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In this paper we prove two results on convex analytic functions. The
author has recently learned that the first of these (Theorem 1) is known [1].
In order to prove these theorems we shall present a reduction of the problems
to some measure-theoretic statements, which will then be proved. We shall
use a relation between analytic functions and measures on the unit circle,
which we shall repeatedly exploit. Although this relation has been known
for a long time, to the author’s knowledge this is rather little used in studying
convex and star-like functions. We shall relate (essentially) the second coo
efficient of an analytic function to the center of mass of the associated mass
distribution, and then shall study how the mass center is transformed if we
transform the measure. The measure-theoretic results can be generalized to
higher dimensions For simplicity we do not state Theorem 2 here in its
full generality, although the proof given is complete.

THEOREM 1. Let D be a bounded convex domain in the plane. Let h(w) the
interior mapping radius ofD relative to the point w. Then h takes its maximum
at a unique point Wo of D.

THEOREM 2. Let D be a bounded convex domain, with smooth CI) boundary.
Let Woe D. Then for any a < 1, there exists a mapping function

f(z) ao + az + az +
of the unit disc onto D so that

1. ae/a a

2. f’ Zo > O, where Zo f-1 (Wo

Preliminaries. Let f(z) z - az - be analytic in the unit disc.
Then f is a convex function if and only if Re (1 + zf"/f’) > 0 for zl < 1.
Then by the familiar Herglotz representation for functions of positive real
part,

zf" fo ’ l + e-z f(1) 1T f--7- 1 e-iz d(O d >_ O, d, 1.

On subtracting 1, dividing through by z, and then integrating with respect to
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z, one obtains the familiar Schwarz-Christoffel representation:

(2) log f’(z) -2 f0 log (1 e"z) d,(O), d >_. O, / d# 1.

DEFINITION. Let f(z) be an analytic function in the unit disc which has an
everywhere non-vanishing derivative (locally-schlicht). If

f(z) z + az-b
we call f normalized. If f is convex and normalized, then by (2) there
is a non-negative measure dz of total mass 1 on the unit circle associated
with if. We say f corresponds to d#.

DEFINITION. Let d be a non-negative measure on the unit circle of total
mass 1. If d has no atomic points, or if every atomic point of d has mass

1/2, we call d an admissible measure.

LEMMA 1. Let f(z) be convex and normalized in the unit disc. Let f cor-
respond to dz. Then f is bounded if and only if d is admissible.

Proof. If d is admissible, then it concentrates no mass >_ 1/2 at a point.
Hence there is an M < 1/2, and > 0 so that for any interval I of the unit circle
of length <_2, d(I) <_ M < 1/2.
From (2),

f0log lf’(ret)[ _< --2 log ll e-(-)r

<_ --2 log ll e-(-t)r d(0) 2 log ll e-(-t)r]

N -2 log (1 r) d(O) 2 log lsin e d(O)

_< -2Mlog(1 r) 21ogisinel.

Exponentiating,

But then

1 1’lJ’tre) -- sin el (1 r)2M"

f, f0 1 1
f(z) < (re) dr <_

[sin el (1 r)TM
dr,

This form (2) is perhaps less familar than

f’ H [(1 z/a)-’*l’,

which is the Schwarz-Christoffel representation for mappings onto polygons [2]. Note
that the convexity of the polygon is equivalent to # >_ 0, i 1, ..., n. Taking loga-
rithms, and letting n --. (polygonal approximation to the convex domain D), we
obtain (2).
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K 1
l_2M< , as M<.

