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Abstract
It is well known that the law of a one-dimensional diffusion on natural scale is fully
characterized by its speed measure. Stone proved a continuous dependence of such
diffusions on their speed measures. In this paper we establish the converse direction,
i.e., we prove a continuous dependence of the speed measures on their diffusions.
Furthermore, we take a topological point of view on the relation. More precisely, for
suitable topologies, we establish a homeomorphic relation between the set of regular
diffusions on natural scale without absorbing boundaries and the set of locally finite
speed measures.
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1 Introduction

It is well known (see, e.g., [3, 11]) that the law of a one-dimensional regular contin-
uous strong Markov process on natural scale (called diffusion in this short section)
is fully characterized by its speed measure. Among other things, Stone [25] proved
that diffusions depend continuously on their speed measures and Brooks and Chacon
[4] established the converse direction for real-valued diffusions, i.e., they proved a
continuous dependence of the speed measures on the diffusions.
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In this paper we establish a continuous dependence of the speed measures for
general diffusions. The real-valued and the general case distinguish in two important
points: for real-valued diffusions there is no issue with the boundary behavior and
the corresponding speed measures are locally finite, which in particular means that
they can be endowed with the vague topology. To treat the general case we use a new
method of proof, which is quite different to those of Brooks and Chacon. In Sect. 3.4
we comment in more detail on the methods and compare them to each other.

As a second contribution, we investigate the relation of certain diffusions and their
speed measures from a topological perspective. Namely, for suitable topologies, we
deduce a homeomorphic relation between the set of regular diffusions on natural
scale without absorbing boundaries and the set of locally finite speed measures. As
an application of the homeomorphic relation, we discuss properties of certain subsets
of the set of diffusions without absorbing boundaries, namely those with the Feller–
Dynkin property and Itô diffusions with open state space. More precisely, we show
that both of these subsets are dense Borel sets which are neither closed nor open.

The remainder of this paper is structured as follows. In Sect. 2 we introduce some
notation andwe recall the canonical diffusion framework used in this paper. Thereafter,
in Sect. 3, we present and prove our main result, we discuss some of its consequences
and we comment on the relation to the work [4]. Finally, in Sect. 4, we present our
results on the topological relation of diffusions without absorbing boundaries and their
speed measures.

2 Foundations

This section is split into three parts. In the first we recall some notation, in the second
we introduce our probabilistic framework and in the third part we introduce the notion
of speed measure convergence, which is crucial for the formulation of our main result.

2.1 Notation for Function andMeasure Spaces

In this section we introduce our notation for function and measure spaces.

2.1.1 Function Spaces

Let G and F be topological spaces. We denote the set of functions from G into F by
M(G, F) and its subspace continuous functions by C(G, F). We write C(G) for the
spaceC(G, R) andwewriteCb(G) for its subspace of real-valued bounded continuous
functions. Further, we write Cc(G) for the set of continuous functions G → R with
compact support. In case G is a locally compact topological space, C0(G) denotes the
set of continuous functions G → R which are vanishing at infinity. Finally, if G is an
open subset of R, then L1

loc(G) is defined to be the set of all locally integrable Borel
functions G → R, where functions are identified when they agree Lebesgue almost
everywhere. We endow L1

loc(G)with the local L1-topology, which is generated by the
metric
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dL1
loc(G)( f , g) �

∞∑

k=1

1

2k
min

(∫

Gk

| f (x) − g(x)|dx, 1
)

, f , g ∈ L1
loc(G),

where (Gk)
∞
k=1 ⊂ G is a sequence of compact subsets of R such that G1 ⊂ G2 ⊂ · · ·

and G = ⋃∞
k=1 Gk . Notice that L1

loc(G) is a Polish space with this topology.1

2.1.2 Measure Spaces

Let G be a Polish space and denote its Borel σ -field by B(G). The set of probability
measures on (G,B(G)) is denoted by M1(G). We endow M1(G) with the weak
topology, i.e., with the coarsest topology onM1(G)with respect towhich allmappings
μ �→ ∫

f dμ, f ∈ Cb(G), are continuous. It is well known that M1(G) is a Polish
space.

Suppose now that G is a locally compact Polish space. A measure μ on (G,B(G))

is said to be locally finite if μ(K ) < ∞ for every compact set K ⊂ G. The set of all
locally finite measures on (G,B(G)) is denoted by M(G). We endow M(G) with
the vague topology, i.e., with the coarsest topology on M(G) with respect to which
all mappings μ �→ ∫

f dμ, f ∈ Cc(G), are continuous. The space M(G) is Polish
([2, Theorem 31.5]).

2.2 Canonical Framework for Diffusions

We work with the canonical setting for diffusions as introduced in [21, Sect. V.25]. A
quite complete treatment of the theory is given in the monograph of Itô and McKean
[11]. Shorter introductions can be found in the monographs [3, 14, 20, 21].

Let J ⊂ R be a finite or infinite, closed, open or half-open interval, denote its
interior by J ◦ and by ∂ J � J\J ◦ the boundary points in J . We define � to be the
space of continuous functions from R+ � [0,∞) into J endowed with the local
uniform topology. The coordinate process on � is denoted by X, i.e., Xt (ω) = ω(t)
for t ∈ R+ and ω ∈ �. It is well known that the Borel σ -field on � is given by
F � σ(Xs, s ≥ 0). For any time t ∈ R+, we also setFt � σ(Xs, s ≤ t) and we define
the shift operator θt : � → � by (θtω)(s) = ω(t + s) for all s, t ∈ R+.

We call (J 
 x �→ Px ∈ M1(�)) a (canonical) diffusion, if x �→ Px (A) is
measurable for all A ∈ F , Px (X0 = x) = 1 for all x ∈ J , and, for any (Ft+)t≥0-
stopping time τ and any x ∈ J , PXτ is the regular conditional Px -distribution of θτX
given Fτ+ on {τ < ∞}, i.e., Px -a.s. on {τ < ∞}

Px
(
θ−1
τ G|Fτ+

)
= PXτ (G), G ∈ F .

