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Path loss of an underwater acoustic communication channel depends not only on the trans-
mission distance, but also on the signal frequency. As a result, the useful bandwidth de-
pends on the transmission distance, a feature that distinguishes an underwater acoustic
system from a terrestrial radio one. This fact influences the design of an acoustic network:
a greater information throughput is available if messages are relayed over multiple short
hops instead of being transmitted directly over one long hop. We asses the bandwidth de-
pendency on the distance using an analytical method that takes into account physical mod-
els of acoustic propagation loss and ambient noise. A simple, single-path time-invariant
model is considered as a first step. To assess the fundamental bandwidth limitation, we
take an information-theoretic approach and define the bandwidth corresponding to optimal
signal energy allocation – one that maximizes the channel capacity subject to the constraint
that the transmission power is finite. Numerical evaluation quantifies the bandwidth and
the channel capacity, as well as the transmission power needed to achieve a pre-specified
SNR threshold, as functions of distance. These results lead to closed-form approximations,
which may become useful tools in the design and analysis of acoustic networks.

I. Introduction

With the availability of high speed acoustic commu-
nication techniques, the maturing of underwater ve-
hicles, and the advances in sensor technology, in-
tegration of point-to-point communication links into
autonomous underwater networks has been steadily
gaining interest over the past years, both from the re-
search viewpoint [1], and that of the design and de-
ployment of first experimental networks [2]. It is en-
visioned that some of the immediate applications of
acoustic networking technology will include collabo-
rative missions of multiple autonomous vehicles, and
the deployment of ad hoc underwater sensor networks.
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The design of such systems is the subject of on-going
research.

One of the questions that arise naturally at this time
is what are the fundamental capabilities of underwa-
ter networks in supporting multiple users that wish
to communicate to (or through) each other over an
acoustic channel. While research has been extremely
active on assessing the capacity of wireless radio net-
works (e.g., [3]) no similar analyses have been re-
ported for underwater acoustic networks. The few
available analyses focus on the acoustic channel ca-
pacity. For example, [4] uses a time-invariant channel
model with additive Gaussian noise that may or may
not be white, while [5] uses a Rayleigh fading model,
with additive white Gaussian noise (AWGN). Neither
of these analyses addresses the capacity dependence
on distance.

Underwater acoustic communication channels are
characterized by a path loss that depends not only on
the distance between the transmitter and receiver, as it
is the case in many other wireless channels, but also
on the signal frequency. The signal frequency deter-
mines the absorption loss which occurs because of the
transfer of acoustic energy into heat. This fact implies
the dependence of acoustic bandwidth on the com-
munication distance. The resulting bandwidth limi-
tation is a fundamental one, as it is determined by the
physics of acoustic propagation, and not by the con-



straints of transducers.
The absorption loss increases with frequency as

well as with distance, eventually imposing a limit
on the available bandwidth within the practical con-
straints of finite transmission power. Consequently,
a shorter communication link offers more bandwidth
than a longer one in an underwater acoustic system.
For example, transmission over 100 km can be per-
formed in one hop, using a bandwidth of 1 kHz, or by
relaying the information over 10 hops, each of which
is 10 km long, but offers a bandwidth on the order of
10 kHz. Hence, in exchange for a more complicated
system of relays, significant increase in information
throughput can be obtained. At the same time, total
energy consumption will be lower, but this is so for
the radio channel as well.

Before one can answer the questions of network
capacity, a functional dependence of the acoustic
communication bandwidth with distance must be ob-
tained. This is the subject of the present paper, which
is organized as follows.

