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Abstract

Stochastic Gradient Descent (SGD) based training of neural networks with
a large learning rate or a small batch-size typically ends in well-generalizing,
flat regions of the weight space, as indicated by small eigenvalues of the
Hessian of the training loss. However, the curvature along the SGD trajectory
is poorly understood. An empirical investigation shows that initially SGD
visits increasingly sharp regions, reaching a maximum sharpness determined
by both the learning rate and the batch-size of SGD. When studying the
SGD dynamics in relation to the sharpest directions in this initial phase, we
find that the SGD step is large compared to the curvature and commonly
fails to minimize the loss along the sharpest directions. Furthermore, using
a reduced learning rate along these directions can improve training speed
while leading to both sharper and better generalizing solutions compared
to vanilla SGD. In summary, our analysis of the dynamics of SGD in the
subspace of the sharpest directions shows that they influence the regions
that SGD steers to (where larger learning rate or smaller batch size result
in wider regions visited), the overall training speed, and the generalization
ability of the final model.

1 Introduction

Deep Neural Networks (DNNs) are often massively over-parameterized (Zhang et al., 2016),
yet show state-of-the-art generalization performance on a wide variety of tasks when trained
with Stochastic Gradient Descent (SGD). While understanding the generalization capability
of DNNs remains an open challenge, it has been hypothesized that SGD acts as an implicit
regularizer, limiting the complexity of the found solution (Poggio et al., 2017; Advani and
Saxe, 2017; Wilson et al., 2017; Jastrzębski et al., 2017).

Various links between the curvature of the final minima reached by SGD and generalization
have been studied (Murata et al., 1994; Neyshabur et al., 2017). In particular, it is a popular
view that models corresponding to wide minima of the loss in the parameter space generalize
better than those corresponding to sharp minima (Hochreiter and Schmidhuber, 1997; Keskar
et al., 2016; Jastrzębski et al., 2017; Wang et al., 2018). The existence of this empirical
correlation between the curvature of the final minima and generalization motivates our study.

Our work aims at understanding the interaction between SGD and the sharpest directions
of the loss surface, i.e. those corresponding to the largest eigenvalues of the Hessian. In
contrast to studies such as those by Keskar et al. (2016) and Jastrzębski et al. (2017) our
analysis focuses on the whole training trajectory of SGD rather than just on the endpoint.
We will show in Sec. 3.1 that the evolution of the largest eigenvalues of the Hessian follows a
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Figure 1: Left: Outline of the phenomena discussed in the paper. Curvature along the
sharpest direction(s) initially grows (A to C). In most iterations, we find that SGD crosses
the minimum if restricted to the subspace of the sharpest direction(s) by taking a too large
step (B and C). Finally, curvature stabilizes or decays with a peak value determined by
learning rate and batch size (C, see also right). Right two: Representative example of the
evolution of the top 30 (decreasing, red to blue) eigenvalues of the Hessian for a SimpleCNN
model during training (with η = 0.005, note that η is close to 1

λmax

= 1
160 ).

consistent pattern for the different networks and datasets that we explore. Initially, SGD is
in a region of broad curvature, and as the loss decreases, SGD visits regions in which the top
eigenvalues of the Hessian are increasingly large, reaching a peak value with a magnitude
influenced by both learning rate and batch size. After that point in training, we typically
observe a decrease or stabilization of the largest eigenvalues.

To further understand this phenomenon, we study the dynamics of SGD in relation to the
sharpest directions in Sec. 3.2 and Sec. 3.3. Projecting to the sharpest directions1, we see
that the regions visited in the beginning resemble bowls with curvatures such that an SGD
step is typically too large, in the sense that an SGD step cannot get near the minimum of
this bowl-like subspace; rather it steps from one side of the bowl to the other, see Fig. 1 for
an illustration.

Finally in Sec. 4 we study further practical consequences of our observations and investigate
an SGD variant which uses a reduced and fixed learning rate along the sharpest directions.
In most cases we find this variant optimizes faster and leads to a sharper region, which
generalizes the same or better compared to vanilla SGD with the same (small) learning rate.
While we are not proposing a practical optimizer, these results may open a new avenue for
constructing effective optimizers tailored to the DNNs’ loss surface in the future.

On the whole this paper exposes and analyses SGD dynamics in the subspace of the sharpest
directions. In particular, we argue that the SGD dynamics along the sharpest directions
influence the regions that SGD steers to (where larger learning rate or smaller batch size
result in wider regions visited), the training speed, and the final generalization capability.