1 The space (L1loc(G), dL1loc(G)
) is a complete metric space by [16, Lemma I.5.17], and it is separable as

C(G) is a dense subset ([9, Lemma 7.2]) andC(G) is separable for the local uniform topology ([14, Lemma
A.5.1]).
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The final part is the strong Markov property. A diffusion (x �→ Px ) is called regular
if, for all x ∈ J ◦ and y ∈ J ,

Px (γy < ∞) > 0, (2.1)

where

γy � inf(s ≥ 0 : Xs = y)

with the convention that inf(∅) � ∞. Further, (x �→ Px ) is called completely regular2

if (2.1) holds for all x, y ∈ J . Notice that regularity and complete regularity are
equivalent for open J . We say that a regular diffusion (x �→ Px ) is on natural scale
if, for all a, b, x ∈ J with a < x < b, we have

Px (γb < γa) = x − a

b − a
.

Any regular diffusion can be brought to natural scale via a homeomorphic space
transformation ([3, Proposition 16.34]). Let (x �→ Px ) be a regular diffusion on
natural scale. According to [3, Theorem 16.36], there exists a unique locally finite
measure m on (J ◦,B(J ◦)) such that, for any a < b with [a, b] ⊂ J ◦, we have

Ex
[
γa ∧ γb

] =
∫

G(a,b)(x, y)m(dy), x ∈ (a, b),

where G(a,b) is the Green function defined by

G(a,b)(x, y) �

⎧
⎨

⎩

2(x ∧ y − a)(b − x ∨ y)

b − a
, a ≤ x, y ≤ b,

0, otherwise.
(2.2)

Next, we extendm from the interior J ◦ to the whole space J . Suppose that J is closed
at the left side with boundary point l ∈ ∂ J . We now define a symmetrized Green
function for all intervals of the form I � [l, c) with c ∈ J ◦. Let I ∗ be the reflection
of I around l, i.e., I ∗ = (l − (c − l), l] and, for y ∈ I , let y∗ be the reflection of y
around l, i.e., y∗ = l − (y − l). Then, define

GI (x, y) � GI∪I ∗(x, y) + GI∪I ∗(x, y∗), x, y ∈ J , (2.3)

where GI∪I ∗ is given by (2.2). By [3, Theorem 16.47], m({l}) can be defined such
that, for any c ∈ J ◦,

Ex
[
γb

] =
∫

G[l,c)(x, y)m(dy), x ∈ [l, c).

2 This terminology is new in the sense that it does not appear in [3, 11, 14, 20, 21].
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In particular, in casem((l, c)) = ∞ for some c ∈ J ◦, we setm({l}) � ∞. In the same
way, m({r}) can be defined for a right boundary point r which is an element of J .
In this manner, we get a measure m on (J ,B(J )) which is called the speed measure
associated to the regular diffusion (x �→ Px ). The speed measure is an element of
M(J ), i.e., locally finite, if and only if the corresponding diffusion is completely
regular. Within the class of regular diffusions on natural scale, the speed measure
determines a diffusion uniquely ([3, Corollary 16.73]).

We end this section with some boundary terminology. We say that a boundary
point b ∈ ∂ J is absorbing if m({b}) = ∞, and otherwise we call it reflecting. This
terminology coincides with those from [14, 21] but it differs slightly from those in [3,
11, 20], where finer allocations are given.

2.3 SpeedMeasure Convergence

We now introduce the nonstandard concept of speed measure convergence. Define
l � inf J and r � sup J .

Definition 2.1 We say that the sequence (mn)∞n=1 of speedmeasures on J converges in
the speed measure sense to a speed measurem0 on J , which we denote bymn ⇒ m0,
if the following hold:

(a) mn|J ◦ → m0|J ◦ vaguely.
(b) If l ∈ J , then

∫
f dmn → ∫

f dm0 for all 0 ≤ f ∈ C(J ) such that f (l) > 0 and
f = 0 off [l, y) for some y ∈ J ◦.

(c) If r ∈ J , then
∫

f dmn → ∫
f dm0 for all 0 ≤ f ∈ C(J ) such that f (r) > 0 and

f = 0 off (y, r ] for some y ∈ J ◦.

Remark 2.2 If (mn)∞n=0 ⊂ M(J ), then mn ⇒ m0 if and only if mn → m0 vaguely.

Example 2.3 Consider J = R+ andmn(dx) � dx + nδ0(dx) for n ∈ N. Then,mn ⇒
m0(dx) � dx+∞δ0(dx). Broadly speaking, the speed measure of a sticky Brownian
motion converges in the speedmeasure sense to those of an absorbed Brownianmotion
if the stickiness parameter increases to infinity.

3 Stone’s Theorem and Its Converse

In this section, we fix a sequence (mn)∞n=0 of arbitrary speed measures on J . For each
n ∈ Z+ � Z ∩ [0,∞), let (J 
 x �→ Pn

x ) be the regular diffusion on natural scale
with speed measure mn .

3.1 Stone’s Theorem

In his seminal paper [25], Stone investigated limit theorems for random walks, birth
and death processes and diffusions. Boiled down to the class of regular diffusions on
natural scale, Stone proved the following theorem, which is implied by part (5) of his
Corollary 1.
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Theorem 3.1 (Stone’s Theorem) If mn ⇒ m0, then Pn
xn → P0

x0
weakly for all

sequences (xn)∞n=0 ⊂ J such that xn → x0.

Stone’s theorem provides a sufficient condition for the convergence of regular dif-
fusions (on natural scale) in terms of their speed measures. Further, it shows that a
regular diffusion (x �→ Px ) on natural scale can be seen as a continuous map from J
intoM1(�). This observation deserves a formal statement.

Corollary 3.2 If (x �→ Px ) is a regular diffusion on natural scale, then x �→ Px is a
continuous function from J into M1(�), i.e., (x �→ Px ) ∈ C(J ,M1(�)).

As a consequence of Corollary 3.2, (x �→ Pn
x )∞n=1 is a sequence in the space

C(J ,M1(�)) and hence, we can ask whether it converges in the local uniform
topology.

Corollary 3.3 If mn ⇒ m0, then (x �→ Pn
x ) → (x �→ P0

x ) locally uniformly in
C(J ,M1(�)).

