This is a preprint of a paper to be given at the Second Colloquium on Automata,
Languages, and Programming, Saarbrucken, July 29 - August 2, 1974. A preliminary
draft of this paper was entitled "A Justification of Continuations.

ON THE RELATION BETWEEN DIRECT AND CONTINUATION SEHANTICSf

John C. Reynolds
Systems and Information Science

Syracuse University

ABSTRACT: The use of continuations in the definition of programming languages
has gained considerable currency recently, particularly in conjunction with
the lattice-theoretic methods of D. Scott. Although continuations are

. apparently needed to provide a mathematical semantics for non-applicative
control features, they are unnecessary for the definition of a purely applicative
language, even when call-by-value occurs. This raises the question of the
relationship between the direct and the continuation semantic functions for a
purely applicative language. We give two theorems which specify this relatiomship

and show that, in a precise sense, direct semantics are included in continuation
semantics.

The heart of the problem is the construction of a relation which must be a
fixed-point of a non-monotonic "relational functor.” A general method is given
for the construction of such relations between recursively defined domains.

Two Definitions of the Same Language
The use of continuations in the definition of programming languages,

introduced by Horris(l) and Hadswor:h,(z) has gained considerable currency
(3)

%)

recently,
D. Scott.

particularly in conjunction with the lattice-~theoretic methods of
Continuations are apparently needed to provide a mathematical .
. semantics for non-applicative control features such as labels and jumps, Landin's

(5) (3)

J-operator, or Reynolds' escape functions. However, a purely applicative
language, even including call;by-value (to the author's chagrin(3)), can be de-
fined without using continuations. In this paper we will investigate the two kinds
of definitions of such a purely applicative language, and prove thaf they qatilfy
an appropriate relationship.

The language which we consider is a variant of the lambda calculus which
permits both call-by-name and cali—by-value. Let V be a denumerably infinite set
of variables. Then R, the set of expressions, is the niuinai set satisfying:

(1) If xeV, then x € R.

.(2) 1f £, T, € R, then (r1 rz) € R.
(3) If x e Vand r € R, then (Ax.xr) € R.

(4) 1f xeVand r € R, then (Avalx.r) € R.

*Hork supported by Rome Air Force Development Center Contract No.
30602-72-C-0281, ARPA Contract No. DAHCO4-72-C-0003, and National Science
Foundation Grant GJ-41540. .

Expressions of the fourth form are meant to denote functions which cali their
arguments by value.
Our first definition uses a typical Scott model of the laabda calcuius io

(6)

which some but not all domain elements are functions. Let P be aay doz=ain of

“primitive values." Then let D be the minimal domain satisfying the isomorphisz
D=P+ (D-+D)

where + denotes the formation of a domain of continuocus functions, and + denotes

the formation of a separated sum. More precisely, D1 + D2 is the domain

{e, T} v (<1, x,> | x) € Dl} v {<2, x,> | x, € Dz} .

with the partial ordering x & y iff
x=L1L0ry=T
or x = <1, x,> and y = <1, ¥y and Xy c Yy
or x = <2, Xy and y = <2, Yo arrd X, c Yy o
We introduce the following classification, selection, and embedding functions

for the lattice sum:

T € D+ Bool

IPED"P lFED'*(D'*D)

pp € P > D pFé(D-*D)-*D‘
which satisfy)

pPp = Ip W Pr T Ipap

Ax € D. cond(t(x), pP(lP(x))’ DF(IF(X))) =I, -

Here Bool denotes the usual four-element domain of truth values, ID denotes the
identity function on a domain D, and cond denotes the conditional function which is
doubly strict in its first argument (i.e., which maps 1 into L and T into T).

If we take D to be the set of values described by our language, then the mean-
ing of an expression is a continuous functionm from environments to values, where an
environment is a function from variables to values. More precisely, the meaning of
expressions is given by a function M ¢ R =9Dv + D, where the environment domain Dv
is the set of functions from V to D, partially ordered by the pointwise extension
of the partial ordering on D. The following equations define M for each of the
cases in the syntactic definition of R:

(1) M[x](e) = e(x) ’

(2) Mlr; r,](e) ='cond(r(M[i'1](e)), 1 1F(M[r1](e))(l“l[r2](e)))

(3) M[rx. r](e) = pF(Aa e D. M[r]le|x|al)

(4) M[Avalx. rj(e) = pF(u(Xa e D. Mirlle]x|a}))

where a € (D + D) » (D + D) is the function such that a(f) (1) = 4,
a(£)(T) = T, and a(f)(a) = f(a) otherwise.
Here [e|x|a] denotes the environment Ay € V. if y = x then a else e(y).
The only thing surprising about this definition is the fourth case.