In Sec.II we summarize the basics of acoustic prop-
agation, to formulate a model of the path loss and the
ambient noise that will be used to assess the band-
width. In Sec.III we propose two definitions of the
acoustic bandwidth, one a heuristic definition based
on the 3 dB loss in the band-edge SNR and a uni-
form energy allocation, and the other an information-
theoretic definition based on optimal energy alloca-
tion for a fixed transmission power. In both cases, the
total transmission power is determined as that needed
to achieve a pre-specified SNR within the given band-
width. Sec.IV illustrates the results numerically, pro-
viding a quantitative measures of the bandwidth in Hz
and capacity in bps, as well as the transmission power
in dB re μ Pa, as functions of distance. Numerical re-
sults lead to closed-form approximations which pro-
vide functional dependence of the system capacity on
the transmission distance. Conclusions are summa-
rized in Sec.V.

II. Acoustic propagation: path loss
and noise

II.A. Attenuation

Attenuation, or path loss that occurs in an underwa-
ter acoustic channel over a distance l for a signal of
frequency f is given by

A(l, f) = A0l
ka(f)l (1)

where A0 is a unit-normalizing constant, k is the
spreading factor, and a(f) is the absorption coeffi-

cient. Expressed in dB, the acoustic path loss is given
by

10 logA(l, f)/A0 = k · 10 log l + l · 10 log a(f) (2)

The first term in the above summation represents the
spreading loss, and the second term represents the ab-
sorption loss. The spreading factor k describes the ge-
ometry of propagation, and its commonly used values
are k = 2 for spherical spreading, k = 1 for cylindri-
cal spreading, and k = 1.5 for the so-called practical
spreading. (The counterpart of k in a radio channel is
the path loss exponent whose value is usually between
2 and 4, the former representing free-space line-of-
sight propagation, and the latter representing two-ray
ground-reflection model.) The absorption coefficient
can be expressed empirically, using the Thorp’s for-
mula which gives a(f) in dB/km for f in kHz as [6]:

10 loga(f) = 0.11
f2

1 + f2
+ 44

f2

4100 + f2
+

2.75 · 10−4f2 + 0.003 (3)

This formula is generally valid for frequencies above a
few hundred Hz. For lower frequencies, the following
formula may be used:

10 log a(f) = 0.002 + 0.11
f2

1 + f2
+ 0.011f2 (4)

The absorption coefficient is shown in Fig.1. It in-
creases rapidly with frequency, thus imposing a limit
on the maximal usable frequency for an acoustic link
of a given distance.
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Figure 1: Absorption coefficient, a(f) [dB/km].

The path loss describes the attenuation on a sin-
gle, unobstructed propagation path. If a tone of fre-
quency f and power P is transmitted over this path,



the received signal power will be P/A(l, f). If there
are multiple propagation paths, each of length lp, p =
0, . . .P − 1, then the channel transfer function can be
described by

H(l, f) =
P−1∑
p=0

Γp/
√

A(lp, f)e−j2πfτp (5)

where l = l0 is the distance between the transmitter
and receiver, Γp models additional losses incurred on
the pth path (e.g. reflection loss), and τp = lp/c is the
delay (c=1500 m/s is the nominal speed of sound un-
derwater). If the transmission is not directional, such
that propagation paths other than the direct one con-
tribute to the received signal, then the received power
will be P |H(l, f)|2. In our treatment, we shall fo-
cus on a propagation model that takes into account
only the basic path loss. Extensions to the multipath
propagation case are straightforward, if the attenua-
tion A(l, f) is replaced by 1/|H(l, f)|2, evaluated for
the particular channel geometry or determined exper-
imentally.

