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Abstract. We consider the deblurring problem of noisy and blurred images in the case of
known space invariant point spread functions with four choices of boundary conditions. We combine
an algebraic multigrid previously defined ad hoc for structured matrices related to space invariant
operators (Toeplitz, circulants, trigonometric matrix algebras etc.) and the classical geometric multi-
grid studied in the partial differential equations context. The resulting technique is parameterized
in order to have more degrees of freedom: a simple choice of the parameters allows to devise a quite
powerful regularizing method. It defines an iterative regularizing method where the smoother itself
has to be an iterative regularizing method (e.g., CG, Landweber, CGNE, etc.). More precisely, with
respect to the smoother, the regularization properties are improved and the total complexity is lower.
Furthermore, in several cases, when it is directly applied to the system Af = g, the quality of the
restored image is comparable with that of all the best known techniques for the normal equations
AT Af = AT g, but the related convergence is substantially faster. Finally, the associated curves of
the relative errors vs the iterations number are “flatter” with respect to the smoother (the estimation
of the stop iteration is less crucial). Therefore, we can choose multigrid procedures which are much
more efficient than classical techniques without losing accuracy in the restored image (as it often
occurs when using preconditioning). Several numerical experiments show the effectiveness of our
proposals.
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1. Introduction. We consider the classical deblurring problem of noisy and
blurred images in the case of space invariant point spread functions (PSF). More
precisely the problem is described by the following discrete problem (possible infinite)
with shift invariant kernel which leads to a system whose i-th equation is given by

g(i) =
∑

j∈Z2

hi−jf(j) + ν(i), i ∈ Z2. (1.1)

Here the mask H = (hs)s∈Z2 represents the blurring operator, ν(s), s ∈ Z2 is the
noise contribution and g(s), s ∈ Z2 is the blurred and noisy observed image; the
problem is to recover the unknown true image f(s) in the window of observation
described by s ∈ {1, . . . , n}2. We assume that H is known e.g. through experimental
measurements.

It is clear that the system described by (1.1) is underdetermined since we have n2

equations and (n + m)2 unknowns involved when the support of the PSF is a square
of size m×m. In general if the support of the PSF contains more than one point then
the number of unknowns exceeds the number of equations by at least n. In order to
take care of this problem we can compute a least square solution or use appropriate
boundary conditions (linear or affine relations between the unknowns outside the
window of observation and the unknowns inside the windows of observation) leading
to a square linear system. The least square solution in principle is computationally
very expensive even if, recently, a clever trick for reducing the related cost has been
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devised (see [4, 31]). The use of boundary conditions (BCs) approach is usually
preferred by practitioners. Among the BCs we count zero Dirichlet, periodic, reflective
or Neumann and anti-reflective. As proved in [19, 25], the last two BCs provide much
more precise results with respect to the classical zero Dirichlet and periodic BCs.
Moreover, in the noise free case [25], the anti-reflective BCs improves by one order of
approximation the restoration of the true object when compared with the reflective
BCs. Indeed, the reflective and anti-reflective BCs have been introduced in order to
reduce or eliminate some artifacts located close to the borders of the image and called
ringing effects. These results are confirmed in the presence of noise as well when the
use of regularization methods is highly recommended: in [10] we applied Tikhonov like
methods and CG with optimal parameters for a slight modification of the linear system
called re-blurred linear system. When using anti-reflective BCs, these techniques work
better than the classical Tikhonov method and CG for normal equations with optimal
parameters while for the remaining BCs the re-blurred modification and the classical
methods coincide when the PSF is symmetric.

In this paper we propose the use of multigrid methods as regularizing procedures:
in order to gain in efficiency, the multigrid methods that we consider are designed
ad hoc for the structured linear systems arising from the various BCs: we observe
two-level Toeplitz structures when applying zero Dirichlet BCs, we have two-level
circulant matrices when applying periodic BCs, and we find two-level matrices from
the DCT-III algebra and from the DST-I algebra, when enforcing reflective and anti-
reflective BCs, respectively. The good news is that for all these structured matrices
very efficient multigrid methods have been devised [13, 26, 8]. When the two-level
matrices are also banded at each level then the related overall cost is of the order
of O(n2) arithmetic operations; if the matrices considered are dense then the cost
is of the order of O(n2 log(n)) arithmetic operations (for the algorithmic proposals
see [13, 26, 8] and for the theoretical cost and convergence analysis see [1, 24]). In
conclusion we can assume that from the viewpoint of the complexity the multigrid
proposal is a very good one: here, taking into account the presence of noise, we discuss
how to modify the method in order to introduce proper regularization features and
in fact this is the main aim of the paper.

In part of the numerical experiments we will assume that the image is located in a
uniform background (but this requirement is absolutely not essential as shown by the
example in Subsection 5.1 and our proposal works essentially unchanged with general
images where we are forced to use more precise BCs such as the reflective or anti-
reflective): under these special assumptions (often fulfilled in astronomical imaging),
the four mentioned boundary conditions are equivalent from the model viewpoint
and indeed we do not observe ringing effects. Therefore, in this ideal setting, we
can concentrate on checking the quality of the reconstruction with respect to the
de-blurring/de-noising procedure.

To this aim many techniques have been proposed: Tikhonov’s method, Riley’s
method (a variant of the Tikhonov technique when the blurring matrix is symmetric
and close to positive definite), Landweber, conjugate gradient (CG) and its version
applied to normal equations (CGNE) with early stopping and so on. Here we propose
a new iterative technique with early stopping of the iterations which is of multigrid
type. We combine an algebraic multigrid previously defined ad hoc for structured ma-
trices related to space invariant operators (Toeplitz, circulants, trigonometric matrix
algebras etc.) and the classical geometric multigrid designed for discretized partial dif-
ferential equations (PDEs). In particular the reduction to lower dimension is made by
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using the Galerkin approach (without re-discretization), the structure of the prolon-
gation operator and of the restriction operator or projector (essentially the transpose
of the prolongation operator) is the one of the algebraic multigrid indicated in [1]
in order to maintain the structure of the problem at each level and finally, from the
viewpoint of the compact Fourier analysis [28], the prolongation operator is the one
of the classical geometric multigrid i.e. the one representing the linear interpolation
(a low pass filter). The resulting technique is parameterized in order to have more
degrees of freedom: a simple choice of the parameters allows one to devise a powerful
regularizing method whose features are the following:

a) it is used with early stopping (as CG, CGNE, and the Landweber method)
and its cost per iteration is about 1/3 of the cost of the method used as a
smoother (CG, Landweber, CGNE),

b) it can be adapted to work with all the boundary conditions used in the lit-
erature (Dirichlet, periodic, Neumann/reflective or anti-reflective) since the
basic algebraic multigrid considered in [1] is an optimally convergent method
for any of the involved structures (Toeplitz, circulant, cosine-algebra or sine-
algebra) which naturally arise from the chosen boundary conditions,

c) the minimal relative error with respect to the true image is significantly lower
with regard to all the best known techniques directly applied to the system
Af = g (Riley, CG, preconditioned CG, etc.) with optimal parameters and
the associated curve of the relative errors with respect to the iterations is
“flatter” (at least in the our set of experiments),

d) when the smoothing step is applied to the normal equations AT Af = AT g we
observe that the minimal relative error and the total complexity are slightly
lower in comparison with all the best known techniques (Tikhonov, CGNE,
Landweber, etc.) with optimal parameters and the associated curve of the
relative errors vs the iterations number is, at least in our set of experiments,
“flatter” (therefore the quality of the reconstruction is not critically dependent
on the choice of iteration where to stop),

e) when the smoothing step is applied to the system Af = g the minimal relative
error is comparable with regard to all the best known techniques for the
normal equations AT Af = AT g, but in this case the convergence is much
faster,

f) it can be combined with nonnegativity constraints (by using a simple projec-
tion at every step): in that case we observed a substantial improvement in
the total cost and in the precision when compared with the very precise but
extremely slowly convergent projected CGNE and Landweber. Furthermore,
in principle, it can be used in connection with edge preserving procedures
such as Total Variation, Bayesian methods, deterministic strategies (see e.g.
[20, 18, 14, 5]): indeed the non-convex optimization (which characterizes all
these quite expensive techniques) should be solved by some kind of iterative
method which uses linearization and our multigrid procedure can be applied
at this level (instead of using preconditioning as suggested in [7, 2]). Finally
also a priori information on the statistical nature of the noise could be ex-
ploited for defining more appropriate interpolation and smoothing operators:
all these issues will be investigated in future works.