Essentially, we are interpreting a call-by-value function as the retraction of the

corresponding call-by-name function into a doubly=-strict function. (This was sug-
gested to the author by G. Plotkin.) Note that the continuity of a depends upon the
fact that T is an isolated point in the domain D, i.e., it is not the limit of any
directed set which does not contain T. A

To motivate our second definition, consider the meaning of an expression bound
to an environment (or a functional procedure bound to its arguments) . Operationally,
this meaning is a piece of code (more precisely, a closure) which is executed after
being given a return address. When the meaning is purely applicative (and termin-
ating), control will eventually come back to the return address along with the value
of the expression, allowing further code at the return address to determine the
final output of the program. But in non-applicative situations, control may nevex
come back to the return address, so that the final output of the program is
completely determined by the meaning of the expression being evaluated.

To mirror this situation mathematically, let O be a domain of final outputs,

and E be a domain of explicit values, i.e., the kind of values which are passed to

return addresses. Then the meaning of the code at a return address is a function
from E to O called a continuation, and the meaning of an expression bound to an
environment (or a functional procedure bound to its arguments) is a function from

continuations to O called an implicit value. When this meaning is applicative and

terminating we expect it to be a function Ac e E-0. c(b), where b is some explicit
value, but in other situations (as discussed in References 1 to 4) it may be a
function which is independent of its argument.

To describe call-by-name, we must capture the idea that the arguments of
functional procedures and the "values" assigned by environments are expressions
which are bound to environments without being evaluated. But we have seen that the
meanings of such entities are implicit values.

Thus in brief, let O be a domain of "final outputs’ (whose exact nature we
leave unspecified) and let C, D', and E be the minimal domains satisfying

C=E->0 D'=C~+0 E=P+ (D' +>D") .

v
Then the meaning of expressions is given by a function N € R =D' = D',
Again, we introduce classification, selection, and embedding functions for the
lattice sum:

t' ¢ E » Bool

1% e E~+P 1% e E+ (D' > D")

pé e P~+>E p% ¢ (D' >D') + E
which satisfy

prfp = Ip 1p+Pp = Iptap

Ax € E. cond(t'(x), oI',(ll',(x)), pl',(ll',(X))) = Ig

Then the following equations define N for each of the cases in the syntactic

definition of R:

(1) N[x](e")(c) = e'(x)(c)

(2) N[r, r,l(e")(c) =
N[rl](e')(Af ¢ E. cond(t'(f), error, lé(f)(N[rzl(e'))(c)))

(3) N[x. rl(e')(e) = c(pp(ra’ e D' . Nirl[e'|x|a']))

(4) N[x o x. rl(e")(c) = 3
c(p%(ka' e D' . Ac' € C. a'(2b € E. N[r][e'|x|lc"eC. "M1e'NN

Here error denotes a member of O thch is used in the second case to express the
fact that application of a nonfunctional value will cause an immediate error stop
without further computation. In the fourth case, the nature of a call-by-value
function is expressed by having the function evaluate its implicit argument to ob-
tain an explicit value b, and then bind the formal parameter to a new implicit value
created from b. This is reminiscent of the definition of call-by-value used in the

original Algol report.(7)

A Relation between the Two Definitions

We will later show that there exists two relations n € D ~xD' and
8¢ (D>D) X(D' > D') with the following properties:

n: at a' if and only if

a=1, and (a' = Ly or a' = \c € C. error)
or a = Ty and a' = T
or (Ap ¢ P) a = pP(p) and a' = \c £ C. c(p%(p))
or (3f ¢ D»D, £' ¢ D'»D') a = pF(f) and a' = Ac € C. c(p%(f'))
and 0: £+ f'
g: £ f' if and only if)
(N aecD, a' €¢D') n: ar a' implies n: f(a) » £'(a'")

It follows that if we evaluate the same expressioh according to our two def-
initions, using environments whose corresponding components are related by n, then
the two definitions will give results which are related by n. More precisely:

Theorem 1 1f, for all x € V, n: e(x) » e'(x), then, for all

r € R, n: M(r](e) » Nir](e").