II.B. Noise

The ambient noise in the ocean can be modeled using
four sources: turbulence, shipping, waves, and ther-
mal noise. Most of the ambient noise sources can
be described by Gaussian statistics and a continuous
power spectral density (p.s.d.). The following empir-
ical formulae give the p.s.d. of the four noise compo-
nents in dB re μ Pa per Hz as a function of frequency
in kHz [7]:

10 logNt(f) = 17 − 30 log f

10 logNs(f) = 40 + 20(s − 0.5) + 26 logf −
60 log(f + 0.03)

10 logNw(f) = 50 + 7.5w1/2 + 20 logf −
40 log(f + 0.4)

10 logNth(f) = −15 + 20 logf (6)

Turbulence noise influences only the very low fre-
quency region, f < 10 Hz. Noise caused by distant
shipping is dominant in the frequency region 10 Hz
-100 Hz, and it is modeled through the shipping activ-
ity factor s, whose value ranges between 0 and 1 for
low and high activity, respectively. Surface motion,
caused by wind-driven waves (w is the wind speed in
m/s) is the major factor contributing to the noise in
the frequency region 100 Hz - 100 kHz (which is the
operating region used by the majority of acoustic sys-
tems). Finally, thermal noise becomes dominant for
f > 100 kHz.

The overall p.s.d. of the ambient noise, N (f) =
Nt(f) + Ns(f) + Nw(f) + Nth(f), is illustrated in
Fig.2, for the cases of no wind (solid) and wind at
a moderate 10 m/s (dotted), with varying degrees of
shipping activity in each case. The noise decays with
frequency, thus limiting the useful acoustic bandwidth
from below. It may be useful to note that in a certain
frequency region the noise p.s.d. decays linearly on
the logarithmic scale. The following approximation
may then be useful:

10 logN (f) ≈ N1 − η log f (7)

This approximation is shown in the figure (dash-dot)
with N1 = 50 dB re μ Pa and η=18 dB/decade.
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Figure 2: Power spectral density of the ambient noise,
N (f) [dB re μ Pa]. The dash-dot line shows an ap-
proximation 10 logN (f) = 50 − 18logf .

II.C. The AN Product and the SNR

Using the attenuation A(l, f) and the noise p.s.d.
N (f) one can evaluate the signal-to-noise ratio (SNR)
observed over a distance l when the transmitted signal
is a tone of frequency f and power P . Not count-
ing the directivity gains and losses other than the path
loss, the narrow-band SNR is given by

SNR(l, f) =
P/A(l, f)
N (f)Δf

(8)

where Δf is the receiver noise bandwidth (a nar-
row band around the frequency f ). The AN product,
A(l, f)N (f), determines the frequency-dependent
part of the SNR. The factor 1/A(l, f)N (f) is illus-
trated in Fig.3. For each transmission distance l, there



clearly exists an optimal frequency fo(l) for which the
maximal narrow-band SNR is obtained. The optimal
frequency is plotted in Fig.4 as a function of trans-
mission distance. In practice, one may choose some
transmission bandwidth around fo(l), and adjust the
transmission power so as to achieve the desired SNR
level. We comment more on such choices in the fol-
lowing section.
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Figure 3: Frequency-dependent part of narrow-band
SNR, 1/A(l, f)N (f). Practical spreading (k = 1.5)
is used for the path loss A(l, f). Moderate shipping
activity (s = 0.5) and no wind (w = 0) are used for
the noise p.s.d. N (f).
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Figure 4: Optimal frequency fo(l) is the one at which
1/A(l, f)N (f) reaches its maximum.

III. Bandwidth and capacity

III.A. A heuristic bandwidth definition

A possible definition of the system bandwidth is that
of a 3 db (or some other level) bandwidth. We
define the 3 dB bandwidth B3(l) as that range of
frequencies around fo(l) for which SNR(l, f) >
SNR(l, fo(l))/2, i.e., for which A(l, f)N (f) <

2A(l, fo(l))N (fo(l)) = 2ANmin(l).
Once the transmission bandwidth is set to some

B(l) = [fmin(l),
fmax(l)] around fo(l), the transmission power P (l)
can be adjusted to achieve the desired narrow-band
SNR level at fo(l). Alternatively, and perhaps more
meaningfully, one may set the desired transmission
power in accordance with the total SNR correspond-
ing to the bandwidth B(l). If we denote by S l(f) the
p.s.d. of the transmitted signal chosen for the distance
l, then the total transmitted power is

