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06903 Sophia Antipolis cedex, France

November 26, 2008

Abstract

We consider the design of c-optimal experiments for the estimation
of a scalar function h(θ) of the parameters θ in a nonlinear regression
model. A c-optimal design ξ∗ may be singular, and we derive conditions
ensuring the asymptotic normality of the Least-Squares estimator of h(θ)
for a singular design over a finite space. As illustrated by an example, the
singular designs for which asymptotic normality holds typically depend on
the unknown true value of θ, which makes singular c-optimal designs of no
practical use in nonlinear situations. Some simple alternatives are then
suggested for constructing nonsingular designs that approach a c-optimal
design under some conditions.

Keywords. singular design, optimum design, c-optimality, D-optimality,
regular asymptotic normality, consistency, LS estimation

AMS Subject Classification. 62K05, 62E20

1 Introduction

We consider experimental design for least-squares estimation in a nonlinear
regression model with scalar observations

Yi = Y (xi) = η(xi, θ̄) + εi , where θ̄ ∈ Θ , i = 1, 2 . . . (1)

where {εi} is a (second-order) stationary sequence of independent random vari-
ables with zero mean,

IE{εi} = 0 and IE{ε2
i } = σ2 < ∞ ∀i , (2)

∗This paper is dedicated to Andrej Pázman on the occasion of his 70th birthday
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Θ is a compact subset of R
p and xi ∈ X denotes the design point characteriz-

ing the experimental conditions for the i-th observation Yi, with X a compact
subset of R

d. For the observations Y1, . . . , YN performed at the design points
x1, . . . , xN , the Least-Squares Estimator (LSE) θ̂N

LS is obtained by minimizing

SN (θ) =

N
∑

i=1

[Yi − η(xi, θ)]
2 , (3)

with respect to θ ∈ Θ ⊂ R
p. We suppose throughout the paper that either the

xi’s are non-random constants or they are generated independently of the Yj ’s
(i.e., the design is not sequential). We shall also use the following assumptions:

H1η: η(x, θ) is continuous on Θ for any x ∈ X ;

H2η: θ̄ ∈ int(Θ) and η(x, θ) is two times continuously differentiable with
respect to θ ∈ int(Θ) for any x ∈ X .

Then, under H1η the LS estimator is strongly consistent, θ̂N
LS

a.s.→ θ̄, N → ∞,
provided that the sequence {xi} is “rich enough”, see, e.g., [3]. For instance,
when the design points form an i.i.d. sequence generated with the probability
measure ξ (which is called a randomized design with measure ξ in [7, 9]), strong
consistency holds under the estimability condition

∫

X

[η(x, θ) − η(x, θ̄)]2 ξ(dx) = 0 ⇒ θ = θ̄ . (4)

Under the additional assumption H2η, θ̂N
LS is asymptotically normally dis-

tributed, √
N(θ̂N

LS − θ̄)
d→ z ∼ N (0,M−1(ξ, θ̄)) , N → ∞ , (5)

provided that the information matrix (normalized, per observation)

M(ξ, θ̄) =
1

σ2

∫

X

∂η(x, θ)

∂θ

∣

∣

∣

∣

θ̄

∂η(x, θ)

∂θ⊤

∣

∣

∣

∣

θ̄

ξ(dx) (6)

is nonsingular.
The paper concerns the situation where one is interested in the estimation

of h(θ) rather than in the estimation of θ, with h(·) a continuous scalar function
on Θ. Then, when the estimability condition (4) takes the relaxed form

∫

X

[η(x, θ) − η(x, θ̄)]2 ξ(dx) = 0 ⇒ h(θ) = h(θ̄) , (7)

we have h(θ̂N
LS)

a.s.→ h(θ̄), N → ∞. Under the assumption

Hh: h(θ) is two times continuously differentiable with respect to θ ∈ int(Θ),

assuming, moreover, that ∂h(θ)/∂θ|θ̄ 6= 0 and that (5) is satisfied, we also obtain
(see [5, p. 61])

√
N [h(θ̂N

LS) − h(θ̄)]
d→ ω ∼ N

(

0,
∂h(θ)

∂θ⊤

∣

∣

∣

∣

θ̄

M−1(ξ, θ̄)
∂h(θ)

∂θ

∣

∣

∣

∣

θ̄

)

, N → ∞ . (8)
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In Sect. 2 we prove a similar result on the asymptotic normality of h(θ̂N
LS) when

M(ξ, θ̄) is singular, that is,

√
N [h(θ̂N

LS) − h(θ̄)]
d→ ω ∼ N

(

0,
∂h(θ)

