
On the relationship among F-transform, fuzzy
rough set and fuzzy topology
Irina Perfilieva1 Anand Pratap Singh2 S.P. Tiwari2

1University of Ostrava, Institute for Research and Applications of Fuzzy Modeling
NSC IT4Innovations, 30. dubna 22, 701 03 Ostrava 1, Czech Republic

2Dept. of Applied Mathematics, Indian School of Mines, Dhanbad-826004, India

Abstract

The objective of this work is to associate the con-
cepts of fuzzy rough sets and fuzzy topologies with
fuzzy transform. It is shown here that the fuzzy
transform can be viewed as fuzzy approximation
operators studied in the operator-oriented view of
fuzzy rough set theory and the use of fuzzy rough
set results reduces efforts in proving fuzzy trans-
form theoretic results. We present a glimpse that
fuzzy topological results can also be used in similar
fashion for fuzzy transform theoretical results.

Keywords: F-transform, Fuzzy partition, Residu-
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1. Introduction

Fuzzy transform (F -transform), firstly proposed by
Perfilieva in [10] has now been significantly devel-
oped and opened a new page in the theory of semi-
linear spaces. The main idea of the F -transform is
to factorize (or fuzzify) precise values of indepen-
dent variables by a closeness relation, and precise
values of dependent variables are averaged to an
approximate value. It is shown in [10] that this
transform encompassed both classical transform as
well as approximation methods based on fuzzy IF-
THEN rules studied in fuzzy modeling. The the-
ory of F -transform was further elaborated and ex-
tended from real valued to lattice-valued functions
(cf., [10, 12]) and from fuzzy sets to parametrized
fuzzy sets (cf., [17]). The theory of F -transform is
successfully used in signal and image processing [7],
compression [11], denoising [9], numerical solutions
of partial differential equations [18], data analysis
[13], and neural network approaches [19].
In recent years, another theory that has drawn

the attention of researchers is the rough set theory,
proposed by Pawlak [8]. This theory has been de-
veloped significantly due to its importance for the
study of intelligent systems with insufficient and in-
complete information. In rough sets introduced by
Pawlak, the key role is played by equivalence rela-
tions. In literature [5, 15, 22], several generaliza-
tions of rough sets have been made by replacing the
equivalence relation by an arbitrary relation. After
Dubois and Prade [3] introduced a fuzzy rough set,

which is a generalization of a rough set, the relation-
ship between fuzzy rough sets and fuzzy topological
spaces were studied [1, 14, 20, 21].

Both concepts (F -transform and fuzzy rough set)
gained popularity. The first one is based on a fuzzy
partition of a universe, and the second one is based
on a fuzzy relation. A close look to both theories
leads to a conclusion that an interrelationship be-
tween them can be established so that the concept
of the fuzzy rough set theory may play an impor-
tant role in the development of the theory of F -
transforms. To establish such relationship is the
main topic of this paper. Specifically, we show that
the F -transforms introduced in [10] can be viewed
as approximation operators studied in the operator-
oriented view of fuzzy rough set theory. We show
that the use of fuzzy rough set theory reduces in
a large number of cases our effort in proving F -
transform theoretic results. Furthermore, as the
concept of fuzzy topology can naturally be associ-
ated with the theory of fuzzy rough sets, there is a
possibility of a good trade-off between the theory of
fuzzy topology and the theory of F -transform.

2. Preliminaries

In this section, we recall some concepts related
to residuated lattices, fuzzy rough sets and fuzzy
topology, which we will need in the subsequent sec-
tions. We begin with the definition taken from [2].

Definition 2.1 A residuated lattice is an alge-
bra (L,∧,∨, ∗,→, 0, 1) such that

(i) (L,∧,∨, 0, 1) is a bounded lattice with the least
element 0 and the greatest element 1;

(ii) (L, ∗, 1) is a commutative monoid;
(iii) ∀a, b, c ∈ L

a ∗ b ≤ c iff a ≤ b→ c,

i.e., (→, ∗) is an adjoint pair on L.