P (l) =
∫

B(l)
Sl(f)df (9)

and the SNR is

SNR(l, B(l)) =

∫
B(l) Sl(f)A−1(l, f)df∫

B(l) N (f)df
(10)

In this definition, the SNR depends on the transmit-
ted signal p.s.d., and so does the total transmission
power P (l). In the simplest case, the transmitted sig-
nal p.s.d. is flat, S(l, f) = Sl for f ∈ B(l), and
0 elsewhere. The total transmission power is then
P (l) = SlB(l). If it is required that the received SNR
be greater than some pre-specified threshold SNR0,
then the minimal transmission power can be deter-
mined from SNR0 and B(l). When the 3 dB band-
width is used, the corresponding transmission power
is determined as

P3(l) = SNR0B3(l)

∫
B3(l)

N (f)df∫
B3(l)

A−1(l, f)df
(11)

While this definition of the acoustic system band-
width may be intuitively satisfying, there is nothing to
guarantee its optimality. It may be possible to achieve
a better utilization of resources through a different
energy distribution across the system bandwidth. In
other words, we may adjust the signal p.s.d. S l(f)
in accordance with the given channel and noise char-
acteristics A(l, f) and N (f) so as to optimize some
performance metric. We do so in the following sec-
tion.



III.B. Capacity-based bandwidth defini-
tion

A performance metric that naturally comes to mind is
the channel capacity. Assuming that the noise is Gaus-
sian, and that the channel is time-invariant for some
interval of time, the capacity can be obtained by divid-
ing the total bandwidth into many narrow sub-bands,
and summing the individual capacities. The ith sub-
band is centered around frequency fi, i = 1, 2, . . . and
it has width Δf , which is small enough that the chan-
nel transfer function appears frequency-nonselective,
i.e. the only distortion comes from a constant attenua-
tion factor A(l, fi). The noise in this narrow sub-band
can be approximated as white, with the p.s.d. N (fi),
and the resulting capacity is given by

C(l) =
∑

i

Δf log2

[
1 +

Sl(fi)A−1(l, fi)
N (fi)

]
(12)

Maximizing the capacity with respect to S l(f), sub-
ject to the constraint that the total transmitted power
P (l) is finite, yields the optimal energy distribution.
The signal p.s.d. should satisfy the water-filling prin-
ciple [8]:

Sl(f) + A(l, f)N (f) = Kl (13)

where Kl is a constant whose value is to be deter-
mined from the power P (l), and it is understood that
Sl(f) ≥ 0.

The power P (l) can be chosen to provide a desired
SNR, SNR0, similarly as before. The SNR corre-
sponding to the optimal energy distribution is given
by

SNR(l, B(l)) =

∫
B(l) Sl(f)A−1(l, f)df∫

B(l) N (f)df

= Kl

∫
B(l) A−1(l, f)df∫

B(l) N (f)df
− 1(14)

The transmitted power is

P (l) =
∫

B(l)
Sl(f)df = KlB(l)−

∫
B(l)

A(l, f)N (f)df

(15)
If the power is determined as the minimum needed

to satisfy the SNR condition

SNR(l, B(l))≥ SNR0 (16)

then the optimal energy distribution S l(f) can be ob-
tained through the following numerical procedure.

For each distance l, we begin by finding the opti-
mal frequency fo(l), and setting the initial value of the

constant Kl to K
(0)
l = ANmin(l). We then proceed

iteratively, increasing Kl in each step by some small
amount, until the condition (16) is met. In particular,
if K

(n)
l denotes the current value of the constant K l,

for which the SNR is still below the desired threshold,
then the following operations are performed in the n-
th step:

1. Determine B(n)(l) as that region of frequencies

for which A(l, f)N (f) ≤ K
(n)
l .

2. Calculate SNR(n) from (14) using the band-
width B(n)(l) and the constant K (n)

l .