∂θ⊤

∣

∣

∣

∣

θ̄

M−(ξ, θ̄)
∂h(θ)

∂θ

∣

∣

∣

∣

θ̄

)

, N → ∞ , (9)

with M− a g-inverse of M. This is called regular asymptotic normality in
[9], where it is shown to hold under rather restrictive assumptions on h(·) but

without requiring θ̂N
LS to be consistent. We show in Sect. 2 that when the design

space X is finite θ̂N
LS is consistent under fairly general conditions, from which

(9) then easily follows.
We use the standard approach and consider an experimental design that

minimizes the asymptotic variance of h(θ̂N
LS). According to (9), this corresponds

to minimizing [∂h(θ)/∂θ⊤
∣

∣

θ̄
]M−(ξ, θ̄) [∂h(θ)/∂θ

∣

∣

θ̄
]. Since θ̄ is unknown, local c-

optimal design is based on a nominal parameter value θ0 and minimizes φc(ξ) =
Φc[M(ξ, θ0)] with

Φc(·) : M ∈ M
≥ →

{

c⊤θ0M
−cθ0 if and only if cθ0 ∈ M(M)

∞ otherwise
(10)

where M
≥ denotes the set of non-negative definite p × p matrices,

M(M) = {c : ∃u ∈ R
p , c = Mu}

and

cθ0 =
∂h(θ)

∂θ

∣

∣

∣

∣

θ0

.

Note that the value of Φc(M) is independent of the choice of the g-inverse M−.
Nonlinearity may be present in two places, since the model response η(x, θ)
and the function of interest h(θ) may be nonlinear in θ. Local c-optimal design
corresponds to c-optimal design in the linear (or more precisely linearized) model
ηL(x, θ) = f⊤θ0(x)θ where fθ0(x) = ∂η(x, θ)/∂θ

∣

∣

θ0
, with the linear (linearized)

function of interest hL(θ) = c⊤θ0θ. A design ξ∗ minimizing φc(ξ) may be singular,
in the sense that the matrix M(ξ∗, θ0) is singular. In spite of an apparent
simplicity for linear models, this yields, however, a difficulty due to the fact that
the function Φc(·) is only lower semi-continuous at a singular matrix M ∈ M

≥.
Indeed, this property implies that

lim
N→∞

c⊤M−(ξN )c ≥ c⊤M−(ξ)c

when the empirical measure ξN of the design points converges weakly to ξ, see
e.g. [6, p. 67] and [8] for examples with strict inequality. The two types of
nonlinearities mentioned above cause additional difficulties in the presence of a
singular design: both θ̂N

LS and h(θ̂N
LS) may not be consistent, or the asymptotic

normality (9) may not hold, see [8] for an example with a linear model and a
nonlinear function h(·). It is the purpose of the paper to expose some of those
difficulties and to make suggestions for regularizing a singular c-optimal design.
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2 Asymptotic properties of LSE with finite X
When using a sequence of design points i.i.d. with the measure ξ, the condition
(4) implies that SN (θ) given by (3) grows to infinity at rate N when θ 6= θ̄ (an
assumption used in the classic reference [3]). On the other hand, for a design
sequence with associated empirical measure converging to a discrete measure ξ,
this amounts to ignoring the information provided by design points x ∈ X with
a relative frequency rN (x)/N tending to zero, which therefore do not appear
in the support of ξ. In order to acknowledge the information carried by such
points, we can follow the same approach as in [10] from which we extract the
following lemma.

Lemma 1 If for any δ > 0

lim inf
N→∞

inf
‖θ−θ̄‖≥δ

[SN (θ) − SN (θ̄)] > 0 a.s. (11)

then θ̂N
LS

a.s.→ θ̄ as N → ∞. If for any δ > 0

Pr

{

inf
‖θ−θ̄‖≥δ

[SN (θ) − SN (θ̄)] > 0

}

→ 1 , N → ∞ , (12)

then θ̂N
LS

p→ θ̄ as N → ∞.

We can then prove the convergence of the LS estimator (in probability and

a.s.) when the sum
∑N

k=1[η(xk, θ) − η(xk, θ̄)]2 tends to infinity fast enough for
‖θ − θ̄‖ ≥ δ > 0 and the design space X for the xk’s is finite.