A residuated lattice (L,∧,∨, ∗,→, 0, 1) is com-
plete if it is complete as a lattice. For a ∈ L, the
operations of negation and biresiduation are de-
fined by

¬a = a→ 0,
a↔ b = (a→ b) ∧ (b→ a).
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Proposition 2.1 [2] Let (L,∧,∨, ∗,→, 0, 1) be a
residuated lattice. Then for all a, b ∈ L,

(i) a ≤ (b→ a ∗ b);
(ii) a ∗ (a→ b) ≤ b;
(iii) a ∗ (∨i∈Ibi) = ∨i∈I(a ∗ bi);
(iv) a→ 1 = 1, 1→ a = a;
(v) a →

∧
i∈I bi =

∧
i∈I(a → bi),

∨
i∈I ai → b =∧

(ai → b).

Throughout this paper, we work with a complete
residuated lattice L = ([0, 1],∧,∨, ∗,→, 0, 1).
The fuzzy sets considered in this paper take mem-

bership degrees from L. For a nonempty set X, LX

denotes the collection of all fuzzy subsets of X. For
all a ∈ L, a(x) = a denotes the constant fuzzy set.
The core(A) is a set of all elements x ∈ X such
that A(x) = 1. A fuzzy set A ∈ LX is normal if
core(A) 6= ∅.

Definition 2.2 [20] Let X be a nonempty set.
Then for A,B ∈ LX and x ∈ X. Then

(i) (A ∗B)(x) = A(x) ∗B(x);
(ii) (A→ B)(x) = A(x)→ B(x);
(iii) (¬A)(x) = A(x)→ 0.

Definition 2.3 [4] Let X be a nonempty set. A
fuzzy relation R on X is a fuzzy subset of X×X.
A fuzzy relation R is called

(i) reflexive if R(x, x) = 1, ∀ x ∈ X;
(ii) transitive if R(x, y) ∗ R(y, z) ≤

R(x, z), ∀x, y, z ∈ X. A reflexive and transitive
fuzzy relation R is called a fuzzy preorder.

Now we recall the following concepts associated
with fuzzy rough sets.

Definition 2.4 [21] A pair (X,R) is called a fuzzy
approximation space if X is a nonempty set and
R is a fuzzy relation on X.

Definition 2.5 [21] Let (X,R) be a fuzzy approx-
imation space. Then the two functions R,R :
LX −→ LX , defined, ∀A ∈ LX , ∀x ∈ X,

R(A)(x) =
∧

y∈X

(R(x, y)→ A(y));

R(A)(x) =
∨

y∈X

(R(x, y) ∗A(y)).

are called the lower fuzzy approximation oper-
ator and the upper fuzzy approximation oper-
ator, respectively.

Proposition 2.2 [20] Let (X,R) be a fuzzy approx-
imation space, a ∈ L, A,B ∈ LX and {Ai}i∈I ⊆
LX . Then:

(i) if A ⊆ B then R(A) ⊆ R(B) and R(A) ⊆
R(B);

(ii) R(
⋃

i∈I Ai) =
⋃

i∈I R(Ai), R(
⋂

i∈I Ai) =⋂
i∈I R(Ai);

(iii) R(a ∗A) = a ∗R(A), R(a→ A) = a→ R(A).
(iv) R(a) = a, R(a) = a.

The fuzzy topological concepts we use here are
fairly standard and can be found in the literature
[6]. For completeness, we recall the following key
notions; for other notions, readers are referred to
Lowen [6].

Proposition 2.3 [16] Let (X,R) be a fuzzy approx-
imation space, A ∈ LX . Then,
(i) R is reflexive ⇐⇒ R(A) ⊆ A⇐⇒ A ⊆ R(A);
(ii) R is Euclidean ⇐⇒ R(A) ⊆ R(R(A)) ⇐⇒
R(R(A)) ⊆ R(A).

