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Abstract

Random sensor arrays are examined from a compressive sensing (CS) perspective. It is demonstrated that

the natural random-array projections manifested by the media Green’s function are consistent with the

projection-type measurements associated with CS. This linkage allows the use of existing CS theory to

quantify the performance of random arrays, of interest for array design. The analysis demonstrates that the

CS theory is applicable to arrays in vacuum as well as in the presence of a surrounding media; further, the

presence of a surrounding media with known properties may be used to improve array performance.

I. INTRODUCTION

Most existing sensor arrays are sampled uniformly with inter-element spacing less than or equal

to λ/2, where λ is the system wavelength. This inter-element spacing enhances performance by

reducing side lobes [1], at the cost of array resolution. Specifically, it is well known that the

resolution with which an array may focus is dictated by the size of the array aperture [1]; if one

has a budget on the number of array elements that may be used, the λ/2 spacing also implies an

associated aperture size. This limitation has motivated the development of arrays with inter-element

spacing greater than λ/2. Further, to mitigate the “grating lobes” that are manifested by such a sub-

sampled array, it is desirable to constitute non-uniform inter-element spacing. This has motivated

the development of randomly spaced elements [2], [3]. Non-uniform arrays have been constituted

for similar reasons in interferometric sensing [4]. We therefore note that the main motivation for

the use of random and non-uniform arrays has typically been the goal of achieving high-resolution

sensing while reducing sensing costs (relative to constituting the same array aperture with uniformly

spaced elements at λ/2).

While the use of non-uniform and random arrays constitutes an old problem, the analysis applied
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to date is unsatisfactory, from multiple standpoints. For the case of non-uniform arrays [1], there

are limited general theoretical developments; each array is generally designed from “scratch” to

achieve a particular design goal. The theory associated with random arrays is more developed, as

a result of statistical analyses [1]. However, this theory is largely unsatisfying, in that it constitutes

statistical properties of side lobes, as averaged across many randomly constituted arrays. It does

not explicitly define relationships on the accuracy one may expect when estimating the sources

responsible for the signal on the sensor array, as a function of the number of angle-dependent

sources and as a function of the noise level.

More recently, the new field of compressive sensing (CS) has been developed [5]–[9]. This theory

was constituted in a more-general setting than the aforementioned random arrays, but there are also

clear relationships. In CS one is interested in measuring a signal u ∈ <n, and it is assumed

that u is compressible in an orthonormal basis represented by the columns of Ψ ∈ <n×n (for

simplicity we assume real signals, but CS theory is applicable to the complex data generally of

interest to array processing). Specifically, for transform coefficients x, we have u = Ψx; if xs

represents x with the smallest n − s components set to zero, then x is compressible in the sense

that ‖x − xs‖`2/‖x‖`2 is negligibly small for s � n. In CS, rather than measuring u directly,

one performs a set of measurements y ∈ <m with y = Σu, where Σ ∈ <m×n, with m < n.

We therefore have y = ΣΨxs + ΣΨ(x − xs) = Φxs + z, with Φ = ΣΨ and z representing

“noise” manifested by discarding the small transform coefficients. Compressive sensing theory [10]

has demonstrated that there are explicit designs for Σ and hence Φ by which one may recover

xs accurately, using a relatively simple `1-based inversion algorithm. The inversion problem for

xs based on measured y = Φxs + z constitutes a well-known linear-regression problem under the

constraint that xs must be sparse [11].

We note that the motivation for CS is related to that associated with random arrays. Specifically,

it is known that û = Ψxs is a good approximation to u, and since xs is sparse, it is hoped that

the number of projection measurements m that may be performed satisfies m � n, where again

n constitutes the number of samples in u that one may measure conventionally (hence, n defines

the resolution with which u is represented). Therefore, both random arrays and CS are manifested
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by the goal of realizing high-resolution data via a relatively small number of measurements. The

projection measurements in CS correspond to the rows of Σ, and here we demonstrate how such

projections are manifested in array-based measurements.

The principal contribution of CS concerns explicit theorems for the design of Φ that assure that

sparseness-constrained inversion algorithms of the form discussed above will perform reliably (even

perfectly [10] under specific circumstances). This design procedure provides the important linkage

to random sensor arrays. In particular, it has been demonstrated [5]–[9] that Σ and hence Φ may be

designed randomly, with specific constructions. There are several different random designs one may

consider, with these closely linked to the embeddings associated with the Johnson-Lindenstrauss

Lemma [12]. A contribution of this paper is to demonstrate that one of these designs is consistent

with the type of projection measurements performed implicitly by sensor arrays with appropriate

randomly designed inter-element spacing. The random nature of CS measurements provides the

explicit link to random sensor arrays. Further, we also demonstrate how the sparseness associated

with CS plays an important role in the performance of random arrays (to our knowledge, this

linkage to sparseness has not been recognized previously within the array-processing literature).

