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INTRODUCTION

As a result of the stimulus of the work of Wiener [1](?) and Kolmogoroff
[2] the theory of linear prediction has developed during the past decade. In
this paper we shall develop a method of solution for a class of problems
which are natural generalizations of these that have been treated by the so-
called auto-correlation theory as developed by Phillips and Weiss [3] or
Cunningham and Hynd [4].

A basic difficulty in a linear prediction theory employing continuous ob-
servations appears to be that of solving the integral equations of the first
kind that arise from the minimization of the error variance. Since, as in the
auto-correlation theory, the prediction is based on a finite past history, such
tools as Wiener’s generalized Fourier analysis are not available and a gen-
eral method of solution of the integral equations has not yet been devised.
Here we develop a method of solution that requires hypotheses which are
satisfied in many important physical applications.

Moreover, as will be seen from Part I of the present paper, the kernel of
our method is based on the intrinsically interesting relationship that exists
between covariance functions of random processes generated by driving nth
order linear differential equations by so-called “pure noise” and the Green’s
function of a suitably defined self-adjoint equation of order 2#. For physically
stable linear differential equations with constant coefficients, it will be
shown (Corollary 1.1) that such covariance functions are in fact Green’s
functions of a suitably defined self-adjoint problem. For linear differential
equations with variable coefficients this is no longer true but such covariance
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functions still have almost all properties possessed by Green’s functions
(Theorem 1.1) and the missing properties are of no consequence to our
method. For this purpose we make use of the formulation due to Doob [5]
of processes generated by such stochastic differential equations. First, one

defines the so-called E-process as follows: For any finite set £ <te< - - + <{,
of values of the real parameter ¢, the Gaussian random variables

Ak = E(tin1) — E(t), i=1,2--,n—1,
are mutually independent and satisfy
(0.1) Elg0 — &) =0,  E[EW) -] =]t -],

for all ¢ and s.

Second, were the derivative of £(¢) to exist it would imply that for any
H< - -+ <t, the random quantities £(41), - - -, £(t,) would be mutually
independent as in “pure noise.” Since it does not exist, it is necessary to inter-
pret the symbolic differential equation

n

(0.2) > a(tyy R = £

k=0

as defining a process having derivatives up to the (z—1)th order which
satisfies the equation

(0.3) Ei: J@Oa(dy=P(1) =f Jag()

with probability one for each continuous function f(¢) and each pair of num-
bers a and &. The integrals appearing in (0.3) are defined as the limit in the
mean of the usual Stieltjes sum whenever f(¢) is continuous for — « £a <t
<b=< » even though £(¢) is not of bounded variation in any finite interval.
In particular, this type of integration commutes with the operation of taking
expected values.

Part II of this paper is devoted to the solution of two Stieltjes integral
equations of the first kind that are prototypes of those that occur in the linear
prediction theory as it will be formulated in Part III. Our method of solution
is based on a generalization of the well known [6] relationship that exists
between a self-adjoint differential boundary value problem and an integral
equation of the first kind whose kernel is the Green’s function of this problem.
Even when the covariance function is a Green'’s function some generalization
is necessary since the usual equivalence is invalidated by the finite range of
integration which a realistic prediction theory requires. In general, a left
inverse exists but it is necessary to choose appropriate discontinuities at the
ends of the interval of integration before an inverse to the integral operator
can be found. In the simplest case we treat an integral equation analogous
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to those of References [3] and [4] and obtain (Theorem 2.1) an explicit
solution by this generalized equivalence. In the more complicated case we
obtain (Theorem 2.2) a solution in terms of the resolvent kernel of an in-
homogeneous Fredholm integral equation of the second kind.

Part 111 is devoted to the formulation of the linear prediction problem for
processes of second order; i.e., E[x(t)] and E[x(f) ]? exist for all ¢&. For such
processes it is well known [7] that many results concerning them can be
translated into the terminology of a Hilbert space of functions defined on a
given probability space. The inner product in this space is given by
E[x(t)x(s)] and geometrically the second order processes are precisely those
which are, for any fixed ¢, points in this Hilbert space. That is, they are paths
in it. Moreover, as has been shown by Lo&ve [7], one can construct a Gaus-
sian process that has the same mean and covariance functions, so that, in a
sense, Gaussian processes represent all second order processes.

Since we shall employ neither the hypothesis of stationarity nor of metric
transitivity, it is necessary that the covariance function E[x(t)x(s)] be
known from a priori considerations. Now it is known [7] that if the covariance
function of a second order process x(¢) possesses continuous derivatives of
order (2¢g+1) and a symmetric derivative of order (2¢+2), then the process
x(¢) is derivable ¢ times with probability one. Consequently, if the known
past is taken to be the interval [—0=<¢<T-+], we shall employ prediction
operators of the form

q T
(0.4) Bplly) = 22 x® () dvwit, ty)
k=0 0

where the number ¢ is determined as above by the differentiable properties
of the known covariance function E{[x(f)x(s)]. The functions wi(t, ¢),
k=0,1,--.,q, appearing in (0.4) are functions of bounded variation in ¢,
and the integral that appears may be defined, as has been done by Loéve
[7] in the nonstationary case, as limits in the mean of the usual Riemann-
Stieltjes sums. Again this type of integration commutes with the operation
of taking expected values. For the prediction problems formulated in part
III, Theorems (3.1) and (3.2) show that these operators, while not of the
most general possible form, do in fact give the “best” linear prediction for
g=0, 1. Furthermore, it will be clear from the proof of these theorems that
corresponding results hold for any finite ¢. Operators of the above form are
the natural generalizations of those of the auto-correlation theory and appear
to be general enough for most applications.

The actual prediction is of course unknown until the wi(¢, ¢) have been
chosen by the criterion that defines the “best” linear prediction or that which
requires the variance E[x,(t;) —x(4)]? to be a minimum. This requirement
may be interpreted in the language of Hilbert space. Possible predictors, as
points in this space, are constrained by definition to the closed linear manifold
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determined by x(¢) for 0 ¢ < T. It is natural to choose for the prediction that
point in this manifold which is the projection of x(f) on it. This point is
precisely that value which minimizes the above variance as x,(¢;) ranges over
this manifold. The explicit determination of it requires the solution of certain
integral equations for the unknown weights wi(¢, ¢/). As in the auto-correla-
tion theory the prediction is required to be unbiased so that the above mini-
mization process must be carried out subject to the constraint that E [x,(¢) ]
=E[x()].

More specifically, we treat the case in which x(¢) =x,(f) +e(t), where x.(t)
and e(?) are second-order processes. If 0 </ < T this is a pure filter problem,
while if £,> T it is a problem in prediction and filtering. If x,(¢) is considered
as the message, say in a communication circuit, e(¢) as random noise or error,
and x(¢) as the observed signal, one may say that the problem of interest here
is that of suppressing the “noise” e(t) from the actual message x,(¢).

Explicitly, we treat two cases of this last problem. In the simplest case
(Corollary 3.1), as in the auto-correlation theory, x,(f) is a function known
up to m parameters ax, k=1, 2, - - -, n, and expressible in the form x,(f)
= > %, aigk(f) in terms of some family of known functions {gk(t) },
k=1,2,-.-,n,such as {t"} or a set of orthogonal functions. Theorem 3.1
considers the general filtering and prediction problem concerning the second-
order stochastic process x,(t) whose mean can be expressed in the above
form, that is, E[x,(t) 1= X 1.1 arge(t). Since x,(f) is considered physically as
the message, it is assumed that it is at least as “smooth” as the noise; that is,
it has at least as many derivatives as e(¢).