Proof: We use structural induction on R, i.e., we assume that, for all
x € V, n: e(x) » e'(x), and prove that n: M[r](é)l+ N[r]l(e') for each case in the
syntactic definition of R, using an induction hypothesis that the theorem holds for
the subexpressions of r.

(1) Obvious.

(2) By the induction hypothesis, n: M[rll(e) ﬁ-N[rI](e') and

n: M[rZ](e)|+ N[r2](e'). There are four subcases:
(2a) M[rll(e) =1, and N[rll(e')(c) is either 1, or error. Then
M[r1 rZ](e) = lD (since cond is doubly strict) and N[rl rz](e')(c) is either i,

or error.

(2b) M[rl](e) =Tp and N[rl](e')(c) =T Similar to (2a).

(2¢) M[rl](e) = DP(p) and N[rll (e') (e
and N[rl rz](e')(c) = error.
(2d) M[r;1(e) = pp(f) and N[rl](e')(c)

c(pé(p)). Then M[r1 r2](e) =4

c(p%(f')), where 6: £ » f'.

Then M[r1 r2](e) = f(M[rZ](e)) and N[r1 r2](e')(c) = f'(N[rZ](e'))(c). The rest
follows from the induction hypothesis for T, and the property of 6.

(3) Let £ = Xa e D. M[r][elxla] and f' = Aa' € D', N[r][e'|x|a']. It is
sufficient to show that 8: £+ £'. But if n:ar a', then for all y e V, n:
le|x]|al(y) » [e'|x]a']l(y), so Ehat the induction hypothesis gives n: f(a) b f'(a’).

4) Let f and f' be as in case (3). As before 6: f » f', but now we must
show that 6: a(f) » a'(f'), where

a'(£') = Aa' € D'. Ac' € C. a'"(Ab € E. £'(Ac" € C. c"(b))(c"))
Thus suppose n: a b a'. Then n: a(f)(a) » a'(£')(a') follows from the following
three subcases:

(ba) a = iy and a' = ipe or Ac € C. error. Then a(f)(a) = i, and
a'(f")(a') is iy or Ac' € C. error.

(4b) a = T and a' = Tpee Similar to (4a).

(4c) Otherwise, a(f)(a) = f(a) and a' must have the form ic ¢ C. c(x),
so that a'(£')(a') = Ac' € C. £'(Ac" € C. ¢"(x))(c') = £'(a'). Then 6: £ £'

implies n: a(f)(a) » a'(£')(a").

A Retraction between the Two Definitions

Theorem 1 hardly implies that our two definitions of the same language are
equivalent; indeed we cannot expect this since there are a variety of extensions of
the language R which could be accommodated by the second style of definition.but not
the first. But at least we can go beyond Theorem 1 to show that the second defi-
nition "includes" the first, by exhibiting a pair of functions between D and D' which
permit M to be expressed in terms of N.

In fact this development is only possible if the domain O of final outputs is
rich enough to contain representations of all the members of the domain E of
explicit values. Specifically, we will assume the existence of a retraction pair
a, B between E and O, i.e., functions a ¢ E+ 0O and B £ 0 + E such that B:a = IE'

The retraction condition implies that B is doubly strict; we will also assume that
B(error) = 1g-
Now let 4 ¢ D> D' and ¢ € D' -+ D be defined by
o= U e, v=U v,
n=o n=o0
¢o(a) = 1p wo(a') =4
¢n+l(a) = cond(7(a), AceC. c(pé(lP(a))), AceC. c(p§(¢n-1F(a)'Wn)))

1 -] 1] P . '
b, (a") = ObeE. cond(x'(b), pp(13(6)), pplh " () -8))) (Bla'(2)))
so that ¢ and ¢ are the least solutions of the last two equations with the

numerical subscripts omitted. Then:

Lemma 1 For all a ¢ D, n: a b ¢(a). For all a € D and a' ¢ D',
n: aw a' implies a = y(a').
Proof: It canwbe shown from the construction of the recursively defined

domain D that ID = IJ. In where
n=o

Io(a) = lD
L@ = cond(t(a), pp(1,(2)), oF(In'lF(a)'In)) .
By induction on n, one can show

For all a € D, n: I (a) » ¢ (a)
For all a e D and a' ¢ D', n: a+ a' implies I (a) = w (a') .

