1000 }

|Tbl(x)|dx

+

∫

{K0\Bȳ(
1010Dl

β
)}∩{dist(ȳ,{z=0})>

β2dist(ȳ,x)
1000 }

|Tbl(x)|dx

6 CDρ0

l

∫

Kl

|bl|dy
∫
{

K0\Bȳ

(
1010Dl

β

)}

∩
{

dist(ȳ,{z=0})<
β2dist(ȳ,x)

1000

}
|x− ȳ|−(2n+ρ0)dx

+ CDl

∫

Kl

|bl|dy
∫
{

K0\Bȳ

(
1010Dl

β

)}

∩
{

dist(ȳ,{z=0})>
β2dist(ȳ,x)

1000

}
|x− ȳ|−(2n+1)dx

6 CDρ0

l

∫

Kl

|bl|dy
∫
{

K0\Bȳ

(
1010Dl

β

)} |x− ȳ|−(2n+ρ0)dx

+ CDl

∫

Kl

|bl|dy
∫
{

K0\Bȳ

(
1010Dl

β

)} |x− ȳ|−(2n+1)dx

6 C

∫

Kl

|bl|dy
{
Dρ0

l

∫

|a|>Dl

|a|−(2n+ρ0)da

}

+ C

∫

Kl

|bl|dy
{
Dl

∫

|a|>Dl

|a|−(2n+1)da

}

6 C

∫

Kl

|bl|dy.
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Remark 3.2. — The reason we have so many β’s in the proof is that in

this section we use the distance and cubes with respect to the Euclidean

metrics ωE in the polar coordinates, but in [9] we use the cone distances

with respect to ωβ . Their relation is

βωβ 6 ωE 6
ωβ

β
.

We can only consider cubes with respect to the reference metric ωE .

Thus, by the argument in page 234 of [12], we deduce

(3.15) µT b(f) 6
C

t
|f |L1(B).

Combining (3.15) and (3.7), the proof of Lemma 3.1 on the opeartors

T ∈ T is complete. Using exactly the proof above, the estimate on the

adjoint operator T ⋆ follows. Actually we have a slightly shorter proof for

T (which does not require dividing the situation into 2 cases). However,

since we want a single proof to work for both T and T ⋆, we only present

the longer proof above. �

The following lemma is only needed in proving T ⋆f is densely defined

in Lp, combined with the other results of this article. Though not fully

needed in the proof of the results in the introduction, we think it has its

own interest.

Lemma 3.3. — T ⋆ is bounded linear map from Cα,β to itself, for all

α < min{ 1
β

− 1, 1}.

Proof of Lemma 3.3. — Using Theorem 1.11 in [9] and Lemma 3.5, the

proof is exactly as in Proposition 5.3 in [9]. �

Definition 3.4. — Similar to the definition in (1.4), we define the

mixed derivative operators as

M = {DxDyj
, yj is a tangential variable to D ;DyDxj

,

xj is a tangential variable to D.}
The feature of this set of operators is that the two derivatives are dis-

tributed to different variables.

Lemma 3.5. — For any second order spatial derivative operator D ∈ M.

Suppose ρ0 = min( 1
β

− 1, 1), |x| = 1 and |v1|, |v2| < 1
8 , we have

|DΓ(x, v1) − DΓ(x, v2)| 6 C|v1 − v2|ρ0 .

Proof of Lemma 3.5. — It’s an easier version of the arguments in Sec-

tion 8 of [9]. �
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4. W 2,p and C1,α,β estimates with Lp-right hand side

In this section, we prove Theorem 1.13 by proving Theorem 4.1, and we

also prove Theorem 1.14. These 3 theorems are the main technical building

blocks of the local regularity results in Theorem 1.6 and Corollary 1.8.

Proof of Theorem 1.13. — Suppose L = aij̄ ∂2

∂ziz̄j
, by multiplying a cutoff

function η2, we compute

∆β(η2u) = (∆β − L)(η2u) + L(η2u)

= (∆β − L)(η2u) + 2Reaij̄(η2)i(u)j̄ + aij̄(η2)ij̄u+ η2f.