The solutions to these problems given in Part III are limited by the re-
striction that the covariance of the error process e(f) must be related to a
Green'’s function. As the theory of Part I indicates, this will happen naturally
in many physical applications. In particular, it has long been standard prac-
tice [11] in communication engineering to generate a desired type of noise
by driving a linear invariable network by “pure noise” so that our method
is not only applicable but permits an investigation of the possible advantages
of the use of variable networks in prediction theory.

Even though most applications will probably be limited to stationary
error processes, the use of ensemble averages rather than time averages still
has the advantage that it permits the treatment of mixed problems in which
the message x.(!) may be nonstationary. A specific example of this type of
problem is discussed in addition to the example previously treated in [3]
and [4]. Even in the previously treated case our method provides consider-
able insight.

Because of the relatively unwieldly formulas that are necessary, Parts 11
and III are devoted mainly to the simplest application of the results of Part
1. The modifications necessary in other cases, however, are indicated through-
out (cf. Theorem 3.2). In particular, the number ¢ which occurs in the
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definition (0.4) of the prediction operator must always be chosen as one less
than the order of the differential equation generating the error process in
accordance with the interpretation of (0.2). That is, if the stochastic process
has derivatives up to the (#—1)th order, a priori, the information contained
in them should be employed, in any prediction.

PART I. THE RELATIONSHIP BETWEEN CORRELATION
AND GREEN’S FUNCTIONS

It is well known [8] that the stochastic process generated by the Langevin
equation of Brownian motion is a stationary Markovian process whose cor-
relation function is (¢ —s) =e=#!*—2,. The Langevin equation may be written
symbolically as dy/dt+By=£'(t) and interpreted like equation (0.2).

It is easy to verify that the above correlation function is a constant mul-
tiple of the Green's function of the following Sturm-Liouville system on the
interval — o St 0

d?y/di? — 8%y = 0, lim y(¢) = lim y() = 0.
{——o0 —w

The differential equation of this system is seen to be the result of letting the
adjoint of the Langevin equation operate on that equation. It will be shown
that very nearly this same relationship persists for all second-order processes
generated in this way, even when the linear equations involve variable coeffi-
cients.

Before stating this relationship exactly, it will be convenient to obtain a
representation for the solution of a certain initial value problem of ordinary
linear differential equations in terms of a one-dimensional analogue of the
Riemann function. Although such a concept has been almost certainly used
before we know of no reference to it(®). Fortunately the explicit derivation of
those properties that we need is immediate enough to be indicated here.

Before defining this quantity it will be convenient to introduce the fol-
lowing notation. If a function R(¢, s) has a kth partial derivative with respect
to ¢t and s we shall set

*R(t, 5)  9*R(, s) d 0%R(t,s)  9*R(, )
= an =
dsk da* atk ok

respectively so that the meaning of say d*R(¢, t) /da* will be clear.
In this notation we have the following:
DEeFINITION 1.1, () Let

n

L(y) = 22 ax()y=P (1)

k=0

() In the usual treatment of the initial value problem (cf. Hurewicz [10]) a Green’s func-
tion is used. In contrast to this the Riemann function has no singularities in its derivatives.
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be an nth order linear differential operator defined for all t, — o <1< o, where
ao(t) #=0 and where the functions ax(t), k=0, 1, - - - , n, are of class C*V;
(b) Let

My = é (=D *[ar(t) y(t) | =P

be the differential operator formally adjoint to Li(y); then the one-dimensional
Riemann function R(t, s) associated with the initial value problem

(1.1) L(y) = f(s),
1.2) y®(t) = 0, E=0,1,2,---,(n—1),
1s the uniquely determined solution of the adjoint equation
(1.3) M,[R(¢ 5)] =0
that satisfies the conditions

O¥R(, ¢ 0, k=0,1,---,(n—2),
(1.4) ¢y _ { (n —2)

Ok (= 1)1/ ay(2), k=(n—1).

Similarly, the adjoint Riemann function, R*(to, s), is defined as the uniquely
determined solution of

L[R*(t, )] = 0
that satisfies the conditions
A*R* (1o, L) 0, kE=0,---,(n—2),
B {1/(10(:), E=(n—1).

As in Riemann’s case the basic properties of these functions follow from
the Lagrange identity which may be written here as follows:

f [sL(y) — yM.(3) |ds
(t.s) “°

= gym { "ff (= 1) %D [am_r_1y(s)z] "‘“")} l a .

k=g 8=t
We summarize these basic properties in

LemMaA 1.1. The Riemann functions R(t, s) and R*(to, s) satisfy the rela-

tions:

(a) R, to) = R*(to, 1),
(b) Li[R@t, t)] = 0,

(o) . M, [R¥(to, t)] = 0,
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IR, 1) OR¥1,0)

@ o~ =0, E=0,1,--, (n—2),
" 1R(4, 1)
(e) =N 1/ao(?),
d*1R*(t, 1)
® Towt T (=1 ao(2).

The basic property (a) follows from the identity (1.5) if we set z=R(t, s)
and y=R*(t,, s). The remaining properties then follow from this and the
definitions of R(¢, s) and R*(¢y, s). We are now able to prove

LeMMA 1.2, The solution of the initial value problem defined by (1.1) and
(1.2) s given by

(1.6) () =f R(t, s)f(s)ds

where R(t, s) is the Riemann function defined above.

The representation (1.6) follows immediately from the identity (1.5) if
we set 2=R(¢, s), replacing L,(y) by f(s). Conversely, in view of (d) and (e),

t %R(¢, s)
y(k)(t) = Lo _-a_ak—f(S)ds’ k= Or 1y Tty (n - 1);
while
ol 9"R(t, s) " 1R(¢, 1)
yo ) = [ e L

t anR(2, s)
- ft T J(8)ds + 1)/ a0,

0

Multiplying ¥® (¢) by ax(t), adding, and using (b) of Lemma 1.1, we see that
(1.6) satisfies (1.1).

In terms of the Riemann function R{Z, s) we can define a stochastic proc-
ess which is a solution of the equation L.(y)=§, and which specializes to
that given by Doob [5] when L;(y) has constant coefficients and a character-
istic equation whose roots possess negative real parts. In order to have a
process which is defined for all {, — » <¢, we choose ¢,= — » in Definition 1.1,
interpret L,(y)=¢ in the manner indicated in the introduction, and use
Lemma 1.2 to define this process by the formula

»() = f R(, 9)dk().
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(Incidentally, as in Doob’s case, it follows from this definition that y®(z)
will exist for =0, 1, - - -, (rn—1) while ¥ (¢) will not exist since £ (¢) does
not exist.)

The covariance function of this process is readily computed. By definition,

t 3
r(t, s) = E[y()y(s)] = f f R(¢, v)R(s, u)E[dt(v)dE(w) ).
In view of the characteristic property (0.1) of the &-process it follows that

r(t, s) = f’ R(¢t, v)R(s, v)dv . (fort = s)
(1.7) N
= f R(t, v)R(s, v)dv (fort =< s).

We are now able to state and prove the main result of this section.