3. Compare SNR(n) to SNR0. If SNR(n) <
SNR0, increase Kl by a small amount, and con-
tinue the procedure. For example, K

(n+1)
l =

(1 + ε)K(n)
l was used for numerical evaluation

of results in Sec. IV, with ε=0.01.

When SNR(n) reaches (or slightly exceeds) SNR0,
the procedure ends. The current value of K

(n)
l is set

as the desired constant K l, and the current value of
the bandwidth B(n)(l) is set as the desired bandwidth
B(l). The optimal energy distribution is

Sl(f) =

{
Kl − A(l, f)N (f), f ∈ B(l)
0, otherwise

(17)

and the total power is obtained from (15). Finally, the
channel capacity is

C(l) =
∫

B(l)
log2

[
Kl

A(l, f)N (f)

]
df (18)

In comparison, the capacity (if it may be called that)
of the heuristic scheme that uses equal energy distri-
bution across the 3 dB bandwidth is

C3(l) =
∫

B3(l)
log2

[
1 +

P3(l)/B3(l)
A(l, f)N (f)

]
df (19)

IV. Numerical results

The bandwidth, capacity, and transmission power
were evaluated through numerical integration of the
expressions presented in the previous section. Re-
sults are presented for both the 3 dB definition and
the capacity-maximizing definition of bandwidth. For
lack of better names, we shall refer to these two cases
at the heuristic case and the optimal case, respectively.
In both cases, the acoustic loss is modeled using prac-
tical spreading, k = 1.5, and the noise p.s.d. is that
obtained for moderate shipping activity s = 0.5 and



wind speed w = 0. The SNR threshold is set to
SNR0=20 dB.

Figure 5 illustrates the results obtained using the
3 dB bandwidth definition. The upper plot shows
the bandwidth B3(l) and the corresponding capac-
ity C3(l), evaluated numerically from the expres-
sion (19). The resulting bandwidth efficiency is
6.6 bps/Hz. The lower plot shows the transmission
power P3(l), evaluated from the expression (11).
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Figure 5: Bandwidth and capacity (upper plot) and
transmission power (lower plot) needed to achieve
SNR0=20 dB. Equal energy distribution and the 3
dB bandwidth definition are used. Circles indicate re-
sults of numerical integration; solid curves represent
closed-form approximations.

For the case of optimal resource allocation, we first
find the transmitted signal p.s.d. for each distance
and the desired threshold SNR. Fig.6 illustrates the
attenuation-noise characteristic A(l, f)·N (f), and the
optimal p.s.d. Sl(f) obtained for l=5 km. Shown to-
gether with the AN characteristic is the value of K l

for which the total SNR reaches SNR0=20 dB. The
points on the frequency axis where K l crosses the AN
characteristic mark the optimal signal bandwidth for
this distance and the chosen SNR threshold.

The results obtained using the optimal bandwidth
definition are summarized in Fig.7. The upper plot
shows the bandwidth B(l) and the corresponding ca-
pacity C(l), evaluated numerically from the expres-
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Figure 6: Finding the optimal p.s.d of the transmit-
ted signal for transmission distance l=5km: upper
plot shows A(l, f)N (f) and the constant level K l for
which the received SNR equals SNR0=20 dB; lower
plot shows the resulting p.s.d. S l(f).

sion (18). The resulting bandwidth efficiency is 8
bps/Hz. The improvement in bandwidth efficiency
owes to the optimal energy-bandwidth allocation. The
lower plot shows the transmission power P (l), evalu-
ated from the expression (15).