Definition 2.6 [6] A fuzzy topology τ on a
nonempty set X is a family of fuzzy sets in X
which is closed under arbitrary suprema and finite
infima and contains all constant fuzzy sets. The
fuzzy sets in τ are called open, and their comple-
ments, closed.

Definition 2.7 [6] A Kuratowski fuzzy
closure operator on X is a map
c : LX −→ LX satisfying ∀a ∈ L, A,B ∈ LX ,
(i) c(a) = a;
(ii) A ≤ c(A);
(iii) c(A ∨B) = c(A) ∨ c(B);
(iv) c(c(A))= c(A).

Remark 2.1 Every Kuratowski fuzzy closure oper-
ator c on a set X gives rise to a fuzzy topology on
X in which a fuzzy set µ is closed iff c(µ) = µ.

Definition 2.8 [6] A Kuratowski fuzzy interior op-
erator on X is a map i : LX −→ LX satisfying
∀a ∈ L, A,B ∈ LX ,
(i) i (a) = a;
(ii) i (A) ≤ A;
(iii) i(A ∧B) = i(A) ∧ i(B);
(iv) i(i(A))= i(A).

Remark 2.2 Every Kuratowski fuzzy interior op-
erator i on a set X gives rise to a fuzzy topology on
X in which a fuzzy set µ is open iff i(µ) = µ.

We close this section by recalling the following two
theorems from [20].

Theorem 2.1 Let (X,R) be fuzzy approximation
space and c : LX −→ LX be a Kuratowski fuzzy
closure operator. Then there exists a fuzzy preorder
R on X such that R(A) = c(A), for all A ∈ LX iff
c : LX −→ LX satisfies the following conditions:
(i) c(

⋃
j∈J Aj) =

⋃
j∈J c(Aj); Aj ∈ LX , j ∈ J,

(ii) c(A ∗ a) = c(A) ∗ a, a ∈ L.

Theorem 2.2 Let (X,R) be fuzzy approximation
space and i : LX −→ LX be Kuratowski fuzzy in-
terior operator. Then there exists fuzzy preorder R
on X such that R(A) = i(A), for all A ∈ LX iff
i : LX −→ LX satisfies the following conditions:
(i) i(

⋂
j∈J Aj) =

⋂
j∈J i(Aj);Aj ∈ LX , j ∈ J,

(ii) i(a→ A) = a→ i(A), a ∈ L.
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3. F-transform, fuzzy approximation
operators and fuzzy topology

In this section, we show that the direct F ↑(F ↓)-
transform can be viewed as an upper(lower) fuzzy
approximation operator in the context of fuzzy
rough set theory. Throughout, we will work with
general universal set X and residuated lattice L.

Definition 3.1 Let n ≥ 2. A collection of normal
fuzzy sets A1, . . . , Ak, . . ., defined on X, is a fuzzy
partition of X, if the corresponding collection of
ordinary sets core(A1), . . . , core(Ak), . . . is a parti-
tion of X.

A fuzzy partition A1, . . . , Ak, . . . of X can be repre-
sented by the following reflexive fuzzy relation

RA1,...,Ak,...(x, y) = Ak(y), if x ∈ core(Ak). (1)

For each particular k = 1, . . . , n, . . ., we define fuzzy
relation Rk on X:

Rk(x, y) =


Ak(y), if x ∈ core(Ak),
1, if x = y,

0, otherwise.
(2)

It can be easily seen that fuzzy relation Rk is reflex-
ive. Let us prove that Rk is a fuzzy preorder.

Proposition 3.1 Let fuzzy relation Rk be given in
(2). Then it is a fuzzy preorder on X.