THEOREM 1.1. The covariance function r(t, s) of the stochastic process

y0) = [ R, e

generated by the differential equation

Li(y) = ¢

where L(y) and M(y) satisfy Definition 1.1 has the following properties:

(i) for ts£s, it satisfies the obviously formally self-adjoint differential equa-
tion M.L,(y) =0, in each of its variables t and s;

(ii) 1t and s first (2n—2)th partial derivatives are continuous at t=s;

(iii) att=s 1ts (2n—1)th dertvative with respect to t has the jump appropriate
to any Green's function of the equation M,L.(y)=0. Explicitly(*):

. 32”_11’(1, S) t=ste n 2
lim I:—————:I = (—1) /ao(s).
€0 aaZn—l e

In order to see that r(¢, s) has the property (i) of Theorem 1.1 we note that
fort>s

L.[r(t, 5)] = f_' L.[R(¢, v)]R(s, v)dv = 0

since (b) of Lemma 1.1 holds. On the other hand for ¢ <s, we note that r(¢, s)
as given by (1.7) is expressed in the form (1.6) so that it follows from Lemma
1.2 that L,[r(¢, s)] =R(s, £). Using (1.3) this immediately implies that

(4) The normalization used is that of Ince [6]. For odd # this agrees with that of Courant
Hilbert [9] since the coefficient of ¥@ in M;L,(y) is —[a3(#)] in this case.
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ML rt, s)] = M.[R(s, t)] = 0.

An entirely similar argument shows that M,L,[r(¢, s)] =0, for ¢5£s.
Properties (ii) and (iii) follow by direct if somewhat tedious calculation.
Fromn (1.7) and Lemma 1.1 it follows that for ¢>s,

*r(s, 5) f’ d*R(¢, v)
da® B e

(1.8) R(s, v)dv, k=1,2,--.,02n — 1),

a
The fact that derivatives of the form d*R/da* exist for n—1<k=<2n—1
of course follows by induction from the assumption that the coefficients ax(t)
are of class C~V since (b) of Lemma 1.1 can be written in the form

" R(t s) n 0" *R(¢, s)
awt) ——— = 2 al)) ————"
aan—k

k=1

On the other hand, for ¢ <s it follows from (d) and (e) of Lemma 1.1 that

d*r(s, t 9kR(¢,
) = f ———L——Q R(s, v)dv
da* o da®
for k=0,1,2, - - -, (n—1). For k=n we obtain
9™r(t, s t "Rt v 0" 1R(¢, ¢
1.9 ¢ s) =f ——QR(s,v)dv+ R(s, )————(——Z
da™ o da™ da™1

while for n <k <2n—1 it is clear that additional terms of the form

am a?R(t, 1)
— [R(s, £) ———-——]
atm™ da?

will occur with m+-p<2n—1,m=0,1,2, - - - ,n—1,$=0,1,2, - - -, 2n—1.
However, in view of the conditions (1.4) satisfied by 0”R(¢, ) /dw™ it is clear
that there will be only one contribution from all of these terms when t=s
and that this contribution will occur for k=2n—1 and will come from the
(n—1)th derivative of the last term of (1.9). Thus

dfr(s — ¢, s * 9kR(s, v
L2 —es) =f IR0 s o
€0 (")a" —o0 aak
2n—1 6”‘1R(t, t)(')"‘lR(t, t):l
1.10 8
(1.10) +o [ e

_ fa :’)_k—&l R(s’ v)d-y + ( l)n—l 2n—!/a0(t)
—w da*

. The last step follows from (e) of Lemma 1.1 and (1.4). Here 8" is the usual
Kronecker delta. By setting ¢t=s in (1.8) and subtracting (1.10) from it we

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



528 C. L. DOLPH AND M. A. WOODBURY [May

obtain (ii) and (iii) and thus complete the proof of Theorem 1.1.
Although the results of Theorem 1.1 are sufficient for the applications
of Part III, we note the following:

CoroLLARY 1.1. If the differential operator Li(y) of Theorem 1.1 has con-
stant coeffictents and is such that all of the roots of its characteristic equation
possess negative real parts, then the covariance function r(¢, s) defined in Theorem
1.1 is the Green's function of the self-adjoint system M,L,(y) =0,

lim y® () = lim y®() = 0, E=0,1,2---,(n—1).
t—o—x {—oo

To show that the above boundary conditions are satisfied we recall that
it is known [10] from the elementary theory of linear differential equations
with constant coefficients that the representation (1.6) can be put in the form

> bkft (t — s)me—2f(s)ds

for some constants b;, where ¢ denotes the multiplicity of the root A of the
characteristic equation of L.(y). From this it follows readily that if p
=min (¢, s), then

r
r(t, ) = 2. 2, bkb;e(“‘+“)(‘+')f (t — v)%(s — v)%e— M0y,

from which it is readily seen that the above boundary conditions are satis-
fied. Moreover, r(t, 5) is seen to possess the symmetry property characteristic
of a Green’s function of a self-adjoint problem.

In order to see that r(¢, s) is not a Green’s function in general we note
that the solution of the initial value problem

Y +IWy =¥, lm 50 =0,

is given by y(t) = e/ [* &/ @d{(s). Thus

v

5)

7(5' S) e—[/(l)-hf(a)]f e g (fOl‘l

e"‘u(l)‘h’(&)] f‘ ezf(ﬂ)da— (for t é s)'
For this example, M.L(y)=0 is
(1.11) [_d+fw][d+fwﬂ — 0

' dt dt r =5

and it is readily verified by direct calculation that r(¢, s) has all of the prop- '
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erties of Theorem 1.1. The Green’s function of the differential equation
(1.14) under the boundary conditions

lim y(t) = lim y(t) = 0
t— o0

——cw

may be calculated explicitly and is

L] L]
e—uuw(a)lf ezf(nd,f e @ dg
4 —o0
G(t, s) = ’

®
f e O dgs
~
w
m = f e?J(U)da-,
—%

k() = f € @y,
t

8() = &7,

one sees that r(¢, s) is related to G(¢, s) as follows:

for t>s. If one defines

k(t)
G, s) = r(t, s) (t>s)
= o1, 5) 2 <9
In particular, then, 7(¢, s) is the form
r(t, 5) = d()p(s) k(2) (t>9)
= ¢(1)o(s) k(s) (¢t < 9.

Later we shall need the trivial remark that functions ¢(¢) and ¢(¢) k(¢) are
linearly independent if k() is not identically equal to a constant.
The simplest nontrivial example of the above is given by

L()—dy+t =
‘y_dt y—f,

so that

2

: y
M.L(y) = — =t 1+ )y =0;
this latter expression is a special case of Hermite’s equation.
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PARrT 1I. SOLUTIONS FOR A CLASS OF INTEGRAL EQUATIONS
OCCURRING IN PREDICTION THEORY

In this part we shall construct a solution to the integral equations

T
@.1) ) = f (8, 5)du(s),
0

T
(2.2) @ = fo [2t, ) + r(t, 5)]dw(s),

which are prototypes of those that will be derived as necessary and sufficient
conditions for the solution of the problems of prediction and filtering that will
be discussed in Part III. Although, strictly, this part is independent of the
theory of stochastic processes, the entire discussion will be motivated by that
theory. In particular, the hypotheses on r(¢, s) are precisely those that the
covariance functions discussed in Part I have been shown to possess. The
theory of stochastic processes further affects the discussion here in that it
is limited to the problem of constructing a solution to these equations apart
from the interesting questions concerning the uniqueness of their solutions
or their most general solution. Neither of these last two questions affects the
application of these equations to prediction.