Due to the applications in astronomy, we preferred the use of periodic BCs and there-
fore the version of an algebraic multigrid for two-level circulant matrices (see [26, 1]).
However, as clearly discussed in Sections 3 and 4, the regularizing power of our multi-
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grid technique does not depend on the BCs (only the algebraic part of the procedure
has to be conveniently adapted). Indeed with reflective BCs the structure is related
to the DCT-III algebra and with anti-reflective BCs the structure is related to the
DST-I algebra and for both optimal algebraic multigrid methods have been devised
(see [8, 13, 1]). Extensive numerical experiments in this direction, in order to check
the regularizing features of our multigrid with all the BCs considered, will be part of
a future work. We tried several images and, concerning items c) and d), the results of
our reconstruction are uniformly better with respect to the classical methods (Riley,
CG, Richardson): moreover the associated complexity is of the same order as the
usual techniques. Concerning items e) and f) the conclusions are in some sense dual
since the quality of our reconstruction is comparable or slightly better when compared
with the best methods (Tikhonov, CGNE, Landweber with optimal parameters) but
our procedure is much faster when compared with the classical iterative regularizers
as CGNE and Landweber.

We stress that multigrid procedures have already been considered in the image
restoration literature by R. Chan, T. Chan and Wan [6], by Huckle and Staudacher
[17] and by the first author [9]: however these works represent only Numerical Linear
Algebra contributions and do not concern regularization. The authors consider the
regularized system (by using a Total Variation and standard Tikhonov approaches,
respectively) and then they use multigrid in order to obtain a fast convergence on the
algebraic system (and not for regularization purposes). Our approach tries to combine
Numerical Linear Algebra requests (low complexity, exploitation of the structured
matrices etc.) and regularization issues (a good precision at the optimal iteration). No
explicit comparison is made with the PCG and the PCGNE methods since the quality
of their reconstructions is generally worse (see e.g. [16, 12]) when compared with
standard CG and CGNE methods and consequently, in terms of quality reconstruction
and numerical complexity, a comparison with the latter two techniques is sufficient.

In summary, the main aim of this paper is to show that the proposed multigrid
method is a general framework: it can be used to improve the quality of the restored
image and/or to reduce the computational cost of an iterative regularizing method
which is used as a smoother in the multigrid framework. Furthermore, it inherits all
the properties of the iterative regularizing methods, for instance it can be combined
with nonnegativity constraints. Finally, we emphasize that usually it is not strictly
necessary to resort to a smoother applied to the normal equations since the multilevel
strategy performs a further filtering.

The paper is organized as follows: in Section 2, we describe the classical (geo-
metric) multigrid while the algebraic multigrid for shift-invariant structured matrices
(belonging to trigonometric matrix algebras or to the Toeplitz class) is described in
Section 3. In Section 4 we adapt the algebraic multigrid algorithm to the image
restoration case: we essentially use projectors classically employed in a PDEs context
but now interpreted in the language of signals and images; furthermore we give a
theoretical explanation on why the technique is effective and we furnish an analysis
of the arithmetic cost (per iteration). In Section 5 we present a wide experimentation
with various choices of PSFs and signal to noise ratios (SNRs): moreover, we compare
our proposal with other iterative regularizing methods like CG, CGNE, Richardson,
Landweber and also with the Tikhonov technique both in terms of resulting accuracy
and complexity. In Section 6 we show that the multigrid regularization is a general
framework which can lead to several generalizations. Section 7 is then devoted to
discuss the perspectives that such a class of multigrid type algorithms offers in terms
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of regularizing features.

2. The Multigrid algorithm. For solving the linear system Anxn = bn, the
two-grid method (TGM) refers to a smaller linear system Akxk = bk with k < n.
In its simpler version, the TGM is the combination of two fixed-point methods: the
smoother and the coarse grid correction (CGC). More precisely we have

yn := TGM(xn,bn, Sn, ν)

If (size(bn) ≤ c) Then yn = A−1
n bn

Else x̃ := Smooth
(
xn,bn, Sn, ν

)
bk := P k

n (bn −Anx̃n)
(P k

nbn in precomputing phase)
Ak:= P k

nAn(P k
n )T (in precomputing phase)

yk := A−1
k bk

yn := x̃n + (P k
n )T

yk

(2.1)

where c is a small constant dimension under which it is not useful to apply a two-
grid strategy. By Smooth

(
xn,bn, Sn, ν

)
we denote the application of ν steps of the

smoother method defined by the iteration matrix Sn. In this work we do not use
post-smoothing and so the pre-smoother is simply called smoother. The smoother is
a fixed point iteration of the kind

x(j+1)
n = Snx(j)

n + cn, (2.2)

where In is the identity matrix of dimension n, cn is easily computable (low cost)
and it is implicitly defined as An(In − Sn)−1cn = bn. Usually the smoother is a
method like damped Jacobi, Richardson or Gauss Seidel which generally are slowly
convergent iterative solvers when applied to ill-conditioned linear systems. The coarse
grid correction operator projects the error equation into a subspace of dimension k
(usually k ≈ n/2d in d dimensional problems), solves the smaller system and then
interpolates the solution to come back to the space of higher dimension n. Formally,
the corresponding iteration matrix is defined as

CGCn = In − Pn
k A−1

k P k
nAn, (2.3)

where the full-rank P β
α ∈ Rβ×α projects Rα into Rβ and Ak ∈ Rk×k is the projected

version of An in the lower dimensional space. Following the Galerkin formulation,
we have Ak = P k

nAnPn
k and Pn

k = c(P k
n )T with c constant and where, without loss

of generality, we take c = 1. We stress that CGCn defined in (2.3) is a projection
matrix having eigenvalues equal to zero or to one (it is a filter in the space spanned
by the columns of A−1

n P k
n ) and therefore it is not a convergent iterative method.

