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Abstract - In this paper we show an explicit relation between authentication 
codes and codes correcting independent errors. This relation gives rise to  
several upper bounds on A-codes. We also show how to construct A-codes 
starting from error correcting codes. The  latter is used to show that if Ps 
exceeds PI by an arbitrarily small positive amount, then the number of source 
states grows exponentially with the number of keys but if PS = PI it will grow 
only linearly. 

1 Introduction 

The authentication channel was introduced by Simmons ns a model for a communication 
situation with two trusting participants called the transmitter and the receiver who want 
to protect themselves against the actions of an active opponent who can insert its own 
messages or who can change messages already sent by the transmitter. To protect their 
communication, the transmitter and the receiver have agreed secretly upon a certain en- 
coding rule e which is taken from a finite set & of n possible rules. This rule e enables them 
to transmit a piece of information s, hereafter called source state, which is taken from the 
finite set S of k possible source states. Each encoding rule maps s to a message m. In 
this paper we investigate only authentication codes (A-codes) for which the messages are 
pairs (s,z), z E 2. The coordinate z is called a tag or an authenticator. In authentica- 
tion theory these codes are called appended authenticator schemes or Cartesian A-codes. 
People working in coding theory would use the term systematic codes. Furthermore, in 
this paper we will only deal with unconditionally secure A-codes. 
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Authentication theory deals with the analysis and design of A-codes and has since the 
publication of the paper by Gilbert, McWillianis and Sloane, [l], and the paper by Sim- 
mons, [2], developed into a discipline on its own. Various bounds on the probabilities of 
success for the various attacks by the opponent have been established and many construc- 
tions for obtaining A-codes are known. For an overview of the results between 1974 and 
1991 we refer to [3] and [4]. 

At several occasions the  view has been expressed that unconditionally secure authenti- 
cation codes are in a strict mathematical sense dual to  error detecting and correcting 
codes, see for example [3, page 397, 3rd par.]. However, the true nature of this duality 
seems never to  be addressed. I t  is just this aspect that is one of the main subjects of this 
paper. Particularly we will show how to obtain a code for correcting independent errors 
(CIEcode) from an A-code and vice versa. By establishing this connection we obtain 
new results in authentication theory. 

Another subject which we address is the question of how large we can make S for given 
n, Pr, and Ps, the latter two being the probability of a successful imitation attack, re- 
spectively, the probability of a successful substitution attack. In this paper we compute 
Ps as the masirnum probability over all substitution messages. The above question has 
practical relevance if we want to authenticate, for example, long data  files. It has previ- 
ously been shown that if Ps = PI, then the number of source states is linearly bounded 
by the number of keys, [5]. However, our results show that if Ps = Pr + E ,  for arbitrary 
e > 0, then the number of source states grows exponentially with the number of keys ! 

The organization of our paper will be its follows. First, in Section 2, we discuss how 
we can derive a CJE code from an A-code. We give some examples which illustrate the 
implications of the established relation. In this section we also give the bound on IS1 
when Ps = PI. In Section 3 we show how we can construct an A-code starting with a 
CIE code. 

2 From systematic A-codes to CIE-codes 

In this section we will describe how we can derive a CIE-code from a systematic A-code 
and how we can state the  probabilities PI and Ps in terms of the properties of the CIE- 
code. 

Consider a systematic A-code, i.e., a triple (S, E, Z),  where for any s E S and e f E,  
the  message m = ( 5 ,  z )  E S x 2 is defined by letting z = e(s). We restrict ourselves to 
a uniform distribution of e. From definitions in [2] we derive that the probability of a 
successful impersonation attack, PI, is given by the formula 

ZE2 

Let us consider A-codes with the property that 

otherwise, 
I{e E E ;  e(s) = .}I = 
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and let US call such codes I-equitable A-codes. These codes are optimal a.gainst the imper- 
sonation attack in the s e n e  that only these codes meet the trivial bound Pr 1 15'1 / IMI 
with equality, [3]. In the sequel we assume that our A-codes are I-equitable and that 
PI = l / q ,  where q is a power of a prime. 

Let n = 1&1 and let us enumerate the elements of E as e l ,  ez, .  . . , en .  Consider the words 
(vectors) 

J8) = ( e l ( s ) ,  e z ( s ) ,  . . . , e n ( s ) ) ,  

and the corresponding set of words 

v = {+'; s E s}  . 

For given s let us also enumerate the values e j ( s )  E 2 by the elements bl,  bz, . . . , bq from 
some q-ary alphabet B.  It follows from property (2) that such an enumeration is possible. 
For each word v we define its composition as 

(3) 
1 
n comp(v) = (cl, c2, .  . . , c q ) ,  where ci = - [ { j  ; vj = bi} l .  