Theorem 1 Let {xi} be a design sequence on a finite set X . If DN (θ, θ̄) =
∑N

k=1[η(xk, θ) − η(xk, θ̄)]2 satisfies

for all δ > 0 ,

[

inf
‖θ−θ̄‖≥δ

DN (θ, θ̄)

]

/(log log N) → ∞ , N → ∞ , (13)

then θ̂N
LS

a.s.→ θ̄ as N → ∞. If DN (θ, θ̄) simply satisfies

for all δ > 0 , inf
‖θ−θ̄‖≥δ

DN (θ, θ̄) → ∞ as N → ∞ , (14)

then θ̂N
LS

p→ θ̄, N → ∞.

Proof. The proof is based on Lemma 1. We have

SN (θ) − SN (θ̄) = DN (θ, θ̄)



1 + 2

∑

x∈X

(

∑N
k=1, xk=x εk

)

[η(x, θ̄) − η(x, θ)]

DN (θ, θ̄)





≥ DN (θ, θ̄)



1 − 2

∑

x∈X

∣

∣

∣

∑N
k=1, xk=x εk

∣

∣

∣
|η(x, θ̄) − η(x, θ)|

DN (θ, θ̄)



 .
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From Lemma 1, under the condition (13) it suffices to prove that

sup
‖θ−θ̄‖≥δ

∑

x∈X

∣

∣

∣

∑N
k=1, xk=x εk

∣

∣

∣
|η(x, θ̄) − η(x, θ)|

DN (θ, θ̄)

a.s.→ 0 (15)

for any δ > 0 to obtain the strong consistency of θ̂N
LS . Since DN (θ, θ̄) → ∞ and

X is finite, only the design points such that rN (x) → ∞ have to be considered,
where rN (x) denotes the number of times x appears in the sequence x1, . . . , xN .
Define β(n) =

√
n log log n. From the law of the iterated logarithm,

for all x ∈ X , lim sup
rN (x)→∞

∣

∣

∣

∣

∣

∣

1

β[rN (x)]

N
∑

k=1, xk=x

εk

∣

∣

∣

∣

∣

∣

= σ
√

2 , almost surely . (16)

Moreover, DN (θ, θ̄) ≥ D
1/2
N (θ, θ̄)

√

rN (x)|η(x, θ̄)−η(x, θ)| for any x ∈ X , so that

β[rN (x)]|η(x, θ̄) − η(x, θ)|
DN (θ, θ̄)

≤ [log log rN (x)]1/2

D
1/2
N (θ, θ̄)

.

Therefore,

∣

∣

∣

∑N
k=1, xk=x εk

∣

∣

∣
|η(x, θ̄) − η(x, θ)|

DN (θ, θ̄)
≤

∣

∣

∣

∣

∣

∑N
k=1, xk=x εk

β[rN (x)]

∣

∣

∣

∣

∣

[log log rN (x)]1/2

D
1/2
N (θ, θ̄)

,

which, together with (13) and (16), gives (15).
When inf‖θ−θ̄‖≥δ DN (θ, θ̄) → ∞ as N → ∞, we only need to prove that

sup
‖θ−θ̄‖≥δ

∑

x∈X

∣

∣

∣

∑N
k=1, xk=x εk

∣

∣

∣
|η(x, θ̄) − η(x, θ)|

DN (θ, θ̄)

p→ 0 (17)

for any δ > 0 to obtain the weak consistency of θ̂N
LS . We proceed as above and

only consider the design points such that rN (x) → ∞, with now β(n) =
√

n.

From the central limit theorem, for any x ∈ X ,
(

∑N
k=1, xk=x εk

)

/
√

rN (x)
d→

ωx ∼ N (0, σ2) as rN (x) → ∞ and is thus bounded in probability. Also, for any

x ∈ X ,
√

rN (x)|η(x, θ̄) − η(x, θ)|/DN (θ, θ̄) ≤ D
−1/2
N (θ, θ̄), so that (14) implies

(17).

When the design space X is finite one can thus invoke Theorem 1 to ensure
the consistency of θ̂N

LS . Regular asymptotic normality then follows for suitable
functions h(·).

Theorem 2 Let {xi} be a design sequence on a finite set X , with the property
that the associated empirical measure (strongly) converges to ξ (possibly singu-
lar), that is, limN→∞ rN (x)/N = ξ(x) for any x ∈ X , with rN (x) the number of

5



times x appears in the sequence x1, . . . , xN . Suppose that the assumptions H1η,
H2η and Hh are satisfied, with ∂h(θ)/∂θ|θ̄ 6= 0, and that DN (θ, θ̄) satisfies
(13). Then,

∂h(θ)

∂θ

∣

∣

∣

θ̄
∈ M[M(ξ, θ̄)] , (18)

implies that h(θ̂N
LS) satisfies the regular asymptotic normality property (9), where

the choice of the g-inverse is arbitrary.