However, its combination with the smoother is the TGM whose iteration matrix is
TGMn = CGCn · Sν

n: if we choose the projector Pn
k and/or the smoother Sn

k in
such a way that CGCn and Sν

n have spectral complementary behavior [23], then the
resulting TGM can be very effective for the solution of linear systems arising from
elliptic PDEs [15] or with structured coefficient matrices related to space invariant
operators [1, 13, 8]. More precisely, from an algebraic point of view [22, 23], in order
to obtain an effective method, the smoother and the coarse grid correction must bring
down the error in two orthogonal subspaces. Therefore, we can freeze CGCn and then
we have to choose appropriately the smoother as in the geometric multigrid, or we can
consider a fixed smoother and then we must choose appropriately the projector for the
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coarse grid correction as in [22, 1]. Now we are ready for introducing and describing
a true multigrid method. In fact, the main difference with respect to the TGM is as
follows. Instead of solving directly the linear system with coefficient matrix Ak, we
can apply recursively the projection strategy obtaining a multi-grid method (MGM):
in this case the coarse grid correction operator CGCn is replaced by an approximation
since the matrix A−1

k is approximated by (Ik −MGMγ
k )A−1

k as implicitly described in
(2.5) with k = nl−1. Concerning notations we will emphasize the recursion levels. If l
is the maximal number of recursive calls, then MGMi, i = 0, . . . , l, denotes MGMni

with 0 < n0 < n1 < · · · < nl = n and nj being the real matrix sizes. In this way
MGMl = MGMnl

= MGMn, Sl = Snl
= Sn, bl = bnl

= bn, x(j)
l = x(j)

nl = x(j)
n , and

moreover the smaller dimension k of the TGM method will become the dimension after
the first recursive call, i.e., k = nl−1. Let γ be the number of recursive calls at each
level, let ν = (∗, ν1, ν2, . . . , νl) with νi being the number of smoothing steps at level i
(at level zero, of course, ν0 = ∗ means that no smoothing is applied), and let us use
the Galerkin formulation: then the corresponding multigrid algorithm generates the
approximate solution x(j+1)

n = MGM(l,x(j)
n ,bn, Sn, ν, γ) according to the following

rule:

yi := MGM(i,xi,bi, Si, ν, γ)

If (i = 0) Then Solve(A0y0 = b0)
Else x̃i := Smooth

(
xi,bi, Si, νi

)
bi−1 := P i−1

i (bi −Aix̃i)
(P i−1

i bi in precomputing phase)
Ai−1:= P i−1

i Ai(P i−1
i )T (in precomputing phase)

yi−1 := 0i−1

for k = 1, γ
yi−1 := MGM(i− 1,yi−1,bi−1, Si−1,ν, γ)

yi := x̃i + (P i−1
i )

T
yi−1

(2.4)

Since the multigrid is again a fixed-point method, we can express x(j+1)
n as MGMlx

(j)
n

+(In − MGMl)A−1
n bn, where the iteration matrix MGMl is recursively defined as

[28]:





MGM0 = O

MGMi =
[
Ini−(P i−1

i )T
(
Ini−1−MGMγ

i−1

)
A−1

i−1P
i−1
i Ai

]
· Sνi

i , i = 1 . . . , l.

(2.5)
For γ = 1 and γ = 2 we have the V -cycle and the W -cycle respectively, and for

γ = 1 and l = 1 we obtain the TGM algorithm if Solve(A1y1 = b1) is y1 = A−1
1 b1.

For the classical geometric multigrid (P i−1
i )T is fixed and usually it is the linear

interpolator while the smoother is a simple iterative method (usually damped). For
the algebraic multigrid described in [1], the smoother is a priori decided to be the
damped Richardson while P i−1

i is a function of the entries of the coefficient matrix.

3. A Multigrid Scheme for shift invariant operators. As already men-
tioned in the introduction, the use of BCs leads to linear systems with coefficient
matrices belonging to the two-level Toeplitz class or to two-level matrix algebras:
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BCs An essentially is a
Dirichlet two-level Toeplitz
periodic two-level circulant

reflective (Neumann) two-level DCT-III
anti-reflective two-level DST-I

More specifically, when considering the first three choices of the BCs, the related
structure is exact while, in the case of anti-reflective BCs, we do not find exactly a
DST-I matrix, but the solution of the associated linear system can be reduced to the
solution of a linear system with coefficient matrix belonging to the two-level DST-I
algebra (see [25]).

As briefly observed in the introduction, the choice of the BCs is relevant for the
precision of the restored image. In particular, when inappropriate BCs are employed,
some artifacts appear close to the borders of the image and often, due to the ill-
conditioning of the discrete blur operator, they spread throughout the image: more
precisely, these artifacts, called ringing effects, come from artificial discontinuities
introduced in the image by the imposed boundary conditions. In this respect and
with regard to computational requirements, a simple classification can be made. Zero
Dirichlet BCs impose an artificial discontinuity at the borders and the resulting struc-
ture is two-level Toeplitz (i.e. block Toeplitz with Toeplitz blocks); periodic BCs can
again impose an artificial discontinuity at the borders and the resulting structure is
two-level circulant (i.e. block circulant with circulant blocks); symmetric or reflective
or Neumann BCs preserve the continuity of the image but not the continuity of its
normal derivative: as a consequence the ringing effects are significantly reduced (by
one order of magnitude), moreover the resulting structure is two-level Toeplitz + Han-
kel. Finally, anti-reflective BCs preserve the continuity of the image and of its normal
derivative, the resulting structure is two-level Toeplitz + Hankel + low rank correc-
tion. From a linear algebra viewpoint for two level circulant matrices both solution
of a linear system and matrix-vector product can by achieved in O(n2 log n) complex
operations by fast Fourier Transforms (FFTs), for two level Toeplitz or Hankel ma-
trices the multiplication by a vector can be done in O(n2 log n) complex operations
by using FFTs while the solution of an associated linear system is extremely costly in
general. However if the PSF is doubly symmetric for reflective and anti-reflective BCs
the matrix-vector multiplication and the solution of a linear system can be obtained
in O(n2 log n) real operations by fast cosine transforms (DCT-III) [19] or by fast sine
transforms (DST-I) [25], respectively.

The rest of the section is devoted to the definition of the relevant matrix classes
(circulants, DCT-III and DST-I algebras, Toeplitz structures) and to a brief descrip-
tion of the essentials of the related multigrid procedures.

3.1. Matrix algebras and Toeplitz matrices. We introduce the matrix alge-
bras by following a unifying approach firstly in the 1D case (signals) and then in the
2D case (images). Therefore we denote with the multi-index n the size of the problem,
which is n = (n(1), n(2)) in the 2D case for a n(1) × n(2) problem with algebraic size
N = n(1) · n(2), while in the 1D case it is simple n = n(1) = N .

In the 1D case let f : R → R and let Qn be the unitary matrix (i.e. Q−1
n =

QH
n ) related to our matrix algebras. We can define the Hermitian matrix An =

QH
n · Diagf(w[n]) · Qn, where w[n] is a fixed vector of Rn and f(w[n]) denotes the

vector whose components are f(w[n]
i ), i = 1, . . . , n. As a consequence q[n]

i = QH
n ei

is a unitary eigenvector of An related to the eigenvalue f(w[n]
i ). Furthermore, the

generating function f defines univocally An and hence we can denote An by An(f)
7



where A ∈ {C,N ,S}, which means that Cn(f) is circulant, Nn(f) is DCT-III and
Sn(f) is DST-I. For any of the considered algebras, the mathematical objects Qn and
w[n] are defined in Table 3.1.

algebra A In [w[n]]i∈In [Qn]i,j∈In

circulant C 0, . . . , n− 1 w
[n]
i = 2πi

n
1√
n

[
eijw

[n]
i

]

DCT-III N 0, . . . , n− 1 w
[n]
i = πi

n

√
2−δj,1

n

[
cos

(
(j + 1

2 )w[n]
i

)]

δ1,1 = 1, δj,1 = 0 for j 6= 1

DST-I S 1, . . . , n w
[n]
i = πi

n+1

√
2

n+1

[
sin

(
jw

[n]
i

)]

Table 3.1
Matrix algebras in the 1D case.

In the 2D case, a two-level matrix of partial dimensions n = (n(1), n(2)) and true
dimension N = n(1) ·n(2) can be described as a n(1)×n(1) block matrix whose elements
are n(2) × n(2) block matrices. The two-level Toeplitz matrix Tn(f) is defined as

Tn(f) = Tn(1),n(2)(f) =
∑

|j1|<n(1)

∑

|j2|<n(2)

a(j1,j2)J
[j1]

n(1) ⊗ J
[j2 ]

n(2)

by means of the Fourier coefficients of f

a(j1,j2) =
1

4π2

∫

[−π,π]2
f(x, y)e−i(j1x+j2y)dxdy, i2 = −1.