We also make the connection between existing array processing algorithms, such as CLEAN

[4], which were developed decades ago for random arrays, and new algorithms such as OMP

and STOMP [13], [14] which have been applied and developed much more recently for CS. We

demonstrate that these algorithms, as well as RELAX from array processing [15], while developed

independently, are highly related to one another (in fact, OMP and CLEAN are essentially the same

algorithm).

This paper makes the explicit connection between decades-old random sensor arrays and the

much newer CS, demonstrating that the former is a special case of the latter. It is therefore not

surprising that the aforementioned independently developed algorithms are highly inter-related.

Further, using CS theory, we are able to make explicit statements about the performance of random

arrays for sensing multiple angle-dependent sources. In particular, the accuracy of algorithms of

the type discussed above is quantified as a function of the number of array elements, number of
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sources, and as a function of the additive noise (without requiring explicit statements about the

noise statistics).

The remainder of the paper is organized as follows. In Section II we review CS theory of relevance

for random sensor arrays. It is demonstrated in Section III that measurements of the type required

for CS are implemented naturally in random arrays via the medium Green’s function; this is true for

general array constructions and general linear, isotropic media. Algorithms used for random arrays

and for CS are summarized in Section IV, where it is demonstrated that the different research

communities have developed highly related algorithms. Having made the connection between CS

and random sensor arrays, in Section V we demonstrate how the former may be used to provide

explicit quantitative statements about the performance of the latter, of importance for random-array

design. Conclusions and directions for future research are provided in Section VI.

II. RELEVANT COMPRESSIVE-SENSING THEORY

A. Restricted isometry property and noisy-signal recovery

A brief summary of compressive sensing (CS) is provided based on the theory presented in [10],

with a focus on the application of interest here. The discussion assumes that the signals of interest

are real, although in the array-processing application considered in Section III the data are complex.

Compressive sensing was first considered for a special class of complex measurements [5]–[7], and

all of the theory presented below may be extended to complex signals, with added complexity that

is unnecessary for current purposes; all results for real signals are retained, with small modifications

to the final constants associated with the results.

Consider measured data y ∈ <m that may be expressed in the form

y = Φx + z (1)

where x ∈ <n with n > m, and z ∈ <m represents additive noise. Our objective is to recover x

from y, which is an ill-posed problem without further restrictions on x. We assume that x is sparse,

which means that only a small set of its components are nonzero. We are interested in understanding
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how large m must be to assure reliable recovery of x, as well as the form Φ ∈ <m×n must obey.

For each integer s = 1, 2, ... Candès [10] defines the isometry constant δs of matrix Φ as the

smallest number such that

(1− δs)‖x‖2
`2
≤ ‖Φx‖2

`2
≤ (1 + δs)‖x‖2

`2
(2)

holds for all s-sparse vectors x. For small δs this is called a Restricted Isometry Property (RIP)

because the near isometry is restricted to s-sparse signals. Consider the following solution to (1):

min
x̃∈<n

‖x̃‖`1 subject to ‖y − Φx̃‖`2 ≤ ε (3)

where ε is an upper bound on the energy in z. Candès proves the following [10]: Assume that

δ2s <
√

2− 1 and ‖z‖`2 ≤ ε, then the solution x∗ to (3) obeys

‖x∗ − x‖`2 ≤ C0s
−1/2‖x− xs‖`1 + C1ε (4)

for explicit and small constants C0 and C1, where xs is the same as x with the n − s smallest

components set to zero. Note that if x is s-sparse (the number of non-zero components in x is less

than or equal to s), then ‖x− xs‖`1 = 0, and (4) implies that the CS reconstruction error is then

proportional to the energy in the “noise” z.