Using Theorem 4.1, we deduce

[η2u]W 2,p,β ,B(2) 6 C|∆β(η2u)|Lp,B(2)

6 C|(∆β − L)(η2u)|Lp,B(2) + C|2Reaij̄(η2)i(u)j̄ |Lp,B(2)

+ C|aij̄(η2)ij̄u|Lp,B(2) + C|η2f |Lp,B(2)

6 Cδ0[η2u]W 2,p,β ,B(2) + C|u|W 1,p,β ,B(2) + |η2f |Lp,B(2).

Choosing δ0 6 1
2C

, and η be the cutoff function such that

η ≡ 1 over B(1); η = 0 over B(2) \B
(

3

2

)
,

the desired conclusion in Theorem 1.13 follows. �

Theorem 4.1. — Let B be a ball in Cn. Then T is a bounded linear

map from Lp(B) to itself, for p ∈ (1,∞). i.e. for all f ∈ Lp(B), we have

|Tf |Lp(B) 6 |f |Lp(B).

Consequently, let u ∈ W 2,p,β
c (B) ∩ C2(B \D), p ∈ [2,∞), then

[u]W 2,p,β(B) 6 C|∆βu|Lp(B),

where C only depend on n, β, p.

Proof of Theorem 4.1. — Lemma 2.6 says when u is compactly sup-

ported, u is equal to the Newtonian potential of its Laplacian. Then for

any D ∈ T, Du = T (∆βu) (for the T of D in (1.5)). Hence the conic version

of Calderon–Zygmund inequality in Lemma 3.1 is directly applicable.

By Marcinkiewicz-intepolation in Theorem 9.8 in [12], Lemma 2.7, and

Lemma 3.1, we deduce both T and T ⋆ are bounded linear map from Lp to

Lp, 1 < p 6 2 i.e.

(4.1) |Tf |p,B 6 C|f |p,B , for all 1 < p 6 2,
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and

(4.2) |T ⋆f |p,B 6 C|f |p,B , for all 1 < p 6 2.

Then for p > 2, we conclude for all f, g ∈ C∞
c (B) that

|Tf |p,B = sup
|g|p′,B=1

∫

B

(Tf)gdx = sup
|g|p′,B=1

∫

B

f(T ⋆g)dy

6 sup
|g|p′,B=1

|f |p,B |T ⋆g|p′,B (1 < p′ < 2)

6 C sup
|g|p′,B=1

|f |p,B |g|p′,B

= C|f |p,B .

Notice that u = Nβ,Cn(∆βu), by Lemma 2.6. Then, combining (4.3), (4.1),

the fact that C∞
c (B) is dense in Lp(B), and the Laplace equation

|z|2−2β

β2

∂2u

∂z∂z̄
= ∆βu−

n−1∑

i=1

∂2u

∂wi∂w̄i

,

we obtain the estimates in all directions are obtained. The proof of Theo-

rem 4.1 is complete. Moreover, we’ve shown

|T ⋆g|q,B 6 C|g|q,B , for all 1 < q < ∞. �

Corollary 4.2. — Suppose u ∈ W 1,2,β [B(2)] is a weak-solution to

∆βu = f, f ∈ Lp[B(1)], ∞ > p > 2.

Then u is actually in W 2,p,β [B( 1
2 )] and is therefore a strong-solution to the

above equation in B( 1
2 ).

Proof of Corollary 4.2. — The proof is quite straight forward. Just notice

Nβ,B(1)f ∈ W 2,p,β [B(1)], and v = u − Nβ,B(1)f ∈ W 1,2,β [B(1)] is a weak

solution to the harmonic equation

∆βv = 0, over B(1).

Thus by Lemma C.3 (Lemma 2.1 in [22]), v ∈ C2,α,β [B( 2
3 )]. Thus u =

v +Nβ,B(1)f ∈ W 2,p,β [B( 1
2 )]. �

Proof of Theorem 1.14. — This is an easier version of the work in [9].

By Corollary 4.2 and Donaldson’s Schauder-estimate in [10], it suffices to

estimate the Newtonian potential of f :

Nβf =

∫

B(1)

Γ(x, y)f(y)dy.
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By Lemma 7.2 in [9], we estimate

(4.3)

|∇(Γ ⋆ f)| =

∣∣∣∣∣

∫

B(1)

(∇Γ(x, y))f(y)dy

∣∣∣∣∣

6 C

∫

B(1)

1

|x− y|2n−1
|f(y)|dy

6 C

∣∣∣∣
1

|x− y|2n−1

∣∣∣∣
Lp′

,B(1)

|f |Lp,B(1).