Proof of Corollary 3.3 Thanks to Theorem 3.1, for every sequence (xn)∞n=0 ⊂ J with
xn → x0, we have Pn

xn → P0
x0

weakly. In other words, the sequence (x �→ Pn
x )∞n=1

converges continuously to (x �→ P0
x ). A theorem by Carathéodory ([18, Theorem

on pp. 98–99]) shows that continuous convergence is equivalent to local uniform
convergence. ��

3.2 A Converse to Theorem 3.1

The following theorem, which can be seen as a converse to Theorem 3.1, is our main
result. We present its proof in Sect. 3.3.

Theorem 3.4 Suppose that there exists a point y ∈ J ◦ such that Pn
x → P0

x weakly for
all x ∈ ∂ J ∪ {y}. Then, mn ⇒ m0.

Remark 3.5 The statement of Theorem 3.4 cannot be weakened to the following: if
Pn
xn → P0

x0
weakly for some sequence (xn)∞n=0 ⊂ J , then mn ⇒ m0. Indeed, if J

is non-open with b ∈ ∂ J and all diffusions (x �→ Pn
x )∞n=0 are absorbed in b, then

Pn
b → P0

b is trivially true independently of the speed measures.

Corollary 3.6 The following are equivalent:

(1) mn ⇒ m0.
(2) Pn

xn → P0
x0

weakly for every sequence (xn)∞n=0 ⊂ J such that xn → x0.

(3) (x �→ Pn
x ) → (x �→ P0

x ) locally uniformly in C(J ,M1(�)).
(4) There exists a point y ∈ J ◦ such that Pn

x → P0
x weakly for all x ∈ ∂ J ∪ {y}.

Proof The implication (1) ⇒ (2) follows from Theorem 3.1, the implication (1) ⇒
(3) is given by Corollary 3.3, that either (2) or (3) implies (4) is trivial and, finally, the
implication (4) ⇒ (1) follows from Theorem 3.4. ��

123



Journal of Theoretical Probability

Remark 3.7 (1) Corollary3.6 shows that on the set of regular diffusions onnatural scale
the sequential topologies of pointwise and local uniform convergence coincide.

(2) It is interesting to compareCorollary 3.6 to a variant of the Trotter–Kato theorem as
given by [14, Theorem 17.25], which states that convergence (in a certain sense)
of infinitesimal generators is equivalent to weak convergence of the associated
Feller–Dynkin processes for arbitrary weakly convergent initial laws. For regular
diffusions that are Feller–Dynkin processes, Rosenkrantz and Dorea [23] deduced
a version of Stone’s theorem from an early variant of [14, Theorem 17.25] which
is due to Kurtz [15]. Furthermore, Rosenkrantz [22] emphasized the importance
of Kurtz’ work, who established a necessary and sufficient condition in his result.
In the same spirit, Corollary 3.6 provides a necessary and sufficient condition for
weak convergence of regular diffusions on natural scale,which need, in general, not
to be Feller–Dynkin processes, cf. [7] for a characterization of the class of regular
Feller–Dynkin diffusions (on natural scale) in terms of their speed measures.

(3) It is also interesting to notice the role of the initial values in Corollary 3.6. In
this regard, we highlight the implication (4) ⇒ (2), which tells us that the weak
convergence Pn

xn → P0
x0

holds for all sequences (xn)∞n=0 ⊂ J such that xn → x0

once it holds for (at most) three constant sequences (one taken from the interior
and (at most) two for the attainable boundary points). In particular, in case the
state space J is open, weak convergence of regular diffusions for an arbitrary fixed
initial value already implies weak convergence of the diffusions for all convergent
sequences of initial values. The proof of the implication (4) ⇒ (2) fully relies on
Theorem 3.4, which shows that at most three constant test sequences of initial
values suffice to understand the convergence of the speed measures, which then,
by Theorem 3.1, implies weak convergence of the corresponding diffusions for all
convergent sequences of initial values.

3.3 Proof of Theorem 3.4

This section is split into four parts. In Sect. 3.3.1 we establish some preliminary tech-
nical results. Thereafter, in Sect. 3.3.2, we establish part (a) of Definition 2.1, i.e., we
prove vague convergence of the speed measures on the interior of the state space. In
Sect. 3.3.3 we consider part (b) of Definition 2.1, i.e., we establish convergence of
the speed measures at closed left boundaries. Here, we distinguish between the cases
where the boundary point is absorbing or reflecting. Part (c) of Definition 2.1, which
deals with closed right boundary points, can be proved similar to part (b) and we omit
a detailed proof for brevity. Finally, in Sect. 3.3.4, we connect the pieces and deduce
Theorem 3.4.

3.3.1 Preparations

In this section, we prepare the proof of Theorem 3.4 with some technical results. For
y ∈ J , we set

τ+
y � inf(s ≥ 0 : Xs ≥ y), τ−

y � inf(s ≥ 0 : Xs ≤ y),
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σ+
y � inf(s ≥ 0 : Xs > y), σ−

y � inf(s ≥ 0 : Xs < y),

which are functions from � into [0,∞] with the convention that inf(∅) = ∞.
Recall that a function f froma topological space T into [−∞,∞] is said to be upper

semicontinuous if { f < c} = {t ∈ T : f (t) < c} is open for every c ∈ R, and that f is
called lower semicontinuous if { f ≤ c} is closed for every c ∈ R. Equivalently, upper
and lower semicontinuity can be defined via nets (or sequences if T is first countable).
To be more precise ([1, Lemma 2.42]), assuming that T is first countable, f is upper
semicontinuous if and only if tn → t implies that lim supn→∞ f (tn) ≤ f (t), and f
is lower semicontinuous if and only if tn → t implies that lim infn→∞ f (tn) ≥ f (t).
Further, recall that the path space � is endowed with the local uniform topology.

Lemma 3.8 For any y ∈ J , the functions � 
 ω �→ σ±
y (ω) ∈ [0,∞] are

upper semicontinuous and the functions � 
 ω �→ τ±
y (ω) ∈ [0,∞] are lower

semicontinuous.