(The details are left to the reader.) The second result immediately shows that
n: av a' implies a = Y(a'). We will later show that n satisfies a continuity
condition such that the first result gives n: a+ ¢(a).
Theorem 1 and Lemma 1 lead directly to:
Theorem 2 The functions ¢, ¥ are a retraction pair such that, for
allr e Rand e € DV, Mirl(e) = y(N[x](¢°e)).
so that the semantics provided by M is included in the semantics provided by N.

Function Pairs and Domain Functors

We are left with the problem of constructing relations n and 6 which satisfy
the previously stated properties. This is a special case of a general and important
problem: the construction of relations between recursively defined domains. In the
rest of the paper we present a general method for this construction which we hope
will be applicable to a variety of problems in language definition. We begin by
summarizing the construction of recursively defined domains themselves.: The basic

construction is due to Scott,(a) but our exposition follows that of Reference 9.

Definition We write D <> D' to denote the domain (D + p') x (D' + D).
The elements of D <+ D' are called function pairs from D to D', When

D? I > is called the ident1~x>element

of D ++ D. When <¢, 9> ¢ D — D', the function pair <¢, ¢> <y, ¢>

e D' <> D is called the reflection of <¢, ¥>. When <¢, ¥y> € D +> D'

and <¢', ¥'> € D' «> D", the function pair <¢', ¥'>-<¢, ¥> = <, Yoyt

D = D', the function pair Ib z <1

1"

¢ D ++ D" is called the composition of <¢, ¥> with <¢', ¢'>
When p = <¢, ¥> is a function pair, we write [p]¢ to denote ¢, and
[p], to denote y. A function pair <¢, V> ¢ D <« D' is said to be a

¥
retraction Yo = ID
‘ . = . ©
projection pair iff Yed ID and ¢°Y & ID' .
isomorphism y+¢ = I and ¢-¥ = I

Corollary 1 For p e D++ D', q € D' « D", and r ¢ D" « D"':
(1) The expressions p* and q-p are continuous in p and q.

(2) r+(qp) = (r-q)'p.

(3) p-Iy=Iycp=rp-

@ ¢H' =pand 1) =1

+ + ot
(5) (q°p) =p *q.
(6) 1+ =1, and 1°L = 1

o retraction p+-p = Ib
+ +
3 . = . | =4
pis a projection pair 1iff p+ P Ib and p p-r 4 Ib,
isomorphism pp= Ib and pp = Ib.

It is evident that there is a category ‘U in which the objects are domains and
the morphisms from D to D' are the function pairs between D and D', with identity
and composition as defined above. Reflection is a contravariant functor from
D toD. Subcategories can be formed by restricting the function pairs to be

retraction, projection, or isomorphism pairs.

Definition A domain functor is a function T which maps domains into

domains and function pairs into function pairs and satisfies, for
peD<+D'and q ¢ D' — D":

(1) T(p) e T(D) + T(D").

(2) T(p) is continuous in p.

(3) T(ID) = If(D)'

(4) T(q):T(p) = T(q-p).

s aen’ =16".

In category-theoretic terms, a domain functor is a functor from D to Dwhich acts
continuously on morphisms and commutes with reflection. The generalization to
domain functors of several arguments is straightforward.

The following corollary provides a variety of means for constructing domain

functors:
Corollary 2 B

(1) For any domain DO’ there is a n-ary domain functor T such that
T(Dl, cee s Dn) = D0
| T(pl, e pn) = Ibo
(2) For any 1 < i < n, there is an n-ary domain functor T such that

T(Dl’ cee Dn) = Di

T(py> =+« » P) = Py
(3) 1f To is an m—ary domain functor, and Tl’ cee Tm are n-ary
domain functors, there is an n-ary domain functor T such that
T(Dl, ces o Dn) = TO(Tl(Dl, ces Dn)’ cee Tm(Dl, ese Dn))
T(pl. cee pn) = TO(T](pl, cee pn), cen s Tm(pl, cee s pn))

(4) There is a binary domain functor > such that D1 i D2 is the domain

of continuous functions from D1 to DZ’ with the partial ordering

fEgiff M) £(x) € g(x), and for <4 , ¥,> € D} +> D) and

<¢2’ ¢2> € D2 g D"

<¢, 1P1> > <¢2a ¢2> = .
o fe 1 ' 1 cE,.
<}f € D1 > DZ' ¢2 £ wl, Af' e D1 -+ D2. wz f ¢1>
(5) There is a binary domain functor + such that D1 + D2 is the

separated sum of D, and D,, and <¢,, ¥;> + <bys ¥y = <¢;Hd,, ¥ te>

where
(f1+f2)(x) = 1

(f1+f2)(T) =T
(f1+f2)(<l, xl>) = <], fl(x1)>
(f1+f2)(<2, x2>) = <2, fz(x2)> .