It follows from (2) that 

1 1  
Q 9  

comp(v(')) = ( P I , .  . . , P I )  = (-,...,--I, 

i.e., all words of V have a constant composition. 

Now recall from the introduction that the probability Ps is given by 

l{e E & ; e(s) = t, e ( S )  = Z}l 
I{e E E ;  e(s) = .}I PS = maxmax 

rES 8#& 

ZEZ a 2  

From (2) we get the inequality 

(4) 

By letting b = and letting b run through B,  we have 

d(v('), "0) 2 n - qPrP. . n = n( 1 - Ps), (6) 

where d(x,y) denotes the_usual Hamming distance between the vect,ors x and y. But in 
general, we can let b = c16 + cz for arbitrary c1 # 0, cz E B,  if we consider B as a finite 
field. Then ( 5 )  gives 

d(v("), c ~ v @  + cz1) 2 n - qP1P.s . n  = n ( 1  - Ps). (7) 

This means that if we assume Ps # 1, we form from each codeword v(') in the code V 
new codewords by all the affine transformations q5 : v H clzr + cz, where c1 # 0 , s  E B. 
If Ps # 1 no two codewords from this transformation can be the same and the distance 
property of ( 6 )  still holds, provided we also assume that Ps 2 PI = l / q .  Since all 
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codewords have constant composition we also add multiples of the codeword 1 without 
changing the minimum distance. Thus we have a code V' given by 

V ' =  {c1v(')+c21; v(--) E v,s # 01c2 E B}u {cl; c E  B }  

with the same distance property as V ,  i.e., the  minimum distance d of the code V' is 
bounded by d 2 n(1- Ps). The number of codewords in V' is then q(q  - 1) IS1 + q. 

Summary: 
Given an I-equitable A-code with parameters IEl , IS1 and Ps, there exists a corresponding 
CIEcode with parameters (n ,  M , d )  = (I&[ ,q(q - 1 )  IS1 + q, IEJ (1 - Ps) ) .  

We can now apply upper bounds on the code V' to get upper bounds on the maximum 
number of source states in an I-equitable A-code with given Ps. For example by using 
the well-known Plotkin bound [7] we can prove 

Theorem 1 ([5]):For an I-equitable A-code for which PI = Ps = l/p, the number of 
source states is upper bounded as 

Proof: The code obtained from the A-code has parameters ( 1 1 ,  Ad, J) = (I&/ , q(q-l)(ISI+ 
q, f l . I & l ) ,  where 0 = 1-Ps = ( q - l ) / q .  Let A,(n, d)  be the maximumnumberof codewords 
in an (n, d)-code. By the Plotkin bound, [7, pages 170-1711, we have 

From this we have q(q  - 1) IS1 + q 5 q IEl and the result follows. 0 

Remark: This bound shows essentially what is happening for the case Ps = 1, namely, 
the size of the source state space is, a t  the  best, bounded by the size of the key space. 
Consequently we have to  tolerate a large key when we want to authenticate many source 
states . 
Let us return to equation (6). This is only a weak corollary to  equation ( 5 ) .  One of the 
serious weaknesses of this result is that we calculate in (6) the  total number of positions 
in which two words differ but the key property in the comput.ation of Ps of an A-code is 

I that  the ratio of the number of positions in which two words differ must be almost the 
same for all given values of the coordinates, see equation (5). 

Let us look a t  some examples which illustrate this. 

Example 1: Let q = 2, then PI = 1/2 and the vectors ~ ( ~ 1  of V have coinposition 
(1/2,1/2), i.e. they are binary vectors of constant weight n/%. \Ve can rewrite ( 5 )  as 
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Letting b = ̂a we have d(v('), v") 2 n-qPIPsn = tz(1 -Ps). On the other hand by letting 
b = h l  (complement), we have d(v('), v(3 @ 1) 2 n( 1 - Ps),  where 1 is the word (vector) 
(1,1,. . . ,I). The latter inequality can also be written as d(v('),v@) 5 n - n(1 - Ps) = 
P,n. It can be shown that if for some binary code V,  an 5 d(v,v') 5 (1 - a)n  and 
v, v' have weight n/2, that this code gives us an A-code with PI = 1/2 and PS = a. 
Hence in the case PI = 1/2 we have a one-to-one correspondence between I-equitable A- 
codes and binary weight n/2 codes in the so-called antipodal Hamming space, (we define 
dantjpodd(X, y) = min(d(x, y )  , n - d(x, y)) and x I y if and only if x = y f3 1). In 
particular, if 

for A-codes with given &, PI and Ps, we have 
S(E, PI, Ps) = rnax IS1 , (9) 

where f(a) is a final answer in coding theory. If the Varshamov-Gilbert (V-G) bound, 
[6], is tight in the binary case, then f (a)  = 1 - H ( a ) ,  where H ( a )  = -alog(a) - (1 - 
a) log(1 - a) is the binary entropy function. 