Proof:
We need to verify that Rk is transitive. Let

us choose x, y, z ∈ X and show that Rk(x, y) ∗
Rk(y, z) ≤ Rk(x, z). We will consider four possi-
ble cases:
1. If x, y ∈ core(Ak), then

Rk(x, y) ∗Rk(y, z) = Ak(y) ∗Ak(z) ≤ Ak(z)
= Rk(x, z);

2. If x ∈ core(Ak) and y 6∈ core(Ak), then

(a) if y = z, then

Rk(x, y) ∗Rk(y, z) = Ak(y) ∗ 1 = Ak(z)
= Rk(x, z);

(b) If y 6= z, then

Rk(x, y) ∗Rk(y, z) = Ak(y) ∗ 0 = 0 ≤ Rk(x, z);

3. If x 6∈ core(Ak) and y ∈ core(Ak), then the
proof is similar to the above given;
4. If x 6∈ core(Ak) and y 6∈ core(Ak), then

(a) if x = y, then

Rk(x, y) ∗Rk(y, z) = 1 ∗Rk(y, z) =
Rk(y, z) = Rk(x, z);

(b) if x 6= y, then

Rk(x, y)∗Rk(y, z) = 0∗Rk(y, z) = 0 ≤ Rk(x, z).

�

It is easy to see that for any fuzzy parti-
tion A1, . . . , Ak, . . . of X, the representing relation
RA1,...,Ak,... can be decomposed into the union of
fuzzy preorder relations Rk:

RA1,...,Ak,... =
⋃
k

Rk. (3)

3.1. Direct F ↑(F ↓)-transform

In this subsection, we will generalize the notion
of the direct F ↑(F ↓)-transform to the case where
a transformed function is defined on an arbitrary
set X and takes values from the residuated lat-
tice support L. We will show that the general-
ized F ↑(F ↓)-transform can be viewed as an upper
(lower) fuzzy approximation operator and hence in-
duces fuzzy topology on the respective universe.
We also show that the results regarding the direct
F ↑(F ↓)-transform in [10] can be obtained as conse-
quences of well-known concepts from fuzzy rough
set theory and fuzzy topology. We begin with
the following new concept of the direct upper F ↑-
transform.

Definition 3.2 [10] Let f be an L-valued func-
tion on X (in other words, a fuzzy set) and
A1, . . . , Ak, . . . be a fuzzy partition of X. The (up-
per) F ↑-transform of f w.r.t. A1, . . . , Ak, . . . is a
sequence of lattice elements (F ↑1 , . . . , F

↑
k , . . .), where

F ↑k =
∨

x∈X

(Ak(x) ∗ f(x)), k ≥ 1. (4)

We denote F ↑[f ] = (F ↑1 , . . . , F
↑
k , . . .) the F ↑-

transform of f and F ↑k [f ] (or simply F ↑k , if f is
clear from the context) its k-th component.

Let RA1,...,Ak,... be a representing relation of fuzzy
partition A1, . . . , Ak, . . . of X. Then in fuzzy ap-
proximation space (X,RA1,...,Ak,...), the following
holds:

RA1,...,Ak,...(f)(x) = F ↑k [f ], if x ∈ core(Ak), k ≥ 1.
(5)

consequence of (5), we have the following

Proposition 3.2 Let X|A1,...,Ak,... =
{x1, . . . , xk, . . .}, where xk ∈ core(Ak), k ≥ 1.
Then the F ↑-transform of f F ↑[f ] is a reduction
of the upper approximation RA1,...,Ak,...(f) on
X|A1,...,Ak,....

Below, we analyze properties of particular compo-
nents F ↑k , k ≥ 1.

Proposition 3.3 Let Rk, k = 1, . . . , n, . . . be a
constituent fuzzy preorder relation (2) in the decom-
position (3). Then
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1. in fuzzy approximation space (X,Rk), k ≥ 1,
the upper approximation of an L-valued func-
tion f is equal to

Rk(f)(x) =
{
F ↑k [f ], x ∈ core(Ak),
f(x), otherwise,

(6)

2. the k-th upper F-transform component F ↑k of
f is a reduction of the upper approximation
Rk(f) on core(Ak), so that

F ↑k [f ] = Rk(f)|core(Ak) = Rk(f)(xk), (7)

where xk ∈ core(Ak).

Proof:

1. If x ∈ core(Ak), then by (2),

Rk(f)(x) =
∨

y∈X

(Rk(x, y) ∗ f(y)) =

∨
y∈X

(Ak(y) ∗ f(y)) = F ↑k [f ].