According to this corollary, a domain functor canm be defined by any expression built
up from variables and constant domains by means of the binary operators + and +.

For example,
T(x) =P + (x + %)

T'(x) = (P+ (x+x))+0) >0
It is understood that when such an expression is evaluated to obtain a function
pair, any constant domain will stand for the corresponding identity function pair.
The domains D and D' introduced earlier are solutions of the isomorphisms
D = T(D) and D' = T'(D'), where T and T' are the domain functors defined above.

We consider the construction of solutions for arbitrary isomorphisms of this form.

Construction of Recursively Defined Domains

Given a domain functor T, we wish to construct a domain D which is

isomorphic to T(D“). Let DO be the one-element lattice {*}, and let

Py € Do > T(DO) be the projection pair
Py = <AX € DO' lT(DO)’ AX € T(DO), 1D0>
For n > 0, let D

nt+l
sequence of projections:

= == 1 L}
T(Dn) and Po41 T(pn). Then the Dn s and p,'s form a

P P P
D0 D1 D2 .ee
Let t ¢ D <« D be defined by
mn m n

m<n Pn_l' see .pm
If =n then t__ = I
mn Dm
m>n t 1
nm
9

It can be shown that the tmn's satisfy:

1 t = i wvhenm= 0 or n = O.
™

() ety a1 = Tg,)
(3) tmn is a projection pair when m < n.
(4) ¢ Ct

mn‘tkm kn

(5) t_*t, =t n when m > k or m > n.

=1 tmn'tkm,‘which is the limit of a directed sequence.

Next, we define D, to be the inverse limit of the Dn's, i.e., the domain

6) t

D_-= {<x0, X5 Kgy wes 2 | x € D and x = [pn]w(xn+1) }
with the partial ordering x Cy iff [x]nE [y]n for all n. Then let t _ € Dn > D_
be the function pair

tn°° = <Axn € Dn- <[tn0]¢(xn)’ [tn1]¢(xn)’ [tn2]¢(xn)’ see 2y

Ax € D_, [x]n>

and let ton = tnc* and t__ = ID . Then it can be shown that the above properties

of the tmn's continue to hold when = is permitted as a subscript.
Finally, let i be the limit of the directed sequence
i= Ho T(t) turyg € Do+ T(D,) -
Then i is an isomorphism, so that D_ = T(Dm). It can also be shown that D is
minimal, in the sense that whenever D' = T(D') there is a projection pair from

D_toD'.

Directed Complete Relations

In order to construct relations between recursively defined domains, we must
impose a rather weak kind of continuity condition:

Definition A relation 6 between domains D and D' is said to be

directed complete iff 8: x » x' whenever x and x' are the least upper

bounds of two directed sequences X, & X; Ex, E... and x(') E x:'l c xi c...

such that 6: x xa for all n.

It ié easily seen that universally true and false relations, equality, and
the partial ordering & are all directed complete. On the other hand, the topological
relation < is not directed complete. Moreover,

Corollary 3

(1) A continuous function is a directed completé relation.

(2) A directed complete relation which is a monotonic function is

a continuous function.

(3) The converse of a directed complete relation is directed complete.

(4) If 6 is a directed complete relation and f is a continuous function

then the relational composition 8:f is directed complete.

(5) The intersection of a set of directed complete relations is

directed complete.

(6) The union of a finite set of directed complete relations is

directed complete.

We leave the proof to the reader, except the heart of (6): Given directed

complete relatioms 8 and n, and a pair of directed sequences such that

6 un: xi r xi, we have 6: xi g xi or n: xil+ xi for each i. But at least one of

these relations must hold for an infinite number of i's, and therefore for a pair

of directed subsequences with the same limits as the original sequences.
Unfortunately, directed completeness is not preserved under relational

composition, so that directed complete relations do not form a subcategory of the

category of relations among domains.