Note that when Ps 
have by Theorem 1 that lim,,-,m log IS1 / n  5 

1/2, then f(Ps) 4 0 as it should since when Ps = PI = 112 we 
lOg(7Z - 1)/n = 0. 

Example  2: Let q = 3, and let the alphabet B = (0, -1,l). Consider two different 
A-codes and their corresponding 3-ary codes of which we only list two codewords. 

1 1 1  - 1 - 1 - 1 0  0 0 
1 0  - 1 1  0 - 1 1  0 -1 d = 6 ,  PI = 113, Ps = 113, V :{ 
1 1  1 - 1 - 1 - 1 0  0 0 
- 1 - 1 0  0 0 1 1  1 - 1  d = 9, PI = 113, PS = 213. B :{ 

We can discover that is a bad A-code by permuting the assignment of the symbols of 
B. Thus we get 3! words from the first and and 3! words from the second word and by 
pairwise checking their distances we find that d = 3. This renumeration technique can be 
used to improve the bound of equation (7). It is important to note that we can only check 
the distance between words that stem from different codewords in P, since the minimum 
distance of two words that stem from the same codeword may be less than I&I (1 - Ps). 

If we want to consider all the obtained codewords as a code with minimum distance 
unchanged, we must check that the minimum distance of any two words from the same 
codeword in is at least IEl(1- Ps). Thus it will depend on the value of Ps which permu- 
tations we can apply. For example, if Ps 2 ( q  - 2) /q  we can apply all the q! permutations 
without changing the minimum distance and thus get a code with parameters 

9 - 2  (n,M,d)=(I&I,q!ISl+q,l&l(l-Ps)), f o r P s 2  -. 
q 

However, the following example shows that even with this renumeration we do not get a 
tight bound. 

1 1  1 - 1 - 1 - 1 0  0 0 
1 1  1 0  0 - 1 - 1 - 1 0  d = 4  V' :{ 
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After renumeration we get 

1 1 1 -1-1-10 0 0 d = 2 ,  { 1 1  1 - 1 - 1 0  0 0 -1 

but we have Ps = l! D 

Example 3: We now give a new A-code construction. 

Consider the following construction of a systematic A-code. 

Construction 1: Let S = {s = ( S  I , . . . , s k ) ;  s; E IFq}. Now define the source state poly- 
nomial to be 

s(z) = s15 + s 2 x 2  + . . . + S k x k .  

Let E = {e = ( a , b ) ;  a , b  E Fq}. For the transmission of source state s we generate the 
message m which is obtained as 

m = (s ,a  + ~ ( b ) )  = (sI,sZ,. . . , sp,a + s ( b ) ) .  

Theorem 2: Construction 1 gives an A-code which has parameters: 

1 k Ps = -. 
P ’  q 

PI = - 

Proof: Here 1&1 = q2 and from (1) we have 

I{a,b;  s(b) + a = .}I = max I{e E E ;  e(s) = .z}I 
IEl aES q2 

ZE2 

PI = max 
SES 
2 E 2  

For a given value of b is a uniquely determined by a = .z - s (b)  for any value of (s, Z )  and 
thus Pr = q/qz = l/q. For the substitution atta.ck, we have from (4) that 

Ps = m a x m F  I {a ,6 ;  s(b) + a  = z,s^(b) + a :  = :}I - - 
sES r#CsES 
Z E t  PEE 

I{a, 6 ;  s(b)  + a = r}l 

/ { a ,  b ;  s (b)  + a  = Z, ( S  - g ) ( b )  + ( 2  - 2) = O } l  
= maxmax 

~ E S  s f 2 S  
Z E 2  ;a 

Now a is uniquely determined by a = z - s(b)  and since (s - s^)(z) + ( z  - 2) is a non-zero 
polynomial of degree at most k it has at most k zeros. Thus for any (s,z),(Z,Z) we have 

0 I {a ,  b ;  s(b)  + a  = z,(s - s^)(b) + ( z  - 2) = 0)l 5 k and PS = k/y.  
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Consider again an I-equitable A-code. It is also possible to a4sociate a binary code to our 
A-code. Let us assign to every source state s E S q binary iwtors  of length 72 