Although the function w(t) above will be assumed to be of bounded varia-
tion, the solution constructed here will be limited to functions of a particularly
simple character. Thus, it will be shown sufficient to assume that w(f) has
no singular part and that it possesses a continuous derivative in the open
interval 0<¢(<T with possible jumps at the ends 0 and 7. For equation
(2.1) we have the following

THEOREM 2.1. Let r(t, 5) be a symmetric function of the form

r(t, 5) = 1(t)ea(s) (for t = s)

= ¢1(s)2(f) (for t < 5),

where ¢1(T)#0, ¢2(0) 0 and where the functions ¢, and ¢, are linearly inde-
pendent; further let v(t, s) satisfy a second-order self-adjoint linear differential
equation L,(y) = [p(t)y’)'+q(t)y=0 for t==s and let this differential equation
possess a Green’s function over an interval containing (0, T); assume also that()
. I:ar(s +¢65) Or(s — s):l 1
lim . — = — ’

at at 2(s)

and that f(t) is integrable and possesses a continuous second derivative. Then
the integral equation f(t) = JJr(t, s)dw(s) has a solution given by

w'(t) = — LLf®)],

€0
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(1) ., ,
1 T = - 1 T T — @ T T y
w(T) o) [61(DIA(T) — $u(D)f (T)]
0 ’ '
w(0) = 2O [¢2(0)/(0) — $2(0)/'(0)],

#2(0)
where
B(t) = [w(t+ 0) — w(t — 0)].

In order to prove this theorem we make the hypothesis mentioned above
concerning the nature of w(¢). Under this hypothesis, (2.1) can be replaced by

(2.3) f@) = fTr(t, s)w'(s)ds + w(T)r(t, T) + w(0)r(¢, 0).

Because r(¢, s) satisfies the differential equation L:(y) =0 for t#s, it follows
at once that if a solution exists one must have w'(t) = —L,[f(¢)] for 0<t<T.
In order to guarantee that a solution of this form exists, it must be shown
that #(T) and @(0) can be chosen so that the expression

S = fTr(t, s){—L,[f(s)]}ds + @w(T)r(t, T) + ®(0)r(¢, 0)
0

reduces to f(¢) identically. The first term of this expression can be transformed
by the Lagrange identity

T
=T
(2.4 [ ) = sn@lis = loty's = #9017,
0
so that S can be written as

S =— f Tf(s)L,[r(t, ) lds + w(T)r(t, T) + w(0)r(2, 0)
0

=t

= {o [rorn ) = = w950}

8=0

=T

— Lo [rorw 9 = 2 @, 919
as

a=t

A repetition of the standard argument used for Green'’s functions shows that
the first term vanishes, while the use of the properties assumed about r(¢, s)
enables us to reduce the above to

S = f()) + ¢(&) { —p(D) [f (T)o:(T) — 1(DAT)] + B(T)$:(T)}
+ ¢1(8) { (0) [7'(0)$2(0) — $2(0)£(0)] + B(0)¢2(0) }.
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Because of the assumed linear independence of the functions ¢; and ¢, S
can reduce to f(¢) identically only if the coefficients of ¢1(¢) and ¢,(¢) vanish.
This yields the values of ®w(7T") and w(0) given in the theorem.

It is evident that the above technique would not be adequate if (¢, s)
were associated with a self-adjoint linear differential equation of order
higher than the second. The next case of interest in prediction occurs when
r(t, s) is associated with a fourth-order equation. For this case it is necessary
to replace (2.3) by

1) = f Tr(t, $)w'(s)ds + B(T)r(t, T) + B(0)r(s, 0)
(2.5) ’

ar ar
+ Q_(T) T (ty S) + Q-(O) N (tv S) )
Jw s=T dw

s=0

so that once again the number of possible jumps @(T), #(0), g¢(T), and g(0)
equals the order of the differential equation satisfied by r(¢, s). That such a
replacement is possible for this case will be shown in Part III. Once this has
been accomplished, the above technique can be used again to determine
%'(¢) and the above discontinuities can be determined once again, since (¢, )
will involve four linearly independent functions. The fact that §(T") and g(0)
do not drop out when the differential operator is applied to (2.5) does not
cause any difficulty, and can be treated as in the next theorem.

The above method can be extended to the integral equation (2.2) which
is a prototype of one occurring in the general filter and prediction problem.
Specifically, we have the following

THEOREM 2.2. Let r(¢, s) and f(t) satisfy the hypotheses of Theorem 2.1 and
let K(t, s)=L,[2(t, s)], its resolvent kernel M(t, s), and dIM(t, s)/d¢t exist. If

W) = f(O) — w(T)=(t, T) — »(0)3(¢, 0),

A@) =204, T) + sz(t, )M (s, T)ds,
B(t) = 3(¢,0) + frz(t, S)M(s, 0)ds,
0
ct) = = {elo)+ [ we Lol

D) = — {f(t) + [ e, ik,
E() = 4@0)a(T) + BU)#(0) + D),

a solution of the integral equation
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) = f (20, 5) + 7(t, 5) Jdw(s)

is given by

T
W = = 00T+ [ 36, 9,156 as}
0
and by those values of w(0) and w(T) that satisfy the linear system

W(T)ou(T) + p(T) [¢:1(T)E(T) — :1(T)E(T)] = 0,
(0)$2(0) — $(0) [$2(0)E'(0) — ¢:(0)E(0)] = 0.

In order to establish these results(®) we again make use of the hypotheses
concerning the nature of w(f) and replace (2.2) by

(2.6) A@) = fT [2(t, ) + 7(¢, 5)]w'(s)ds + w(T)r(t, T) + ®(0)r(¢, 0).

The application of the differential operator L.(g) associated with r(¢, s) re-
duces the last expression to this Fredholm integral equation of the second kind:

—LJr(®)] = w'(t) — fTK(t, s)w'(s)ds.

Since the resolvent kernel M(¢, s) of K(¢, s) has been assumed to exist, the
solution to this equation can be written as

T
(2.7 w'(t) = — Lh(t)] —f M(t, s)L,[h(s)]ds.
(1]
It again remains to be shown that @(0) and @(T) can be chosen so that the

insertion of (2.7) into the right-hand side of (2.6) yields f(¢) identically. From
the Lagrange identity (2.4) we have

T
f r(4, s)L(g)ds = — g(t) + Bi(r, g),
0

where we have used B,(r, g) to denote the bilinear expression of the right-hand
side of (2.4). Setting

(0 = [ s, pwas

(®) Symbolically, in obvious notation, if k=(T\+T2)m+w, where T. ;l exists and
satisfies T (w)=0, TuT5, =I+B, it follows from (T1+T2), =(1+T, T)T, that m
=(14+T5T) 1Tk and that w=h—(T1+T)m=h—[T:(1+T5'T) ~BTilm=h—T:Ty 'k
+BTym=k—(I+B)k+BTim=B(Tim—k).
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we have after transposition

fo Tz(t, s)w'(s)ds = B, {r(t, s), fo Tz(s, %) 'w'(u)du}

— j; Tr(t, %) {Lu[ j; Tz(u, S)'w'(S)dS:I} du.

If the right-hand side is now substituted into (2.6), this equation becomes
k(t) — w(T)rt, T) — @(0)r(¢, 0)

(2.8) = B, {'(t’ $) LTZ(S, u)w'(u)du}
+ j:)Tr(t, %) {W'(u) _ fTL., [2(u, W)]w'(v)dv} du.