Diagrams
Definition A diagram is a collection of four domains, two function
pairs, and two directed complete relations with the following form,

p = <¢, ¥
D “+

p' = <9, V">

D' +r

@
’—

o %— Ot
[-1]

whose components satisfy the properties
For all x € D and x' € D', 6: x v x' implies 8: ¢(x) » ¢'(x")
For all x ¢ D and X' € ﬁf, 8: x +» x' implies 6: vx) v v (x")

These properties can be stated more succinctly using relational composition,

6 c B

= -1 where f.'-1 denotes the converse of f,
0 cy' 0.9
and can be recast into a variety of forms such as
$7-0 B¢
y'.8 c 6.y
by using the fact that for amny function f € D ~ D, I g_f-l;f and f-f—lis_lﬁ .
It is easy to see that the vertical and horizontal reflectionms,

' t
P = - P
D' S D' D > D
ot Co 8 ' 8
J J b e
P - - P
D > D D! > D'
of a diagram are diagrams, that two diagrams of the form
% - - q =
D > D D > D
of i FOR
D' + D' D' - D’
have a horizontal composition
q-p =
D g D
4k q'p' .
D' —> =D'

which is a diagram, and that diagrams of the form

11

I

D 2 D
o) L8
ID'
D' > D'
are identity diagrams for horizontal composition. (Diagrams cannot be composed
vertically since directed completeness is not pfeserved by relational composition.)
In brief, diagrams under horizontal composition from a category'k in which the
objects are triples of the form <D, D', 6> where 6 € D -xD', and the morphisms from
<p, D', 6> to <D, D', 6> are the pairs <p, p'> ¢ (D++D)x(D'++D') of function pairs
satisfying the above-stated properties. Vertical and horizontal reflection are
covariant and contravariant functors from 'R tok. There are also two functors, top
and bot, from & to 7, defined'by
top(<p, D',68>) =D top(<p, P'>) = p
bot (<D, D',6>) = D' bot(<p, p'>) = p' .
Directed completeness and the nature of isomorphisms have the following

consequences for diagrams:
Corollary 4 If p and p' are the least upper bounds of two directed
sequences p, c P, E P, E ... and p6 c p:'l Epé L ... such that

p -
D 4 D
'9 -
k . 4
Py -
D' > D'
is a diagram for all n, then
P
D > D ¢
0 -
T
P -
D' <> D'
is a diagram. i
If D - D
])L . J(8
D' — 1')1

is a diagram in which i = <¢, ¥> and i' = <¢', ¢'> are isomorphisms,

then 8 = §'+6+¢ and 6 = ¢'-0-y.

Relational Functors

Definition Given domain functors T and T', a function B on directed
complete relations is called a relational functor between T and T'

iff (1) If 6 ¢ D —XD', then B(8) ¢ T(D) —*T'(D'), and (2) If

P -
D > D
e’l ')Le
P _
D' = D'

is a diagram, then

T(p) -
T(D) > T(D)
B(8) B(8)
1 o) L_
T'(D") - T'(D') ’

is a diagram. We write T =XT' for the set of relational functors

between T and T'.
In category-theoretic terms, a relational functor between T and T' is essenﬁially a
functor from R to7? which satisfies top-B = T-top and bot:B = T'-bot. The general-
ization to relational functors of several arguments is straightforward.

The following Corollary provides a variety of means for conmstructing relational
functors:

Corollary 5
(1) For any 60 € D, %xD', there is an n-ary B € T =XT' such that

0 0
T(xl, eee s xn) = D0
T'(xl, ves s xn) = Dé
B(el, cee s en) = eo

(2) For any 1 < i < n, there is an n-ary B ¢ T =*T such that
T(xl, ey xn) = x4
B(el, ces On) = 61
(3) 1f By £ Ty =*T6 is an m-ary relational functor, and B, €T =XT!,
. Bm € Tm =%T; are n-ary relational functors, then there is
an n-ary B e T =XT' such that
T(xl, e s xn) = TO(Tl(xl, cee xn), cee s Tm(xl’ e xn))
] - L L L B
T (xl, e s xn) To(Tl(xl, N xn), cee s Tm(xl, cve s xn))
B(el, ces en) = BO(Bl(el, cee en), cee s Bm(el, cee s Gn))
(4) 1f Bl’ 32 € T =XT' are n-ary relational functors, then there is
an n-ary B € T =XT' such that
| B(el, cee o ﬁn) = Bl(ﬂl, cee en) U Bz(el, cee o Gn)
(5) If Bl ¢ T' =XT is an n-ary relational functor, then there is an
n-ary B ¢ T =XT' such that
-1 -1,,-1
B(el, e s en) = (Bl(e1 s eee s B » |
(6) Let T be the domain functor such that T, (x;, ... , x) = {-}.
1f B, € T, =XT', B, ¢ T, =XT', Bl, BT € T, =¥ T' are n-ary relational