Proof. Since θ̂N
LS

a.s.→ θ̄ ∈ int(Θ), there exists N0 such that θ̂N
LS is in some

convex neighborhood of θ̄ for all N larger than N0 and, for all i = 1, . . . , p =
dim(θ), a Taylor development of the i-th component of the gradient of the LS
criterion (3) gives

{∇θSN (θ̂N
LS)}i = 0 = {∇θSN (θ̄)}i + {∇2

θSN (βN
i )(θ̂N

LS − θ̄)}i , (19)

with βN
i between θ̂N

LS and θ̄ (and βN
i measurable, see [3]). Using the fact that X

is finite we obtain ∇θSN (θ̄)/
√

N
d→ v ∼ N (0, 4M(ξ, θ̄)) and ∇2

θSN (βN
i )/N

a.s.→
2M(ξ, θ̄) as N → ∞. Combining this with (19), we get

√
Nc⊤M(ξ, θ̄)(θ̂N

LS − θ̄)
d→ z ∼ N (0, c⊤M(ξ, θ̄)c) , N → ∞ ,

for any c ∈ R
p. Applying the Taylor formula again we can write

√
N [h(θ̂N

LS) − h(θ̄)] =
√

N
∂h(θ)

∂θ⊤

∣

∣

∣

∣

αN

(θ̂N
LS − θ̄)

for some αN between θ̂N
LS and θ̄ and ∂h(θ)/∂θ

∣

∣

αN

a.s.→ ∂h(θ)/∂θ
∣

∣

θ̄
as N → ∞.

When (18) is satisfied we can write ∂h(θ)/∂θ
∣

∣

θ̄
= M(ξ, θ̄)u for some u ∈ R

p,
which gives (9).

Notice that when M(ξ, θ̄) has full rank the condition (18) is automatically
satisfied so that the other conditions of Theorem 2 are sufficient for the asymp-
totic normality (8). The conclusion of the Theorem remains valid when DN (θ, θ̄)

only satisfies (14) (convergence in probability of θ̂N
LS) with Θ a convex set, see,

e.g., [1, Th. 4.2.2].

3 Properties of standard regularization

Consider a regularized version of the c-optimality criterion defined by

Φγ
c (M) = Φc[(1 − γ)M + γM̃]

with Φc(·) given by (10), γ a small positive number and M̃ a fixed nonsingular
p × p matrix of M

≥. From the linearity of M(ξ, θ0) in ξ, when M̃ = M(ξ̃, θ0)
with ξ̃ nonsingular this equivalently defines the criterion

φγ
c (ξ) = φc[(1 − γ)ξ + γξ̃]

6



with φc(ξ) = Φc[M(ξ, θ0)]. Let ξ∗ and ξ∗γ be two measures respectively optimal

for φc(·) and φγ
c (·). We have φc(ξ

∗) ≤ φc[(1 − γ)ξ∗γ + γξ̃] = φγ
c (ξ∗γ) ≤ φc[(1 −

γ)ξ∗ + γξ̃] ≤ (1 − γ)φc(ξ
∗) + γφc(ξ̃) , where the last inequality follows from the

convexity of φc(·). Therefore,

0 ≤ φγ
c (ξ∗γ) − φc(ξ

∗) ≤ γ[φc(ξ̃) − φc(ξ
∗)]

which tends to zero as γ → 0, showing that ξ̂γ = (1 − γ)ξ∗γ + γξ̃ tends to be
c-optimal when γ decreases to zero.

We emphasize that c-optimality is defined for θ0 6= θ̄. Let x(1), . . . , x(s) be the
support points of a c-optimal measure ξ∗, complement them by x(s+1), . . . , x(s+k)

so that the measure ξ̃ supported at x(1), . . . , x(s+k) (with, e.g., equal weight at
each point) is nonsingular. When N observations are made, to the measure
(1− γ)ξ∗ + γξ̃ corresponds a design that places approximately γ N /(s + k) ob-
servations at each of the points x(s+1), . . . , x(s+k). The example below shows
that the speed of convergence of c⊤θ̂N

LS to c⊤θ̄ may be arbitrarily slow when γ
tends to zero, thereby contradicting the acceptance of ξ∗ as a c-optimal design
for θ̄.