B. Projection design

To design Φ ∈ <m×n for measurement of a sparse signal x ∈ <n, consider a matrix U ∈ <n×n,

defined by orthonormal rows. One way to design Φ is to select m rows of U uniformly at random,

and then normalize the associated columns to have unit norm. With overwhelming probability, a Φ

matrix so designed yields [16] δ2s <
√

2− 1 if the number of projections m satisfies

m ≥ C3 · s · µ2 · (log n)4 (5)

where µ =
√

n ·maxi,j |Ui,j|, and there is an explicit form for the (small) constant C3.
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Reconsidering normalization of the columns of Φ, if we assume that the normalization constants

are approximately equal for each of the columns, then without normalization the RIP is satisfied

to within this multiplicative constant, which does not impact the solution of (3). We therefore

henceforth ignore column normalization, but note that without normalization the constants on the

right side of (4) are now multiplied by the normalization constant
√

n/m.

The signal of interest u ∈ <n may not be sparse, although its transform coefficients may be

sparse (or compressible) in an appropriate orthonormal basis; the vector x is now defined by the

transform coefficients. Specifically, let Ψ ∈ <n×n have columns that represent an orthonormal basis,

and u = Ψx+ν, where x is s-sparse and ν is additive “noise” defined by the error manifested by

setting the n−s transform coefficients exactly to zero. We again consider a matrix Σo ∈ <n×n with

orthonormal rows. We note that the matrix product U = ΣoΨ corresponds to projecting the rows

of Σo onto the column space of Ψ, and therefore the rows of U are also orthonormal. For fixed

Ψ, random selection of rows of U corresponds to random selection of rows of Σo. The projection

measurement y is defined by randomly selecting m rows of Σo, with the m selected rows defining

the projection matrix Σ ∈ <m×n, and

y = Σu = ΣΨx + Σν = Φx + z (6)

which yields the expression in (1). The required number of CS measurements of this type for

s-sparse x is defined by (5), and therefore we desire small mutual coherence µ. Recognizing that

now U = ΣoΨ, µ is minimized by selecting Σo such that the mutual coherence between the row

space of Σo and column space of Ψ is as small as possible. This implies that we desire the rows

of Σo to be “spread out” in the column space of Ψ. The number of required CS measurements m

is also proportional to the number of significant components in x, and therefore it is also desirable

to choose Ψ such that x is as sparse as possible.
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C. Summary

If a signal u ∈ <n is compressible in the orthonormal basis Ψ, and therefore u = Ψx + ν for

sparse x and small error ν, one may perform m projection measurements (constituting y ∈ <m)

of the form y = Φx + z, where Φ ∈ <m×n is constructed as ΣΨ, with the rows of Σ defined

by m randomly selected orthonormal vectors. If the mutual coherence between the rows of Σ and

columns of Ψ is small, then one may recover x accurately based on m < n measurements y, with

error proportional to the energy in z. It is also desirable to choose Ψ such that x is as sparse as

possible, to minimize the required m.

Before proceeding, we note that there are many other constructions one may use for Φ [16], but

as discussed below the design of Φ considered above is of most interest to array signal processing.

Similar types of CS projections have also been used successfully in MRI applications [17].

III. RELATIONSHIP TO RANDOM ARRAYS

A. Array measurements as nearly-orthogonal projections

Consider a current J(r = R, θ = π/2, φ) for large R and φ ∈ [0, 2π]; this is a ring of current at

radius r = R, and we assume these currents are responsible for the angle-dependent fields observed

on a sensor array situated in the θ = π/2 plane. There are typically out-of-plane sources, but when

performing imaging with an array assumed to reside within a plane, all sources are imaged into

the array plane. For the analysis that follows a finite sensor system (e.g., array) is assumed located

in the vicinity of the coordinate origin r = 0 (with array dimensions infinitesimal relative to R).

To simplify notation, the far-zone source current J(r = R, θ = π/2, φ) is henceforth represented

as J(φ), to emphasize that it is only a function of the angle φ. When performing array processing

our objective is to infer J(φ), this representing the angle-dependent sources responsible for the

measured radiation.

The environment in which the sensor exists is arbitrary, and the characteristics of the sensor array

are general, as long as the media is isotropic and linear. For simplicity we assume the antennas are

point (isotropic) radiators and receivers, but the theory may be generalized to consider the patterns
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of real antennas. The electric field due to J(φ) as observed at the ith receiver, positioned at ri,

may be expressed as

E(ri) =

∫ 2π

0

dφG(ri; r = R, θ = π/2, φ) · J(φ) (7)

Therefore, the field E(ri) is a linear combination (projection) of the source current J(φ) with the

dyadic Green’s function G(ri; r = R, θ = π/2, φ). Recognizing that the source current we wish to

infer always exists at r = R and θ = π/2, we also simplify the representation of the Green’s func-

tion, with G(ri; r = R, θ = π/2, φ) henceforth represented as G(ri; φ). Concerning notation, the

Green’s function G(r; φ) is in general a dyadic, of the form G(r; φ) =
∑3

i=1

∑3
j=1 âiâjgij(r; φ),

where âi is a unit vector in the ith orthogonal direction, gij(r; φ) is a scalar function, and J is a

vector; hence G(ri; φ) · J(φ) is a dyadic-vector dot product, which yields a vector (E(ri) is of

course a vector).