Since p > 2n, we have p′ < 2n
2n−1 . Then

∣∣∣∣
1

|x− y|2n−1

∣∣∣∣
Lp′

,B(1)

6 C,

and

|∇(Γ ⋆ f)|C0[B( 1
2 )] 6 C|f |Lp,B(1).

Next we estimate the Hölder norm of ∇(Γ⋆f). Without loss of generality, we

assume |x1| = δ and x2 = 0, which is the main issue. The Hölder estimate

for all general x1, x2 follows from the proof of Proposition 5.3 in [9]. We

compute

(4.4)
|∇(Γ ⋆ f)(x1) −∇(Γ ⋆ f)(0)| =

∣∣∣∣∣

∫

B(1)

[∇Γ(x1, y) −∇Γ(0, y)]f(y)dy

∣∣∣∣∣
6 I1 + I2,

where

I1 =

∣∣∣∣∣

∫

B(1)∩{|y|>10δ}

[∇Γ(x1, y) − ∇Γ(0, y)]f(y)dy

∣∣∣∣∣
and

I2 =

∣∣∣∣∣

∫

B(1)∩{|y|610δ}

[∇Γ(x1, y) − ∇Γ(0, y)]f(y)dy

∣∣∣∣∣ .

Then it’s obvious that

(4.5)

I2 6

∣∣∣∣∣

∫

{|y|610δ}

∇Γ(x1, y)f(y)dy

∣∣∣∣∣ +

∣∣∣∣∣

∫

{|y|610δ}

∇Γ(0, y)f(y)dy

∣∣∣∣∣

6 C

∫

{|y|610δ}

1

|x1 − y|2n−1
|f(y)|dy + C

∫

{|y|610δ}

1

|y|2n−1
|f(y)|dy

6 Cδα0 |f |p,
where α0 = 1 − 2n

p
. For the estimate of I1, we should assume

2n < p <
2n

1 − min{ 1
β

− 1; 1} (if β 6
1

2
we just assume 2n < p < ∞).
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Thus 1 − 2n
p
< min{ 1

β
− 1, 1}. This does not change the conclusion of

Theorem 1.14, because what we assume is an additional upper bound on

p. Next, we estimate I1. By Lemma 8.2 in [9], we compute

(4.6)

I1 6

∫

{|y|>10δ}

1

|y|2n−1

∣∣∣∣∇Γ

(
x1

|y| ,
y

|y|

)
− ∇Γ

(
0,

y

|y|

)∣∣∣∣ |f(y)|dy

6 Cδα0+ǫ

∫

{|y|>10δ}

1

|y|2n−1+α0+ǫ
|f(y)|dy

6 Cδα0 |f |p

where α0 = 1 − 2n
p

, and ǫ is chosen such that α0 + ǫ < min{ 1
β

− 1, 1}. �

5. KRF metrics with small ossilations

In C×C
n−1, consider the standard conical Kähler–Ricci flat metric with

cone angle β ∈ (0, 1) along the divisor {0} × C
n−1.

ωβ =
β2

|z|2−2β
|d z|2 + |dw|2,

where z ∈ C and w ∈ C
n−1. We say a complex linear transformation L

splits along D, if the first component C × {0} in C × C
n−1 is an invariant

space of L, and the tangential component {0} × C
n−1 is also an invariant

space of L. In this section, we prove the following regularity proposition,

which is crucial to establish Theorem 1.6.

Proposition 5.1. — Suppose L is a linear transformation which splits

along D, and (L⋆ωβ)n = ωn
β . Then there exists a constant Q0 depending on

β, n, and the supremum of eigenvalues of LL⋆ with the following properties.

Suppose φ is a pluri-subharmonic function which satisfies

• ωn
φ = efωn

β , f ∈ C1,1,β [B(100)];

• (1 − δ)L⋆ωβ 6 ωφ 6 (1 + δ)L⋆ωβ , where δ ≪ 1 is sufficiently small

with respect to the supremum of eigenvalues of LL⋆.

Then φ ∈ C2,α,β [B( 1
Q0

)], for all α < min{ 1
β

− 1, 1}.
In particular, suppose

(5.1) ωn
φ = ωn

β , (1 − δ)ωβ 6 ωφ 6 (1 + δ)ωβ over B(100)

for δ ≪ 1 small enough, then φ ∈ C2,α,β [B( 1
2 )], for all α < min{ 1

β
− 1, 1}.
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Proof of Proposition 5.1. — We only prove the second part on the special

case (5.1), the proof of the general case is the same.