2 Experimental setup and notation

We perform experiments mainly on Resnet-322 and a simple convolutional neural net-
work, which we refer to as SimpleCNN (details in the Appendix D), and the CIFAR-10
dataset (Krizhevsky et al.). SimpleCNN is a 4 layer CNN, achieving roughly 86% test
accuracy on the CIFAR-10 dataset. For training both of the models we use standard data
augmentation on CIFAR-10 and for Resnet-32 L2 regularization with coefficient 0.005. We
additionally investigate the training of VGG-11 (Simonyan and Zisserman, 2014) on the
CIFAR-10 dataset (we adapted the final classification layers for 10 classes) and of a bidirec-
tional Long Short Term Memory (LSTM) model (following the “small” architecture employed
by Zaremba et al. (2014), with added dropout regularization of 0.1) on the Penn Tree Bank

1That is considering gi =< g, ei > ei for different i, where g is the gradient and ei is the ith

normalized eigenvector corresponding to the ith largest eigenvalue of the Hessian.
2In Resnet-32 we omit Batch-Normalization layers due to their interaction with the loss surface

curvature (Bjorck et al., 2018) and use initialization scaled by the depth of the network (Taki, 2017).
Additional results on Batch-Normalization are presented in the Appendix
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Figure 2: Top: Evolution of the top 10 eigenvalues of the Hessian for SimpleCNN and
Resnet-32 trained on the CIFAR-10 dataset with η = 0.1 and S = 128. Bottom: Zoom on
the evolution of the top 10 eigenvalues in the beginning of training. A sharp initial growth
of the largest eigenvalues followed by an oscillatory-like evolution is visible. Training and
test accuracy of the corresponding models are provided for reference.

(PTB) dataset. All models are trained using SGD, without using momentum, if not stated
otherwise.

The notation and terminology we use in this paper are now described. We will use t
(time) to refer to epoch or iteration, depending on the context. By η and S we denote
the SGD learning rate and batch size, respectively. H is the Hessian of the empirical
loss at the current D-dimensional parameter value evaluated on the training set, and its
eigenvalues are denoted as λi, i = 1 . . . D (ordered by decreasing absolute magnitudes).
λmax= λ1 is the maximum eigenvalue, which is equivalent to the spectral norm of H. The
top K eigenvectors of H are denoted by ei, for i ∈ {1, . . . ,K}, and referred to in short
as the sharpest directions. We will refer to the mini-batch gradient calculated based on
a batch of size S as g(S)(t) and to ηg(S)(t) as the SGD step. We will often consider the
projection of this gradient onto one of the top eigenvectors, given by g̃i(t) = g̃i(t)ei(t),
where g̃i(t) ≡ 〈g(S)(t), ei(t)〉. Computing the full spectrum of the Hessian H for reasonably
large models is computationally infeasible. Therefore, we approximate the top K (up to 50)
eigenvalues using the Lanczos algorithm (Lanczos, 1950; Dauphin et al., 2014), an extension
of the power method, on approximately 5% of the training data (using more data was not
beneficial). When regularization was applied during training (such as dropout, L2 or data
augmentation), we apply the same regularization when estimating the Hessian. This ensures
that the Hessian reflects the loss surface accessible to SGD. The code for the project is made
available at https://github.com/kudkudak/dnn_sharpest_directions.

3 A study of the Hessian along the SGD path

In this section, we study the eigenvalues of the Hessian of the training loss along the SGD
optimization trajectory, and the SGD dynamics in the subspace corresponding to the largest
eigenvalues. We highlight that SGD steers from the beginning towards increasingly sharp
regions until some maximum is reached; at this peak the SGD step length is large compared
to the curvature along the sharpest directions (see Fig. 1 for an illustration). Moreover, SGD
visits flatter regions for a larger learning rate or a smaller batch-size.

3.1 Largest eigenvalues of the Hessian along the SGD path

We first investigate the training loss curvature in the sharpest directions, along the training
trajectory for both the SimpleCNN and Resnet-32 models.
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Largest eigenvalues of the Hessian grow initially. In the first experiment we train
SimpleCNN and Resnet-32 using SGD with η = 0.1 and S = 128 and estimate the 10 largest
eigenvalues of the Hessian, throughout training. As shown in Fig. 2 (top) the spectral norm
(which corresponds to the largest eigenvalue), as well as the other tracked eigenvalues, grows
in the first epochs up to a maximum value. After reaching this maximum value, we observe
a relatively steady decrease of the largest eigenvalues in the following epochs.

To investigate the evolution of the curvature in the first epochs more closely, we track the
eigenvalues at each iteration during the beginning of training, see Fig. 2 (bottom). We
observe that initially the magnitudes of the largest eigenvalues grow rapidly. After this initial
growth, the eigenvalues alternate between decreasing and increasing; this behaviour is also
reflected in the evolution of the accuracy. This suggests SGD is initially driven to regions
that are difficult to optimize due to large curvature.

To study this further we look at a full-batch gradient descent training of Resnet-323. This
experiment is also motivated by the instability of large-batch size training reported in
the literature, as for example by Goyal et al. (2017). In the case of Resnet-32 (without
Batch-Normalization) we can clearly see that the magnitude of the largest eigenvalues of the
Hessian grows initially, which is followed by a sharp drop in accuracy suggesting instability of
the optimization, see Fig. 3. We also observed that the instability is partially solved through
use of Batch-Normalization layers, consistent with the findings of Bjorck et al. (2018), see
Fig. 9 in Appendix. Finally, we report some additional results on the late phase of training,
e.g. the impact of learning rate schedules, in Fig. 12 in the Appendix.
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Figure 3: Full batch-size training of Resnet-32 for η = 0.01 and (left) η = 0.05 (right) on
CIFAR-10. Evolution of the top 10 eigenvalues of the Hessian and accuracy are shown in
each case. The training is unstable; an initial growth of curvature scale is followed by a
sudden drop in accuracy. The CIFAR-10 dataset was subsampled to 2500 points.