While there is no closed-form solution for the sys-
tem bandwidth as a function of distance, a closer ex-
amination of the numerical results reveals that the
bandwidth decays almost linearly with distance on a
logarithmic scale. A similar observation can be made
for the capacity. The power increases with distance,
also following a linear trend on the logarithmic scale.
Such trends are observed for both the heuristic and the
optimal bandwidth definition. Hence, the following
approximations are proposed:

B̂3(l) = b3l
−β3, Ĉ3(l) = c3l

−γ3 , P̂3(l) = p3l
π3

B̂(l) = bol
−βo, Ĉ(l) = col

−γo , P̂ (l) = pol
πo

(20)
where the coefficients b, c, p, and the exponents
β, γ, π are positive constants that can be determined
by curve-fitting. Least-squares approximation by a
first-order polynomial on a logarithmic scale provided
the values of these parameters that were used to plot
the results of Figs.5 and 7. Solid curves represent
the closed-form approximations, while circles indi-
cate the actual values obtained through numerical in-
tegration. Clearly, there is a very good agreement
between the numerical results and the approximate
closed-form solutions. Hence, the closed-form ex-



pressions offer an efficient way of estimating the sys-
tem resources (available bandwidth and capacity, re-
quired power) for a given distance. They may thus
prove to be a useful tool in the design and analysis
of underwater acoustic networks, where it might be
cumbersome to evaluate numerically the link capaci-
ties and powers for every different topology.
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Figure 7: Bandwidth and capacity (upper plot) and
transmission power (lower plot) needed to achieve
SNR0=20 dB. Capacity-maximizing energy distribu-
tion and the corresponding optimal bandwidth defini-
tion are used. Circles indicate results of numerical in-
tegration; solid curves represent closed-form approxi-
mations.

The results of Figs. 5 and 7 correspond to the SNR
threshold of 20 dB. For a different SNR threshold,
different values of bandwidth, capacity, and transmis-
sion power will be obtained. The effect of varying
SNR on the link capacity and bandwidth is summa-
rized in Fig.8. Shown in the figure is the bandwidth
efficiency, i.e. the ratio between the system capacity
and bandwidth, C(l)/B(l) in bps/Hz, for several val-
ues of transmission distance, l = 5, 15, 25, . . .75 km.
The capacity-maximizing definition of bandwidth is
used, and the system parameters are evaluated for
SNR0 between -15 dB and 45 dB. The first plot (top)
provides a relationship between the bandwidth effi-
ciency and the transmission power. The bandwidth
efficiency increases with transmission power, follow-

ing a similar pattern for various distances. The second
plot illustrates the bandwidth efficiency as a function
of SNR. Although one might expect the C/B curves
to collapse into a single curve, this is not the case,
except at low SNR. At a moderate SNR around 10
dB, the C/B curves start to diverge slightly, show-
ing a greater bandwidth efficiency for a greater dis-
tance. However, with a further increase in the SNR,
the curves cross each other, yielding higher bandwidth
efficiency to shorter distances. As a benchmark, the
plot also shows the bandwidth efficiency of an equiv-
alent AWGN channel,(

C

B

)
AWGN

= log2(1 + SNR0) (21)

We observe that the bandwidth efficiency of an acous-
tic Gaussian channel tends to that of an equivalent
AWGN channel at low SNR regardless of the distance,
but then deviates from it as the SNR increases. For
the considered model of a time-invariant single-path
acoustic channel, the bandwidth efficiency is greater
than that of an equivalent AWGN channel in the SNR
range between about 10 dB and 30 dB, but falls below
it as the SNR further increases.

It may also be interesting to present the bandwidth
efficiency as a function of the bit SNR, a figure of
merit commonly used in the study of communication
systems. For a channel corrupted by the AWGN, the
bit SNR is the ratio of the bit energy E b to the noise
p.s.d. N0. The noise in the acoustic channel is not
white, but one can define the p.s.d. of an equivalent
white noise as

N0(l) =
1

B(l)

∫
B(l)

N (f)df (22)

The dependence of the equivalent noise p.s.d. on the
distance is caused by that of the bandwidth. The re-
ceived bit energy is

Eb(l) =
1

C(l)

∫
B(l)

Sl(f)A−1(l, f)df (23)