Here J
[j ]
n ∈ Rn×n is the matrix whose entry (s, t) equals 1 if s − t = j and is

0 elsewhere. The Circulant, DCT-III and DST-I two-level matrix algebras can be
defined as the matrix algebras generated from Qn(1) ⊗ Qn(2) with Qn(1) and Qn(2)

selected in the same row of Table 3.1. Of course we can associate multilevel matrices
Cn(f), Nn(f) and Sn(f) to every bivariate function f : R2 → R. Therefore An(f) =
An(1),n(2)(f) = (Qn(1) ⊗ Qn(2))T Diagf(w[n])(Qn(1) ⊗ Qn(2)), where w[n] = w[n(1)] ×
w[n(2)], and w[nj ], j = 1, 2, are the same as w[n] in Table 3.1.

It is known (see e.g. [25, 19]) that if f is a nonnegative trigonometric polynomial
all the matrices An(f), A ∈ {C,N ,S, T} are (essentially) banded and, whenever f
takes the zero value, they are ill-conditioned. Furthermore, we require f even (with
respect to each variable) in the DCT-III and DST-I case.

3.2. A Multigrid algorithm preserving the structure. We define a multi-
grid algorithm for two-level Toeplitz, circulant, DCT-III and DST-I matrices using the
Galerkin formulation. The algebraic requirement to define a MGM is that, for each
recursion level i = 1, . . . , l, the coefficient matrix Ai has to belong to the same matrix
class (Toeplitz, circulant, DCT-III or DST-I) allowing the recursive application of
the algorithm. Let Ni be the dimension of the problem at the level i (Nl = N)
the algebraic requirement is fulfilled with an appropriate choice of the projector
P i−1

i : RNi → RNi−1 . More precisely, in the 1D case we have P i−1
i = KniAni(pi)

for i = 1, . . . , l, where Ani(pi) belongs to the same class as Ani(fi) and Kni is the
8



cutting matrix defined in Table 3.2 that preserves the same structure at each level (pi

is a trigonometric polynomial whose choice will be discussed a bit later).

circulant Toeplitz & DST-I DCT-III

nl 2k 2k − 1 2k

ni−1
ni

2
ni−1

2
ni

2

Kni
∈ Rni−1×ni

[
1 0

1 0 ... ...
1 0

] [
0 1 0

0 1 0... ... ...
0 1 0

] [
1 1 0

1 1 0... ... ...
0 1 1

]

Table 3.2
Dimensions and cutting operators in the 1D case for i = 1, . . . , l.

We stress that in the algebra case we have Ani
(pi)Ani

(fi) = Ani
(pifi), while

for the Toeplitz class the structure is preserved at each level only if pi has degree at
most one (for pi of greater degree we can change Kni adding some zero columns at
the beginning and at the end, see [1]). The choice of pi is a technical task and, in
order to obtain a fast solver which converges within a constant number of iterations
independent of the size of the problem, it has to satisfy two analytic conditions for
which we refer to [24, 1, 8]. In the present work we need only a simple projector,
which is the classic linear interpolation used in the geometric multigrid and such
that it preserves the structure of the matrix at each level. Therefore we take P i−1

i

associated with the related BCs generated by pi(x) = (1 + cos(x)), which preserves
also the Toeplitz structure in the case of Dirichlet BCs.

In the 2D case we have Ni = n
(1)
i n

(2)
i where the dimensions n

(1)
i and n

(2)
i evolve

like in the Table 3.2. Moreover P i−1
i = (K

n
(1)
i

⊗K
n

(2)
i

)A
n

(1)
i ,n

(2)
i

(pi) with pi being a
bivariate trigonometric polynomial. In this work, extending the 1D choice, we take

pi(x, y) = (1 + cos(x))(1 + cos(y)), (3.1)

that is bi-linear interpolation.
When damped Richardson (iteration matrix given by Si = Ii − ωiAi(fi)) is used

as smoother for Ai = Ai(fi), the relaxation parameter ωi has to be in [0, 2/‖fi‖∞]. In
our experimentation we take ωi = 1/‖fi‖∞ (classical Richardson without damping)
according to the choice performed in [1], but, of course, different values of ωi can be
explored.

From a computational cost point of view, the assembling of Ai = Ai(fi), for
i = 0, . . . , l − 1, does not increase the cost of the whole iterative method since the
number of non zeros entries of P i−1

i in the 1D case is less than 3Ni while in the 2D case
is less than 5Ni for i = 1, . . . , l. Therefore Ai−1 can be computed within a number
of operations substantially lower than the matrix-vector product which involves the
matrix Ai. Furthermore, all the matrices Ai can be formed in a setup phase before
starting the MGM and with a whole computational cost lower than the matrix-vector
product with the matrix Al: indeed the considered precomputing phase cost is of
O(log(N)) if f is a trigonometric polynomial with few non zero entries with respect
to N (Al sparse) and it is of O(N log(N)) if Al is a dense matrix.

Concerning the arithmetic cost of one multigrid iteration, for PSF with small
support (sparse linear systems), up to constant order terms and without considering
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the recursive calls, the computational cost at each level i is lower than cNi with
c constant and therefore the total computational cost C(MGMn) of one complete
multigrid cycle in 2D is:

C(MGMn) ≤





4
3cN + O(log(N)), γ = 1
2cN + O(log(N)), γ = 2
4cN + O(log(N)), γ = 3
O(N log(N)), γ = 4

. (3.2)

(see [28] for further details).

4. A multigrid algorithm with regularizing properties. In this section we
describe a multigrid algorithm which is able to improve the regularizing properties
of the iterative method used as smoother. The considered feature derives from a
particular choice of the projector which is obtained by linking the geometric multigrid
with its interpretation in terms of algebraic multigrid. Firstly we give the idea behind
the regularization through projection, we explain why it works, and then we use it to
define a multigrid regularizing strategy.

4.1. Regularization through projection. We give some arguments to ex-
plain why MGM can improve the regularization property of iterative methods like
CG, Richardson, CGNE or Landweber. For the sake of simplicity, the description is
provided in the 1D case, but the same analysis works in the multidimensional case as
well.

When the PSF is space invariant and we impose boundary conditions the coef-
ficient matrix is generated by a function that is zero or close to zero in a (possibly
large) neighborhood of π and reaches the maximum value (which is 1 thanks to the
normalization condition) at zero. For instance, in Figure 4.1 a Gaussian PSF with
mask a =

[
e−x2

]
/c and its generating function z(y) =

∑50
i=−50 aie−iy are shown:

here x is an equispaced sampling of 101 points in [−10, 10] and c is a normalization
constant such that

∑
i ai = 1. Let An(z) be Toeplitz, circulant, DCT-III or DST-I,

then its eigenvalues are about an evaluation of z(y) over a uniform sampling of y in
[0, π] and the eigenvectors are discrete frequency vectors whose frequency is about yn

2π
(see [25, 30]). Therefore, since the ill-conditioned subspace is associated with small
eigenvalues, from Figure 4.1 we can see as this degenerating subspace has very large
dimension (this characterizes the discretized ill-posed problems) and it essentially con-
tains the high frequencies subspace where usually the noise lives. Classical iterative
methods like CG and Richardson, firstly reduce the error in the well-conditioned sub-
space, low frequencies in our case [1, 6, 26]. For instance, using the previous PSF and
the original signal f defined as a uniform sampling of f(x) = sin(x) in [0, π], we create
the observed signal g as g = An(z)f and solving the linear system An(z)x = g with
Richardson, taking an initial error which has components in low and high frequencies,
the low frequencies are reduced after a few iterations while the high frequencies are
still almost unchanged after 10 iterations (see Figure 4.2). Therefore, the error has
the usual semi-convergence property: it decreases while we are working in the low
frequencies subspace, reaches a minimum, and then it increases again when we arrive
to work in the (unfortunately large) ill-conditioned subspace (high frequencies in our
case).