Learning rate and batch-size limit the maximum spectral norm. Next, we inves-
tigate how the choice of learning rate and batch size impacts the SGD path in terms of its
curvatures. Fig. 4 shows the evolution of the two largest eigenvalues of the Hessian during
training of the SimpleCNN and Resnet-32 on CIFAR-10, and an LSTM on PTB, for different
values of η and S. We observe in this figure that a larger learning rate or a smaller batch-size
correlates with a smaller and earlier peak of the spectral norm and the subsequent largest
eigenvalue. Note that the phase in which curvature grows for low learning rates or large
batch sizes can take many epochs. Additionally, momentum has an analogous effect – using a
larger momentum leads to a smaller peak of spectral norm, see Fig. 13 in Appendix. Similar
observations hold for VGG-11 and Resnet-32 using Batch-Normalization, see Appendix A.1.

Summary. These results show that the learning rate and batch size not only influence
the SGD endpoint maximum curvature, but also impact the whole SGD trajectory. A high
learning rate or a small batch size limits the maximum spectral norm along the path found
by SGD from the beginning of training. While this behavior was observed in all settings
examined (see also the Appendix), future work could focus on a theoretical analysis, helping
to establish the generality of these results.

3To avoid memory limitations we preselected the first 2560 examples of CIFAR-10 to simulate
full-batch gradient training for this experiment.
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Figure 4: Evolution of the two largest eigenvalues (solid and dashed line) of the Hessian
for Resnet-32, SimpleCNN, and LSTM (trained on the PTB dataset) models on a log-scale
for different learning rates (top) and batch-sizes (bottom). Blue/green/red correspond to
increasing η and decreasing S in each figure. Left side of the vertical blue bar in each plot
corresponds to the early phase of training. Larger learning rate or a smaller batch-size
correlates with a smaller and earlier peak of the spectral norm and the next largest eigenvalue.

3.2 Sharpest direction and SGD step

The training dynamics (which later we will see affect the speed and generalization capability
of learning) are significantly affected by the evolution of the largest eigenvalues discussed in
Section 3.1. To demonstrate this we study the relationship between the SGD step and the
loss surface shape in the sharpest directions. As we will show, SGD dynamics are largely
coupled with the shape of the loss surface in the sharpest direction, in the sense that when
projected onto the sharpest direction, the typical step taken by SGD is too large compared
to curvature to enable it to reduce loss. We study the same SimpleCNN and Resnet-32
models as in the previous experiment in the first 6 epochs of training with SGD with η=0.01
and S = 128.

The sharpest direction and the SGD step. First, we investigate the relation between
the SGD step and the sharpest direction by looking at how the loss value changes on average
when moving from the current parameters taking a step only along the sharpest direction
- see Fig. 6 left. For all training iterations, we compute E[L(θ(t) − αηg̃1(t))] − L(θ(t)),
for α ∈ {0.25, 0.5, 1, 2, 4}; the expectation is approximated by an average over 10 different
mini-batch gradients. We find that E[L(θ(t) − αηg̃1(t))] increases relative to L(θ(t)) for
α > 1, and decreases for α < 1. More specifically, for SimpleCNN we find that α = 2 and
α = 4 lead to a 2.1% and 11.1% increase in loss, while α = 0.25 and α = 0.5 both lead to
a decrease of approximately 2%. For Resnet-32 we observe a 3% and 13.1% increase for
α = 2 and α = 4, and approximately a 0.5% decrease for α = 0.25 and α = 0.5, respectively.
The observation that SGD step does not minimize the loss along the sharpest direction
suggests that optimization is ineffective along this direction. This is also consistent with
the observation that learning rate and batch-size limit the maximum spectral norm of the
Hessian (as both impact the SGD step length).

These dynamics are important for the overall training due to a high alignment of SGD
step with the sharpest directions. We compute the average cosine between the mini-batch
gradient gS(t) and the top 5 sharpest directions e1(t), . . . e5(t). We find the gradient to be
highly aligned with the sharpest direction, that is, depending on η and model the maximum
average cosine is roughly between 0.2 and 0.4. Full results are presented in Fig. 5.

Qualitatively, SGD step crosses the minimum along the sharpest direction.
Next, we qualitatively visualize the loss surface along the sharpest direction in the first few
epochs of training, see Fig 6 (right). To better reflect the relation between the sharpest
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Figure 6: Early on in training, SGD finds a region such that in the sharpest direction, the SGD
step length is often too large compared to curvature. Experiments on SimpleCNN and Resnet-
32, trained with η = 0.01, S = 128, learning curves are provided in the Appendix. Left
two: Average change in loss E[L(θ(t)− αηg̃1(t))]− L(θ(t)), for α = 0.5, 1, 2 corresponding
to red, green, and blue, respectively. On average, the SGD step length in the direction of the
sharpest direction does not minimize the loss. The red points further show that increasing
the step size by a factor of two leads to increasing loss (on average). Right two: Qualitative
visualization of the surface along the top eigenvectors for SimpleCNN and Resnet-32 support
that SGD step length is large compared to the curvature along the top eigenvector. At
iteration t we plot the loss L(θ(t) + ke1∆θ1(t)), around the current parameters θ(t), where
∆θ1(t) is the expected norm of the SGD step along the top eigenvector e1. The x-axis
represents the interpolation parameter k, the y-axis the epoch, and the z-axis the loss value,
the color indicated spectral norm in the given epoch (increasing from blue to red).