Using (5.1) and Proposition 5.2, over B(10), we can choose a potential,

still denoted as φ, such that

(5.2) |φ|0,B(10) 6 C(n, β),

where C(n, β) is a constant which only depends on the dimension n and

angle β.

For any unit vector v ∈ {0} × C
n−1. tangential to the divisor, and for

any small positive constant ǫ > 0, define difference quotient as

(Dǫ,vφ)(z, w) =
φ(z, w + ǫ · v) − φ(z, w)

ǫ
.

Let ǫ → 0, we have

lim
ǫ→0

Dǫ,vφ = (∇φ, v).

By (5.1), we end up with a trivial but important fact

(5.3) |∆βφ| 6 C in B(10).

Using Theorem 1.13, (5.2), Corollary 4.2 and intepolations in the appen-

dix of [9], we obtain

|φ|W 2,p,β(B(5)) 6 C, for all 1 < p < ∞.

This implies ∣∣∣∣
∂φ

∂v

∣∣∣∣
W 1,p(B(5))

6 C, for all 1 < p < ∞.

Then, by Lemma 7.23 in [12], we conclude the following estimate on the

tangential difference quotients

(5.4) |Dǫ,vφ|W 1,pB(4) 6 C.

Therefore, take Dǫ,v to both hand sides of the Ricci-flat equation

(5.5) ωn
φ = ωn

β ,

we obtain

△ǫ,vDǫ,vφ = 0, over B(9),

where

△ǫ,v(x) =

∫ 1

0

[sφ(x+ ǫv) + (1 − s)φ(x)]ij̄ds
∂2

∂zi∂z̄j

.

(5.1) implies directly the following.

|△β − △ǫ,v| 6 δ(ωβ)−1.

By Evans–Krylov Theorem away from D, we have φ ∈ C2(C × Cn−1 \D)

(actually φ is smooth away from D, but C2 of φ is all we need here).
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Then the aprori estimate in Theorem 4.1 and 1.13 are directly applicable.

Applying Theorem 1.13 and (5.4), we have

[Dǫ,vφ]W 2,p,β ,B(2) 6 C(|Dǫ,vφ|W 1,p,B(4)) 6 C.

Since the above holds for all p, then applying Theorem (1.14), and again

the lower order estimate (5.4), we obtain the crucial estimate

|Dǫ,vφ|1,α,β,B(1) 6 C, for all α < min

{
1

β
− 1, 1

}
.

Now, let ǫ → 0, since φ is smooth away from D, we have

∂φ

∂v
∈ C1,α,β

[
B

(
1

2

)]

and

(5.6)

∣∣∣∣
∂φ

∂v

∣∣∣∣
1,α,β,B( 1

2 )

6 C, for all α < min

{
1

β
− 1, 1

}
.

This means the mixed derivatives ∂2φ
∂r∂wi

, 1
r

∂2φ
∂θ∂wi

, and the pure tangen-

tial derivatives ∂2φ
∂wi∂wj

, are all bounded in C1,α,β [B( 1
2 )]-norm by C whose

dependence is as in Proposition 5.1.

Using the equation (1.3) and the quasi-isometric condition (5.1), exactly

as in the proof of Theorem 10.1 in [8], we deduce the crucial normal-(1, 1)

derivative. ∣∣∣∣
(
∂2

∂r2
+

1

r

∂

∂r
+

1

β2r2

∂2

∂θ2

)
φ

∣∣∣∣
α,β,B( 1

2 )

6 C.

The above implies our final conclusion

φ ∈ C2,α,β

[
B

(
1

2

)]
and |φ|2,α,β,B( 1

2 ) 6 C, for all α < min

{
1

β
− 1, 1

}
. �

The following Proposition is important.

Proposition 5.2. — There exists a constant C depending on β and n

with the following properties. Given the equation

(5.7)
√

−1∂∂̄v = η over A1000,

where η is a closed (1,1)-form such that η =
√

−1∂∂̄φη for some φη ∈ C1,1,β .