If on the other side, x 6∈ core(Ak), then by (2),

Rk(f)(x) =
∨

y∈X

(Rk(x, y) ∗ f(y)) = f(x).

Thus, (6) is confirmed.
2. Let xk ∈ core(Ak). Then by (6),

F ↑k [f ] = Rk(f)(xk) = Rk(f)|core(Ak).

�

On the basis of the Proposition 3.3, upper approx-
imation Rk(f) is called the k-th upper F-transform
approximation of f .

Being a reduction of the upper approximation op-
erator Rk, the k-th component F ↑k fulfills all its
properties introduced above. In particular, we have

Proposition 3.4 Let a, α, β ∈ L, f, g be L-valued
functions on X and A1, . . . , Ak, . . . be a fuzzy parti-
tion of X. Then for all k ≥ 1,

1. F ↑k [a] = a,
2. F ↑k [α ∗ f ∨ β ∗ g] = α ∗ F ↑k [f ] ∨ β ∗ F ↑k [g],
3. F ↑k [f ] ≤ F ↑k [g], if f ≤ g,
4. f(xk) ≤ F ↑k [f ], if xk ∈ core(Ak).

Proof: This follows from Proposition 2.2. �

The following proposition is a consequence of
Theorem 2.1, so that it connects a k-th upper F-
transform approximation with a closure operator in
the corresponding fuzzy topology.

Proposition 3.5 Let RA1,...,Ak,... be a representing
relation of fuzzy partition A1, . . . , Ak, . . . of X and
Rk, k = 1, . . . , n, . . . be a constituent fuzzy preorder
relation (2) in the decomposition (3). Let us define

the operator ck : LX → LX as the k-th upper F-
transform approximation, i.e. for any f ∈ LX ,

ck(f) = Rk(f).

Then ck is a Kuratowski fuzzy closure operator in
the topology that is determined by fuzzy preorder re-
lation Rk.

Proof: By Proposition 3.4, operator ck fulfills all
properties, listed in Definition 2.7, and the two ad-
ditional properties, listed in Theorem 2.1. There-
fore, ck is a Kuratowski fuzzy closure operator and
there exists a fuzzy preorder R on X such that for
all A ∈ LX , R(A) = ck(A). It is easy to see that
Rk can be chosen for R. �

Now, we show that the similar results can be also
obtained for the direct lower F ↓-transform.

Definition 3.3 [10] Let f be an L-valued func-
tion on X (in other words, a fuzzy set) and
A1, . . . , Ak, . . . be a fuzzy partition of X. The
(lower) F ↓-transform of f w.r.t. A1, . . . , Ak, . . .

is a sequence of lattice elements (F ↓1 , . . . , F
↓
k , . . .),

where

F ↓k =
∧

x∈X

(Ak(x)→ f(x)), k ≥ 1. (8)

We denote F ↓[f ] = (F ↓1 , . . . , F
↓
k , . . .) and F ↓k [f ] the

F ↓-transform of f and its k-th component, respec-
tively.

Let RA1,...,Ak,... be a representing relation of fuzzy
partition A1, . . . , Ak, . . . of X. Then in fuzzy ap-
proximation space (X,RA1,...,Ak,...), the following
holds:

RA1,...,Ak,...(f)(x) = F ↓k [f ], if x ∈ core(Ak), k ≥ 1.
(9)

As a consequence of (9), we have the following

Proposition 3.6 Let X|A1,...,Ak,... =
{x1, . . . , xk, . . .}, where xk ∈ core(Ak), k ≥ 1.
Then the F ↓-transform of f F ↓[f ] is a reduction
of the lower approximation RA1,...,Ak,...(f) on
X|A1,...,Ak,....

Below, we analyze properties of particular compo-
nents F ↓k , k ≥ 1.