direction and the SGD step we scaled the visualization using the expected norm of the SGD
step ∆θ1(t) = ηE(|g̃1(t)|) where the expectation is over 10 mini-batch gradients. Specifically,
we evaluate L(θ(t) + ke1∆θ1(t)), where θ(t) is the current parameter vector, and k is an
interpolation parameter (we use k ∈ [−5, 5]). For both SimpleCNN and Resnet-32 models,
we observe that the loss on the scale of ∆θ1(t) starts to show a bowl-like structure in the
largest eigenvalue direction after six epochs. This further corroborates the previous result
that SGD step length is large compared to curvature in the sharpest direction.

Training and validation accuracy are reported in Appendix B. Furthermore, in the Appendix B
we demonstrate that a similar phenomena happens along the lower eigenvectors, for different
η, and in the later phase of training.

Summary. We infer that SGD steers toward a region in which the SGD step is highly
aligned with the sharpest directions and would on average increase the loss along the sharpest
directions, if restricted to them. This in particular suggests that optimization is ineffective
along the sharpest direction, which we will further study in Sec. 4.

3.3 How SGD steers to sharp regions in the beginning

Here we discuss the dynamics around the initial growth of the spectral norm of the Hessian.
We will look at some variants of SGD which change how the sharpest directions get optimized.
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Figure 8: Nudged-SGD for an increasing number of affected sharpest directions (K) optimizes
significantly faster, whilst generally finding increasingly sharp regions. Experiment is run
using Resnet-32 and the Cifar-10 dataset. Left and center: Validation accuracy and the
λmax and Frobenius norm (y axis, solid and dashed) using increasing K (blue to red) compared
against SGD baseline using the same η (black), during training (x axis). Rightmost: Test
accuracy (red) and Frobenius norm (blue) achieved using NSGD with an increasing K (x
axis) compared to an SGD baseline using the same η (blue and red horizontal lines).

Experiment. We used the same SimpleCNN model initialized with the parameters reached
by SGD in the previous experiment at the end of epoch 4. The parameter updates used by the
three SGD variants, which are compared to vanilla SGD (blue), are based on the mini-batch
gradient g(S) as follows: variant 1 (SGD top, orange) only updates the parameters based on
the projection of the gradient on the top eigenvector direction, i.e. g(t) = 〈g(S)(t), e1(t)〉e1(t);
variant 2 (SGD constant top, green) performs updates along the constant direction of the
top eigenvector e1(0) of the Hessian in the first iteration, i.e. g(t) = 〈g(S)(t), e1(0)〉e1(0);
variant 3 (SGD no top, red) removes the gradient information in the direction of the top
eigenvector, i.e. g(t) = g(S)(t)− 〈g(S)(t), e1(t)〉e1(t). We show results in the left two plots
of Fig. 7. We observe that if we only follow the top eigenvector, we get to wider regions but
don’t reach lower loss values, and conversely, if we ignore the top eigenvector we reach lower
loss values but sharper regions.

Summary. The take-home message is that SGD updates in the top eigenvector direction
strongly influence the overall path taken in the early phase of training. Based on these
results, we will study a related variant of SGD throughout the training in the next section.

4 Optimizing faster while finding a good sharp region

In this final section we study how the convergence speed of SGD and the generalization of
the resulting model depend on the dynamics along the sharpest directions.

Our starting point are the results presented in Sec. 3 which show that while the SGD step
can be highly aligned with the sharpest directions, on average it fails to minimize the loss if
restricted to these directions. This suggests that reducing the alignment of the SGD update
direction with the sharpest directions might be beneficial, which we investigate here via a
variant of SGD, which we call Nudged-SGD (NSGD). Our aim here is not to build a practical
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Table 1: Nudged-SGD optimizes faster and finds a sharper final endpoint with a slightly
better generalization performance. Experiments on Resnet-32 model on the Cifar-10 dataset.
Columns: the Frobenius norm of the Hessian at the best validation point and the final epoch;
test accuracy; validation at epoch 50; cross-entropy loss in the final epoch; distance of the
parameters from the initialization to the best validation epoch parameters. Experiments were
performed with η = 0.01 and S = 128. In the last rows we report SGD using η ∈ {0.005, 0.1}.

||H||F Test acc. Val. acc. (50) Loss Dist.