Since #'(¢) is given explicitly by (2.7), the bracketed integrand of the last
term of this equation can be transformed as follows:

w' () — f TL,, [2(u, s)]w'(s)ds
= — L.Jr@w)] — fTM(u, $)L,[k(s) lds
0

- "Lulstw 9)] {-L6) - J "uGs L. [0 ]av} ds

(2.9)

i

—me—f

0

T{M(u, s) — Lu[z(%, 5)]

- fTLu [2(w, v) | M (v, s)dv} L,[h(s) lds.

Since M {2, s) is the resolvent kernel of K(¢, s), the following relation holds,
where K (2, s) =Ld3(t, 5)]:

(2.10) M(u,s) = K(u, s) + fTK(u, )M (2, 5)dv.

If this is used above, the right-hand side of (2.9) reduces to —L,[k(u)].
Thus the last term of (2.8) becomes by (2.4)

- fTr(t, S)L,[h(s)|ds = h(t) — B.(r, k),

and (2.8) reduces to the expression
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2.11) (T)r(t, T) + w(O)r(t, 0) + B, {r(t, 9, f " o ) ()t — h(s)} o,

This equation must be satisfied for a solution to exist where w'(s) is given
by (2.7). Now w/'(¢) is a linear function of #(T") and %(0) which can be writ-
ten explicitly as w'(¢) = M (s, T)#a(T) + M (¢, 0)w(0) + C(¢), where C(¢) is de-
fined as in the statement of the theorem and where (2.10) has been used
again to simplify the coefficients of ®(T") and @(0). Moreover, since 4(¢f) is
also a linear function of @(T") and %(0) the expression

E@) = sz(t, s)w'(s)ds — k(1)

can be written as
E(t) = A()w(T) + B@#)w(0) + D(2),

where A(t), B(¢), and D(¢) are defined in the statement of the theorem. By
virtue of the fact that r(¢, s) is the product of two linearly independent
functions, (2.11) becomes

20 { () [« E'(T) ~ $1(D)E(T)] + w(T)x(T)}
— 6100 {5(0) [#2(0) E'(0) — $2(0)E(0)] + w(0)¢2(0)} = 0.
The linear independence of the functions ¢; and ¢, immediately yields the

linear system of the theorem, which has now been completely established.
In more explicit form the linear system can be written as

#(T) + (T) {A’(T)w(:r) + B(T)a(0) + D'(T)

2.12 ,
( ) 1(T)

61(T)

[A(D)(T) + BT)a(0) + D(T)]} 0,

5(0) + p(0) {A'(om(T) + B(O)#(0) + D'(0)

2.13 .
( ) $2(0)

" $:(0)

PART I11. APPLICATIONS TO THE THEORY OF PREDICTION AND FILTERING

[4(0)w(T) + B(0)w(0) + D(O)J} = 0.

If a machine is to predict the future of a message from its past, or com-
bine this operation with that of eliminating perturbing influences such as
noise, it will be effective if and only if it is designed, not to act on one par-
ticular message, but to act on an ensemble of messages, and its effectiveness
must be judged by its average performance on the messages from this en-
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semble. Consequently, in the following, although actually only one message
and one perturbing influence will have been observed in any given applica-
tion, in theory both the message and the perturbing error term will be con-
sidered as sample functions of stochastic processes. The problem to be treated
is 'that of finding the unbiased linear prediction of the message that has
minimal variance for the entire ensemble of possible messages. Since this
problem has been discussed at length in a general way in the introduction, we
proceed at once to the following

THEOREM 3.1. Let x,(t) be a continuous stochastic process with the properties:
(@) Elx.(t)]=m(t), where m(t) = > 2, arge(t), where ax, k=1, 2, - - -, n,
are unknown parameters and { gk(t)}, k=1, 2, .- - -, n, are known functions;
(b) E{[xa(t) =m(®)][xa(s) —m(s)]} =2, 5);
let e(t) be a continuous stochastic process such that
(©) E[e(t)] =0,
(d) Ele(®)e(s)]=r(, s),
(e) E{e(t)[xa(s) —m(s)]} =0(%);
let a sample function of the composite process x(t) =x4,(t) +e(t) be observed over
an interval 0 2t =T and let the linear prediction of x.(t) at time t;> T be taken as

T
3.1) %p(ty) =f x()dw(t, tr).
0
Then: 1. the problem of minimizing o= E{ [x,(t;) —x(t;) ]2} subject to the un-

biased condition that E [x,(ty) | = D_r_1 argi(t) identically in ar, k=1,2, - - - , u,
is equivalent to the free problem of minimizing the expression

J= fonoT (2@, s) + (¢, 5) Jduw(t, tp)dew(s, ty) + 2ty ) — 2fo 3(ty, Hdaw(t, tf)

-2 i ) {fOTgk(t)d,w(t, k) — gk(tf)} ’

k=1

where { Ne(t) ), B=1,2, - - -, n, are Lagrange multipliers;
II. a necessary and sufficient condition that J have a minimum 1is that the
integral equation

(3.2) Z Me(t)ge(t) + 2y, t) = f [=(¢, 5) + r(t, 5) |dae(s, 1)

admit a solution for w(t, t);
II1. if problem 1 has a solution, the minimum value of a2 is given by

o® = 2ty ty) + fi_: Ni(tr)ge(ty)-

(®) That is, the error process and the random part of the message are uncorrelated.
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In order to prove this theorem we first recall [7] that under the hypotheses

stated on x,(¢) and e(t) the integral (3.1) exists, and that the operations of
integration and expected value may be freely interchanged. Since

T T
50) = [ waidat, ) + [ i, ),
0 0
we have by conditions (d) and (a) that

Y
m(ty) = Elz,(t)] = f Elx()dw(t, 1)

= me(t)dg‘lU(t, ) = i ax Tgk(t)dnv(t, ).

Thus the requirement that the estimate be unbiased yields the isoperimetric
conditions

(3.3) f ge()dw(s, t) = gi(ty), E=1,2---,n

Let y(t) =x(t) —m(t), so that E[y(t)y(s)] =2(t, s); then by a straightforward
calculation

o = E[x,(tp) — m(tp) — y(#)]?

r 2
= E{j; [y(®) + e®)]d.w(, t;) — y(t,)}
= foT [2(¢, 5) + (8, 5)]dew(t, tp)dsw(s, t)

T
—2 f 200, tdewlt, 1) + 2(tp, ).
0

An application of the usual techniques of the calculus of variations to the
problem of minimizing the above expression for w(¢, {;) subject to the side
conditions (3.3) yields the free problem for the functional J stated in the
theorem. From this free problem one obtains, in the usual way, the integral
equation stated in the theorem as a necessary condition that J have a mini-
mum. In order to see that it is also sufficient, it is convenient to introduce

S, s) = 28, 5) + r(8, 5), k@, 4) = i Nt gn(8) + 202, &),

k=1

so that the integral equation (3.2) becomes

k@, ty) = fTS(t, s)dsw(t, ty).
0
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Let g(¢, ¢;) denote a solution to this equation and let w(¢, #) be any other
weighting function that satisfies the side conditions (3.3). Now if the terms
in J involving a single integral of w(¢, ¢;) are collected, J can be written as

J = fo fo S(t, s)dew(t, tr)dsw(s, tr) + 2(ty, ty)

n Vil T
+ 23 Migalty) — 2 f |5t 9augts, w1,

k=1
By completing the square, we may write

J =zt t) + 2 Z”: Ne(tr)gi(y)

k=1

+ f f S, 5) [dett, 1) — duglt, 191 [dewls, 1) — dug(s, 19)]

— f f S, 5)duq(s, t)dq(t, ty).