Proof of Lemma 3.8 The claim is implied by [17, Exercise 2.1 on p. 75]. For complete-
ness, we provide a proof for σ+

y and τ+
y . The arguments for σ−

y and τ−
y work the same

way. Fix an arbitrary t > 0. We have

{
σ+
y < t

}
=

⋃

s∈Q
s<t

{Xs > y}.

As ω �→ ω(s) is continuous for every s ∈ R+, the set {Xs > y} is open, as the inverse
image of an open set under a continuous map is open (by definition). As unions of
open sets are open (by definition), {σ+

y < t} is also open. Consequently, σ+
y is upper

semicontinuous.
Take t ∈ R+ and let dy(x) � inf z≥y |z − x | for x ∈ J . We have

{
τ+
y ≤ t

}
=

{
inf

s∈Q∩[0,t] dy(Xs) = 0
}
.

For every s ∈ Q ∩ [0, t] and ω,ω′ ∈ �, we get

inf
r∈Q∩[0,t] dy(ω(r)) ≤ dy(ω(s)) ≤ sup

r≤t
|ω(r) − ω′(r)| + dy(ω

′(s)).

Taking the infimum over s and using symmetry yields that

∣∣∣ inf
r∈Q∩[0,t] dy(ω(r)) − inf

r∈Q∩[0,t] dy(ω
′(r))

∣∣∣ ≤ sup
r≤t

|ω(r) − ω′(r)|.

Consequently, ω �→ infs∈Q∩[0,t] dy(ω(s)) is continuous (in the local uniform topol-
ogy) and {τ+

y ≤ t} is closed, as the inverse image of a closed set under a continuous
map is closed (by definition). Finally, we conclude that τ+

y is lower semicontinuous.
��
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Lemma 3.9 Let x0 ∈ J and let (J 
 x �→ Px ) be a regular diffusion on natural scale.
For every a ∈ (l, x0) and b ∈ (x0, r), we have Px0 -a.s.

τ−
a = σ−

a = γa and τ+
b = σ+

b = γb.

Proof of Lemma 3.9 We only show that Px0 -a.s. τ−
a = σ−

a = γa . The proof for the
other claim is similar. As Px0 -a.s. X0 = x0 and a < x0, Px0 -a.s. τ−

a = γa is clear.
Thanks to [8, Lemma 2.12], as a ∈ J ◦, it holds that Pa-a.s. σ−

a = 0. Now, using the
strong Markov property, we get

Px0(τ
−
a = σ−

a , τ−
a < ∞) = Px0(σ

−
a (θτ−

a
X) = 0, τ−

a < ∞)

= Ex0

[
PX

τ
−
a

(σ−
a = 0)1{τ−

a <∞}
]

= Pa(σ
−
a = 0)Px0(τ

−
a < ∞)

= Px0(τ
−
a < ∞).

Since τ−
a ≤ σ−

a , we clearly have τ−
a = σ−

a on {τ−
a = ∞}. This completes the proof.

��
For P ∈ M1(�), we say that a Borel function f : � → [−∞,∞] is P-a.s.

continuous if

P({ω ∈ � : f is discontinuous at ω}) = 0.

Equivalently, f is P-a.s. continuous if there exists a set G ∈ F such that f is
continuous at every ω ∈ G and P(G) = 1.

Lemma 3.10 Let x0 ∈ J and let (J 
 x �→ Px ) be a regular diffusion on natural
scale. For every a ∈ J ◦\{x0}, the function � 
 ω �→ γa(ω) ∈ [0,∞] is Px0 -a.s.
continuous.

Proof of Lemma 3.10 We suppose that a < x0. The case a > x0 works the same way.
Set

G � {ω ∈ � : ω(0) = x0, τ
−
a (ω) = σ−

a (ω)}.
By Lemma 3.9, we have Px0(G) = 1. Take ω0 ∈ G and let (ωn)∞n=1 ⊂ � be such
that ωn → ω0 locally uniformly. W.l.o.g. we may assume that ωn(0) > a for all
n = 1, 2, . . .. Since, by Lemma 3.8, ω �→ τ−

a (ω) is lower semicontinuous and ω �→
σ−
a (ω) is upper semicontinuous, and τ−

a ≤ σ−
a , we get that

τ−
a (ω0) ≤ lim inf

n→∞ τ−
a (ωn) ≤ lim sup

n→∞
τ−
a (ωn) ≤ lim sup

n→∞
σ−
a (ωn) ≤ σ−

a (ω0). (3.1)

By definition of G and because ω0 ∈ G, we have σ−
a (ω0) = τ−

a (ω0) = γa(ω
0). Thus,

since τ−
a (ωn) = γa(ω

n) for all n = 1, 2, . . ., we conclude from (3.1) that

γa(ω
0) ≤ lim inf

n→∞ γa(ω
n) ≤ lim sup

n→∞
γa(ω

n) ≤ γa(ω
0).
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This shows that ω �→ γa(ω) is continuous at ω0. ��
Lemma 3.11 Let (Pn)∞n=0 ⊂ M1(�) be a sequence such that Pn → P0 weakly. For
every b ∈ J and t > 0, there are numbers N+

b ∈ Z+ and N−
b ∈ Z+ such that

sup
n∈Z+

Pn(σ+
b ≥ t) = PN+

b (σ+
b ≥ t), sup

n∈Z+
Pn(σ−

b ≥ t) = PN−
b (σ−

b ≥ t).