Proposition 3.7 Let Rk, k = 1, . . . , n, . . . be a
constituent fuzzy preorder relation (2) in the decom-
position (3). Then

1. in fuzzy approximation space (X,Rk), k ≥ 1,
the lower approximation of an L-valued func-
tion f is equal to

Rk(f)(x) =
{
F ↓k [f ], x ∈ core(Ak),
f(x), otherwise,

(10)
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2. the k-th lower F-transform component F ↓k [f ]
of f is a reduction of the lower approximation
Rk(f) on core(Ak), so that

F ↓k [f ] = Rk(f)|core(Ak) = Rk(f)(xk), (11)

where xk ∈ core(Ak).

Proof:

1. If x ∈ core(Ak), then by (2),

Rk(f)(x) =
∧

y∈X

(Rk(x, y)→ f(y)) =

∧
y∈X

(Ak(y)→ f(y)) = F ↓k [f ].

If on the other hand, x 6∈ core(Ak), then by (2),

Rk(f)(x) =
∧

y∈X

(Rk(x, y)→ f(y)) = f(x).

Thus, (10) is confirmed.
2. Let xk ∈ core(Ak). Then by (10),

F ↓k [f ] = Rk(f)(xk) = Rk(f)|core(Ak).

�

On the basis of the Proposition 3.7, lower approx-
imation Rk(f) is called the k-th lower F-transform
approximation of f .
Being a reduction of the lower approximation op-

erator Rk, the k-th component F ↓k fulfills all its
properties introduced above. In particular, we have
the following.

Proposition 3.8 Let α, β ∈ L, f, g be L-valued
functions on X and A1, . . . , Ak, . . . be a fuzzy parti-
tion of X. Then for all k ≥ 1,

1. F ↓k [a] = a,
2. F ↓k [(α→ f) ∧ (β → g)] =

(α→ F ↓k [f ]) ∧ (β → F ↓k [g]),
3. F ↓k [f ] ≤ F ↓k [g], if f ≤ g,
4. f(xk) ≥ F ↓k [f ], if xk ∈ core(Ak).

Proof: This follows from Proposition 2.2. �

Similarly and dually to the above, the following
proposition is a consequence of Theorem 2.2, so that
it connects a k-th lower F-transform approximation
with an interior operator in the corresponding fuzzy
topology.

Proposition 3.9 Let RA1,...,Ak,... be a representing
relation of fuzzy partition A1, . . . , Ak, . . . of X and
Rk, k = 1, . . . , n, . . . be a constituent fuzzy preorder
relation (2) in the decomposition (3). Let us define
the operator dk : LX → LX as the k-th lower F-
transform approximation, i.e. for any f ∈ LX ,

dk(f) = Rk(f).

Then dk is a Kuratowski fuzzy interior operator in
the topology that is determined by fuzzy preorder re-
lation Rk.

Proof: By Proposition 3.8, operator dk fulfills all
properties, listed in Definition 2.8, and the two ad-
ditional properties, listed in Theorem 2.2. There-
fore, dk is a Kuratowski fuzzy interior operator and
there exists a fuzzy preorder R on X such that for
all A ∈ LX , R(A) = dk(A). It is easy to see that
Rk can be chosen for R. �

4. Inverse F ↑(F ↓)-transform

In this section, we show that the inverse F ↑(F ↓)-
transform can be expressed in terms of lower and
upper fuzzy approximation operators. We be-
gin with the following concept of an inverse F ↑-
transform.

Definition 4.1 [10] Let f be an L-valued function
on X, A1, . . . , Ak, . . . a fuzzy partition of X and
F ↑[f ] = (F ↑1 , . . . , F

↑
k , . . .) the F ↑-transform of f .

Then the following function f↑F : LX → LX , where

f↑F (x) =
∧
k≥1

(Ak(x)→ F ↑k ), (12)

is called the inverse F ↑-transform.