RR

Fig. 1. Geometry of sensor array.

The observed electric fields at ri and rj (two antennas on the array) are manifested by projecting

J(φ) onto G(ri; φ) and G(rj; φ), respectively. It is therefore of interest to examine the relationship

between these two projections. For this, we recall the reciprocity theorem [18]. Assume that J1 and

J2 represent two general currents, responsible for generating electric field E1 and E2, respectively.

The reciprocity theorem states
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∫
dr3E1 · J2 =

∫
dr3E2 · J1 (8)

Let J1 be generated by an âi-directed point source situated at ri, and let J2 be generated by

JPC(φ) for φ ∈ [0, 2π], where JPC(φ) represents the phase-conjugated electric fields at r = R and

θ = π/2 for 0 ≤ φ ≤ 2π, due to a âj-directed point source at rj; stated explicitly, J1 = âiδ(r−ri)

and J2 = G∗(rj; φ) · âj . Using the reciprocity relationship this yields

EPC(robs = ri; rsource = rj) · âi =

∫ 2π

0

dφ[G(ri; φ) · âi] · [G∗(rj; φ) · âj] (9)

where EPC(robs = ri; rsource = rj) is the radiated field observed at ri due to J2 = JPC(φ) =

G∗(rj; φ). Because of the fact that the current JPC(φ) resides for all φ ∈ [0, 2π], and using insights

from phase conjugation or time-reversal [19], the EPC(robs = ri; rsource = rj) will be strongly

peaked at ri = rj , and will become very small for ‖ri−rj‖`2 > λ/2, where λ is the wavelength. This

demonstrates that if ‖ri−rj‖`2 ≥ λ/2 the projections manifested by G(ri; φ) · âi and G(rj; φ) · âj

are approximately orthogonal:

∫ 2π

0

dφ[G(ri; φ) · âi] · [G∗(rj; φ) · âj] ≈ 0 for ‖ri − rj‖`2 ≥ λ/2 (10)

The λ/2 resolution is dictated by the fact that, for the large R of interest, the current JPC(φ) loses

evanescent-field information about the point source at rj [18].

We may therefore generally view, for any antenna positions, the observed fields as projections

of far-field sources at φ ∈ [0, 2π] onto the corresponding Green’s function, and the projections are

orthogonal over φ ∈ [0, 2π] as long as the antennas are separated by a half wavelength or more. This

is important, as the compressive-sensing theory summarized in Section II dictates that orthogonal

projections are desirable, and they are here naturally manifested by the wave physics. Note that

the CS theory desires orthonormal projections, not simply orthogonal. Since the source current

J(φ) is assumed to reside in the far zone of the sensor array, the Green’s-function projections all

approximately have the same amplitude, and hence the projections are orthonormal to within a

constant – this constant does not impact the form of (3). Nevertheless, the Green’s functions may

9



be normalized to have unit energy if desired, this simply manifesting a scaling of the source current

J(φ).

B. Random projections and compressive sensing

Consider an array of m isotropic antennas in the plane θ = π/2, with the antennas situated

near the origin r = 0. While it is not required, we assume that all antennas are polarized in

the same way: âi = â for all antennas i. Let ei represent the (complex) signal measured on

antenna i, and e = [e1, e2, ..., em]T represents the data observed on the m antennas. Further, let

j = [J(φ = 0), J(φ = ∆), J(φ = 2∆), ..., J(φ = 2π)]T represent the (unknown) radiating currents

as a function of angle (with current direction consistent with the polarization of the antennas). In

this representation the current is discretized at an appropriate (fine) angular rate ∆, yielding an n-

dimensional vector j. The current represented by j is also assumed to reside in the plane θ = π/2

of the sensor array.