In order to obtain an effective and fast method according to the algebraic multi-
grid theory [1], the algebraic multigrid used in [9] projects the system in the high
frequencies subspace because this is the space where the smoother is ineffective and
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Figure 4.1. Gaussian PSF normalized with a constant c and its generating function.
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Figure 4.2. Components of the restoration error.

where we would like to obtain a better approximation. Unfortunately, the high fre-
quency not only contains fundamental parts of the image (e.g. the non negligible high
frequency portion of the edges) but also a substantial part of the noise. Therefore, as
already shown in [9], we obtain the noise explosion already after a few iterations and
consequently we must resort to the Tikhonov regularization and to apply the algebraic
multigrid to the regularized system: the good news is that we obtain a robust method
which, in some cases, shows a convergence speed independent both of the matrix size
and of the regularization parameter (see [1, 26, 9]).

Here we would like to propose a different approach, that is, use the MGM directly
as a regularizer. Instead of projecting into the high frequencies subspace, the idea
is to project into a subspace where we would like to discriminate between the noise
contribution and the edges which are of great importance for identifying an image.
The latter important feature can be obtained via projection techniques employed in
the geometric multigrid. It is well-known that the MGM is an optimal solver for PDEs,
where the ill-conditioned subspace is spanned by low frequencies. For instance, in the
Poisson problem we have as coefficient matrix Tn(z), where z(x) = 2 − 2 cos(x), x ∈
[0, π], that vanishes at zero and grows monotonically in [0, π], reaching its maximum
at π. The simplest projector used for PDEs is the weighted average

P i−1
i =

1
4




1 2 1
1 2 1

. . . . . .
1 2 1




ni−1×ni

,
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while the interpolation operator is the simple linear interpolation 2(P i−1
i )T . We

observe that the j-th column of the interpolation operator is given by

0.5 [ej−1 + 2ej + ej+1] , ek = k − th canonical vector.

These vectors looked at as sampling of functions have nontrivial components in lower
frequencies but their high frequency contribution is not generic since it is associated
with the necessity of preserving the jumps which characterize the edges of an image.
Indeed the j-th column of the interpolation operator can be seen as the sum of box
functions or can be interpreted as a local linear spline: note that it is reminiscent of
the basis functions in the wavelets theory. Of course in a real image restoration, 2D
case, the projector will be a tensor product of a given pair of functions having the
aforementioned shape.

We remark that P i−1
i is the same projector used in the algebraic multigrid when

considering Dirichlet BCs and generating function having only one zero at the ori-
gin with order almost two. More generally, the projection into the low frequen-
cies subspace can be obtained as P i−1

i = KiAi(p) with p(x) = 1 + cos(x) where
A ∈ {C,N ,S, T} according to the BCs used. Therefore the latter is a good choice
since it allows one to project into the low frequencies subspace where there is less
noise explosion. In this way we force the smoother to solve better the problem in
the subspace where there is less noise. We remark that by projecting into the low
frequencies subspace we lose the optimality property of the algebraic multigrid, but
now the MGM is used as a regularizer and not as a fast solver for algebraic systems.
Finally, if we have a regularizing iterative method like CG, Richardson, CGNE, or
Landweber, we can include it as a smoother thereby improving the quality of the
restored image.

From another point of view the effect of P i−1
i on the observed image g is like a

re-blurring (see [3, 10]) obtained from a weighted average and after a down-sampling
by a factor of two as a compression operation. Moreover, the effect of the linear
interpolation (P i−1

i )T on the solution computed in the coarser grid is a smoothing
effect, since the linear interpolation can reproduce well only the smooth components
while it is unable to reproduce those highly oscillating components which contain the
highest percentage of noise.

4.2. Two-Level regularization. Using the idea described in the previous sec-
tion we can define a Two-Level (TL) regularizing method with the following algorithm:

yn := TL(xn,bn, Sn, β)

bk := P k
n (bn −Anxn) (P k

nbn in precomputing phase)
Ak:= P k

nAn(P k
n )T (in precomputing phase)

yk := Smooth
(
0k,bk, Sk, β

)
yn := xn + (P k

n )T yk

(4.1)

Here Sk is the same smoother as Sn but of different size (which has to be a regularizing
method) applied to Ak, and β is defined in order to reach the best restoration error
(instead of defining β, it is possible to apply an early stopping criterion to the coarser
system Akyk = bk). The TL looks like a TGM where at the finer level no smoother
is applied, while, may be, the main difference between TL and TGM is that, at
the coarser level, instead of solving the system directly, we apply β iterations of the
smoother.
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Moreover, employing a uniform multigrid language, the above algorithm belongs
to the classical multigrid scheme where, following the notation of Section 2, it can be
formulated as

TL(xn,bn, Sn, β) = MGM(1,xn,bn, Sn, (∗, 0), 1), where
Solve(A0y0 = b0) → y0 := Smooth

(
00,b0, S0, β

)
.

(4.2)

Since at the finer level we do not apply any smoother, we can also interpolate the
solution obtained at each iteration and apply the early stopping criterion at the finer
level. This means that to perform one iteration of TL and β iterations of smoother is
exactly the same as performing β iterations of TL and one of smoother.

Proposition 4.1. Let x(j+1)
n = TL(x(j)

n ,bn, Sn, 1), for j = 0, . . . , β − 1, and let
y(β)

n = TL(x(0)
n ,bn, Sn, β). Then x(β)

n = y(β)
n .

Proof. It is sufficient to prove the assertion for β = 2, indeed for a generic β
the claim follows by induction. Furthermore, since TL is a fixed point method and
since the starting point x(0)

n is the same for the two iterations, it is sufficient to show
that the two methods which generate x(β)

n and y(β)
n have the same iteration matrix.

Recalling that the smoother is defined as in (2.2), it holds that

x(1)
n = TL(x(0)

n ,bn, Sn, 1) = (In −RnAn)x(0)
n + Rnbn,

Rn = (P k
n )T (Ik − Sk)A−1

k P k
n ,

and therefore x(2)
n = (In −RnAn)2x(0)

n + (2In −RnAn)Rnbn. Furthermore

y(2)
n = TL(x(0)

n ,bn, Sn, 2) = (In −QnAn)x(0)
n + Qnbn,

Qn = (P k
n )T (Sk + Ik)(Ik − Sk)A−1

k P k
n

and we have only to prove that (In−RnAn)2 = (In−QnAn). Since Ak = P k
nAn(P k

n )T ,
we finally infer

(In −RnAn)2 = In − 2RnAn + RnAnRnAn

= In − 2(P k
n )T (Ik − Sk)A−1

k P k
nAn + (P k

n )T (Ik − Sk)2A−1
k P k

nAn

= In − (P k
n )T (Ik − Sk)(Ik + Sk)A−1

k P k
nAn

= In −QnAn

and the proof is concluded.
We remark that the latter proposition could be used for analyzing the convergence

features and the regularization effects of the TL. Indeed, informally speaking, if we
use an iterative regularizing method as smoother (let us say Richardson, CGNE etc),
then in our two-level algorithm we are anticipating or postponing a low-pass filter
and therefore it is not possible that the global two-level iteration amplifies the noise
contributions.