Then there exists a solution v in W 2,p,β (for any p) such that

|v|W 2,p,β ,A1
+ |v|0,A1

6 C|η|Lβ,∞,A1000
.

Proof of Proposition 5.2. — The proof is exactly as in Proposition 4.1

in [8]. Just notice when η is merely in L∞,β , the orbifold trick in Lemma 4.3

of [8] works the same. Then pulling back upstairs we still obtain a solu-

tion by Lemma A.1. Hence, take average of this upstairs solution over the
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discrete orbit of the monodromy group, and push this average down as in

Lemma 4.4 in [8], we obtained the solution v we want. �

6. Proof of the Main Theorems

In this section we prove Theorem 1.11 and 1.6. These proofs summarizes

the work done in this article. Corollary 1.8 is directly implied by Theo-

rem 1.6, by Definition 1.1.

Proof of Theorem 1.11. — It suffices to show that (1.3) already implies ω

is Cα,β , then Theorem 1.14 in [8] implies Theorem 1.11. The Cα,β-regularity

of the weak conical metric ω in Theorem 1.11 is the main work of this

article. This can be divided into 2 steps.

Step 1. — 7 important results in [8] directly work in the our weak conical

case. These 7 results are

• Lemma 6.1 on bounded weakly subharmonic functions in [8] (di-

rectly works when ω is merely a weak conical metric );

• Theorem 6.2 on weak-maximal principles in [8](directly works when

ω is merely a weak conical metric );

• Theorem 7.3 and 7.4 on solvability of Dirichilet boundary value

problems in [8] (directly works when ω is merely a weak conical

metric );

• Theorem 8.1 on strong-maximal principles in [8] (directly works

when ω is merely a weak conical metric );

• Lemma 13.1 on Trudinger’s harnack inequality in [8] (directly works

when ω is merely a weak conical metric );

• Proposition 4.1 in [8] on solvability of Poincare–Lelong equation

with Cα,β right hand side. This is substituted by Propsition 5.2 on

solvability of Poincare–Lelong equation with L∞,β-right hand side,

with almost the same proof.

The above 7 results imply any weak conical metric ω satisfying the condi-

tions in Theorem 1.11 is either linearly-isometric to ωβ or admits a tangent

cone which is linearly-isometric to ωβ .

Step 2. — The last paragraph in Step 1 means the second assump-

tion in Theorem 5.1 in [8] is fulfilled. Then Theorem 5.1 in [8] implies

Theorem 1.11, provided we can show ω is in Cα,β . This is precisely what

Proposition 5.1 says. Actually, Proposition 5.1 is really the main technical

result of this article. �
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Proof of Theorem 1.6. — This theorem is an interior regularity result,

and away from D the regularity automatically follows from Proposition 16

of [7]. Thus, without loss of generality, we assume Ω = B0(1) (the unit

ball centered at the origin). This proof is a simple combination of Proposi-

tion 5.1, Theorem 1.11, and the Chen–Donaldson–Sun’s trick in the proof

of Proposition 26 in [6].

We consider the rescaling of the metrics and potential as

(6.1) φλ = λ2φ, ωλ = λ2ω, ω̂β = λ2ωβ ,

and the rescaling of the coordinates as

(6.2) ẑ = λ
1
β z, ŷj = λyj , 1 6 j 6 2n− 2.

Then the ω̂β is the model cone metric in the coordinates in (6.2). Then

equation (1.1) is rescaled to the following geometric equation

(6.3) ωn
λ =

f̂

β2
ω̂n

β

in the coordinates of (6.2), where f̂ is the pulled back function under the

coordinate change. Since f̂ ∈ C1,1,βB0(λ), by the usual Evans–Krylov The-

orem away from D, we deduce

|ωλ|Cα[B(R)\Tǫ(D)] 6 C(R, ǫ), for all R 6
λ

2
.

Since f ∈ Cα[B(1)] before rescaling, then limλ→∞ f̂ = Const in the

sense of Cα̂, for all 0 < α̂ < α. Without loss of generality we can assume

lim
λ→∞

f̂

β2
= 1.

Then, ωλ converges to ω∞ uniformly over any fixed B(R) \ Tǫ(D) such

that

(6.4) ωn
∞ = ω̂n

β over C
n \D,

and

(6.5)
ω̂β

C
6 ω∞ 6 Cω̂β .

To prove ω∞ is a weak conical metric in the sense of Definition 1.3, it

suffices to show ω∞ admits a Cα-potential near any p ∈ D. By the proof

of the Harnack inequality in item 2 of Lemma 6.1 in [8], and the quasi-

isometric condition (6.5), it sufficies to show ω∞ admits a L∞-potential
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near any p ∈ D. This is done simply by applying Proposition 5.2 to ωλ.