Proof of Lemma 3.11 Take b ∈ J and t > 0. By Lemma 3.8, the maps ω �→ σ±
b (ω)

are upper semicontinuous. Hence, by [1, Theorem 15.5], the maps M1(�) 
 P �→
P(σ±

b ≥ t) ∈ [0, 1] are also upper semicontinuous. Since Pn → P0 weakly, the
set {Pn : n ∈ Z+} is compact in M1(�). Now, the claim follows from the fact that
real-valued upper semicontinuous functions attain a maximum value on a compact set
([1, Theorem 2.43]). ��
Lemma 3.12 Let [a, b] ⊂ J be a proper interval and let (J 
 x �→ Px ) be a regular
diffusion on natural scale. Furthermore, take x, x0 ∈ [a, b]. If x ≤ x0, then, for every
t > 0,

Px (γa ≥ t) ≤ Px0(γa ≥ t), (3.2)

and if x0 ≤ x, then, for every t > 0,

Px (γb ≥ t) ≤ Px0(γb ≥ t). (3.3)

In particular, for all t > 0, we have

Px (γa,b ≥ t) ≤ max
(
Px0(γa ≥ t), Px0(γb ≥ t)

)
. (3.4)

Proof of Lemma 3.12 We argue as in the proof of [3, Lemma 16.25]. If x ≤ x0, the
strong Markov property yields that

Px0(γa < t) ≤ Px0(γx < ∞, γa(θγxX) < t)

= Ex0

[
1{γx<∞}PXγx

(γa < t)
]

= Px0(γx < ∞)Px (γa < t)

≤ Px (γa < t).

This shows the inequality (3.2). If x0 ≤ x , the same computation yields the inequality
(3.3). The final inequality (3.4) is an immediate consequence of (3.2) and (3.3). ��

3.3.2 Proof for Convergence in the Interior: Part (a) from Definition 2.1

Let (J 
 x �→ Pn
x )∞n=0 be a sequence of regular diffusions on natural scale. Recall

that l = inf J and r = sup J . In particular, this notation means that J ◦ = (l, r).
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Lemma 3.13 Assume that Pn
x0 → P0

x0 weakly for some x0 ∈ J ◦. Then, for all a ∈
(l, x0), b ∈ (x0, r) and f ∈ Cc(J ◦),

En
x0

[∫ γa∧γb

0
f (Xs)ds

]
→ E0

x0

[∫ γa∧γb

0
f (Xs)ds

]
(3.5)

as n → ∞.

Before we prove this lemma, we deduce part (a) of Definition 2.1.

Corollary 3.14 If Pn
x0 → P0

x0 weakly for some x0 ∈ J ◦, thenmn|J ◦ → m0|J ◦ vaguely.

Proof of Corollary 3.14 Let f ∈ Cc(J ◦) and let [a, b] ⊂ J ◦ be a proper interval such
that f = 0 off [a, b]. Take c, d ∈ J ◦ such that c < a and d > b, and such that
x0 ∈ (c, d). Recall that G(c,d) denotes the Green function as defined in (2.2). Then,
(x �→ f (x)/G(c,d)(x0, x)) ∈ Cc(J ◦), and [20, Corollary VII.3.8] yields that

En
x0

[∫ γc∧γd

0

f (Xs)ds
G(c,d)(x0,Xs)

]
=

∫
G(c,d)(x0, y)

f (y)

G(c,d)(x0, y)
mn(dy) =

∫
f dmn

for all n ∈ Z+. Finally, thanks to Lemma 3.13, we obtain that

∫
f dmn = En

x0

[∫ γc∧γd

0

f (Xs)ds
G(c,d)(x0,Xs)

]

→ E0
x0

[∫ γc∧γd

0

f (Xs)ds
G(c,d)(x0,Xs)

]
=

∫
f dm0.

This proves that mn|J ◦ → m0|J ◦ vaguely. ��
In the remainder of this section, we prove Lemma 3.13. The two main ingredients

of the proof are the continuous mapping theorem and a uniform secondmoment bound
for the stopping time γa ∧ γb, which is established by the following lemma.

Lemma 3.15 Assume that Pn
x0 → P0

x0 weakly for some x0 ∈ J ◦ and let [a, b] ⊂ J ◦
be a proper interval such that x0 ∈ (a, b). Then,

sup
n∈Z+

En
x0

[
γ 2
a,b

]
< ∞ with γa,b � γa ∧ γb.

Proof of Lemma 3.15 We fix t > 0 and define

α � sup
(
Pn
x (γa,b ≥ t) : n ∈ Z+, a ≤ x ≤ b

)
.

Thanks to Lemmata 3.9, 3.11 and 3.12, there are numbers N−
a , N+

b ∈ Z+ such that

α ≤ sup
n∈Z+

(
max(Pn

x0(γa ≥ t), Pn
x0(γb ≥ t))

)
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= sup
n∈Z+

(
max(Pn

x0(σ
−
a ≥ t), Pn

x0(σ
+
b ≥ t))

)

≤ max
(
P
N−
a

x0 (σ−
a ≥ t), P

N+
b

x0 (σ+
b ≥ t)

)
.

Thanks to [5, Theorem 1.1], regular diffusions hit (attainable) points arbitrarily fast
with positive probability, which implies that

max

(
P
N−
a

x0 (σ−
a ≥ t), P

N+
b

x0 (σ+
b ≥ t)

)
< 1.

We conclude that α < 1. Let n ∈ Z+ be arbitrary. Using the Markov property, for
every m ∈ Z+, we get

Pn
x0(γa,b ≥ mt + t) = Pn

x0(γa,b ≥ mt, γa,b(θmtX) ≥ t)

= En
x0

[
1{γa,b≥mt}Pn

Xmt
(γa,b ≥ t)

]

≤ Pn
x0(γa,b ≥ mt) α.

Thus, by induction, we obtain, for every m ∈ Z+, that

Pn
x0(γa,b ≥ mt) ≤ αm .

Finally, we estimate

En
x0

[
γ 2
a,b

] =
∞∑

m=0

∫ (m+1)t

mt
2sPn

x0(γa,b ≥ s)ds ≤
∞∑

m=0

(m + 1)2t2αm < ∞.

The proof is complete. ��
Proof of Lemma 3.13 Take f ∈ Cc(J ◦), a ∈ (l, x0) and b ∈ (x0, r). By Lemma 3.15,
we have

sup
n∈N

En
x0

[(∫ γa,b

0
f (Xs)ds

)2
]

≤ sup
y∈[a,b]

| f (y)|2 sup
n∈N

En
x0

[
γ 2
a,b

]
< ∞.