Theorem 4.1 Let RA1,...,Ak,... be a representing re-
lation of fuzzy partition A1, . . . , Ak, . . . of X and
RA1,...,Ak,...(f) be the upper approximation of f in
fuzzy approximation space (X,RA1,...,Ak,...). Then
the inverse F ↑-transform of f is equal to

f↑F (y) =∧
x∈X

(RA1,...,Ak,...(x, y)→ RA1,...,Ak,...(f)(x)). (13)

Proof: Let the assumptions be fulfilled. We
will prove (13) for arbitrary y ∈ X. Be-
cause A1, . . . , Ak, . . . is a fuzzy partition of X,
there exists k ≥ 1, such that x ∈ core(Ak).
By, (1), RA1,...,Ak,...(x, y) = Ak(y) and by (5),
RA1,...,Ak,...(f)(x) = F ↑k . After substitution to the
right-hand side of (13) we easily come to the desired
equality. �

It is easy to see that in the approximation
space (X,Rrev

A1,...,Ak,...), where Rrev
A1,...,Ak,...(x, y) =

RA1,...,Ak,...(y, x), the inverse F ↑-transform of f is
the lower approximation of RA1,...,Ak,...(f).

In [9], it has been proved that for f ∈ LX , f ≤ f↑F .
By Proposition 2.3, f↑F ≤ RA1,...,Ak,...(f). There-
fore, for every f ∈ LX ,

f ≤ f↑F ≤ RA1,...,Ak,...(f).

The similar and dual arguments to that given
above, characterizes the inverse F ↓-transform.

Definition 4.2 [10] Let f be an L-valued function
on X, A1, . . . , Ak, . . . a fuzzy partition of X and
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F ↓[f ] = (F ↓1 , . . . , F
↓
k , . . .) the F ↓-transform of f .

Then the following function f↓F : LX → LX , where

f↓F (x) =
∨
k≥1

(Ak(x) ∗ F ↓k ), (14)

is called the inverse F ↓-transform.

Theorem 4.2 Let RA1,...,Ak,... be a representing re-
lation of fuzzy partition A1, . . . , Ak, . . . of X and
RA1,...,Ak,...(f) be the lower approximation of f in
fuzzy approximation space (X,RA1,...,Ak,...). Then
the inverse F ↓-transform of f is equal to

f↓F (y) =∨
x∈X

(RA1,...,Ak,...(x, y) ∗RA1,...,Ak,...(f)(x)). (15)

Proof: Let the assumptions be fulfilled. We
will prove (15) for arbitrary y ∈ X. Be-
cause A1, . . . , Ak, . . . is a fuzzy partition of X,
there exists k ≥ 1, such that x ∈ core(Ak).
By, (1), RA1,...,Ak,...(x, y) = Ak(y) and by (9),
RA1,...,Ak,...(f)(x) = F ↓k . After substitution to the
right-hand side of (15) we easily come to the desired
equality. �

It is easy to see that in the approximation
space (X,Rrev

A1,...,Ak,...), where Rrev
A1,...,Ak,...(x, y) =

RA1,...,Ak,...(y, x), the inverse F ↓-transform of f is
the upper approximation of RA1,...,Ak,...(f).

In [9], it has been proved that for f ∈ LX , f↓F ≤ f .
By Proposition 2.3, RA1,...,Ak,...(f) ≤ f↓F . There-
fore, for every f ∈ LX ,

RA1,...,Ak,...(f) ≤ f↓F ≤ f.

5. Concluding Remarks

In this contribution, we analyzed a mutual relation-
ship among fuzzy rough sets, fuzzy topologies and
the F -transforms. For this purpose, we generalized
the lattice-based F -transforms to the case of an ar-
bitrary (not necessary finite) fuzzy partition of a
universe. We showed that the direct upper F ↑- and
lower F ↓-transforms are respective reductions of up-
per and lower fuzzy approximation operators. The
similar and dual conclusion can be stated for inverse
lattice-based F -transforms. Moreover, we showed
that approximation operators that correspond to
particular F -transform components are Kuratowski
fuzzy interior and closure operators in the induced
topologies.
The obtained results nicely connect three differ-

ent approximation spaces and by this, enable to re-
duce efforts in proving interrelated statements.
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