Namely, using the quasi-isometric condition

(6.6)
ω̂β

C
6 ωλ 6 Cω̂β ,

Proposition 5.2 and Theorem 1.14 imply for any p ∈ D in the rescaled

coordinates (6.2), when λ is sufficiently large, there exists a potential φp,λ

defined in Bp(1010) such that

(6.7) |φp,λ|Cα[B(1)] 6 C, ωλ =
√

−1∂∂̄φp,λ.

Thus, for any α̂ < α, φp,λ converges in Cα̂[B( 1
2 )]-topology to φp,∞ ∈

Cα̂[B( 1
2 )] such that

(6.8) ω∞ =
√

−1∂∂̄φp,∞ over Bp

(
1

2

)
, in the sense of current.

Then ω∞ is a weak conical metric in the sense of Definition 1.3.

Therefore, by Theorem 1.11, we deduce

ω∞ = L⋆ω̂β ,

where L is a linear transformation preserving D. By the uniform conver-

gence of ω∞ over any fixed B(R) \ Tǫ(D), and the the proof of Proposi-

tion 2.5 in [5], we deduce

(6.9) lim
λ→∞

|ωλ − L⋆ω̂β |L2(B0(1)) = 0.

To modify the convergence in (6.9) to pointwise convergence, we use the

assumption that f ∈ C1,1,β(B).

Since (L⋆ω̂β)n = ω̂n
β , we translate equation (6.3) to be

(6.10) ωn
λ =

f̂

β2
(L⋆ω̂β)n.

By Yau’s Bochner technique and h ∈ C1,1,β [B(1)], we deduce for any

δ > 0 that

(6.11) ∆
L⋆ω̂β

(
tr

L⋆ω̂β
ωλ − n+ δ

)
> − [h]C1,1,β [B(1)]

λ2
→ 0 in B(1).

Then, (6.11), (6.9) and the Moser’s iteration (as in the proof of Proposi-

tion 26 in [6]) imply

lim
λ

|ωλ − L⋆ω̂β |L∞,β ,(B0( 1
2 )) = 0.
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Let δ0 be small enough with respect to the δ in Proposition 5.1 and the

quasi-isometric constant of ωφ with respect to ωβ in the original coordi-

nates, there exists a λ0 such that for all λ > λ0, we have

(6.12) |ωλ − L⋆ω̂β |L∞,β(B0( 1
2 )) < δ0.

Since (6.12) implies the following crucial small ossilation estimate before

rescaling,

(6.13) |ωφ − L⋆ωβ |L∞,β(B0( 1
2λ0

)) < δ0,

then Proposition 5.1 implies ωφ ∈ Cα,β( 1
2Qλ0

)), where Q is a constant

which only depends on the quasi-isometric constant of ωφ with respect to

ωβ in the original coordinates. The proof of Theorem 1.6 is complete. �

Appendix A. Poincare–Lelong equation in the smooth

case

The following lemma is necessary for the results in [8] and also in this

article (in the proof of of Proposition 5.2). We believe it’s well known to

experts, but for the sake of being self-contained we still would like to give

a proof here. The proof is actually a simple combination of the proof of the

Lemma in page 387 of [13], and Hormander’s results.

Lemma A.1. — There exists a constant C depending on n and p with

the following properties. Suppose σ ∈ L2(B10) is a closed (1,1)-form such

that

• σ =
√

−1∂∂̄φσ for some φσ ∈ Cα.

• σ ∈ L∞(B) ∩ Cα(B10 \D).

Then there exists a solution ϕ in W 2,p (for any 0 < p < ∞) to

(A.1)
√

−1∂∂̄ϕ = σ over B1,

such that

|ϕ|W 2,p,B1
+ |ϕ|0,B1 6 C|σ|L∞,B10 .

Proof of Lemma A.1. — The two conditions of σ imply σ ∈ L∞(B) as

a distribution.

By Hormander’s ∂̄-solvability in Theorem 2.2.1 [15], there exists a (1,0)-

form η ∈ L2(B(9)) such that

(A.2) σ = −
√

−1∂̄η.

Then, since √
−1∂̄(∂η) = ∂σ = 0,
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then ∂η is a closed holomorphic (2, 0)-current. Thus, by the regularity

of closed holomorphic (2, 0)−forms, ∂η is actually a smooth holomorphic

(2, 0)-form. By the d-Poincare Lemma for smooth holomorphic (p, 0)-forms,

there exists a holomorphic (1, 0)-form ξ such that

∂η = ∂ξ.