Hence f is bounded.
If d is not admissible, without loss of generality assume d concentrates

mass k _> 1/2 at the point 1. Taking imaginary parts of (2),

arg f’(r) _< 2[ fo-arg (1 e-r) d(O) 2 arg (1 e-r) d(O)

Now
[arg (1 e-’r)[ <_ arg (1 e-’)l I(,r o)/2 l, o_< 0_< 2,

and hence

arg f’(r)

_
2 fo+

Now the supremum of the values of the integrand is not achieved in the
integration, as the range of integration does not include 0 or 2r. Hence we
may conclude

2-- 2--

2 ,o d.(o)<2 ++ 2

This estimate for the integral is independent of the choice of r, so

argf’(r) < 2fo r-0 d(O) K < r(1 X) <-
+ 2 -2"

Following an argument similar to the reasoning in the bounded case, we obtain
a lower bound for the modulus of

Ift(r)l >_ 5/(1 -r).
Now

If(r) >_ Ref(r) Re {f’(t)} dt >_ If’(t) cosargf’(t) dt

dt
cosKdt LcosK

(1- t)
--, as r

tends to 1, because K < r/2 and X _> 1/2. Hence f is unbounded.
By Lemma 1, if we wish to study bounded convex functions we may confine

our attention to admissible measures on the unit circle. We now state and
prove the fundamental result on admissible measures, which will ultimately
prove Theorem 1.

DEFINITION. Let d be an admissible measure. Let M be the group of all
linear fractional transformations of the unit disc onto itself-

e0 z-a (lal < 1).
1 dz
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For T M, if T-l(0) --T(0), we call T rotation-free. In this case, T has
the form T(z) (z a)/ (1 5z). Let us denote by dr the measure in-
duced by T:

d.(T(z)) d(z) for zi 1.

Note that T is defined and 1-1 on the unit circle. In case T(z) (z a) /
(1 dz) (i.e. that T is rotation-free), we denote dr by da as well.

LEMMA 2. Let d be an admissible measure on the unit circle. Then there
exists a unique rotation-free T M so that dr has 0 mass center (center of
gravity).

Proof. Define

(3)

C is evidently a continuous function on a[ < 1. If d has no atomic points,
then it is easily seen that C is continuous up to the boundary, and that on the
boundary, C(eit) -et. It follows by an elementary winding number argu-
ment that C must cover the disc; in particular the origin is in the image of C.
If d has an atomic point et of mass d < 1/2, a calculation shows that

(4) limsupa.,t C(z) (-et)l <_ 2d.

As the total mass of d is 1, sup d(ei) ) < 1/2. Thus (4) shows that for r
sufficiently close to 1, the image of the circle of radius r under C is a curve
which has winding number 1 with respect to 0 and hence the origin is again
covered.
But the existence of a zero of C is exactly the existence of the required trans-

formation.
To show uniqueness, we proceed as follows: If there were two transformed

measures, d and db with 0 mass center, let dv d. Then one verifies
that dVT d#b where

(11--gb) (; (b--a)/(1-- a)T(z) --a T z( a)/(1 b)]"
Thus T e M.

If dvr has 0 mass center, then so does dvs for any S eiT. Hence we may
assume that T is rotation-free, and thus dye, dye, for some cl <: 1. If

T is the linear fractional transformation resulting from the compositions of w
(z a)/(1 dz) and w (w b)/(1 no).
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c 0, it is clear that the transformation (z c)/(1 5z) moves all points on
the unit circle in the direction of -c/I c I, with the exception of the stationary
points :kc/] c I. As dv cannot concentrate all its mass at these two points (a
violation of the regularity assumption), the mass center must move as well.
The projection of this movement onto the diameter containing c is all in one
direction, and hence the movement of the mass center must be in this direction
as well. That is, the mass center of dye 0 if c 0. The above geometrical
reasoning can be restated analytically as follows: We may assume after co-
ordinate rotation that c > 0. Then

(eRe (mass center of dr,) Re e dv

=Re
1- eedv(

2 eiO C

< f Re{ei}dv(ei)

Re (mass center of dr) O.

Thus the mass center of dv O.
This completes the uniqueness portion of Lemma 2.
The hypotheses of the following lemma can be considerably weakened, but

we prove only what we need.

LEMM 3. Let f be convex and bounded. Then

+ 0 as zl 1.

Proof. We use Koebe’s "--Theorem"" Let f be univalent in the unit disc
and map onto a domain D. Then the distance from f(0) to the boundary of
D is greater than or equal to 1/4If’(0)]. That is,

p(f(O), OD) >_ 1/4 If’(O)[.