Thus, the family

{
Pn
x0 ◦

(∫ γa,b

0
f (Xs)ds

)−1

: n ∈ N

}

is uniformly integrable. Furthermore, by Lemma 3.10, the function

ω �→
∫ γa,b(ω)

0
f (ω(s))ds

123



Journal of Theoretical Probability

is P0
x0 -a.s. continuous (and real-valued, as P

0
x0 -a.s. γa,b < ∞ by Lemma 3.15). Conse-

quently, the continuousmapping theorem ([14, Theorem 5.27]) yields the convergence
in (3.5). ��

3.3.3 Proof of Convergence up to the Boundaries: Part (b) of Definition 2.1

We now prove property (b) from Definition 2.1. Let (J 
 x �→ Pn
x )∞n=0 be a

sequence of regular diffusions onnatural scale. In the followingwedistinguish between
absorbing or reflecting boundaries.
The absorbing case.

Lemma 3.16 Assume that l = inf J ∈ J is an absorbing boundary point of (x �→ P0
x ),

i.e.,m0({l}) = ∞. Furthermore, assume that Pn
l → P0

l weakly. Then,
∫

f dmn → ∞
for all 0 ≤ f ∈ C(J ) such that f (l) > 0 and f = 0 off [l, y) for some y ∈ J ◦, i.e.,
part (b) of Definition 2.1 holds.

Proof of Lemma 3.16 For every b ∈ J ◦ and t > 0, the set {τ+
b > t} is open by

Lemma 3.8. Using the Portmanteau theorem, we get

lim inf
n→∞ Pn

l (τ+
b > t) ≥ P0

l (τ+
b > t) = 1.

Hence, Fatou’s lemma yields that

∞ =
∫ ∞

0
lim inf
n→∞ Pn

l (τ+
b > t)dt ≤ lim inf

n→∞

∫ ∞

0
Pn
l (τ+

b > t)dt = lim inf
n→∞ En

l

[
τ+
b

]
.

Take 0 ≤ f ∈ C(J ) such that f (l) > 0 and f = 0 off [l, y) for some y ∈ J ◦. Let
b ∈ (l, y) be such that f > 0 on [l, b] and choose z ∈ J ◦ such that y < z. By [20,
Proposition VII.3.10], we have

En
l

[∫ τ+
z

0

f (Xs)ds
G[l,z)(l,Xs)

]
=

∫
f dmn, (3.6)

where G[l,z) is the symmetrized Green function as defined in (2.3). Now, as n → ∞,
we obtain

∫
f dmn ≥ En

l

[∫ τ+
b

0

f (Xs)ds
G[l,z)(l,Xs)

]
≥ min

x∈[l,b]
f (x)

G[l,z)(l, x)
En
l

[
τ+
b

] → ∞.

This completes the proof. ��
Remark 3.17 Broadly speaking, in case l is an absorbing boundary point for the diffu-
sion (x �→ P0

x ), Lemma 3.16 shows that we can deduce some convergence properties
of the sequence (mn)∞n=1 around l from the weak convergence Pn

l → P0
l . The special

case where l is absorbing for all diffusions (x �→ Pn
x )∞n=0 shows that it is in general
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not possible to deduce convergence properties of (mn|J ◦)∞n=1 from the weak conver-
gence Pn

l → P0
l , see also Remark 3.5. We emphasis that Lemma 3.16 also covers the

case where neither of the diffusions (x �→ Pn
x )∞n=1 is absorbed in l, while the limiting

diffusion (x �→ P0
x ) is absorbed in l, see Example 2.3.

The reflecting case.

Lemma 3.18 Assume that l = inf J ∈ J is a reflecting boundary point of (x �→ P0
x ),

i.e., m0({l}) < ∞. Furthermore, assume that Pn
l → P0

l weakly. Then,
∫

f dmn →∫
f dm0 for all 0 ≤ f ∈ C(J ) such that f (l) > 0 and f = 0 off [l, y) for some

y ∈ J ◦, i.e., part (b) of Definition 2.1 holds.

Proof of Lemma 3.18 Take z ∈ J ◦ and t > 0, and take 0 ≤ f ∈ C(J ) such that
f (l) > 0 and f = 0 off [l, y) for some y ∈ J ◦. Using Lemma 3.8, the Portmanteau
theorem and [5, Theorem 1.1], we get

lim inf
n→∞ Pn

l

(
σ+
z < t

) ≥ P0
l

(
σ+
z < t

)
> 0.

Recall that a real-valued sequence converges to a limit L if and only if any of its
subsequences contains a further subsequence which converges to L . Thus, to get∫

f dmn → ∫
f dm0, we have to prove that any subsequence of (

∫
f dmn)∞n=1 contains

a further subsequence which converges to
∫

f dm0. Let (k(n))∞n=1 ⊂ N be an arbitrary
subsequence of (n)∞n=1. Then,

lim inf
n→∞ Pk(n)

l

(
σ+
z < t

) ≥ lim inf
n→∞ Pn

l

(
σ+
z < t

)
> 0.

Thus, there exists a subsequence (m(n))∞n=1 of (k(n))∞n=1 such that

Pm(n)
l

(
σ+
z < t

)
> 0, ∀n ∈ N.

To simplify our notation, we assume that Pn
l (σ+

z < t) > 0 for every n ∈ N. Con-
sequently, for each n ∈ Z+, the point l is a reflecting boundary of (x �→ Pn

x ) and,
recalling again [5, Theorem 1.1], we have

Pn
l

(
σ+
c < t

)
> 0 for all n ∈ Z+ and c ∈ J ◦. (3.7)

Take b ∈ J ◦ such that y < b. Here, recall that y ∈ J ◦ is such that f = 0 off [l, y).
We claim that

En
l

[∫ γb

0

f (Xs)ds
G[l,b)(l,Xs)

]
→ E0

l

[∫ γb

0

f (Xs)ds
G[l,b)(l,Xs)

]
. (3.8)

Recalling (3.6), the convergence in (3.8) implies that

∫
f dmn →

∫
f dm0,
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which completes the proof. Hence, it remains to prove (3.8), which is done by the
same strategy as used in the proof of Lemma 3.13. Our first step is to show that

sup
n∈Z+

En
l

[
γ 2
b

]
< ∞, (3.9)

which implies that the family

{
Pn
l ◦

(∫ γb

0

f (Xs)ds
G[l,b)(l,Xs)

)−1

: n ∈ N

}
. (3.10)

is uniformly integrable. Fix t > 0 and set

β � sup
(
Pn
x (γb ≥ t) : n ∈ Z+, l ≤ x ≤ b

)
.