Thus, we deduce

(A.3) ∂(η − ξ) = 0.

By the conjugate of ∂̄-solvability in Theorem 4.2.5 in page 86 of Horman-

der’s book [16], we end up with ∂-solvability and therefore a form γ such

that

(A.4) ∂γ = η − ξ.

Then
√

−1∂∂̄γ = σ. Let

ϕ =
1

2
(γ + γ̄),

then ϕ is real and
√

−1∂∂̄ϕ = σ. Since ϕ ∈ W 1,2, then ϕ is a weak solution

to

∆ϕ = trσ ∈ L∞(B5).

Then, ϕ is a strong solution to the above equation in the sense of Chap. 9

in [12]. Then, the estimate in Lemma A.1 follows from Theorem 9.11 in [12]

and the Moser’s iteration. �

Appendix B. An alternative approach to Corollary 1.8 by

the conical Kähler–Ricci flow

In this section, we present a short proof of Corollary 1.8 when the weak

conical Kähler–Einstein metric lives on a closed Kähler manifold. This

proof, while lives on a closed manifold, does not require the W 2,p,β-estimate

established in Sections 3 and 4.

Let (M, [ω0]) be a smooth Kähler manifold, D be a smooth divisor, S be

the defining section of D, and | · | be a smooth metric of the line bundle

associated to D, we consider the Monge–Ampère equation as

(B.1) (ω0 +
√

−1∂∂̄φ)n =
eh

|S|2−2β
ωn

0 , h ∈ C1,1,β(M).
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Lemma B.1. — Suppose both φ1 and φ2 are C1,1,β(M) solutions to

equation (B.1), such that both ω0 +
√

−1∂∂̄φ1 and ω0 +
√

−1∂∂̄φ2 are

weak conical Kähler-metrics over M . Then

φ1 − φ2 ≡ Constant over M \D.

Proof of Lemma B.1. — Substracting (B.1) with φ = φ2 from (B.1) with

φ = φ1, we end up with

(B.2) ∆s(φ1 − φ2) = 0 over M \D,
where

∆s =

∫ 1

0

gij̄

sφ1+(1−s)φ2
ds

∂2

∂zi∂z̄j

.

Thus, Lemma B.1 follows from equation (B.2) and the strong maximal-

principle in Theorem 8.1 in [8]. �

Theorem B.2. — Suppose h ∈ C1,1,β(M). Then any weak solution to

(B.1) is strong i.e. in C2,α,β , for any 0 < α < min{ 1
β

− 1, 1}.

In particular, any weak-conical Kähler–Einstein metric of [M, (1 − β)D]

(0 < β < 1) must be a Cα,β conical Kähler–Einstein metric, for any 0 <

α < min( 1
β

− 1, 1).

Proof. — Define

K(φ) =

∫

M

log
|S|2−2βωn

φ

ehωn
0

ωn
φ

n!
.

Then, along the corresponding conical Kähler–Ricci flow,

(B.3) (ω0 +
√

−1∂∂̄φ)n =
eh+ ∂φ

∂t

|S|2−2β
ωn

0 ,

we deduce

K(φ(t)) =

∫

M

∂φ

∂t

ωn
φ

n!
.

Then, along the flow (B.3), we obtain the following monotonicity by direct

computation.

(B.4)
dK(φ(t))

dt
= −

∫

M

|∇φ

∂φ

∂t
|2
ωn

φ

n!
.

Then, applying the proof of Theorem 1.7 in [8], with modifications in

the C2-estimate part (which we will specify later), together with the mono-

tonicity of the K-energy (B.4) in the convergence argument in Section 11

of [8], we deduce that the flow (B.3) converges to a φ∞ ∈ C2,α,β(M) which

solves equation (B.1). The point is, the solution φ∞ produced by the conical

Kähler–Ricci flow in [8] is in C2,α,β(M) (strong conical)!
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Then, both φ and φ∞ solve equation (B.1). By the uniqueness of C1,1,β

solutions in Lemma B.1, we obtain

φ = φ∞ + Const ∈ C2,α,β .

The proof of Theorem B.2 is complete.