γ = 0.01 1, 018/1, 019 87.3% 69.3% 0.01324 21.08
γ = 0.1 931/929 87.2% 69.0% 0.00940 21.32
γ = 1.0 272/324 86.6% 63.0% 0.01719 22.90
γ = 5.0 111/83 85.5% 52.3% 1.17170 25.32

SGD(0.005) 678/946 86.0% 49.9% 0.06221 18.87
SGD(0.1) 24/25 88.0% 84.7% 0.00100 50.73

optimizer, but instead to see if our insights from the previous section can be utilized in an
optimizer. NSGD is implemented as follows: instead of using the standard SGD update,
∆θ(t) = −ηg(S)(t), NSGD uses a different learning rate, η′ = γη, along just the top K
eigenvectors, while following the normal SGD gradient along all the others directions4. In
particular we will study NSGD with a low base learning rate η, which will allow us to capture
any implicit regularization effects NSGD might have. We ran experiments with Resnet-32
and SimpleCNN on CIFAR-10. Note, that these are not state-of-the-art models, which we
leave for future investigation.

We investigated NSGD with a different number of sharpest eigenvectors K, in the range
between 1 and 20; and with the rescaling factor γ ∈ {0.01, 0.1, 1, 5}. The top eigenvectors
are recomputed at the beginning of each epoch5. We compare the sharpness of the reached
endpoint by both computing the Frobenius norm (approximated by the top 50 eigenvectors),
and the spectral norm of the Hessian. The learning rate is decayed by a factor of 10 when
validation loss has not improved for 100 epochs. Experiments are averaged over two random
seeds. When talking about the generalization we will refer to the test accuracy at the best
validation accuracy epoch. Results for Resnet-32 are summarized in Fig. 8 and Tab. 1; for
full results on SimpleCNN we relegate the reader to Appendix, Tab. 2. In the following we
will highlight the two main conclusions we can draw from the experimental data.

NSGD optimizes faster, whilst traversing a sharper region. First, we observe that
in the early phase of training NSGD optimizes significantly faster than the baseline, whilst
traversing a region which is an order of magnitude sharper. We start by looking at the impact
of K which controls the amount of eigenvectors with adapted learning rate; we test K in
{1, . . . , 20} with a fixed γ = 0.01. On the whole, increasing K correlates with a significantly
improved training speed and visiting much sharper regions (see Fig. 8). We highlight that
NSGD with K = 20 reaches a maximum λmax of approximately 8 · 103 compared to baseline
SGD reaching approximately 150. Further, NSGD retains an advantage of over 5% (1% for
SimpleCNN) validation accuracy, even after 50 epochs of training (see Tab. 1).

NSGD can improve the final generalization performance, while finding a sharper
final region. Next, we turn our attention to the results on the final generalization and
sharpness. We observe from Tab. 1 that using γ < 1 can result in finding a significantly
sharper endpoint exhibiting a slightly improved generalization performance compared to
baseline SGD using the same η = 0.01. On the contrary, using γ > 1 led to a wider endpoint

4While NSGD can be seen as a second order method, NSGD in contrast to typical second order
methods does not adapt the learning rate to be in some sense optimal given the curvature; to make it
more precise we included in Appendix E a discussion on differences between NSGD and the Newton
method.

5In these experiments each epoch of NSGD takes approximately 2-3x longer compared to vanilla
SGD. This overhead depends on the number of iterations needed to reach convergence in Lanczos
algorithm used for computing the top eigenvectors.
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and a worse generalization, perhaps due to the added instability. Finally, using a larger K
generally correlates with an improved generalization performance (see Fig. 8, right).

More specifically, baseline SGD using the same learning rate reached 86.4% test accuracy with
the Frobenius norm of the Hessian ||H||F = 272 (86.6% with ||H||F = 191 on SimpleCNN).
In comparison, NSGD using γ = 0.01 found endpoint corresponding to 87.0% test accuracy
and ||H||F = 1018 (87.4% and ||H||F = 287 on SimpleCNN). Finally, note that in the
case of Resnet-32 K = 20 leads to 88% test accuracy and ||H||F = 1100 which closes the
generalization gap to SGD using η = 0.1. We note that runs corresponding to η = 0.01
generally converge at final cross-entropy loss around 0.01 and over 99% training accuracy.

As discussed in Sagun et al. (2017) the structure of the Hessian can be highly dataset
dependent, thus the demonstrated behavior of NSGD could be dataset dependent as well.
In particular NSGD impact on the final generalization can be dataset dependent. In the
Appendix C and Appendix F we include results on the CIFAR-100, Fashion MNIST (Xiao
et al., 2017) and IMDB (Maas et al., 2011) datasets, but studies on more diverse datasets
are left for future work. In these cases we observed a similar behavior regarding faster
optimization and steering towards sharper region, while generalization of the final region
was not always improved. Finally, we relegate to the Appendix C additional studies using a
high base learning and momentum.

Summary. We have investigated what happens if SGD uses a reduced learning rate along
the sharpest directions. We show that this variant of SGD, i.e. NSGD, steers towards sharper
regions in the beginning. Furthermore, NSGD is capable of optimizing faster and finding
good generalizing sharp minima, i.e. regions of the loss surface at the convergence which are
sharper compared to those found by vanilla SGD using the same low learning rate, while
exhibiting better generalization performance. Note that in contrast to Dinh et al. (2017)
the sharp regions that we investigate here are the endpoints of an optimization procedure,
rather than a result of a mathematical reparametrization.