Now, let f satisfy the hypotheses, and suppose that

ha(z) f((z W a)/(1 -{- cz)), where

Then ha is certainly univalent, and has the same range as f, call it D. By the
1/4-Theorem,

p(f(a), OD) (ha(0), OD) >_ ha’(O)l 1/4 If’(a)l(1 a).

But as al -- 1, p(f(a), OD) 0 since D is bounded and schlicht. Thus

[f’(a)[(1 an) 0 as a[ -- 1.

LEMMA 4. The function f’(z) (1 z), for f analytic, is an absolute in.-
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variant of the group M. That is, if T M, and zl T(z), and fl is defined by

f(z),
then

If’(z)l(1 z) If’(z)l(1 z).

Proof. This follows immediately from the fact that dfl is a conformal in-
variant, and [dz [/(1 z) is an invariant of the group M. Their quotient is
the object in question. We now proceed to complete the proof of Theorem 1.

Let D be a bounded convex domain. Let w e D, and let f map the unit
disc onto D, with f(0) w. Then a simple calculation shows that for any
w . D, h(w) {interior mapping radius of D relative to
where a f-l(w). As f-1 is a 1-1 function, we are reduced to showing that
f’(a)l(1 an) takes a unique maximum in the unit disc. We shall do this
by showing that f’(a)l(1 an) has exactly one stationary point in the unit
disc, and since this function is positive on the disc and vanishes on the bound-
ary, it must then take an absolute maximum at the stationary point, and can
take it nowhere else.

Suppose b is a stationary point of [f’(z)[(1 z). Then if

z (z -t- b)/(1 - bz) and fl(Zl)
then fl is convex, and evidently by Lemma 4, f’(z)l(1 zl ) has a sta-
tionary point at 0. Suppose f corresponds to d. The representation (2)
holds for non-normalized convex functions as well, modulo some additive
constants, and one verifies from the geometry that f corresponds to the
measure dtb. By expanding (2) in a power series about 0, we see that
a2 0 if and only if the mass center of dt is 0. If g(z) z - b2z
+ then g’(z)l(1 z) has a stationary point at 0 if and only if b is
0, as is seen by an elementary calculation. Applying the last two observa-
tions to the function f above, we see that if b is a stationary point of f, then
db must have 0 mass center. Thus (by Lemma 2) f’(z)l (1 z) has
exactly one stationary point in the unit disc. This completes the proof.

The theorem is not necessarily true if we remove the assumption of con-
vexity, even if the domain is starlike. To see this consider a domain Dr,
which consists of the unit disc slit along the real axis from 1 to -t, and from
to 1. For sufficiently small, 0 cannot be the point for which the unique

maximum of the inner radius is achieved, as 0 lies too close to the boundary.
On the other hand, D is carried onto itself by a rotation of 180 about the
origin, and every point of D other than the origin moves to a new point. It is
obvious then that if the maximum is achieved at some point different from 0,
it is therefore achieved at two points at least.

If the domain is convex, but unbounded, the theorem is definitely false. In
this case we distinguish two possibilities" If the domain is a strip, say
Jim w < 7/2, then there are a continuum of maxima, since the domain is in-
variant under translations by any real a" w’ w -t- a.
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If the domain D, and hence the mapping function f, is unbounded, the cor-
responding measure d is not admissible measure by Lemma 1. Consider-
ation of (2) shows that f maps onto a strip if and only if d is a two point
measure with equal masses (1/2). This is the case we just considered. On the
other hand, d(e) _> 1/2 for some 0, and if f is not a strip map, it is not difficult
to see that no transform of d can have 0 mass center, as one point will always
have mass >_1/2. Evidently, then, the function If’(z)l(1 z) can have no
stationary point in the unit disc. Hence no maximum can be achieved.
A second proof of Theorem 1 has been found by Loewner, and I should like

to present it here. Although this proof is shorter, the emphasis here has been
on the former proof in order to give a development of some possibly useful
relations between analytic functions and measure-theoretic approaches.
Furthermore, these methods can be generalized to higher dimensions, to give
potential theoretic results.