1 1 2 2
functors then there is an n-ary B € T =XT' such that

T(xl, ces xn)
B(Bl, oo s en)
+(B1(61, aee Bn), Bz(el, cee s en), BL(GI, oo Gn),

B (8), -vv s 8,0

Tl(xl, cee s xn) + TZ(xl’ cee s xn)

13

. L
where +(61, ez,el,eT). x b x' iff

x =1 and 61: b x'
or x = T and GT: . b x'

or x = <1, y> and 61: y P x'

or x = <2, y> and 92: yi> x'
(7) There is a binary relational functor -+ € T =T

T(xl, xz) =x. + X

1 2
] L} »]
For BleDl—xDland ezeDz—kD,el-*ez.fo iff,
for all x € D, and x' € Dj, 8,: x+ x' implies 6,: f(x) » £'(x")

1l 1° 1
(8) For any domain O containing two or more elements, there is a

unary relational functor K € T =XT' such that
T(x) = x
T'(x) = (x+0) -0
For 6 ¢ D D', K(8): x+ x" iff there is a x' ¢ D'
such that 6: x ¥ x' and x" = Ac. € D' > 0. c(x')
We leave the proof to the reader except for a couple of tricky points about directed

completeness. In (6), the directed completeness of +(61, 02, 0 GT) depends upon

s
the fact that any directed sequence in a separated lattice sum ;ust possess a tail
with the same limit which consists entirely of 1, or consists entirely of T, or
consists entirely of elements from one of the component lattices. Imn (8), one must
show that if the elements Ac ¢ D' + O. c(x;) form a directed sequence in

(D' + 0) -+ 0, then the x; must be a directed sequence in D'. This is equivalent to
showing that Ac. c(x') E Ac. c(y') implies x' E y'. For each open subset U' of D',
let |

= ' U v '
cyr Ax' ¢ D'. 1{ x' ¢ U' then To e;se 10

If Ac. c(x') € Arc. c(y'), then cU.(x') c cU,(y') for every U'. Then since O con-

tains two or more elements,T. and L are distinct, so that every open set containing

x' must contain y'. This imglies x?E y'.
With regard to the specific problem raised in the first part of this paper,
Corollary 5 implies that there is a relational functor B e T =XT' such that
T(x) =P + (x > x)
T'(x) = ((P+ (x+x)) +0) >0
B(8) = +(K(+(xx ¢ P. x, false, false, false)_l),-
K(+(false, (6 9)—1, false, false)_l),
Ay € {-). lT'(D') u Ay € {*}. Ac € (P+(D'+D'))+0. error,
Ay e {-}. TT'(D'))
where 6 ¢ D —XD', and false denotes the universally false relation. The property
of n given earlier is just that n: x+ x' iff B(n): ¢(x) v &'(x"'), where ¢
and ¢' are the ¢-components of the isomorphisms between D and T(D_), and D; and

T'(D)). We now consider the construction of such relations for a variety of

relational functors.

14

Relations between Recursively Defined Domains

Let T and T' be domain functors, and let P t Dn, i=<¢, ¥> and

mn
p', t' D;, i = <¢', ¥'> be the entities obtaining by applying the previously des-

’
c:ibe:nconstruction to T and T' respectively, so that D_ = T(D_) and D, = T'(D))
with isomorphisms i and i'.

Suppose B is a relational functor between T and T', with the additional
property that, for any 6 € D =¥D', B(6): lT(D) H'lT'(D')' We wish to construct a
unique directed complete relation 6_ € D —XD' such that 6_: x x' iff
B(8): o(x) ™ o' (x').

We begin by defining 6, to be the universally true relation between the one-

0
point domains D, and D! and
0 0 6 .. =B()
n+l n’
Then consider the sequence
P p P
3 pe Y 4
Do Dl D2 .o
% 4 " 8 o % 4 o
' 9 ' 1 ' piv3
DO > D1 > D2 o

The additional restriction that B(8): L +>1 insures that the first rectangle is a
diagram, and the fact that B is a relational functor insures that each successive

rectangle is a diagram. Then by horizontal composition and reflection, for all m

and n "
D L D
m n
0wl ke
Dl *En DI
m n

is a diagram.
Now let 6_ be the relation between D_ and D] such that 6_: xt x' iff,
for all n, en: [x]nl+ [x']n. This is equivalent to
~ 1
= ' - [.