Hence, we define the equivalent bit SNR as

Eb

N0
=

B(l)
C(l)

SNR0(l, B(l)) (24)

It may be interesting to note that although both the bit
energy and the equivalent white noise p.s.d. depend
on the distance, their ratio does not. The third plot
of Fig.8 shows the bandwidth efficiency as a function
of the equivalent bit SNR Eb/N0. As a calibration
benchmark, the plot also shows the bandwidth effi-
ciency of the equivalent AWGN channel, which obeys
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Figure 8: Bandwidth efficiency as a function of trans-
mission power, SNR and equivalent Eb/N0.

the relationship

Eb

N0
=

2(C/B)AW GN − 1
(C/B)AWGN

(25)

This plot presents the same results as the second one,
but perhaps in a more familiar framework, which
clearly shows the Shannon’s limit.

Finally, we note that the closed-form approxima-
tions for bandwidth, capacity and transmission power
depend on the SNR threshold, as do their true values
(Fig.8 showed the actual values obtained through nu-
merical integration). Hence, the coefficients and the
exponents of the approximations (20) are functions of
the SNR threshold SNR0. Figs.9 and 10 show the ap-
proximation parameters for the 3 dB bandwidth defi-
nition, while Figs.11 and 12 correspond to the the op-
timal definition. The coefficients are given in dB rel-

ative to 1 kHz, 1 kbps, and 1 μPa, for the bandwidth,
capacity, and power, respectively, and the exponents
are given in dB per km. We recall that these results
correspond to a single path propagation model with
practical spreading and a particular ambient noise pro-
file.

V. Conclusions

It is well known that the frequency-dependency of
the acoustic path loss imposes a bandwidth limitation
on an underwater communication system, such that
a greater bandwidth is available for a shorter trans-
mission distance. This fact has a significant implica-
tion on the design of an acoustic network: if a greater
bandwidth is available for a shorter distance, then the
total network throughput can be increased by placing
relay nodes between the information-generating ones.
In designing a network, one will thus inevitably ask
how many relays to use, where to place them, and
what is the overall throughput improvement; or, more
generally, what is the optimal resource allocation and
what is the network capacity. To answer these ques-
tions, link capacity must be known as a function of
distance.

This paper offers an insight into the relationship be-
tween an acoustic link capacity and distance. As a first
approximation, a simple model of a time-invariant
acoustic channel was considered, taking into account
the physical laws of acoustic propagation and the am-
bient noise. The bandwidth, capacity, and transmis-
sion power needed to achieve a pre-specified SNR
were evaluated analytically as functions of distance.
Numerical results were shown to admit simple closed-
form approximations. These semi-analytical solutions
provide the needed functional dependence between
the acoustic link capacity and transmission distance.

The basic principles used in this paper can be ap-
plied to more accurate acoustic channel models that
take into account both multipath propagation and
time-variability. Future research should focus on us-
ing these results to assess the capacity of multi-hop
acoustic systems.



−20 −10 0 10 20 30 40 50
−10

0

10

20

30

40

SNR [dB]

b
3
(*

) 
a

n
d

 c
3
(o

) 
[d

B
]

−20 −10 0 10 20 30 40 50
60

80

100

120

140

160

180

SNR [dB]

p
3
 [

d
B

]

Figure 9: Model parameters as functions of SNR un-
der the 3 dB definition: bandwidth and capacity coef-
ficients b3, c3, and power coefficient p3.
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Figure 10: Model parameters as functions of SNR un-
der the 3 dB definition: bandwidth and capacity expo-
nents β3, γ3, and power exponent π3.
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Figure 11: Model parameters as functions of SNR un-
der the optimal definition: bandwidth and capacity co-
efficients bo, co, and power coefficient po.
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Figure 12: Model parameters as functions of SNR un-
der the optimal definition: bandwidth and capacity ex-
ponents βo, γo, and power exponent πo.
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