LEMMA (Loewner). Let f be convex and bounded in the unit disc. Then

K(z) log If’(z)l + log (1 z2)

is a strictly convex function of hyperbolic arclength along geodesics of the Poincard
model of non-Euclidean geometry in the unit disc.

Proof. We have by Lemma 4 that f’(z)l( 1 z) is invariant with respect
to the group M, so certainly K(z) is. That is, if T e M, and z* T(z), and
f*(z*) f(z), then K*(z*) K(z), where K* has the obvious meaning.
Now, if s is hyperbolic arclength, by the invariance of K and s with respect to
a fixed transform in M,

K*(z*)= K(z),(5)

where differentiation on the right hand side is with respect to hyperbolic arc-
length along any geodesic through z, and differentiation on the left hand side
is with respect to arclength on the corresponding geodesic through z*. By (5)
it is then enough to show

02 K*(O) < O.(6) Os----
To do this, we may assume that after rotation, the geodesic through 0 is the
diameter which lies on the real axis. The metric p of the Poincar model
satisfies p(0, x) 1/2 log ((1 + x)/(1 x)), and a computation shows then
that along the real axis,

0 0
at O.

Ox Os

Using the definition of K*, and (2), a straightforward calculation shows

* e--2io2 Re d,(O)- 1
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The assumption of boundedness of f ensures that

e-2 d(O) -< 1,

so that
g*(0) <: 0.

The function f’(z)] (1 z) has a unique maximum in theCOROLLARY.
unit disc.

Proof. If the function had two maxima, say at a and b, then so would K(z).
But then K could not be strictly convex along the geodesic joining a and b.
To prove Theorem 2, we proceed as follows: Given w0 e D, let g be the map-

ping function of the unit disc onto D so that g (0) w0 and g’(O) > 0. Now
any other mapping function of D is given by

f(z) g (e z "4-
z)1-4-

Then f-l(Wo) -a, and f’(-a) eOg’(O)(1 a Is). So f’(-a) > 0 if
and only if e 1. To find the function having the required properties, it
thus suffices to look among those f which can be written as

f(z) g((z "4- a)/(1 + az)).

Although f and g are not normalized, equation (2) is still valid for them
modulo some constants, and it is easily seen that if g corresponds to dg, then
f corresponds to d#-a. Oil the other hand, 1/2g" (0)/g’(0) mass center of
d, and 1/2f" (0)/f’(0) mass center of d#-a. Hence the mass centers of the
transformed measures give the totaIity of values a/al which can be achieved,
subject to the normalization conditions, 2.

Consideration of the proof of Lemma 2 then leads immediately to the follow-
ing"

LEMMA. Let d be a non-negative measure on the unit circle, of total mass 1.
Let p supt d(et). Then every point in the disc w < 1 2p is the mass
center of at least one transform of dg, say dtta.

Note now that the number p remains unchanged if we transform the measure
from dtt to dga. Hence p depends only on the domain D, and not oil the par-
ticular mapping function, p may be characterized in terms of D in several
ways. Geometrically, pr is the supremum of the exterior angles of the
"corners" of D, as is easily seen by the Schwarz-Christoffel representation (2).
Alternately, if f is any mapping function of the unit disc onto D,

p inf{h:lf’(z)l(1 -z)2x--0 as [z]--,1}.
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Collecting these observations, we have

THEOREM 2. Let D be a bounded convex domain. Let be the number associ-
ated with D (as above). Then for any I1 < 1 2p, there exist, a mapping
function f(z) ao - a z a z - of the unit disc onto D so that

1. a/a a

2. f’ (Zo) > O, where Zo f-(Wo).
In particular, if the domain has a smooth (C) boundary, we can conclude

that every value a in the unit disc can be achieved as a./a for a mapping func-
tion f for which f’(zo) > O, Zo f-(Wo). We cannot, in general, ensure that
the values a/a (with condition 2) will cover the disc (although they will
always cover the disc almost everywhere), as is seen by considering the meas-
ure which concentrates mass 1/4 at each of the fourth roots of unity.
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