5 Related work

Tracking the Hessian: The largest eigenvalues of the Hessian of the loss of DNNs were
investigated previously but mostly in the late phase of training. Some notable exceptions
are: LeCun et al. (1998) who first track the Hessian spectral norm, and the initial growth is
reported (though not commented on). Sagun et al. (2016) report that the spectral norm
of the Hessian reduces towards the end of training. Keskar et al. (2016) observe that a
sharpness metric grows initially for large batch-size, but only decays for small batch-size.
Our observations concern the eigenvalues and eigenvectors of the Hessian, which follow the
consistent pattern, as discussed in Sec. 3.1. Finally, Yao et al. (2018) study the relation
between the Hessian and adversarial robustness at the endpoint of training.

Wider minima generalize better: Hochreiter and Schmidhuber (1997) argued that
wide minima should generalize well. Keskar et al. (2016) provided empirical evidence that
the width of the endpoint minima found by SGD relates to generalization and the used
batch-size. Jastrzębski et al. (2017) extended this by finding a correlation of the width
and the learning rate to batch-size ratio. Dinh et al. (2017) demonstrated the existence of
reparametrizations of networks which keep the loss value and generalization performance
constant while increasing sharpness of the associated minimum, implying it is not just the
width of a minimum which determines the generalization. Recent work further explored
importance of curvature for generalization (Wen et al., 2018; Wang et al., 2018).

Stochastic gradient descent dynamics. Our work is related to studies on SGD dynamics
such as Goodfellow et al. (2014); Chaudhari and Soatto (2017); Xing et al. (2018); Zhu et al.
(2018). In particular, recently Zhu et al. (2018) investigated the importance of noise along
the top eigenvector for escaping sharp minima by comparing at the final minima SGD with
other optimizer variants. In contrast we show that from the beginning of training SGD
visits regions in which SGD step is too large compared to curvature. Concurrent with this
work Xing et al. (2018) by interpolating the loss between parameter values at consecutive
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iterations show it is roughly-convex, whereas we show a related phenomena by investigating
the loss in the subspace of the sharpest directions of the Hessian.

6 Conclusions

The somewhat puzzling empirical correlation between the endpoint curvature and its gen-
eralization properties reached in the training of DNNs motivated our study. Our main
contribution is exposing the relation between SGD dynamics and the sharpest directions, and
investigating its importance for training. SGD steers from the beginning towards increasingly
sharp regions of the loss surface, up to a level dependent on the learning rate and the
batch-size. Furthermore, the SGD step is large compared to the curvature along the sharpest
directions, and highly aligned with them.

Our experiments suggest that understanding the behavior of optimization along the sharpest
directions is a promising avenue for studying generalization properties of neural networks.
Additionally, results such as those showing the impact of the SGD step length on the regions
visited (as characterized by their curvature) may help design novel optimizers tailor-fit to
neural networks.
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A Additional results for Sec. 3.1

A.1 Additional results on the evolution of the largest eigenvalues of the

Hessian

First, we show that the instability in the early phase of full-batch training is partially solved
through use of Batch-Normalization layers, consistent with the results reported by Bjorck
et al. (2018); results are shown in Fig. 9.
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Figure 9: Full-batch training with Batch-Normalization is more stable. Evolution of the top
10 eigenvalues of the Hessian, and accuracy, for Resnet-32 trained on the CIFAR-10 dataset
with η = 0.01 (left) and η = 0.05 (right).

Next, we extend results of Sec. 3.1 to VGG-11 and Batch-Normalized Resnet-32 models, see
Fig. 11 and Fig. 10. Importantly, we evaluated the Hessian in the inference mode, which
resulted in large absolute magnitudes of the eigenvalues on Resnet-32.
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Figure 10: Same as Fig. 4, but for the VGG-11 architecture.
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Figure 11: Same as Fig. 4, but for Resnet-32 architecture using Batch-Normalization layers.

A.2 Impact of learning rate schedule

In the paper we focused mostly on SGD using a constant learning rate and batch-size. We
report here the evolution of the spectral and Frobenius norm of the Hessian when using a
simple learning rate schedule in which we vary the length of the first stage L; we use η = 0.1
for L epochs and drop it afterwards to η = 0.01. We test L in {10, 20, 40, 80}. Results are
reported in Fig. 12. The main conclusion is that depending on the learning rate schedule in
the next stages of training curvature along the sharpest directions (measured either by the
spectral norm, or by the Frobenius norm) can either decay or grow. Training for a shorter
time (a lower L) led to a growth of curvature (in term of Frobenius norm and spectral norm)
after the learning drop, and a lower final validation accuracy.
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Figure 12: Depending on the length of the first stage of a learning rate schedule, spectral
norm of the Hessian and generalization performance evolve differently. Left: Spectral norm
of the Hessian (solid) and Frobenius norm (dashed), during training (x axis). Center:
Accuracy and validation accuracy, during training (x axis). Right: Learning rate, during
training (x axis).

A.3 Impact of using momentum

In the paper we focused mostly on experiments using plain SGD, without momentum. In
this section we report that large momentum similarly to large η leads to a reduction of
spectral norm of the Hessian, see Fig. 13 for results on the VGG11 network on CIFAR10
and CIFAR100.
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Figure 13: Momentum limits the maximum spectral norm of the Hessian throughout training.
Training at η = 0.1 and S = 128 on VGG11 and CIFAR10 (left) and CIFAR100 (right).