1, if e,(s) = j ,  { 0, otlier\vise, 
b(S*o), b(','), . . . , b(..q--l), !,,here b!'J) = 

i.e., the characteristic functions. It follows from the properties of our A-code that these 
vectors have weight n / q ,  n = IEI, and any two distinct vectors have not more than P s ( n / q )  
"common" 1-s. Hence the distance d of the code obtained from these vectors is a t  least 
2(1 - P s ) ( n / q )  and thus 

see (9) and Az(n,d,w) in [6].  For w -6 = constant, U , / V I  = constant and n + x? we have, 
[6, page 5271, 

n n-1  n - ( w - 6 )  u.-S+1 

AZ(n, 26, w )  5 1- w 1- w - 1  . . . 1 6 J . . . J J  5 (i) 
We see that  the A-codes in Construction 1 are asyniptotically optiiiial because we have 
Is1 = qk ,  n = = qz,  w = q,  w - 6 + 1 = k + 1 and 

1 
-A2(q2,2(q - k ) ,  q )  - qk+'-' = ISI, 
q 

for b fixed and y -+ m. 

Summarizing, we have shown how we can derive CIE codes from :\-codes and how we can 
apply some of the known results of coding t.heory to get new results for the parameters 
of feasible A-codes. 

3 Construction of an A-code from a q-ary linear 
code 

Assume that we have a code C over IF9 with the properly 

vc E C,A E F9 c + A l  E L'. 

Assume that the code C has parameters ( 1 1 ,  .\J. d ) .  

If b - b is constant we compute, see (5), 

l { j ;  c, = b,;, = ̂ b}l = l { j ;  c., - C, = b -  i})i 
= n  - c l ( c - E , ( l d ) l )  
5 11 - d. 
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However we have 

d(c - E ,  ( b  - Z ) l )  = 0, if and only if c - S = X I .  

Thus the words of C whose difference is a multiple of 1, \vould result in an A-code for 
which Ps = 1. We have to  factor these words out of C. 

The code C can be partitioned into equivalence classes by introducing the equivalence 
relation R as 

a R b if a - b = A 1  for some X E Fq. 
Clearly each equivalence class contains q elements. Now let 1111 denote the equivalence 
class containing the codeword u.  We form the quotient set 

0 =C/{l} = {[n]; u E C).  

Now U is the code obtained by replacing each equivalence class by a specific representative. 
Clearly U has parameters (n,  M / q ,  d ) .  

Now extend the code U to  a new code V of length n q  where 

v = { ( u , ~  t cul1,u t 021,. . . , u  t C + ~ I ) ;  u E U , F q  = {O,al.. . . , c y p - I } } .  (12) 

By reversing the reasoning in the previous section we can use the code I/ to construct an 
A-code. Each codeword in V corresponds to a source state. Thus denote I' z1s 

v = { v ( a )  ; s E s} , 
where v ( ~ )  = (el(s), ez(s), ..., enq(5)). Now the  property (12) gives that comp(v) = 
( l /q ,  ..., l / q )  for any v E V, so PI = l /q .  To find the probability of successful sub- 
stitution, let v(') and v(3 be the two codewords corresponding to two distinct source 
states that  maximize Ps.-Assume that we have observed .$ wit11 the tag b from da) and 
replace it with ŝ  and tag b from v@. Then 

Thus Ps is the maximal value of the composition values in cunip(u(') - ~ ( 3 ) .  Also 

cornp(v(a) - v@) = coinp(u(a) - u")) . 

Let IT be the index element for the maximal composition value. Consider instead 
comp(u(.) - ( u ( 2  - 01)) in the code C. Here the maximum composition value is located 
at  the index element 0 and then the maximum coinposition value is actually 1 - d / n .  
Thus the maximum value of comp(v(') - v(3) over all pairs i n  the code V is 1 - d/n and 
we have PS = 1 - d / n .  

Summarizing we have: 
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Theorem 3: Given a code C with parameters (72 ,  Af, d )  such tha t  if c E C ,  then c+X1  E 
C for all X E IFq. Then there exists a corresponding A-code with parameters 

IS1 = Mq-I, 1&1 = nq, PI = 1/q and Ps = 1 - d/n .  

We refer to this construction as the  q-twisftd construction. 

Now suppose we have a linear (n, k + 1 j q-ary code C’ with the property 

1 E C’. (13) 

It follows from the linearity of the code that property (11) holds. Thus we again get 
in the end a code V with the parameters given in Theorem 3 by applying the q-twisted 
construction. 