In matrix form we have

e = Σj (11)

where Σ is an m × n matrix (with m < n, and ideally m � n). The ith row of Σ represents

G(ri; φ) ·â discretized with respect to φ; if all antennas are separated by at least λ/2, the rows of Σ

are approximately orthogonal. The vector j is typically compressible in an appropriate orthonormal

basis, which we represent by the n × n matrix Ψ; we therefore have j = Ψx + ν, with x

assumed to be sparse and ν absorbing the error manifested by setting the small transform coefficients

exactly to zero. As an example, if the source j is characterized by a relatively small number of

radiators distributed over φ ∈ [0, 2π], with additive noise, then we may let Ψ be the identity matrix.

Summarizing, we have

e = ΣΨx + Σν = Φx + z (12)

The key observation is that the randomly situated array elements effectively constitute projections

10



onto the desired φ-dependent sources responsible for the radiation, and these projections may be

designed to be approximately orthogonal if ‖ri−rj‖`2 ≥ λ/2 ∀ i and j. The most compact sensor

array with which the m near-orthogonal projections may be manifested corresponds to a uniform

array with λ/2 spacing. However, uniform sampling is not required, or even desired. The enhanced

aperture size manifested by wider than λ/2 separation provides value concerning resolution, as

discussed further below. Additionally, the random spacing mitigates grating lobes [1], which we

discuss below from a CS perspective. Finally, we note that the choice of Ψ = In×n is advantageous

from the standpoint of the mutual coherence µ discussed in (5), as the Green’s function (rows of

Σ) are nearly uniformly weighted across angle (for the case of an array in vacuum).

Random arrays have been used previously in the context of more-conventional array-processing

techniques [1], [3]. The distinction provided by CS is that the inversion for J(φ) takes advantage of

additional information not exploited by conventional techniques. Specifically, CS exploits knowledge

that the unknown current is compressible in an appropriate transform relative to angle φ (possibly

after typical averaging of array measurements to reduce sensor noise).

Before proceeding, it is important to emphasize that the orthogonality of the Green’s-function-

produced projections is important, but it is not in itself sufficient for CS. For example, the rows of

the identity matrix In×n are also orthonormal, but these are often a poor choice for CS projections.

Hence, to examine the appropriateness of projections, one must pay careful attention to the mutual

coherence µ in (5). To minimize µ, and hence the number of projection measurements m, the

orthonormal projection vectors that constitute the rows of Σ should be “spread out” when expanded

in the column space of Ψ. If we consider a current J(φ) =
∑s

k=1 wkδ(φ − φ∗k) + ν(φ), where

ν(φ) is arbitrary noise with energy less than ε, and φ∗k represent possible source angles selected

at random, with random weight wk and |wk|2 large relative to the average (across angle) noise

energy, then in this case the appropriate orthonormal basis in which to represent j is Ψ = In×n

(the noise-free current
∑s

k=1 wkδ(φ − φ∗k) is sparse in this basis, and for sufficiently high SNR

J(φ) =
∑s

k=1 wkδ(φ−φ∗k)+ν(φ) is compressible in Ψ = In×n). For Ψ = In×n, mutual coherence

is minimized by projections (rows of Σ) that have energy uniformly distributed across angle φ.

11



We now consider the special but important case of an antenna array in vacuum (free-space). For

large observation distances R and time dependence exp(jωt), the free-space Green’s function is

of the form exp(−jβR)exp(−jβρcos(φ))/R, where ρ is the small (relative to R) distance from

the origin to the corresponding antenna element on the array, β = 2π/λ, and j =
√
−1 . Such a

projection has constant amplitude with respect to φ, and therefore is maximally spread out in the

column space of Ψ = In×n. Therefore, Green’s-function-constituted projections for random arrays

in vacuum are optimal for (typical) sources of the type mentioned above, for which Ψ = In×n. More

generally, if the sources are more diffuse with respect to φ, and therefore not sparse in Ψ = In×n,

a basis such as wavelets is appropriate for Ψ, since such localized basis functions will still provide

a relatively “spread out” representation of the Green’s function, which has constant amplitude as a

function of angle φ.

C. CS perspective on aperture size and angular resolution

Let ĵ represent the CS-computed approximation to j, based on the m measurements e. Compressive-

sensing theory places bounds on the accuracy of the error ‖j − ĵ‖`2 . However, based on the above

discussion this error is computed over all angles φ ∈ [0, 2π], and therefore it does not address the

accuracy of the reconstruction over narrower angular support (i.e., resolution). For that, we now

assume that J(φ) is only non-zero over a contiguous extent of angles Sφ, and Sφ may be made

arbitrarily small; we desire CS reconstruction guarantees for currents that reside over the support

of Sφ. The angular extent (in radians) of Sφ is denoted |Sφ|.