Now S(¢, s) is a semi-definite kernel, since

j;bfabS(t, $)f()f(s)dtds = E{fab [%() — m(t) + g(t)]f(t)dt} Zg 0;

so J cannot have a value smaller than that given by ¢(¢, &) =w(t, ¢). Thus,
any solution to the integral equation (3.2) yields a best value for J. If a
solution to the integral equation has been obtained and the Lagrange multi-
pliers evaluated by the side conditions (3.3), it is easy to obtain an explicit ex-
pression for the minimal variance ¢2, which can be written as

¢ = f d:w(, t;) {f S(¢, s)d,w(s, tr) — 22(2, t,)} + 2(4, &)
0 0

Now if the integrand is replaced by its value as given by the integral equation
(3.2), one has

n T
o =z(ty, ty) + 2 Nty) | gr(Odiw(s, ty).
k=1 0
The side conditions (3.3) immediately yield the value given in Theorem 3.1.

COROLLARY 3.1. If, in Theorem 3.1(7), x.(¢) =m(¢t), a necessary and suffi-
cient condition that the prediction problem formulated there have a solution is that

(") In this case the requirement that the estimate be unbiased can be replaced by the
reasonable physical requirement that if e(f) =0, then x,(4) =x.(%). This constraint was em-
ployed in the auto-correlation theory and it leads to the same side conditions.
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the integral equation

(3.4) > Mt)gel) = f K, $)daws, 1)

k=1

have a solution for w(t, t;). In this case the minimum value of the variance is
given by

ot = kZ Ne(tr) gi(ty).
=1

Corresponding results can be obtained in the event that the prediction
is taken in the more general form (0.4). By way of example, we shall briefly
consider the case in which x,(f) =m(¢) and the number ¢ of (0.4) is taken as
unity. In particular, this type of a prediction operator implies that e’(¢)
exists as a second-order process. In this event it is known [7] that the deriva-
tives 8/0t, 8/9s, and 82/dtds of r(t, s) = E[e(t)e(s)] exist even for t=s in the
latter case, and that these derivatives are permutable with the operation of
taking expected values. We therefore have the following

THEOREM 3.2. Let x,(t) =m(t), where m(t) s the same as in Theorem 3.1,
and let e(t) and €'(t) be second-order stochastic processes such that Ele(t)]=0
and Ele(t)e(s) | =7, 5); let x(t) =xa(t) +e(t); then

1. a necessary and sufficient condition that the problem of minimizing the
variance E{ [x,(t;) —x(t;)]?} subject to the condition E[x,(t;)]=m(t) have a
solution for predictors of the form

T T
3.5) wt) = [ =0dinti 1) + f 20 d it 1)

1s that the free problem of minimizing the functional

T pT T AT 3,
F = j:] L f(t, s)dtP(ty lf)daP(S, tf) +L ﬁ r( S) dtq(l, t/)dsp(s’ tf)

at
T T g l,
I
0 0 ds

n T T
—23 xk(m[ f e Odipt, 1) + f Udialt, 1) —gkof)]

k=1

*T T 9%, s)
dtp(t) tf)dﬂqav tf) + f f sz(t, tf)daq(tr tf)
o Yo atds

have a solution, where \(t;), k=1, 2, - - -, n, are unknown Lagrange multi-
pliers;

I1. a necessary and sufficient conditional that the functional F have a minimum
is that the following system of imtegral equations have a solution for p(i, t;)
and q(t, t):
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n T T a \

> Mltent) = f (4, $)dup(s, ) + f ’(’ D 1465, 1),

n , il a 2

3 M) = f '(‘ 9 405, 1) + f ( D 165, 1);

I11. if these equations have a solution, the minimum variance is given by
n
o = 20 M(tn)en(ty).
k=1

The proof of this theorem proceeds as that of Theorem 3.1, except
that the » side conditions corresponding to (3.3) become

T T
f gx(Dd:p(t, 4y) + f ge(Ddug(t, ty) = gulty), E=1,2--+,n
0 0
The free problem for the functional F yields the integral equations
< (s, )
23" M(t)gult) = 2 f rlt, )dup(s, 1) + f das, 1)
k=1

T 9r(t, s)
+ dug(s, t),
0 ads

Br(t s)

n T
2; Ne(tr)gn(t) = f dup(s, t7) +f

T 62r(t )
+2 f duqls, 1y).
0

However, since r(¢4, s) is a covariance function, it is symmetric, i.e., r(¢, s)
=r(s, t), and from this it follows that

d (sr’f)

ar(t,s) ar(s, t) ar(t, sy  9r(s, 1)
o ot . o  os

and if these are inserted into the above equations they become the simpler
and more symmetric equations stated in the theorem. In this symmetric
form it is further obvious that the second equation is simply the derivative
of the first with respect to . The other details of the proof are omitted.

In order to complete the problems of prediction and filtering formulated
in this part, it remains to solve the integral equations that have been derived
in Theorems 3.1 and 3.2 as well as that of Corollary 3.1. If one defines

Al ) = Sn)a®, ot ty) = L_ijk(mgk(t) + 2ty 1),

k=1
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and sets up correspondences between these and the f(¢) of Part II as well as
between w(Z, ¢;) and w(t) of that part, the integral equations (3.4) and (3.2)
derived in this part can be identified with their prototypes (2.4) and (2.2)
respectively of Part II. The fact that #; is carried along as an additional
parameter has no effect on the theory of that part. If the hypotheses of the
theorems of that part are satisfied, as they surely are if 7(¢, s) belongs to a
stochastic process generated as in Part I, the constructive solutions obtained
for the integral equations yield explicit expressions for dw(¢, t;)/dt and for
(T, t;) and @(0, ) in terms of the unknown Lagrange multipliers A(),
k=1, 2, - - -, n. Explicit expressions can then be found for these quantities
by eliminating these unknown multipliers through the side conditions (3.3),
which can be written as

f ge(t) ——— (’ el ——dt + (T, t9)gi(T) + B0, t)g(0) = gulty),

for k=1, 2, - - -, n. Once this has been done, the prediction assumes the
form

25(4) =f () —— (’ 2 dt + x(D)w(T, 4) + x(0)w(0, ¢).

We shall not carry out the algebraic details in general but illustrate them
in two examples at the end of this part.

It is interesting to note the results in the special case in which x,(¢)
=m()=0 and e(f) is a stochastic process satisfying the hypotheses of
Theorem 3.1. The problem reduces to that of the prediction of the future
value of the error process itself, and the side conditions, automatically satis-
fied, disappear. For the prediction, one has

exlty) = f edawlt, 1)

and it is easy to see that the variance to be minimized is given by
T T T .
=)+ [t aw ats, ) = 2 [
0 0 0 .

while the integral equation corresponding to (3.4) can be written as
T dw(s, t)
) = [, T o, DR, ) + 10, 00900, 1)
0 A

Using the identification process mentioned above, we find that the results of
Theorem 2.1 imply dw(t, t;) /0t =1w(0, T) =0, so that in this special case the
prediction reduces simply to e,(t;) =e(T)®(T, ¢;), where #(T, ¢ is given by
the expression of Theorem 2.1. This is a generalization of the well known
corresponding result for the one-dimensional Markovian process. It itself

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



542 C. L. DOLPH AND M. A. WOODBURY [May

can obviously be generalized to error processes generated by equations of
higher order than the first by the modified technique that has been indicated
throughout.