4.3. Multigrid regularization. According to the description in Section 2, the
TGM leads to a MGM in a natural way. Similarly, the TL regularization previously
proposed can be applied recursively obtaining a multigrid regularization. To this
end, the definition contained in (4.2) with β = 1 is especially useful. In terms of
regularization, this means that at the coarser level we apply a smoothing iteration
and then we project again into the well conditioned subspace. This can be repeated
until we reach a small grid (e.g. 8 × 8), where the associated linear system can be
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solved directly since the problem is computationally negligible and the noise explosion
is easily controllable and avoidable. If the observed image is of size n(1) × n(2), then
we obtain a regularizing multigrid algorithm taking

1. l = min{log2(n(1) − 8), log2(n(2) − 8)},
2. ν = (∗, 1, . . . , 1, 0),
3. Solve(A0y0 = b0) → y0 = A−1

0 b0,
4. Sn = an iterative regularizing method

The choice of γ will be discussed in Section 6: we notice that its value can be increased
in order to perform more work in the well-conditioned subspace. However, the V -
cycle (i.e. γ = 1) can be a good choice for every kind of problems (high or low
percentage noise, good or bad BCs, . . . ). Therefore, in the following experimentation
we will use the notation MGM(Sn, γ) instead of MGM(min{log2(n(1) − 8), log2(n(2) −
8)},x(j)

n ,bn, Sn, (∗, 1, . . . , 1, 0), γ), because with the latter choices Sn and γ are the
only free parameters. For damped Richardson the relaxation parameter is chosen
according to Subsection 3.2 and so Sn = In − An(f)/‖f‖∞ briefly denoted by Sn =
Rich. The Landweber method is exactly the application of Richardson to the normal
equations and hence it will be denoted by Sn = RichNE. The classical MGM theory
requires that the smoother is a stationary method even if better performances can be
observed when non stationary methods are used possibly with flexible preconditioning
(for the theory of flexible preconditioning see e.g. the very interesting paper [27]).
Here the point of view is different since we are interested in the regularization features
of the method i.e. in its semi-convergence. We will denote the use of the CG method
as a smoother by Sn = CG while, when it is applied to the normal equations, we
write Sn = CGNE. Since all the parameters of the problem are fixed, as for the
MGM, concerning the TL method we indicate only the smoother (i.e. TL(Sn)) since
we assume β = 1 to compute the restoration error at each iteration.

When the observed image has a high percentage of noise or the PSF is not positive
definite, it is necessary to resort to the normal equations and usually the preferred
iterative methods are CGNE or Landweber. These methods require only matrix-
vector products and thus they can be plainly applied to the normal equations without
requiring the effective computation of the matrix AT

nAn. When we use the Galerkin
formulation in the MGM, the coefficient matrix at each level is obtained through
projections and hence it is necessary to assemble the coefficient matrices AT

i Ai at
every level i. For Dirichlet BCs, this leads to a loss of the two-level Toeplitz structure,
but also for the others BCs, for which the related computations can be performed
by convolutions, it leads to computational problems. More precisely, the resulting
coefficient matrices at each level have a double block bandwidth and each block has
a double bandwidth: therefore every matrix-vector product is increased by a factor
4 instead of 2 as it happens when applying CG to the normal equations (CGNE) or
Landweber. To avoid this kind of problems and to emphasize the robustness of the
proposed technique, we propose to use the classic Galerkin formulation projecting
at each level i only the matrix Ai and to apply as smoother an iterative method
for normal equations like CGNE or Landweber. This choice follows the philosophy
according to which the proposed MGM is a framework for improving the regularization
properties of a classic regularizing method and therefore it should be applied directly
to the original system with coefficient matrix An.

4.4. Computational cost analysis. In this section we analyze the computa-
tional cost of one iteration of the multigrid regularizing method MGM(Sn, γ). More
specifically we will consider (3.2) by giving details on the constants involved and by
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comparing the resulting cost with the one of a single smoothing iteration.
For the sake of simplicity, we consider square images of size n × n, with n = 2l,

therefore the algebraic size of the linear system at each recursion level is Ni = n2
i ,

with Ni−1 = Ni/4 according to Table 3.2 (in the Toeplitz and DST-I case this is not
exactly true since we work with odd dimensions but the same considerations hold),
i = 0, . . . , l. The computational cost of MGM(Sni

, γ) at a fixed level i is

C(MGM(Sni
, γ)) = γC(MGM(Sni−1 , γ)) + P (ni) + W (ni), i = 1, . . . , l, (4.3)

where P (ni) is the projection cost and W (ni) is the cost of one smoother iteration
Sni . Without loss of generality we assume C(MGM(Sn0 , γ)) = 1: indeed in a practical
implementation we stop the recursion a little before, but, for n large enough, the direct
solution at the coarsest level is negligible.

The computational cost of the projection at the level i is the sum of two matrix-
vector products, one with P i−1

i and the other one with (P i−1
i )T , since we take pi as

in (3.1) the first one is 7/4Ni and the second one is 7/8Ni. However, more generally
(it will be useful later), we have

P (ni) = bNi (4.4)

and in our case b = 21/8.
We consider PSF with small support with respect to the size of the image obtain-

ing W (n) = aN with a > b > 1. Usually a À b especially if the smoother is applied
to the normal equations. From the analysis in [1], the bandwidth of Ai−1 is about
half of the bandwidth of Ai along both directions (at blocks and inside each block),
hence

W (ni) < aNi.

Since Ni−1 = Ni/4, i = 1, . . . , l, from the (4.3) we have the following general
behavior

C(MGM(Sn, γ)) =





O(N), γ < 4
O(N log(n)), γ = 4
O(N log4(γ)), γ > 4

. (4.5)

However in the cases γ = 1, 2, 3 we can provide an explicit evaluation of the constants
involved as functions of a and b. Indeed, by applying recursively relation (4.3) and
by assuming W (nl) = 0, we infer

C(MGM(Sn, γ)) = γC(MGM(Sn2 , γ)) + P (n1) = ...

=
l−1∑

i=0

P (nl−i)γi +
l−1∑

i=1

W (nl−i)γi + γl

<

l−1∑

i=0

P (nl−i)γi +
l∑

i=1

W (nl−i)γi

< bN

l−1∑

i=0

(γ

4

)i

+ aN

l∑

i=1

(γ

4

)i

<
(4b + γa)N

4− γ
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which can be summarized as

C(MGM(Sn, γ)) <





(4b

3
+

a

3

)
N, γ = 1

(2b + a)N, γ = 2
(4b + 3a)N, γ = 3

.

Therefore, under the assumption a À b, usually satisfied in every practical application,
we deduce the following relationship between the computational cost of MGM(Sn, γ)
and that of the smoothing step:

C(MGM(Sn, γ)) ≈





1
3
W (N), γ = 1

W (N), γ = 2
3W (N), γ = 3

. (4.6)

We emphasize that the case of the V-cycle (γ = 1) is very interesting since its
cost is about one third of a standard smoother applied to the finest grid. Moreover
when the assumption about the small support of the PSF is not satisfied, then the
advantage of the multigrid algorithms with respect to the smoothers becomes even
stronger. More specifically, for a generic PSF, the matrix-vector product is computed
through fast discrete transforms and then W (ni) = O(Ni log(Ni)), while the projec-
tion is identical. Therefore the computational cost of the smoother dominates the
computational cost of the projection and the latter can be neglected. Consequently,
taking into account that the smoothers considered are extremely slow (see next sec-
tion), the conclusion is that in general the MGM(Sn, γ) algorithm is more efficient
than the smoother at the finest level alone.

5. Numerical experiments. We present a wide experimentation in order to
show the regularization properties of the proposed technique. We consider peri-
odic BCs since they are widely used in astronomical imaging. However similar re-
sults can be obtained also by employing other BCs like Dirichlet, reflective or anti-
reflective, since, as discussed in Section 3, similar multigrid methods have been de-
fined also for linear systems arising from these types of BCs [1, 8]. Since we know the
true image x, at each iteration j, we can evaluate and plot the relative error norm
ej = ‖x− x(j)‖2/‖x‖2 for each iterative regularization method. The algorithms are
implemented in Fortran 90 using double precision, while the images and the graphs
are made by using Matlab.