Under these circumstances, the field observed at antenna ri may be expressed as

ei =

∫
φ∈Sφ

dφ âi ·G(ri; φ) · J(φ) (13)

As above, we wish to examine relationships between G(ri; φ) for different ri, now under the

restriction that we are only interested in φ ∈ Sφ (see Figure 2). We again consider reciprocity, and

now JPC(φ) = G∗(rj; φ) · âj for φ ∈ Sφ and JPC(φ) = 0 for φ /∈ Sφ. This yields

EPC(robs = ri; rsource = rj, Sφ) · âi =

∫
φ∈Sφ

dφ[G(ri; φ) · âi] · [G∗(rj; φ) · âj] (14)
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where EPC(robs = ri; rsource = rj, Sφ) represents the fields due to a phase-conjugated source that

only exists over φ ∈ Sφ. From aperture theory [1], for small |Sφ| and for an array in vacuum, to

achieve EPC(robs = ri; rsource = rj, Sφ) ≈ 0 we require ‖ri−rj‖`2 ≥ λ/|Sφ|, which demonstrates

that to achieve near-orthogonal projections over φ ∈ Sφ, the inter-element spacing must be increased

inversely proportional to the support of Sφ. Hence, to achieve m near-orthogonal CS projections

over small angular support Sφ, which will allow CS reconstruction-error guarantees over this support

(addressing resolution), the size of the antenna aperture must be increased to assure that ‖ri−rj‖`2 ≥

λ/|Sφ|. This constitutes the CS connection to the well-known relationship between the array aperture

size and system resolution (this is viewed from another CS-related standpoint in the next subsection).

RR

Fig. 2. Consideration of CS inversion accuracy over a small range of source angles, addressing the issue of resolution. To achieve
orthogonal projections over a narrow support of angles, and hence CS reconstruction accuracy, the antennas must be separated
further, implying a larger array. This maps the conventional issue of array resolution and aperture size onto a CS perspective.

The above discussion implies that the size of the aperture must be very large to achieve accurate

CS results over narrow Sφ (i.e., resolution). However, recall from the CS theory in Section II that

the number of CS measurements m is related to the signal sparseness over the projection support.

As |Sφ| → 0 the signal J(φ) is expected to be very smooth and hence highly compressible.

Therefore, the number of near-orthogonal CS projections required over that support is likely to

be small. Consequently only a relatively small set of projections are anticipated for inter-element

spacing λ/|Sφ|. Hence, on a sensor array, only the relatively few widely separated elements (which

yield near-orthogonal projections over narrow |Sφ|) are expected to play an important role in the

reconstruction accuracy over narrow |Sφ|.
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D. Restricted orthornomality and resolution

Consider a linear sensor array with uniform inter-element spacing ∆x; the array is assumed to

reside in vacuum. We consider the orthonormal basis Ψ = In×n, and examine the properties of the

columns of Φ. Each column of Φ corresponds to the Green’s function from a discrete source angle

φ ∈ [0, 2π] to the m uniformly spaced antennas that constitute the array. Apart from a constant,

the components that constitute the ith column of Φ may be expressed as

[Φ1,i,Φ2,i, · · · ,Φm,i]
T = [1, ωi, ω

2
i , · · · , ωm−1

i ]T (15)

where ωi = exp[−j2π∆x

λ
cos(φi)], and φi corresponds to the ith angular bin, with j =

√
−1.

We observe that each column of Φ corresponds to a sampled Fourier basis function, at angular

frequency ωi, truncated over m samples. By setting ∆x = λ/2 we achieve the desired near-

orthogonal projections on the source currents (Section III), while also removing ambiguities in

the angular frequencies; the latter manifest “grating lobes” in the array response [1].

Now consider any two columns of Φ, corresponding to angles φ1 and φ2; the degree to which

these two columns are orthogonal is dictated by the difference ‖φ1 − φ2‖`2 , and by the size of the

array, dictated by m. Each column of Φ is associated with the contribution to the array response

from one source angle, and it appears reasonable that the degree to which any two columns are

orthogonal will impact the resolution with which one may infer the desired source current J(φ).

This implies the well-known relationship between angular resolution and aperture size (size of m),

discussed in Section III-C. However, there is not a precise relationship from above concerning

the near-orthogonality of the columns of Φ and the accuracy with which J(φ) may be recovered.