Example: Consider the regression model defined by (1,2) with

η(x, θ) =
θ1

θ1 − θ2
[exp(−θ2x) − exp(−θ1x)] ,

X = [0, 10] and σ2 = 1. The D-optimal design measure ξ∗D on X maximizing
log detM(ξ, θ0) for the nominal parameters θ0 = (0.7, 0.2)⊤ puts mass 1/2 at
each of the two support points given approximately by x(1) = 1.25, x(2) = 6.60.

Figure 1 shows the set {fθ0(x) : x ∈ X} (solid line), its symmetric {−fθ0(x) :
x ∈ X} (dashed line) and their convex closure Fθ0 , called the Elfving set (shaded
region), together with the minimum-volume ellipsoid containing Fθ0 (the points
of contact with Fθ0 correspond to the support points of ξ∗D).

From Elfving’s theorem [2], when x∗ ∈ [x(1), x(2)] the c-optimal design min-
imizing c⊤M−1(ξ, θ0)c with c = βfθ0(x∗), β 6= 0, is the delta measure δx∗ .
Obviously, the singular design δx∗ only allows us to estimate η(x∗, θ) and not
h(θ) = c⊤θ.

Select now a second design point x0 6= x∗ and suppose that when N ob-
servations are performed at the design points x1, . . . , xN , m of them coincide
with x0 and N − m with x∗, where m/(log log N) → ∞ with m/N → 0. Then,
for x0 6= 0 the conditions of Theorem 1 are satisfied. Indeed, the design space
equals {x0, x∗} and is thus finite, and

DN (θ, θ̄) =

N
∑

k=1

[η(xk, θ) − η(xk, θ̄)]2

= (N − 2m)[η(x∗, θ) − η(x∗, θ̄)]
2

+m
{

[η(x∗, θ) − η(x∗, θ̄)]
2 + [η(x0, θ) − η(x0, θ̄)]2

}

7



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−3

−2

−1

0

1

2

3

x
(1)

=1.25

x
(2)

=6.60

x=0

Figure 1: Elfving set.

so that inf‖θ−θ̄‖>δ DN (θ, θ̄) ≥ mC(x0, x∗, δ), with C(x0, x∗, δ) a positive con-

stant, and inf‖θ−θ̄‖>δ DN (θ, θ̄)/(log log N) → ∞ as N → ∞. Therefore, al-
though the empirical measure ξN of the design points in the experiment con-
verges strongly to the singular design δx∗ , this convergence is sufficiently slow to

make θ̂N
LS (strongly) consistent. Moreover, for h(·) a function satisfying the con-

ditions of Theorem 2, h(θ̂N
LS) satisfies the regular asymptotic property (9). In the

present situation, this means that when ∂h(θ)/∂θ
∣

∣

θ̄
= βfθ̄(x∗) for some β ∈ R,

then
√

N [h(θ̂N
LS)−h(θ̄)]

d→ ω ∼ N (0,
[

∂h(θ)/∂θ⊤ M−(δx∗ , θ) ∂h(θ)/∂θ
]

θ̄
). This

holds for instance when h(·) = η(x∗, ·) (or is a function of η(x∗, ·)).
There is, however, a severe limitation in the application of this result in

practical situations. Indeed, the direction fθ̄(x∗) for which regular asymptotic
normality holds is unknown since θ̄ is unknown. Let c be a given direction of
interest, the associated c-optimal design ξ∗ is determined for the nominal value
θ0. For instance, when c = (0, 1)⊤ (which means that one is only interested in
the estimation of the component θ2), ξ∗ = δx∗ with x∗ solution of {fθ0(x)}1 = 0
(see Figure 1), that is, x∗ satisfies

θ0
2 = [θ0

2 + θ0
1(θ

0
1 − θ0

2)x∗] exp[−(θ0
1 − θ0

2)x∗] . (20)

For θ0 = (0.7, 0.2)⊤, this gives x∗ = x∗(θ
0) ≃ 4.28. In general, fθ̄(x∗) 6= fθ0(x∗)

to which c is proportional. Therefore, c /∈ M[M(ξ∗, θ̄)] and regular asymptotic

normality does not hold for c⊤θ̂N
LS .