Example 4: Let C be a Reed-Solomon (R-SJ code of length y .  Let L = {all polynomials 
of degree < k + 1 in Fq[z]}. Then the R-S code C can lie described as 

C =  t(f(O),f(o~),f(crz),...,f(~~-i)); f E L,pq  = {O.al,...,oq-i}l. 

If we now form the quotient code U, it will be as above but over all non-constant poly- 
nomials of degree < k + 1 in Fp [z]. 

After the extension, the parameters are I&/ = q2,  151 = (f, and since d = q - (k + 1) + 1 = 
q - 1, we have Ps = 1 - d/q = k/q. We see that we obtained an A-code with the same 
parameters as in Construction 1. In fact, looking more closely. the two codes are the same 

0 up to  renaming of source states and encoding rules. 

Let Aq(n, d )  be  as usual, [7], the maximum number of codewords in a q-ary code of length 
n and with distance d. Now let A ; ( n , d )  be the corresponding quantity if we add the 
property that  c E C implies c + A 1  E C for all A E IFq. Then 

where S(n, l / q ,  Ps) denotes the maximum number of source states as in (9). 

For the special case of linear codes we have the following leinna: 

Lemma 4: If there exists a linear code C wit.11 a codeword c such t h a t  every element in 
c is nonzero, then there also exists a linear code C‘ with  the same parameters and such 
that 1 E C’. m 

Proot: Let the code C have generator matrix G. \Ye can now do some elementary 
manipulations on G without changing the minimum distance. These operations include 
multiplication of columns by a nonzero scalar. Thus we niulliplg each column of G with 

0 the inverse of c’s element in that column. getting R IIPW code C’. Then 1 E C‘. 
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For nonlinear codes we can prove the Varshamov-Gilbert. (1;-G) bound even with the 
special restriction tha t  c E C implies c + A 1  E C. 

L e m m a  5: The maximum number of codewords in a q-ary code C of length n and 
minimum distance d such that  c E C implies c + A 1  E C, satisfies 

where &(n, d - 1) = (:)(q - 1)' is the size of a usual Hainining sphere around a 
codeword. m 

Proof: Consider t h e  code with cardinality A ; ( n , d ) .  If A;(n .d ) \L(n ,d  - 1) < q" there 
exists a point c which does not lie in any of the spheres. But this implies that  c + A 1  
does not lie in any sphere either! This because if c + A 1  is in the sphere around c' then 
d(c+ A1,c')  < d and thus d(c ,d  - A 1 )  < d and c is in the sphere around c' - A 1  which 
is a contradiction. Thus we can add these q points as codewords and still have a code 
for which we have that  if c E C then c + A 1  E C, which contradicts the maximality of 
q n ,  4. 0 

Actually, this slightly strengthen the usual hound since A ; ( I I ,  d) must he divisible by q. 

Any known asymptotic bound' for q-ary codes is also valid for this extra condition, [S], 
since this is not a strong restriction when n + m. Thus we have the  same asymptotic 
behavior and the asymptotic V-G bound gives 

s(l€l,l/q, PSI  q g q ( p s ) I p l l q ,  for PS > ~ / y ,  (14) 

where g,(z) = -zlog,(z) - (1 - z)log,(l - s) + slog,(y - 1). Thus if we allow Ps to  
be larger than PI = l/q, then we can get A-codes that have ail exponential number of 
source states. 

E x a m p l e  5: For q = 2, it follows from Example 1 tha t  IS1 can be very close to 2(", 
where [ 2: 1 when Ps = 1. 0 

E x a m p l e  6: Let us consider again Construction 1. Uniortunately, the upper bound (10) 
gives us not a coincidence of lower and upper bound for the case IEl 4 00, PS > l / q  
fixed. 

For the binary case we give the upper bound (10). Froin the tvork of \Vegman of Carter, 
[9, in the abstract], we have the following bound 

log 1q 2 log q + log log IS1 - log log 4 

From this we would obtain 
IS1 5 q'"'9. (15)  

But this bound is not correct since it does not depend on the  Ps a t  all. Moreover, for 
q = 2. we get from (15) that  IS1 5 2"12, but \re k170\v from Example 5 that the size of S 
can be very close t o  2". 

'The V-G bound is known to be not optimal for q = 49 
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4 Conclusion 

We have shown a relation between authentication codes and codes correcting independent 
errors and we have also shown how to construct A-codes from CIE codes. This is used 
to show that  if Ps exceeds PI by an arbitrarily small positive amount, then the number 
of source states in S grows exponentially with the number of keys and if Ps = Pr it  will 
grow only linearly. Furthermore we falsified a statement in Reference [9]. 
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