The technique must also be modified before a solution to the system of
integral equations given in Theorem 3.2 can be included in the theory
developed here. We have already observed that the second of these equations
is merely the derivative of the first with respect to . The first of these equa-
tions is then replaced by the following:

Z”: Neltr)gi(t) = fTr(t, 5) 3?(;, ) & +fT or(t, 5) 9q(s, &) is
0 0

k=1 s s as

+ r(ty T)f(Tr t/) + f(t, 0)5(0, tf)
dr or
+ —a:) (t7 T)Q_(T, t/) + '(;; (tv O)Q—(O’ tf)-

This in turn can be transformed by integration by parts of the term depend-
ing upon ¢(¢, &) into the form

3 T ap(s, 3%(s,
; M) g (8) =f r(t, s)[ P(;s i)  8%(s t,):lds

ds?

Tr
+Pwm+ﬂ%ﬁﬂﬂm

__6q(;)‘; el ] r(t, T)

+|#0.0) -
dr ar
+ q-(Tv tf) — (tv T) + g—(O) tf) — (tv 0)'
ow Ow
By defining
6p(t, tf) _ 62Q(t, tf)
da da?

GQ(T_y tl)
—_
da

W(l, lf) =

aq(0t, ¢
@(T, b)) = (T, 4y) + w&m=ﬂam"i%fL

we can write this as

dw(s,
WS k) 4oy #(T, i)r(t, T)
)

n T
;M@&®=Lr%ﬂ )

ar or
+ ZD(O, t!)r(t’ O) + Q(T’ t/) a_w (tr T) + Q(O, tf) ;;o (tr O),

which can be identified with its prototype (2.5) and therefore handled as
indicated in Part II. In this case, the prediction (3.5) reduces to
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xpttf) = fo(t) awi;; i dt + w(T, ty)x(T) + @(0, ¢;)x(0)
0

+ 4T, 1)« (T) + 4(0, £)%'(0).

We see therefore that the theory developed in this paper is capable of
solving a large class of important prediction and filtering problems. We con-
clude with specific examples of the problems of Corollary 3.1 and of Theo-
rem 3.1. The first of these has been treated previously by Phillips and Weiss
[2] and by Cunningham and Hynd [3]. The second is a nonstationary mixed
filter problem.

An example of prediction. If the errors are assumed to be a stationary
stochastic process of the Markoff type, the covariance function is the Picard
kernel e~#l»—*!, Further, let x,(¢) be specialized to a linear function of the time,
say

xa(t) = a1+ aqf.
Under these conditions the integral equation (3.4) specializes to
T aw(s, l/)
flg, 1) = M) + Nt = f eBlt—sl

0 as

ds

(3.6)
+ @(T, t)ePT=9 4 (0, t)e P,

while the isoperimetric side conditions (3.3) become

T dus, ¢
3.7) f ) 4o 1w, ) + 900, 1) = 1,
0 ads
T Ju(s,
(3.8) f S b (T ) = 4,
0 as

We recall that the function (1/28)e~#*—! is the Green’s function of the
differential equation

Liy) =9y" — By =0,
which satisfies

lim y(f) = lim y(¢) = 0.

o —w —w
To apply the general theory it is convenient to replace (3.6) by the equivalent
M(ty) + a(ty)
26
1

T du(s, ty)
== f ePli—sl T g 4 (T, 1) BT=0 L+ (0, tf)e—‘“].
Zﬁ 0 ds

1
gt ty) = %f(t, t) =
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Consequently by Theorem 2.1

2
awf:; i = 2—16‘<ﬁgg - %g) = % [t) + ;e 1.
Since
e Pt
r(t, s) = 2 (tzs)
- ¢ =9,
28

it follows from Theorem 2.1 that

(3.9) w(T, 1) = AT, 4) n 1 of(T ) _ Nty n Na(ty) (T 4 1))

2 28 ot 2 2 8
(3 10) 'II)(O, tf) - f(01 tf) __1 88(0, tf)= )\l(tj) _ )\2(&)'
2 28 o 2 28

The insertion of these values into (3.7), (3.8) gives

B T T
(3.11) ‘z“f (Mt Aav)dy 4 M+ N 5= 1,
0

(3.12) ﬁfT()\v+)\v'~’)dv+ﬁT+ﬁ(T2+—T)—t
' 2J, TR 2 2 g) 7

Equations (3.9) to (3.12) constitute a system of four simultaneous linear
equations in the four unknowns \;(¢), N\2(8), w(0, ¢), and w(T, f;). Integrating
(3.11) and (3.12) yields

(3.13) x‘(T+2)+M(M2+ T)—l
' 2 ¥ 2\ 2 o
N\ /B8T? N2 /BT3 T

3.14 —{— T —_— 4+ — T?) =14,
(3.14) 2<2+)+2<3+ﬁ+) d
giving

8872 + 248T + 24 — 128t,(BT + 2
3.1 "y = 8 81,8 ) |

B3T3 + 86272 + 248T + 24

12 T — 28t

(3.16) N(l) = 2. BT 2

T 8T+ 68T + 12

In order to see that these correspond to the results obtained by Cunningham
and Hynd [3], one has to identify our quantities Ay, Ng, #r, and 8 with their
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A, B, — Ty, and A\, respectively. Then equations (3.13), (3.14), (3.15) check
with those obtained by Cunningham and Hynd and the discrepancy in (3.16)
is removed by pointing out an error in sign in [3, p. 66, line 17].
With the aid of (3.9), (3.10), one can now write the expressions for
6 (5/3)82T% — 58T2 + 2T — £,(28°T? + 68T + 68°T* + 128 + 4)
. J

'ZZ)(T, tf) =
T B3T3 4 88%*T2 + 2487 + 24

50, ¢;) = 6 (2/3)B2T3——;3T2+26T—2T+2—t;(;32T——26T+26—4)-
W= 8*T3 1 88T + 248T + 24

for the derivative of the weighting function from (7.5),

aw(tv tf) B
= — (A A
Py 5 M+ )

B 8B+ 248T + 24 — 1284(8T + 2)(1 + 24/T — t/ty)
) B3TS + 86272 + 248T + 24 ’

and for the predicted variance from Theorem 2.1,

86°T" + 248T + 24 — (24Bt;/T)(BT + 2)
BT + 86T + 248T + 24

oa(t) = M) + () =

It is worth noting that as f— o, i.e., as (¢, s)—0, the parameters Ay, s
vanish as
82T — 1282T1,
R AN
B3T3
12 8T — 284,

Aa(ty) — T —3272—— — 0,

M) —

and as @(0, &), @w(T, t;)—0.
The “asymptotic” weighting function, however, becomes

dw(t, i) 2 [272 — 3T + 34;(2t — T)]
k—»ln;lo o T f |

in such a manner that the isoperimetric side conditions (3.7) and (3.8) hold.