B Additional results for Sec. 3.2

In Fig. 14 we report the corresponding training and validation curves for the experiments
depicted in Fig. 6. Next, we plot an analogous visualization as in Fig. 6, but for the 3rd
and 5th eigenvector, see Fig. 15 and Fig. 16, respectively. To ensure that the results do
not depend on the learning rate, we rerun the Resnet-32 and SimpleCNN experiments with
η = 0.05, see Fig. 17.

Finally, we run the same experiment as in Sec. 3.2, but instead of focusing on the early phase
we replot Fig. 6 for the first 200 epochs, see Fig. 18
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Figure 14: Training and validation accuracy for experiments in Fig 6. Left corresponds to
SimpleCNN. Right corresponds to Resnet-32.
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Figure 15: Similar to Fig 6 but computed for the third eigenvector of the Hessian. We see
that the loss surface is much flatter in this direction. To facilitate a direct comparison, scale
of each axis is kept the same as in Fig. 6.
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Figure 16: Similar to Fig 6 but for the fourth eigenvector. We see that the loss surface is
much flatter in this direction. To facilitate a direct comparison, scale of each axis is kept the
same as in Fig. 6.
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Figure 17: Similar to Fig 6 but for Resnet-32 (top) and SimpleCNN (bottom) with η = 0.05.
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Figure 18: Similar to Fig 6 but for Resnet-32 (top) and SimpleCNN (bottom) run for 200
epochs.

C Additional results for Sec. 4

Here we report additional results for Sec. 4. Most importantly, in Tab. 2 we report full
results for SimpleCNN model. Next, we rerun the same experiment, using the Resnet-32
model, on the CIFAR-100 dataset, see Tab. 5, and on the Fashion-MNIST dataset, see
Tab. 6. In the case of CIFAR-100 we observe that conclusion carry-over fully. In the case of
Fashion-MNIST we observe that the final generalization for the case of γ < 1 and γ = 1.0 is
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Figure 19: Evolution of the spectral norm and Frobenius norm of the Hessian (y axis, solid
and dashed line, respectively) for different γ (color) for the experiment using a larger learning
(left) and momentum (right), see text for details.

similar. Therefore, as discussed in the main text, the behavior seems to be indeed dataset
dependent.

In Sec. 4 we purposedly explored NSGD in the context of suboptimally picked learning rate,
which allowed us to test if NSGD has any implicit regularization effect. In the next two
experiments we explored how NSGD performs when using either a large base learning η, or
when using momentum. Results are reported in Tab. 3 (learning rate η = 0.1) and Tab. 4
(momentum µ = 0.9). In both cases we observe that NSGD improves training speed and
reaches a significantly sharper region initially, see Fig. 22. However, the final region curvature
in both cases, and the final generalization when using momentum, is not significantly affected.
Further study of NSGD using a high learning rate or momentum is left for future work.

Table 2: Same as Tab. 1, but for Simple-CNN model. NSGD with γ = 5.0 diverged and was
excluded from the Table.

||H||F Test acc. Val. acc. (50) Loss Dist.

γ = 0.01 423/429 87.1% 83.5% 0.00143 17.63

γ = 0.1 294/268 87.4% 83.3% 0.00126 17.98

γ = 1.0 127/127 86.6% 82.3% 0.00063 19.76

γ = 5.0 130/129 85.2% 79.8% 0.00160 20.26

SGD(0.005) 476/516 85.8% 78.0% 0.00862 14.94

SGD(0.05) 34/26 87.4% 85.1% 0.00008 35.38

Table 3: Same as Tab. 1, but for Resnet-32 and NSGD using base learning rate η = 0.1.
NSGD with γ = 5.0 diverged and was excluded from the Table.

||H||F Test acc. Val. acc. (50) Loss Dist.

γ = 0.01 32/34 89.3% 85.8% 0.00322 49.04

γ = 0.1 20/26 89.2% 85.9% 0.00105 50.73

γ = 1.0 25/19 87.9% 83.2% 0.00246 50.70

Table 4: Same as Tab. 1, but for Resnet-32 and NSGD using momentum coefficient 0.9.

||H||F Test acc. Val. acc. (50) Loss Dist.

γ = 0.01 20/20 89.4% 86.9% 0.00225 47.57

γ = 0.1 36/32 89.3% 87.1% 0.00082 47.14

γ = 1.0 27/34 89.2% 85.8% 0.00239 49.57

γ = 5.0 35/44 88.2% 83.9% 0.00438 51.07
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Table 5: Same as Tab. 1, but for Simple-CNN and NSGD on the Fashion-MNIST dataset.

||H||F Test acc. Val. acc. (50) Loss Dist.

γ = 0.01 294/431 92.6% 90.3% 0.05300 13.73

γ = 0.1 257/341 92.4% 90.1% 0.04340 13.62

γ = 1.0 159/162 92.5% 89.8% 0.04672 14.85

γ = 5.0 75/101 91.7% 89.2% 0.07820 14.65

Table 6: Same as Tab. 1, but for Resnet-32 and NSGD on the CIFAR-100 dataset.

||H||F Test acc. Val. acc. (50) Loss Dist.