The example is simple enough to be able to investigate the limiting behavior
of c⊤θ̂N

LS by direct calculation. A Taylor development of the LS criterion SN (θ)

gives (19) where βN
i

a.s.→ θ̄ as N → ∞, i = 1, 2. Direct calculations give

∇θSN (θ̄) = −2
[√

mβm fθ̄(x
0) +

√
N − mγN−m fθ̄(x∗)

]

,

∇2
θSN (θ̄) = 2

[

m fθ̄(x
0)f⊤θ̄ (x0) + (N − m) fθ̄(x∗)f

⊤
θ̄ (x∗)

]

+ Op(
√

m) ,
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where βm = (1/
√

m)
∑

xi=x0 εi and γN−m = (1/
√

N − m)
∑

xi=x∗
εi are inde-

pendent random variables that tend to be distributed N (0, 1) as m → ∞ and
N − m → ∞. We then obtain,

θ̂N
LS − θ̄ =

1

∆(x∗, x0)

{

γN−m√
N − m

(

{fθ̄(x0)}2

−{fθ̄(x0)}1

)

+
βm√
m

(

−{fθ̄(x∗)}2

{fθ̄(x∗)}1

)}

+op(1/
√

m) ,

where ∆(x∗, x
0) = det(fθ̄(x∗), fθ̄(x

0)). Therefore,
√

N f⊤
θ̄

(x∗)(θ̂
N
LS − θ̄) is asymp-

totically normal N (0, 1) whereas for any direction c not parallel to fθ̄(x∗)

and not orthogonal to fθ̄(x
0),

√
mc⊤(θ̂N

LS − θ̄) is asymptotically normal (and

c⊤(θ̂N
LS−θ̄) converges not faster than 1/

√
m). In particular,

√
mf⊤

θ̄
(x0)(θ̂N

LS−θ̄)

is asymptotically normal N (0, 1) and
√

m{θ̂N
LS − θ̄}2 is asymptotically normal

N (0, {fθ̄(x∗)}2
1/∆2(x∗, x

0)). ¤

The previous example has illustrated that letting γ tend to zero in a regular-
ized c-optimal design (1−γ)ξ∗+γξ̃ raises important difficulties (one may refer to
[8] for an example with a linear model and a nonlinear function h(θ)). We shall
therefore consider γ as fixed in what follows. It is interesting, nevertheless, to
investigate the behavior of the c-optimality criterion when the regularized mea-
sure (1 − γ)ξ∗ + γξ̃ approaches ξ∗ in some sense. Since γ is now fixed, we let
the support points of ξ̃ approach those of ξ∗. This is illustrated by continuing
the example above.

Example (continued): Place the proportion m = N/2 of the observations at x0

and consider the design measure ξγ,x0 = (1 − γ)δx∗ + γδx0 with γ = 1/2. Since

the c-optimal design is δx∗ , we consider the limiting behavior of c⊤(θ̂N
LS − θ̄)

when N tends to infinity for x0 approaching x∗. The nonsingularity of ξ1/2,x0

for x0 6= x∗ (and x0 6= 0) implies that
√

Nc⊤(θ̂N
LS − θ̄) is asymptotically normal

N (0, c⊤M−1(ξ1/2,x0 , θ̄)c).

The asymptotic variance c⊤M−1(ξ1/2,x0 , θ̄)c tends to infinity as x0 tends to
x∗ when c is not proportional to fθ̄(x∗), see Figure 2. Take c = fθ̄(x∗). Then,
f⊤
θ̄

(x∗)M
−1(ξ1/2,x0 , θ̄)fθ̄(x∗) equals 2 for any x0 6= x∗, twice more than what

could be achieved with the singular design δx∗ since f⊤
θ̄

(x∗)M
−(δx∗ , θ̄)fθ̄(x∗) = 1

(this result is similar to that in [6, p. 67] and is caused by the fact that Φc(·) is
only semi-continuous at a singular M). ¤

The example above shows that not all regularizations are legitimate: the
regularized design should be close to the optimal one ξ∗ in some suitable sense
in order to avoid the discontinuity of Φc(·) at a singular M.
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Figure 2: c⊤M−1(ξ1/2,x0 , θ̄)c (solid line) and f⊤
θ̄

(x∗)M
−1(ξ1/2,x0 , θ̄)fθ̄(x∗)

(dashed line) for x0 varying between 1.25 and x∗ = 4.28; θ̄ = (0.65, 0.25)⊤,
θ0 = (0.7, 0.2)⊤ and c = (0, 1)⊤ (so that δx∗ is c-optimal for c and θ0).