Thanks to Lemmata 3.9, 3.11 and 3.12, there exists a number N+
b ∈ Z+ such that

β ≤ sup
n∈Z+

Pn
l (σ+

b ≥ t) = P
N+
b

l (σ+
b ≥ t) < 1,

where the final (strict) inequality follows from (3.7). As in the proof of Lemma 3.15,
using the Markov property and induction, we obtain that

Pn
l (γb ≥ mt) ≤ βm, n,m ∈ Z+.

Now, for every n ∈ Z+, we obtain

En
l

[
γ 2
b

] =
∞∑

m=0

∫ (m+1)t

mt
2sPn

l (γb ≥ s)ds ≤
∞∑

m=0

(m + 1)2t2βm < ∞,

which implies (3.9). We are in the position to complete the proof. Namely, by
Lemma 3.10, the map

ω �→
∫ γb(ω)

0

f (ω(s))ds

G[l,b)(l, ω(s))

is P0
l -a.s. continuous (and real-valued, as P0

l -a.s. γb < ∞ by (3.9)). Hence, (3.8)
follows from the continuous mapping theorem and the uniform integrability of (3.10).
This completes the proof. ��
3.3.4 Conclusion: Proof of Theorem 3.4

Under the hypothesis of Theorem 3.4, part (a) fromDefinition 2.1 follows fromCorol-
lary 3.14 and part (b) follows from Lemmata 3.16 and 3.18. Part (c) can be proved
similar to part (b) and we omit the details for brevity. We conclude that Theorem 3.4
holds. ��
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3.4 Comments on Related Literature

For the real-valued case, i.e., J = R, Theorem 3.4 follows from the main result of [4].
Theorem 3.4 seems to be new in its generality, as it covers diffusions with arbitrary
state spaces and arbitrary boundary behavior. Further, our method of proof seems to
be new and quite different to those from [4].

Let us outline the main differences. The set of speed measures of real-valued dif-
fusions is a subset of M(R), i.e., it consists of locally finite measures. Thus, it can
be endowed with the vague topology. This well-understood topological structure is
heavily used in the proof from [4], which is mainly split into two parts.

First, the sequence (mn)∞n=1 is proved to be bounded on every compact subset of J
uniformly in n. This property is known to be equivalent to relative compactness of the
set {mn : n ∈ N} in the vague topology ([19, Proposition 3.16]). Hence, to conclude
mn → m0 vaguely, it suffices to show that any vague accumulation point of (mn)∞n=1
coincides with m0.

The speed measure of a diffusion (on natural scale) can be characterized via the
Itô–McKean representation of the diffusion as a time change of Brownian motion, see
[14, Theorem 33.9]. This representation is called the canonical form.

In the second step of the proof from [4], any vague accumulation point of (mn)∞n=1
is shown to be a speed measure. Thanks to this observation, it can be deduced from
Stone’s theorem [25, Corollary 1], and the canonical form representation, that any
vague accumulation point of (mn)∞n=1 coincides with m0.

As our general setting contains diffusions without locally finite speed measures, we
cannot use arguments based on properties of the vague topology as done in the proof
from [4]. Corollary 3.14 provides an alternative strategy for the real-valued case from
[4], which is more direct in the sense that vague convergence is established without a
relative compactness argument. Moreover, our proof does not rely on Stone’s theorem
and the canonical form of a diffusion (on natural scale). Instead, we use the continuous
mapping theorem and a uniform second moment bound for exit times, which appears
to us more elementary.

4 A Topological Point of View on the Relation of Completely Regular
Diffusions and Their SpeedMeasures

In the remainder of this paper we take a look at the relation of completely regular
diffusions on natural scale and their speed measures from a topological point of view.
LetS be the set of all locally finite speedmeasures and letD be the set of all completely
regular diffusions on natural scale. We endow S with the vague topology, which turns
it into a metrizable space. Thanks to Corollary 3.2, we can treat D as a subspace
of C(J ,M1(�)) endowed with the local uniform topology, which renders it into a
metrizable space. The goal of this section is to establish a homeomorphic relation
between S and D.
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Remark 4.1 It would also be natural to consider regular diffusions as elements of
the space M(J ,M1(�)) of functions from J into M1(�) endowed with the topol-
ogy of pointwise weak convergence, i.e., the product weak topology. As the space
M(J ,M1(�)) is not first countable ([24, Theorem 7.1.7]), we cannot a priori3 check
continuity via sequential continuity. The spaceC(J ,M1(�)) (endowed with the local
uniform topology) on the other hand is metrizable and therefore also sequential.

Corollary 3.6 gives us the following result, which we call a theorem rather than a
corollary, since we think it deserves this name.

Theorem 4.2 The map � : D → S which maps a completely regular diffusion on
natural scale to its speedmeasure is a homeomorphism, i.e.,� is a continuous bijection
with continuous inverse �−1.

Related to Remark 4.1, Corollary 3.6 implies the following.

Corollary 4.3 In case D is seen as a subspace of M(J ,M1(�)) endowed with the
product weak topology, the map� is a sequential homeomorphism, i.e., a sequentially
continuous bijection with sequentially continuous inverse.4

In the remainder of this section we use Theorem 4.2 to study properties of certain
subsets ofD. More precisely, we consider the set of completely regular diffusions (on
natural scale) with the Feller–Dynkin property and the set of (driftless) Itô diffusions
with open state space.

4.1 On the Set of Diffusions with the Feller–Dynkin Property

We say that a diffusion (x �→ Px ) has the Feller–Dynkin property if (x �→
Ex [ f (Xt )]) ∈ C0(J ) for all f ∈ C0(J ) and t > 0. Let O be the set of all completely
regular diffusions with the Feller–Dynkin property.