Further, the above discussion was relegated to conventional uniformly sampled linear arrays in

vacuum, with inter-element spacing ∆x ≤ λ/2. Compressive sensing affords the opportunity to

explicitly link the relationship between the near-orthogonality of the columns of Φ to the accuracy

with which J(φ) may be measured; further, the theory is applicable to general random arrays

situated in arbitrary environments (not necessarily vacuum). As is known from conventional array

theory [1], the random array locations mitigate grating lobes; this is a product of the random
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projections proscribed by CS theory, although it was not an explicit a priori objective.

Consider a Φ matrix, with the kth row defined by the φ-dependent Green’s function for array

element situated at rk (we again assume Ψ = In×n). The array may be situated in an arbitrary

linear, isotropic environment, and the array elements are situated randomly, with the restriction that

the rows are nearly orthogonal (separated by greater than or equal to λ/2, as discussed in Section

III-A). It is important to emphasize that the rows of Φ are orthogonal, and we wish to examine

the properties of the columns; the columns of Φ define the vectors in which the angle-dependent

source J(φ) is expanded to constitute the observed signal across the arrays.

Recall the Restricted Isometry Property (RIP) from Section II-A, and the associated parameter

δs defined there. Consider two vectors x ∈ <n and x′ ∈ <n, and these vectors are supported on

disjoint subsets T and T ′, with T, T ′ ⊆ {1, 2, · · · , n}, with |T | ≤ s and |T ′| ≤ s′. The following

relationship holds [10]:

| < Φx,Φx′ > | ≤ δs+s′|x||x′| (16)

Recall that if δ2s is small there are guarantees concerning the accuracy of the reconstruction in (3),

and (5) provides an explicit expression for the required number of array elements m. As discussed

further in Section V, the integer s may be linked to the number of discrete sources responsible for

the observed fields. From RIP and (16), when interested in accurately observing s sources (from

s discrete angles), the matrix Φ should be designed such that if one randomly selects up to 2s

columns of Φ, these columns should be nearly orthonormal, in the sense defined by (2) and (16).

Thus, CS makes explicit the relationship between the degree of orthonormality in the columns of

Φ (linked to the number of array elements m) and the resolution with which one may distinguish

multiple angle-dependent discrete sources.

IV. RECONSTRUCTION ALGORITHMS

In this section we demonstrate that many of the algorithms developed independently in the CS

and array-processing communities are highly related to each other; this is not surprising given
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the inter-relationships between these fields, as discussed in Sections II and III. We discretize the

unknown current j in (11) in terms of n uniform bins over 2π, where the angular support of the

bins ∆ is small relative to the array resolution. The current is represented as j = Ψx + ν, where

x is s-sparse. In this example we assume that Ψ is the n× n identity matrix, with ν representing

stationary (relative to angle) sensor noise. The measured data is therefore e = Σx+Σν = Φx+z;

in this case the non-zero components of x correspond to discrete sources situated at s angular bins

distributed across 2π. It is assumed by construction that the energy in Φx is large relative to that

in z.

If we ignore the noise z for now, we have e = Φx. Since x is s-sparse, this implies that e,

which corresponds to the measured signals across the m sensors, may be expanded in terms of

a small set of the columns of Φ. Each column corresponds to the observed signal across the m

receivers due to a source at one of the angular bins; if the array is uniformly sampled, the columns

of Φ represent n Fourier bins [15], indexed by the source angle relative to the array (see (15)).

However, as discussed in the previous subsection, this near-orthogonality of the columns of Φ is

applicable to appropriately designed random arrays in general media (those with greater than λ/2

inter-element spacing).

Methods have been developed in the array-processing community for inferring x based on

measured e = Φx + z, using greedy or near-greedy constructions. The CLEAN algorithm was

first developed for sparsely sampled antenna arrays in radio astronomy [4], and was later applied

in other radar applications [20], where it was again employed for sparsely sampled antenna arrays.

The RELAX algorithm [15] is closely related to CLEAN, with modifications employed to remove

some of its greedy nature. Further, RELAX was developed based on the assumption of uniformly

sampled arrays in vacuum; under this assumption the columns of Φ correspond to discrete Fourier

components (recall (15)), allowing use of the FFT to accelerate computations.