In this example it is not difficult to verify that the same results would
have been obtained if one had attempted to estimate @;, a2 by assuming
estimators 4;, =1, 2, of the form

T
4 =f x(t)d.pi(t, ty),
0

and requiring that these estimates be unbiased. This imposes the following
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conditions on p;(¢, &) for i=1, 2:

T 7
f d‘P‘.(tl tf) = 63'1, f tdtpi(t, tf) = lj&,‘z,
0 0

where we have employed the Kronecker delta. The prediction would then be
the deterministic expression x,(¢;) =414 Aqt;, so that this problem can be
interpreted as a “smoothing problem” in which 4, and 4 are the results of
the smoothing operation applied to the interval 0 ¢ <T. This interpretation
is easier to mechanize by simulation in the stationary case. One can of course
obtain this same interpretation for any of the problems formulated in Corol-
lary 3.1 or Theorem 3.2 and their generalizations.

A nonstationary filter problem. Let it be assumed that the message con-
sists of Brownian random fluctuations about a mean linear path and that,
as in the previous example, the error process is stationary and Markovian.

We again assume that the message and error processes are uncorrelated.
Let(®)

r(t, 5) = Ele(e(s)] = a1+,
E[xa(t)] = m(t) = + dzt,
z(t, s) = ¢? min { l tl, lsl };

as before, let it be assumed that the sum of a sample message function and a
sample error function has been observed throughout the interval 0<¢t<T.

In terms of the notation of Part II, the integral equation corresponding to
(2.6) becomes

h(t’ t/) = )‘l(tf) -+ )\2(tf)t + Z(tf, t) - ‘ZZ)(T, tf)o'zt

(3.17) = fT[z(t, 5) 4 eBlt—el] 3w—((:s'i)ds + (T, t;)eFIT—tl
0
+ @®(0, t)e bl
Now let
Lt=—D2__72, .yz:___ﬁi__, D=i,
28 + o? 28 + o2 at
and

= Le{h(t, )} = £, 1)
By the application of the operator L; to equation (3.17) for 0<¢< T,

dw(t, t;) B L, r dw(s, i)
(3.18) o " flt) — v fo z(t, ) Tar ds.

(®) With the usual normalization x£(0) =0 and ¢2=1, 2(¢, s) is the covariance of a {&-process.
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In order to solve this Fredholm integral equation of the second kind, we
observe that any solution to it must satisfy the differential equation

2 2. 0w(t, i) 2
Di — o) YR D.f(t, 4),
as follows directly below:
aw(t, i) T T
L = S, ) = et f s, 1o — 4o [ m(o, 1),
0
w(t, ¢ af(t, ¢
¢t _ f( ) m(v’ )b,
at? ¢
w(t, ty) 32f(¢, 4) L gt dw(t, ty)
otd at? a¢
Moreover, these equations imply that
a'lU(O, tf) 62‘10(T, tf) af(T, tf)
T - p0, 1, = :
at at? a9t

Now the solution to (3.18) subject to these last two conditions may be
found to be

(3.19) aw(t 4

= J )+ f M, $)fGs, tds,

where a?=+%%2, and

Mt ) =2 ' {sinh [a(T — £ — )] + o= cosh [alt — )]
(3.20) (,s)—; cosh (ad) sinh [a(T — ¢t — s)} + T cosh |a(t — s

— cosh aTe !t}
This is in the form (2.7) and it is readily verified that the kernel
z(t, s) + et

satisfies the hypothesis of the usual Fredholm theory; it follows that (3.19)
and (3.20) give the unique solution to (3.18). It should be observed that
M(t, s) is symmetric in ¢, s.

To use M(¢, s) as an integrand, it is necessary to distinguish the two cases

a sinh (af) cosh [a(T — 5)]

M2, = — > ¢,

1(hs) cosh (aT) ’ :
Malt,s) = — a sinh (as) cosh [a(T — #)] , c<t
cosh (aT) :

For the case of prediction, when #> T, the formulas of Theorem 3.1 are
as follows:
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a sinh (af)

MK 1) =~ cosh (aT) ’
M@, 0) =0,
C L) = 7h cosh [a(T — 1)] b0+ o) sinh () ,
cosh (aT) a cosh (aT)
AU, 1) = 0_2‘ sinh (af) ,
2 cosh (aT)
4(0,4) = 0,
34(0, i) a?
at - cosh (aT) ’

A(T, ) = Z tanh (aT),
[

dA(T, t;) _
a

9B(©, 1) 9B(T, ¢
B(t, t;)) = B(0, ty) = B(T, t;) = (at 1) = (at 1) ~ 0,

D@0, ) = Fo = — A\,

)\2 + 0’2 )\1

D(T, ) = — tanh (a7) — ——
(T, &) anh (aT) cosh (aT)

aD(0, ¢;) 1

ot - cosh (aT
aD(T, ty)
— -

) [a sinh (@T) — A2 — o],

— N2 — 0%

From the equation

aw(t, ty)
Py M(t, T)w(T, t;) + M(¢, 0)w(0, ) + CG, ¢)
we have
dw(, ty) a sinh (af)
P = - cosh (aT) W(T, tf) + C(tr t/)-

The conditions (2.12), (2.13) and the isoperimetric side conditions
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T T GW(t, tj)
f dtw(t) tf) = f o dat + ﬁ)(o, tf) + w(T) tf) = 1)
0 0

T T dw(l, i)
f td,w(t, t) =f ¢ Py dt + Tw(T, ty) = 4
0 0

reduce the problem to the solution of the following four linear equations:

a sinh (aT) -\ + [cosh (aT) — 1]\ + o2@(T, &)

(3.21)
+ ¢% cosh (aT)w(0, ty) = o2,
inh
[cosh (aT) — 1]\ + [T cosh (aT) — M] Ne
(3.22) . , *
+ — sinh (aT)-%(T, ;) = z sinh (aT) + ¢%(4; — T) cosh (aT),
a a
B sinh (aT)
— BN\~ [—— + cosh (aT)] A+ [(ZB + 20?) cosh (aT)
(3.23) *
Ba? Bo*
+ — sinh (aT)] w(T, ¢;) = ¢% cosh (aT) + — sinh (aT),
23 [44
3.24) [8 cosh (aT) + « sinh (aT) [N — As + o2@(T, t)

— (28 + ¢?) cosh (aT)w(T, t;) = o2

For the case of pure filtering, i.e., for #; < T, the four corresponding equations
are given here without proof. The difference is due to the discontinuity of
M(¢, s) at t=s. The equations are:

a sinh (aT)\; + [cosh (aT) — 1]\; + o2@(T, t;) + o cosh (aT)®(0, ¢)
= ¢2 cosh [a(T — ty)],

sinh (aT) ] 2

[cosh («T) — 1]\ + [T cosh (aT) — A+ 7 sinh (aT)w(T, t)
24

[44

o2
= — sinh (aty),
[44

— B\ — I:—E sinh («T) + cosh (aT)] A + [(26 + 20?) cosh (aT)
«

2 2
+ pe sinh (aT)] w(T, t;) = Ll sinh (o)),
o o

[8 cosh (aT) + @ sinh (aT) N1 — X2 + o2(T, ¢)
— (28 + ¢?) cosh (aT)®(0, ty) = o? cosh [a(T — #)].
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These can be solved explicitly for the unknowns of the problem, Ai(Z),
Ao(ts), w(0, ), and @(T, t;). The solution is too lengthy to be given here ex-
plicitly, but can be obtained easily for special cases.

A partial check on the correctness of equations (3.21) to (3.24) is obtained
by letting 62—0, so that a—0. In this case the equations reduce to a set of
simultaneous equations, identical to (3.9) to (3.12) obtained for the preced-
ing example.

Finally by Theorem 3.1, one has the variance for ;> T

o2t = t[o" + Ml)] + M)
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