5.1. An airplane with periodic BCs. The PSF is created as a uniform sam-
pling of 51 points of e−

4
√

x2+y2 in [−20, 20] × [−20, 20], while for the noise we add a
random vector with uniform distribution and signal-noise-ratio (SNR) equal to 100.
The original airplane image and its blurred and noisy version are reported in Figure
5.1 (the original picture is a portion of a larger image from which the blurred one is
obtained). The smallest eigenvalue of the coefficient matrix is of the order of 10−3 and
the matrix is positive definite. As a matter of fact, it is not strictly necessary to apply
CG or Richardson to the normal equations, but it is recommended in order to obtain
a good quality of the de-blurred image. It is interesting to observe that the proposed
multigrid, with the simple Richardson method as smoother, leads to a restoration
error lower than the one obtained by CGNE or Landweber (see Figure 5.2). In this
example the TL and MGM with a smoother for normal equations does not improve
the quality of the restored image, because the value 0.112 is about the minimum error
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Original airplane 256× 256 PSF = e−
4
√

x2+y2 Observed image (128× 128)

Figure 5.1. Pictures of the airplane and of the PSF with SNR = 100.
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CG 0.1215 4

Rich 0.1218 8

TL(CG) 0.1132 8

TL(Rich) 0.1134 16

MGM(Rich,1) 0.1127 12

MGM(Rich,2) 0.1129 5

CGNE 0.1135 178

RichNE 0.1135 352

Minimum error and related number of
iterations

Figure 5.2. Airplane with SNR = 100: relative error norm vs number of iterations.

norm from a modelistic point of view. Indeed by Tikhonov regularization, solving the
linear system (AT

nAn + µIn)xn = AT
nbn and choosing µ as the experimental optimal

value (µ = 0.001), the minimum restoration error is 0.1127, which is essentially the
same value that we obtain by MGM(Rich, 1).

For higher levels of noise, e.g. SNR = 10, using CG or Richardson, we observe
noise explosion already after very few iterations and therefore it is necessary to resort
to the normal equations. In Figure 5.3, for SNR = 10, we can see that both the
TL strategy and the MGM regularization techniques, with CGNE or Landweber as
smoother, show an error curve with a lower minimum and a flatter behavior with
regard to CGNE and Landweber alone: of course this is good news since the evalu-
ation of the early stopping criterion becomes much easier. Moreover, for MGM with
Richardson as smoother, we observe about the same restoration error norm as the one
obtained by CGNE or by Landweber, again without resorting to normal equations
and with a significantly smaller number of iterations (see Table 5.1).

This example clearly shows that the multigrid strategy not only improves the
regularization properties of the iterative method used as smoother, but usually it
does not require resorting to normal equations at all. In this way we obtain about the
same (or slightly lower) restoration error as the best iterative regularization methods
applied to the normal equations, but with a measurable reduction in the arithmetic
cost.
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Figure 5.3. Airplane with SNR = 10: relative error norm vs number of iterations.

Method min
j=1,...

(ej) arg min
j=1,...

(ej)

CGNE 0.1625 30
RichNE 0.1630 59

TL(CGNE) 0.1611 48
TL(RichNE) 0.1613 97

MGM(RichNE,1) 0.1618 69
MGM(RichNE,2) 0.1621 26

MGM(Rich,1) 0.1648 3
MGM(Rich,2) 0.1630 1

Table 5.1
Airplane with SNR = 10: minimum error and related number of iterations.

5.2. An astronomical image with nonnegativity constraints. In this ex-
ample we use the PSF, the original image 256 × 256 of Saturn and its blurred and
noisy (with Poisson noise) version in Figure 5.4. Since this is an astronomical image,
we consider a black extension outside of the image and thus all the BCs are equivalent
and they do not introduce any approximation error in the model. The PSF is created
as a uniform sampling of e−

√
x2+y2 of 101 points in [−5, 5] × [−5, 5]. Therefore, not

only the coefficient matrix is ill-conditioned in a subspace of very large dimension (it
happens in the case of Gaussian like blurs as clearly shown in the second part of Fig-
ure 4.1), but it has also some small negative eigenvalues with magnitude of order of
10−4. Regarding the noise, we add Poisson noise to the blurred image with SNR=30.

From a practical point of view one should impose nonnegativity constraints. This
task can be accomplished by projecting onto the convex set of nonnegative entries
leading to a nonlinear operator. Despite its nonlinearity it can easily be implemented
by setting to zero the negative entries of the current approximation for each step of
an iterative regularizing method. A procedure of this kind widely used in astronom-
ical imaging is the projected Landweber method. Usually it converges very slowly
and therefore it is often used in connection with accelerating techniques employing
preconditioning strategies (see [21]). However, while our multigrid accelerates the
smoother convergence by keeping the reconstruction error low, often the effect of the
preconditioning is to (partially) spoil the quality of the restored image. In this context
our multigrid can be extended in two directions:
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Original image of Saturn PSF = e−
√

x2+y2
Blurred image + SNR = 30

Figure 5.4. PSF and images of Saturn (Poisson noise).

Method min
j=1,...

(ej) arg min
j=1,...

(ej)

CG+ 0.3172 2

Rich+ 0.3176 2

MGM(Rich,1)+ 0.2531 6

MGM(Rich+,1) 0.2567 9

MGM(Rich+,1)+ 0.2505 10

MGM(Rich+,2)+ 0.2473 5

RichNE+ 0.2388 676

CGNE+ 0.2385 442

MGM(CGNE+,1)+ 0.2351 337

MGM(CGNE+,2)+ 0.2351 26

Table 5.2
Saturn: Minimum relative error norm and its number of iterations (projected methods).

1) projecting each approximation onto the nonnegative cone (e.g. using Landwe-
ber as smoother and x(j+1) = P+MGM(x(j)) instead of x(j+1) = MGM(x(j)),
where P+ projects onto the nonnegative cone).

2) using a projected method as smoother (e.g. projected Landweber),
The first choice is the classic strategy for the projection onto the nonnegative cone
for a generic iterative method. The second choice does not assure the nonnegativ-
ity: the projection is a weighted average or a linear interpolation so it preserves the
nonnegativity constraint of the smoother, but at the coarsest level the direct solution
destroys the nonnegativity. Therefore the latter strategy has to be combined with the
previous one or we have to project the coarsest level solution into the nonnegative
cone. Experimentally, we obtain better results by using the first proposal that is by
projecting both the smoother and every global iteration.

In the following the projected version of an iterative method will be denoted by
the symbol plus (e.g. the projected Landweber is denoted by RichNE+ and the choice
1) will be denoted by MGM(·, ·)+). In Table 5.2 we report the minimal values reached
by every method and the corresponding iteration. We can see that the first choice
is uniformly better than the second one (we recall that the latter does not preserve
the nonnegativity), and their combination gives the best results; furthermore all these
strategies are much more effective than classic projected iterative methods (such as
CG and Richardson) when applied alone to the linear system Anx = b. Moreover
a useful property of our method (e.g. MGM(Rich+,2)+) is that the reconstruction
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CG+ MGM(Rich+, 2)+ MGM(Rich+, 2)+

(2 iter.) (5 iter.) (α = 5 in 14 iter.)

CGNE+ MGM(CGNE+, 1)+ MGM(CGNE+, 2)+

(442 iter.) (337 iter.) (26 iter.)