γ = 0.01 1, 315/1, 544 56.9% 27.8% 0.18048 31.37

γ = 0.1 797/1, 192 57.4% 27.0% 0.29081 31.18

γ = 1.0 470/720 54.1% 25.6% 0.28299 32.67

γ = 5.0 240/378 53.2% 20.6% 0.51348 34.20

D SimpleCNN Model

The SimpleCNN used in this paper has four convolutional layers. The first two have 32 filters,
while the third and fourth have 64 filters. In all convolutional layers, the convolutional kernel
window size used is (3,3) and ‘same’ padding is used. Each convolutional layer is followed by
a ReLU activation function. Max-pooling is used after the second and fourth convolutional
layer, with a pool-size of (2,2). After the convolutional layers there are two linear layers
with output size 128 and 10 respectively. After the first linear layer ReLU activation is used.
After the final linear layer a softmax is applied. Please also see the provided code.

E Comparing NSGD to Newton Method

Nudged-SGD is a second order method, in the sense that it leverages the curvature of the loss
surface. In this section we argue that it is significantly different from the Newton method, a
representative second order method.

The key reason for that is that, similarly to SGD, NSGD is driven to a region in which
curvature is too large compared to its typical step. In other words NSGD does not use an
optimal learning rate for the curvature, which is the key design principle for second order
methods. This is visible in Fig. 20, where we report results of a similar study as in Sec. 3.2,
but for NSGD (K = 5, γ = 0.01). The loss surface appears sharper in this plot, because
reducing gradients along the top K sharpest directions allows optimizing over significantly
sharper regions.

As discussed, the key difference stems for the early bias of SGD to reach maximally sharp
regions. It is therefore expected that in case of a quadratic loss surface Newton and NSGD
optimizers are very similar. In the following we construct such an example. First, recall that
update in Newton method is typically computed as:

θ(t+ 1) = θ(t)− η(H + λI)−1gS(θ(t)), (1)

where λ is a scalar. Now, if we assume that H is diagonal and put diag(H) =
[100, 100, 100, 100, 100, 1, 1], and finally let λ = 0, it can be seen that the update of NSGD
with γ = 0.01 and K = 5 is equivalent to that of Newton method.
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Figure 20: Same as Fig. 6, but for NSGD with γ = 0.01 and K = 5.

F Experiments on sentiment analysis dataset

Most of the experiments in the paper focused on image classification datasets (except for
language modeling experiments in Sec. 3.1). The goal of this section is to extend some of the
experiments to the text domain. We experiment with the IMDB (Maas et al., 2011) binary
sentiment classification dataset and use the simple CNN model from the Keras (Chollet
et al., 2015) example repository6.

First, we examine the impact of learning rate and batch-size on the Hessian along the training
trajectory as in Sec. 3.1. We test η ∈ {0.025, 0.05, 0.1} and S ∈ {2, 8, 32}. As in Sec. 3.1 we
observe that the learning rate and the batch-size limit the maximum curvature along the
training trajectory. In this experiment the phase in which the curvature grows took many
epochs, in contrast to the CIFAR-10 experiments. The results are summarized in Fig. 21.

Next, we tested Nudged SGD with η = 0.01, S = 8 and K = 1. We test γ ∈ {0.1, 1.0, 5.0}.
We increased the number of parameters of the base model by increasing by a factor of 2
number of filters in the first convolutional layer and the number of neurons in the dense
layer to encourage overfitting. Experiments were repeated over 3 seeds.

We observe that in this setting NSGD for γ < 1 optimizes significantly faster and finds a
sharper region initially. At the same time using γ < 1 does not result in finding a better
generalizing region. The results are summarized in Tab. 7 and Fig. 22.
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Figure 21: Same as Fig. 4, but for CNN model on the IMDB dataset.
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Figure 22: NSGD experiments on IMDB dataset. Evolution of the validation accuracy (left)
and spectral norm of the Hessian (left) for different γ.

6Accessible at https://github.com/keras-team/keras/blob/master/examples/imdb_cnn.py
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Table 7: Same as Tab. 1, but for CNN on IMDB dataset.

||H||F Test acc. Val. acc. (10) Loss Dist.

γ = 0.1 5.91/1.94 88.83% 86.79 0.00031 13.24

γ = 1.0 4.19/1.45 88.79% 84.52 0.00029 14.04

γ = 5.0 2.36/0.79 88.37% 78.32 0.00023 16.85

19


	Introduction
	Experimental setup and notation
	A study of the Hessian along the SGD path
	Largest eigenvalues of the Hessian along the SGD path
	Sharpest direction and SGD step
	How SGD steers to sharp regions in the beginning

	Optimizing faster while finding a good sharp region
	Related work
	Conclusions
	Additional results for Sec. 3.1
	Additional results on the evolution of the largest eigenvalues of the Hessian
	Impact of learning rate schedule
	Impact of using momentum

	Additional results for Sec. 3.2
	Additional results for Sec. 4
	SimpleCNN Model
	Comparing NSGD to Newton Method
	Experiments on sentiment analysis dataset