4 Minimax regularization

4.1 Estimation of a nonlinear function of θ

Consider first the case where the function of interest h(θ) is nonlinear in θ. We
should then ideally take cθ̄ = ∂h(θ)/∂θ

∣

∣

θ̄
in the definition of the optimality

criterion. However, since θ̄ is unknown, a direct application of local c-optimal
design consists in using the direction cθ0 = ∂h(θ)/∂θ

∣

∣

θ0
, with the risk that θ

and h(θ) are not estimable from the associated optimal design ξ∗ if it is singular.
One can then consider instead a set Θ0 (a finite set or a compact subset of R

p)
of possible values for θ̄ around θ0 in the definition of the directions of interest,
and the associated c-minimax optimality criterion becomes

φC(ξ) = max
θ∈Θ0

c⊤θ M−(ξ, θ0)cθ , (21)

or equivalently φC(ξ) = maxc∈C c⊤M−(ξ, θ0)c with C = {cθ : θ ∈ Θ0}. A
measure ξ∗(C) on X that minimizes φC(ξ) is said to be (locally) c-minimax
optimal. When C is large enough (in particular when the vectors in C span R

p),
ξ∗(C) is nonsingular. According to Theorem 2, a design sequence on a finite set
X (containing the support of ξ∗(C)) such that the associated empirical measure
converges strongly to ξ∗(C) then ensures the asymptotic normality property (8).

4.2 Estimation of a linear function of θ: regularization via

D-optimal design

When the function of interest is h(θ) = c⊤θ with the direction c fixed, the
construction of an admissible set C of directions for c-minimax optimal design

10



is somewhat artificial and a specific procedure is required. The rest of the
section is devoted to this situation. The first approach presented is based on
D-optimality and applies when the c-optimal measure is a one-point measure.

Define a (local) c-maximin efficient measure ξ∗mm for C as a measure on X
that maximizes

Emm(ξ) = min
c∈C

c⊤M−[ξ∗(c), θ0]c

c⊤M−(ξ, θ0)c
,

with ξ∗(c) a c-optimal design measure minimizing c⊤M−(ξ, θ0)c. When the
c-optimal design ξ∗(c) is the delta measure δx∗ it seems reasonable to consider
measures that are supported in the neighborhood of x∗. One may then use the
following result of Kiefer [4] to obtain a c-maximin efficient measure through
D-optimal design.

Theorem 3 A design measure ξ∗mm on X is c-maximin efficient for CX =
{fθ0(x) : x ∈ X} if and only if it is D-optimal on X , that is, it maximizes
log detM(ξ, θ0).

The construction is as follows. Define

Xδ = B(x∗, δ) ∩ X , (22)

with B(x∗, δ) the ball of centre x∗ and radius δ in R
d, and define Cδ = {fθ0(x) :

x ∈ Xδ}. From Theorem 3, a measure ξ∗δ is c-maximin efficient for c ∈ Cδ if
and only if it is D-optimal on Xδ. Suppose that Cδ spans R

p when δ > 0, the
measure ξ∗δ is then non singular for δ > 0 (with ξ∗0 = ξ∗(c)). Various values of δ
are associated with different designs ξ∗δ . One may then choose δ by minimizing

J(δ) = max
θ∈Θ0

Φc[M(ξ∗δ , θ)] , (23)

where Θ0 defines a feasible set for the unknown parameter vector θ̄. Each
evaluation of J(δ) requires the determination of a D-optimal design on a set
Xδ and the determination of the minimum with respect to θ ∈ Θ0, but the
D-optimal design is often easily obtained, see the example below, and the set
Θ0 can be discretized to facilitate the determination of the maximum.

Example (continued): Take c = (0 , 1)⊤ and θ0 = (0.7 , 0.2)⊤. Choosing Xδ as
in (22) gives Cδ = {fθ0(x) : x ∈ [x∗ − δ, x∗ + δ]}, with x∗ ≃ 4.28, and the cor-
responding c-maximin efficient measure is ξ∗δ = (1/2)δx∗−δ + (1/2)δx∗+δ. Fig. 3
shows c⊤M−1(ξ∗δ , θ̄)c and f⊤

θ̄
(x∗)M

−1(ξ∗δ , θ̄)fθ̄(x∗) as functions of δ. Notice that

f⊤
θ̄

(x∗)M
−1(ξ∗δ , θ̄)fθ̄(x∗) tends to 1 as δ tends to zero, indicating that the form

of the neighborhood used in the construction of Xδ has a strong influence on
the performance of ξ∗δ (in terms of c-optimality) when δ tends to zero. Indeed,
taking Xδ = [x0, x∗] with x0 = x∗− δ yields the same situation as that depicted
in Fig. 2.