Figure 5.5. Restored images at the minimum relative error norm value.

quality is similar to the one obtained by the projected Landweber or projected CGNE
but with the use of a much smaller number of iterations and without resorting to the
normal equations (see Figure 5.5). However, if the main wish is to improve further the
quality of the de-blurred image, we can use projected Landweber or projected CGNE
as smoother in the MGM with a total computational cost which is again significantly
lower when compared to the standard projected methods: to reduce the error to 0.238
the projected CGNE requires 442 iterations and the projected Landweber requires 676
iterations, while MGM(CGNE+, 2)+ requires 26 iterations to reduce the error to 0.235
(see Table 5.2). We emphasize that one W -cycle iteration requires approximately the
same arithmetic cost as one smoother iteration (equation (4.6)): this fact results in a
huge saving in time (in addition to a slightly better reconstruction).

Finally, we study the behavior of our MGM proposal by changing a different
degree of freedom. In particular we consider the choice of the multigrid transfer
grid operator in order to obtain approximately the best restored image without re-
sorting to the normal equations for the smoothing step. Here the PSF has a large
support and the periodic BCs are exact. As shown in Table 5.2, iterative methods
for the normal equations require a unacceptably large number of iterations, while the
MGM(Rich+,2)+ loses some details (when compared to the projected CGNE) in the
reconstructed image (even if its quality is still reasonably good (see Figure 5.5)). In
order to overcome the problem without using a smoother for the normal equations,
we can improve the filtering properties of the multigrid transfer grid operator. In
fact, instead of employing linear interpolation, we choose cubic interpolation or, more
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α min
j=1,...

(ej) argmin
j=1,...

(ej)

1 0.2473 5
2 0.2421 7
3 0.2408 9
4 0.2398 12
5 0.2392 14

Table 5.3
Minimum relative error norm for MGM(Rich+,2)+ varying the degree α of the transfer grid

operator (α = 1 is the linear interpolation).

generally, an operator whose generating function is equal to (1+cos(x))α(1+cos(y))α

with α ∈ N+ (the linear interpolation is recovered by setting α = 1). In Table 5.3 it
is shown that, using MGM(Rich+,2)+ already for α = 4, 5, the minimum restoration
error norm is slightly greater than the one obtained by CGNE+. Indeed, in Figure
5.5 we can see that MGM(Rich+,2)+ with α = 5 and CGNE+ produce images with
about the same level of details. Furthermore MGM(Rich+,2)+ with α = 5 is much
cheaper than CGNE+, since, not only it requires 14 iterations instead of 442, but one
of its iteration has about the same computational as one Richardson iteration. As a
matter of fact, the value of b in (4.4) grows linearly with α. More precisely, the size of
the stencil related to ANi(pi) is (2α+1)× (2α+1) and therefore, for small values of α
(let us say at most 5), a projection operation is again cheaper than the matrix-vector
product with Ai and hence favorable in respect to the normal equation approach.

We remark that the improvement of the projector is an idea which has some
analogies with the re-blurring proposed in [10]. Indeed, since Ai−1 = P i−1

i Ai(P i−1
i )T

and since P i−1
i = KNiANi(pi), before the application of the cutting matrices KNi

and KT
Ni

we perform a double re-blurring to the left and to the right with matrices
ANi(pi) and (ANi(pi))

T .

6. The γ regularization. As already observed, the proposed regularizing MGM
leads to several generalizations which show the great flexibility of a multigrid ap-
proach. For instance, by increasing the work in the projected subspace we obtain
a better de-blurred image with less iterations. More precisely, we consider a bigger
value of γ and, as a result, the associated MGM is no longer of iterative type, but
it is a regularization direct method where the only parameter to be estimated is γ.
We are not able to define an optimal choice of γ, but this can be subject of future
research.

As an example we consider the airplane deblurring described in Subsection 5.1
with SNR = 100 (see figures 5.1 and 5.2). Here we study the behavior of the relative
error norm after only one iteration of MGM(Rich, γ) when γ grows (as shown in
Figure 6.1). By varying γ, the relative error norm at the first iteration e1 decreases,
it reaches its minimum value for γ = 5 and then it increases again, see also Table 6.1.
We remark that the optimal restoration error obtained in one iteration with γ = 5
(e1 = 0.1139) is about the same optimal value obtained by CGNE or Landweber
(that is 0.1135). However, the latter two methods require much more iterations (178
iterations for CGNE and 352 iterations for Landweber) and they are applied to normal
equations.

In the case of SNR = 10, in Table 5.1 it was already shown that the minimum e1

is reached for γ = 2 and that it is the same value obtained by the Landweber method
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e1 vs γ

Figure 6.1. Airplane with SNR = 100: relative error norm varying γ.

γ e1 min
j=1,...

(ej) argmin
j=1,...

(ej)

1 0.1414 0.1127 12
2 0.1256 0.1129 5
3 0.1183 0.1134 4
4 0.1148 0.1139 2
5 0.1139 0.1139 1
6 0.1144 0.1144 1
7 0.1158 0.1158 1

Table 6.1
Relative error norms varying γ in the case of the airplane image with SNR=100.

in 59 iterations.
As already observed, for a PSF with a numerically small support, i.e. a two-

level banded coefficient matrix with O(N) non zero entries, the computational cost
of MGM(Sn, γ) grows with γ according to (4.5).

In conclusion, the considered extension of the regularization MGM puts in evi-
dence that the multigrid techniques can represent a general framework which is the
basis for further investigations: as an example, we should think about the optimal
choice of the projector, of the smoother, of ν (number of smoothing steps at the
various levels), and of course of the number γ of recursive calls.

7. Conclusions. In this work we have presented a class of regularizing multigrid
whose features are the following: if it is compared with other regularizing procedures
(CG, Richardson, Riley) applied directly to the system Af = g, then the curve of
relative errors is much flatter, the quality of the reconstruction is higher and the
total arithmetic costs are similar; if it is compared with the best regularizing methods
for the normal equations AT Af = AT g (CGNE, Landweber, Tikhonov), then the
accuracy of the restored image is similar (at most slightly better), the structure of
the error curve is essentially the same, but the cost is greatly reduced. In every
case, our multigrid can use normal equations methods only for the smoother while
the projection to coarser grid is done always on the original coefficient matrix, this
usually allows to obtain a slightly better reconstruction and a lesser computational
time compared with the best regularizing methods for the normal equations.
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Furthermore, we stress that the presented approach can be looked at as a general
framework which has the potential of leading to several extensions and improvements,
and, in this respect, a lot of analysis must still be done. For instance, open questions
concern the analysis of convergence and more interestingly the theoretical proof of
the regularizing effects of the proposed method or the choice of γ in order to obtain
a direct (one step!) multigrid regularization.

Further observations could be considered: in the case where we apply a regulariz-
ing scheme directly to the original system, when the minimum reached is close to the
one of other regularizing procedures, this is often due to border effects: therefore we
should also investigate a combination of our technique with recently defined boundary
conditions (e.g. reflective or anti-reflective BCs) or with the idea in [4, 31] in order
to eliminate the artifacts due to the so called ringing effects. With the combination
of these two ingredients we have to expect that the ringing effects will be noticeably
reduced also when considering generic (not necessarily with uniform background) im-
ages: consequently, as in the cases previously considered in this paper, we believe that
the proposed multigrid type procedures will perform better than classical regularizing
methods in terms of precision and/or in terms of computational cost.

Finally we would like to investigate how our multigrid proposal can be used in con-
nection with edge preserving procedures such as Total Variation, Bayesian methods,
deterministic strategies (see e.g. [20, 18, 14, 5]): indeed the non-convex optimization
(which characterizes all these quite expensive techniques) should be solved by some
kind of iterative method which uses linearization and our multigrid procedure can
be applied at this level (instead of using preconditioning as suggested in [7, 2]) not
only for accelerating the procedures but also for regularizing purposes. Also a priori
information on the statistical nature of the noise could be exploited specifically for
defining more appropriate interpolation and smoothing operators: all these issues will
be considered in future works.
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