Corollary 4.4 If J is bounded, then O = D and, in particular, O is clopen in D.
Conversely, if J is unbounded, then O is a dense Borel subset of D and it is neither
closed nor open in D.

Proof of Corollary 4.4 According to [7, Theorem 1.1], a regular diffusion with speed
measure m has the Feller–Dynkin property if and only if any infinite boundary point
of J is natural, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

∀ c ∈ J ◦ :
∫ ∞

c
|x |m(dx) = ∞, if ∞ is a boundary point,

∀ c ∈ J ◦ :
∫ c

−∞
|x |m(dx) = ∞, if − ∞ is a boundary point.

3 The space of continuous functions [0, 1] → [0, 1] is not sequential when endowed with the product
topology, see [13, Beispiel on p. 102].
4 Of course, the inverse �−1 is even continuous, as S is sequential.
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Now, if J is bounded, it is clear thatO = D. Suppose that J is unbounded. Notice that
�(O) is a Borel set, as the above characterization of the Feller–Dynkin property can be
reduced to a countable number ofmeasurable operations.Weclaim that�(O) is neither
closed nor open. Let us explain this claim in more detail. Take m0 ∈ S\�(O), define
mn(dx) � m0(dx) + dx/n and notice that mn ∈ �(O) and that mn → m0 vaguely.
Consequently,�(O) is not closed inS. Similarly, noting that e−|x |/ndx → dx vaguely
shows that S\�(O) is not closed and hence, that�(O) is not open.We conclude from
Theorem 4.2 that the setO is Borel but neither closed nor open. Finally, the claim that
O is dense inD follows from Theorem 4.2 and the fact that any locally finite measure
can be approximated in the vague topology by a sequence of discrete measures ([2,
Theorem 30.4]), i.e., a sequence whose elements are of the form

∑k
j=1 α jδx j , where

k ∈ N, α1, . . . , αk are non-negative real numbers and δx1 , . . . , δxk are Dirac measures
concentrated on the points x1, . . . , xk . To be more precise, let m0 ∈ S,m ∈ O and
let n1, n2, . . . be a sequence of discrete measures such that nn → m0 vaguely. Then,
mn � nn + 1

nm ∈ �(O) and mn → m0 vaguely. This shows that �(O) is dense in S
and hence, by Theorem 4.2, O is dense in D. The proof is complete. ��

4.2 On the Set of Itô Diffusions

Let us assume that J = (l, r) is open. We call a (completely) regular diffusion (with
state space J ) an Itô diffusion if its speed measure m is absolutely continuous w.r.t.
the Lebesgue measure, i.e., m(dx) = f (x)dx for some f ∈ L1

loc(J ). Denote the set
of Itô diffusions by I.
Remark 4.5 Let (x �→ Px ) ∈ M(J ,M1(�)). Then, (x �→ Px ) ∈ I with speed
measure m(dx) = f (x)dx if and only if, for every x ∈ J , Px is the (unique) law of a
solution process to the stochastic differential equation

dYt = dWt√
f (Yt )

, Y0 = x,

where W is a one-dimensional standard Brownian motion, see [14, Chapter 33] for
more details.

Corollary 4.6 I is a dense Borel subset of D and it is neither closed nor open in D.

The non-closedness of the set of real-valued Itô diffusions with drift was already
observed in [22]. Corollary 4.6 provides a refined picture for the set of Itô diffusions
without drift.

Proof of Corollary 4.6 Let A be the set of speed measures which are absolutely con-
tinuous w.r.t. the Lebesgue measure, and let S+(J ) be the set of all f ∈ L1

loc(J ) such

that
∫ b
a f (x)dx > 0 for all a, b ∈ J with a < b and

⎧
⎪⎨

⎪⎩

∀ c ∈ J ◦ :
∫ r

c
|r − x | f (x)dx = ∞, if r < ∞,

∀ c ∈ J ◦ :
∫ c

l
|l − x | f (x)dx = ∞, if l > −∞.
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Notice that S+(J ) ∈ B(L1
loc(J )), as the above characterization can be reduced to a

countable number of measurable operations. Consider the map ψ : S+(J ) → M(J )

defined byψ( f )(G) = ∫
G f (x)dx forG ∈ B(J ). Asψ is a continuous injection from

a Borel subset of a Polish space into a Polish space, [6, Theorem 8.2.7] yields that
ψ(S+(J )) ∈ B(M(J )). Asψ(S+(J )) = A by [3, Proposition 16.43, Theorem16.56],
A is a Borel subset of S. We claim thatA is neither closed nor open. Let us elaborate
this claim in more detail. Fix some x0 ∈ J ◦ and m ∈ A. For n ∈ N, set mn(dx) �
m(dx) + ne−n(x−x0)1{x≥x0}dx and notice that mn ∈ A but mn → m + δx0 ∈ S\A
vaguely. This shows thatA is not closed. Similarly, noting thatm+ 1

n δx0 → m vaguely
shows that S\A is not closed, which means that A is not open. We conclude from
Theorem 4.2 that I has the same properties, i.e., it is a Borel set but it is neither closed
nor open. Finally, let us explain that I is dense in D. By Theorem 4.2, it suffices to
show that A is dense in S. We provide some details. Take m ∈ A and m0 ∈ S. Then,
as the set of discrete measures is dense in M(J ), there exists a sequence of discrete
measures (nk)∞k=1 ⊂ M(J ) such that nk → m0 vaguely. Notice that any discrete
measure can be approximated in the vague topology by a sequence of absolutely
continuous measures. To see this, recall that N (μ, σ 2) → δμ vaguely for σ 2 → 0,
where N (μ, σ 2) denotes the normal distribution with expectation μ and variance σ 2.
Hence, for every k ∈ N, there exists a sequence (nn,k)∞n=1 of absolutely continuous
measures inM(J ) such that nn,k → nk vaguely. Consequently, there exists a sequence
(n(k))∞k=1 ⊂ N such that n(k) → ∞ and nn(k),k → m0 vaguely as k → ∞. Finally,
we have A 
 nn(k),k + 1

km → m0 vaguely as k → ∞. The proof is complete. ��
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