O Q} L300 Wl I N

which establishes that 8_ is directed complete. _

. . L L

_ Obviously, 6_: x r x' implies 6 : [tnmlw(x)‘+ [tnwl (x') for all n.
On the other hand, from the diagrams for the t

mn

6 : [tnm]¢(xn)l+ [t;m]¢(x;) for allm

which is equivalent to

Ot Ll 1, Gl » (e
which is equivalent to
0 [e, 1) » (el (xl)

: &> x'
» en x box, implies

;Q]¢(x;)]m for all m

@ ne ¢ n
Thus tnw
D > D
n) «
o J(g)L o,
D! £7 -

n @

15

is a diagram for all n.

By applying B to this diagram, we get

D Tf—t»““) T)
n+l o
0 B(8,)
wd e, b
Dn+1 > T (Dm)

Then, by replacing n by n+l in the diagram for tnw, and reflecting and composing it
with the diagram for T(tnc), we get

T(t_)-t
D_ LR T
°. B(s,)
i . T L (tt'lm) N t;n+1 l .
D} - T'(D,)
By Corollary 4, we get
i
D, T(D,)
] B(6)
A
D, T'(D))

and since i = <¢, ¥> and 1i' = <¢', ¥'> are isomorphisms, we have the desired result:
8 : xW x' 1ff B(en):O(x) » o' (x') . '
It remains to show that 6_ is unique. Let a € D —xD! be any directed com-

plete relation such that

i
D, +* T(D,)
a B(a)
L i 1 l
D e T

is a diagram. The restrictions on B insure that a: i v L, which implies that
t

o, &
L S xe
Db - D!

L}
since t0. 8PS the unique element of D0 into lDQ’ and similarly for €00

Then by induction on n, we can show that

tn"'.t"’n
D “«r D
L (- -]
0 l 43
® t' -t')L
Dl nr;) °n D'

The n = 0 case follows from the composition of the two diagrams involving e
By applying B to the diagram for the nth case, and composing with the appropriate

diagrams involving i and i' on either side, we get

16

.l-
i T(t -t) i
D, <+ T@®) s T(D_) <~ D
6, B(6_) B(a) a
)L i’ JL T' (! -t') 7L 1'1' l

D~ T'(D) 5" ey < o

which reduces to the diagram for the n+lth case since t ;t
+ otl,» =,ntl
=1 -T(tnm-tmn)-i, and similarly for the primed quantities.

Finally, since the quantities tnm'tan form a directed sequence whose limit

is ID , and similarly for the primed quantities, Corollary 4 gives a = 6 .

ACKNOWLEDGEMENT

The author wishes to thank Professor Dana Scott for suggesting the notion
of a directed complete relation and its relevance to the inverse limit construction.
The use of such relations in proving theorems similar to Theorem 1 has been

discovered independently by R. Milne of Oxford.

REFERENCES

1. Morris, L., The Next 700 Programming Language Descriptions. Unpublished.

2. Strachey, C. and Wadsworth, C. P., Continuations - A Mathematical Semantics
for Handling Full Jumps. Tech. Monograph PRG-11, Programming Research Group
Oxford University Computing Laboratory, January 1974.

3. Reynolds, J. C., "Definitional Interpreters for Higher-Order Programming
Languages", Proc. 25th National ACM Conference, Boston, August 1972.

4. Tennent, R. D., Mathematical Semantics and Design of Programming Languages.
Ph.D. Thesis, University of Toronto, October, 1973.

5. Landin, P. J., "A Correspondence Between ALGOL 60 and Church's Lambda-
Notation”. Comm ACM 8 (February-March 1965), 89-101 and 158-165.

6. Scott, D., "Lattice-Theoretic Models for Various Type-Free Calculi,"
Proc. Fourth International Congress for Logic, Methodology, and the
Philosophy of Science, Bucharest (1972).

7. Naur, P., et al. Revised Report on the Algorithmic Language ALGOL 60.
Comm ACM 6, 1 (January 1963), 1-17.

8. Scott, D., "Continuous Lattices,” Proc. 1971 Dalhousie Conf., Springer
Lecture Note Series, Springer-Verlag, Heidelberg. Also, Tech.
Monograph PRG-7, Programming Research Group, Oxford University Computing
Laboratory, August 1971.

9. Reynolds, J. C., "Notes on a Lattice-Theoretic Approach to the Theory
of Computation", Systems and Information Science, Syracuse University,
October 1972.