The curve showing c⊤M−1(ξ∗δ , θ̄)c in Fig. 3 indicates the presence of a min-
imum around δ = 0.5. Fig. 4 presents J(δ) given by (23) as a function of δ
when Θ0 = [0.6, 0.8] × [0.1, 0.3], indicating a minimum around δ = 1.45 (the
maximum over θ is attained at the endpoints θ1 = 0.8, θ2 = 0.3 for any δ). ¤
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Figure 3: c⊤M−1(ξ∗δ , θ̄)c (solid line) and f⊤
θ̄

(x∗)M
−1(ξ∗δ , θ̄)fθ̄(x∗) (dashed line)

for δ between 0 and 2; x∗ = 4.28, θ̄ = (0.65, 0.25)⊤, θ0 = (0.7, 0.2)⊤ and
c = (0, 1)⊤ (so that δx∗ is c-optimal for c and θ0).
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Figure 4: maxθ∈Θ0 c⊤M−1(ξ∗δ , θ)c as a function of δ ∈ [1, 2] for Θ0 = [0.6, 0.8]×
[0.1, 0.3].
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5 Regularization by combination of c-optimal de-

signs

We say that h(θ) is locally estimable at θ for the design ξ in the regression model
(1,2) if the condition (7) is locally satisfied, that is, if there exists a neighborhood
Θθ of θ such that

∀θ′ ∈ Θθ ,

∫

X

[η(x, θ′) − η(x, θ)]2 ξ(dx) = 0 ⇒ h(θ′) = h(θ) . (24)

Consider again the case of a linear function of interest h(θ) = c⊤θ with the
direction c fixed. The next theorem indicates that when c⊤θ is not (locally)
estimable at θ0 from the c-optimal design ξ∗ it means that the support of ξ∗

depends on the value θ0 for which it is calculated. By combining different
c-optimal designs obtained at various nominal values θ0,i one can thus easily
construct a nonsingular design from which θ, and thus c⊤θ, can be estimated.
When the true value of θ̄ is not too far from the θ0,i’s, this design will be almost
c-optimal for θ̄.

Theorem 4 Consider a linear function of interest h(θ) = c⊤θ, c 6= 0, in
a regression model (1,2) satisfying the assumptions H1η, H2η and Hh. Let
ξ∗ = ξ∗(θ0) be a (local) c-optimal design minimizing c⊤M−(ξ, θ0)c. Then, h(θ)
being not locally estimable for ξ∗ at θ0 implies that the support of ξ∗ varies with
the choice of θ0.

Proof. The proof is by contradiction. Suppose that the support of ξ∗(θ) does
not depend on θ. We show that it implies that h(θ) is locally estimable at θ for
ξ∗.

Suppose, without any loss of generality, that c = (c1, . . . , cp)
⊤ with c1 6= 0

and consider the reparametrization defined by β = (c⊤θ, θ2, . . . , θp)
⊤, so that

θ = θ(β) = Jβ with J the (jacobian) matrix

J =

(

1/c1 −c′
⊤

/c1

0p−1 Ip−1

)

,

where c′ = (c2, . . . , cp)
⊤ and 0p−1, Ip−1 respectively denote the (p−1)-dimensional

null vector and identity matrix. From Elfving’s Theorem,

∫

S∗

∂η(x, θ)

∂θ
ξ∗(dx) −

∫

Sξ∗\S∗

∂η(x, θ)

∂θ
ξ∗(dx) = γc

with γ = γ(θ) > 0, Sξ∗ the support of ξ∗ and S∗ a subset of Sξ∗ . De-
note η′(x, β) = η[x, θ(β)]. Since ∂η′(x, β)/∂β = J⊤∂η(x, θ)/∂θ and J⊤c =
(1,0⊤

p−1)
⊤, we obtain

∫

S∗

∂η′(x, β)

∂β
ξ∗(dx) −

∫

Sξ∗\S∗

∂η′(x, β)

∂β
ξ∗(dx) = γ[θ(β)]

(

1
0p−1

)

.
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Therefore,
∫

S∗
η′(x, β) ξ∗(dx)−

∫

Sξ∗\S∗
η′(x, β) ξ∗(dx) = G(β1), with G(β1) some

function of β1, estimable for ξ∗. Finally, β1 = c⊤θ is locally estimable for ξ∗

since G(β1)/dβ1 = γ[θ(β)] > 0.

Example (continued): Take c = (0, 1)⊤, c⊤θ is not locally estimable at θ0 =
(0.7, 0.2)⊤ for the c-optimal design ξ∗ = δx∗ , with x∗(θ

0) ≃ 4.28, but the value
of x∗ depends on θ0 through (20). Taking two different nominal values θ0,1, θ0,2

is enough to construct a nonsingular design by mixing the associated c-optimal
designs. ¤
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