The modification on the C2-estimate is that, in the setting of Theo-

rem B.2, it’s super easy to apply the Guenancia–Păun type C2-estimate as

in [14], while we surely believe the Chern–Lu inequality as in [6] and [17],

and the trick in [24] all work equally well. Namely, using the assumption

that ∆βh > −C, formula (22) in [23] (for ǫ = 0) says

(B.5) (∆φ − ∂

∂t
){log trωD

ωφ +B|S|2β −Aφ} > trωφ
ωD +A

∂φ

∂t
− C.

By using the barrier function in the proof of Theorem 6.2 in [8], the rest of

the proof of the C2-estimate goes exactly as the proof of Lemma 3.1 in [23],

with ǫ = 0. �

Appendix C. Integration by parts and regularity of

harmonic function

Lemma C.1 (Lemma 2.5 in [22]). — Let B be a ball in the polar coor-

dinate, and ω be a conic metric defined in 2B. Suppose X is a C1−vector

field away from D and X ∈ L2(B) ∩ W 1,1,β(B) (this says ∇X ∈ L1(B)),

then

(C.1)

∫

B\D

divX ωn =

∫

∂B\D

< X, v > ωn.

Proof of Lemma C.1. — There are 2 approaches, we use the one in-

volving a very nice cutoff function due to Berdtsson. Let r be the distance

function to D (near D with respect to ωβ). Let ψǫ = ψ(ǫ log(− log r)), ψ is

the standard cutoff function such that ψ(x) ≡ 1 when x 6 1
2 , and ψ(x) ≡ 0

when x > 4
5 . Then

(C.2) ψǫ ≡ 0 when r 6 e−e
4

5ǫ ; ψǫ ≡ 1 when r > e−e
1

2ǫ .

The following claim is true by elementary calculation.

Claim C.2.

(C.3) lim
ǫ→0

|∇ψǫ|L2(B) = 0.
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By applying Theorem 1 in page 271 of Evans [11] to ψǫX, and the mono-

tone convergence theorem, we deduce X ∈ L1(∂B). By definition we have

limǫ→0 ψǫ = 1 everywhere except on suppD. Since ψǫX is supported away

from D, we compute for any ǫ > 0 that
∫

B\D

div(ψǫX)ωn =

∫

∂B\D

< ψǫX, v > ωn

=

∫

B\D

< ∇ψǫ, X > ωn +

∫

B\D

ψǫdivXω
n

Let ǫ → 0, the condition X ∈ L2(B), Cauchy–Schwartz inequality, and

Claim C.2 imply |
∫

B\D
< ∇ψǫ, X > ωn| → 0, then the proof is complete

by the above identity. �

Lemma C.3 (Elliptic version of Lemma 2.1 in [22]). — Suppose u ∈
W 1,2,β(B) is a weak solution to ∆βu = 0 in B. Then u ∈ C2,α,β( B

2 ) for

any 0 < α < 1
β

− 1.

Proof of Lemma C.3. — It sufficies to prove the regularity for poly-

cylinders defined in (2.17), because B
2 can be covered by finitely many

cylinders. Suppose the conditions of the lemma hold in AR.

Step 1. — Notice that A 3R
4

is piecewisely smooth. Differentiating the

harmonic equation with respect to wi, we get

(C.4) ∆β

∂u

∂wi

= 0.

By exacly the same argument in Theorem 8.8 in [12] involving difference

quotients, we have

(C.5)
∂u

∂wi

∈ W 1,2,β(A 3R
4

).

Lemma C.1, (C.4), and (C.5) imply that ∂u
∂wi

is a weak solution to (C.4)

in A 3R
4

. Trudinger’s Harnack inequality (Lemma 6.1 in [8]) implies ∂u
∂wi

∈
Cα,β . Let n be the outer normal vector of ∂A 3R

4
over D 3R

4
× ∂B 3R

4
, the

above implies ∂u
∂n

∈ Cα,β therein.

Step 2. — Lemma C.1 implies (c.f. Lemma 2.6)

(C.6) u(x) =

∫

∂A 2R
3

[<∇yΓ(x, y), n>u(y) −<∇u(y), n>Γ(x, y)]dy,

for all x ∈ intA 2R
3

. We note that over {r = 3R
4 }, n = ∂

∂r
, then ∂Γ(x,y)

∂r
and

∂u
∂r

are both smooth in y. Moreover, < ∇yΓ(x, y), n > and Γ(x, y) are both
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in C2,α,β(AR
2

) (with respect to x) when y ∈ ∂A 2R
3

. Thus the above integral

is actually regular when x ∈ AR
2

, and u ∈ C2,α,β(AR
2

). �

�
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