The CLEAN algorithm is highly related to Orthogonal Matching Pursuits (OMP) [21], [22],

which has been applied recently in the CS literature [13]. The OMP algorithm has also motivated

new CS reconstruction algorithms, such as STOMP [14]
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These algorithms are all very similar, despite the fact that they have been developed independently

in disparate but, as demonstrated above, highly related fields. They sequentially search the n columns

of Φ, adding the new column that most minimizes the mean-square error ‖ΦΩxΩ − e‖`2 , where

Ω is the subset of columns of Φ selected up to a particular point of the iterative solution, and xΩ

represents the |Ω| components of x that correspond to the selected columns of Φ. At each iteration

Ω is expanded by one vector, selecting one of the remaining columns of Φ not employed thus far.

The algorithm terminates when ‖ΦΩxΩ−e‖`2 stabilizes with expanding Ω, implying the algorithm

is starting to reconstruct the noise z.

V. CS PERSPECTIVE ON PERFORMANCE OF RANDOM ARRAYS

From the above discussion there are strong linkages between the motivations for random arrays

and for compressive sensing, as well as in the state-of-the-art algorithms applied to CS and array

processing. Concerning the latter, the algorithmic similarities are manifested because appropriately

designed random arrays implicitly perform the class of projection measurements (across angle) that

are required for CS. This connection may be used to infer fundamental relationships of random

arrays, which CS theory now places on a firm mathematical footing.

Assume an angle-dependent source current J(φ) at large radius R is responsible for the fields

observed at an array in the θ = π/2 plane and situated near the origin. The current is discretized

into n angular bins, yielding the vector j, with n sufficiently large such that the angular bins are

small relative to the array resolution. The array has randomly constituted inter-element spacing,

with separation greater than λ/2. Based on the analysis in Section III and existing CS theory, the

following statements may be made:

• Assume that the vector x defines the source strength from each of the n angular bins, with

x an arbitrary s-sparse signal (s discrete sources distributed arbitrarily across the n angular

bins); in this case Ψ = In×n. In the noise-free case, the `1-based inversion algorithm in (3),

with ε = 0, yields an exact reconstruction of j with overwhelming probability if

m ≥ C3 · µ2 · s · (log n)4 (17)
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for small constant C3 defined in [16]. The constant µ is the maximum element of Σ, the latter

defined by G(ri; φk); this corresponds to the far-zone Green’s function between array element

ri and discretized angular bin φk, with the normalization
∑n

k=1 |G(ri; φk)|2 = 1.

• Now considering the case for which there is additive noise, let j = x + z, with ‖z‖`2 ≤ ε;

x again represents the strengths of the sources distributed across the n angular bins (i.e.,

Ψ = In×n). Let Σ ∈ <m×n represent the Green’s function defined projection matrix, as above.

If m ≥ C3 · s · µ2 · (log n)4 then δ2s <
√

2 − 1 for this matrix, then the solution x∗ to (3)

satisfies (4) [10]. The mutual coherence µ is defined on Σ, as above.

• More generally, j = Ψx, where Ψ ∈ <n×n is defined by orthonormal columns in which

x is compressible. In this case the bins of x do not represent angle-dependent sources, but

rather represent the source current j in the basis Ψ (in which x is compressible). The above

relationships still hold, but now the mutual coherence µ is defined with respect to the matrix

ΣΨ, with Σ defined as above.

• The above relationships hold for reconstruction accuracy over the entire angular support φ ∈

[0, 2π]. Similar relationships may be constituted for accuracy over narrower angular support

(i.e., resolution), using ideas discussed in Section III-C. In this case, to achieve the required

orthogonal projections associated with the CS theory, the inter-element spacing must be larger

than λ/2.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The principal focus of this paper has been to explicitly make the connection between random

sensor arrays and compressive sensing (CS). The former has been investigated for many decades,

typically motivated by the idea of constituting sufficient angular resolution (large aperture) with a

relatively small number of array elements. By contrast, the field of compressive sensing is only

a few years old; it has also been motivated by the goal of reducing sensing costs, for general

sensing missions. We have demonstrated that the types of measurements employed in arrays is

consistent with the projection measurements associated with CS. In fact, random arrays may be
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viewed as a special case of CS measurements. The inversion algorithms widely employed in CS are

based on regularized inversion, with the regularization manifested by minimizing the `1 norm of the

transform coefficients for the signal of interest. While array signal processing algorithms have not

been explicitly motivated by this goal, we have demonstrated that two widely used array-processing

algorithms, CLEAN and RELAX, are approximate means of realizing the CS inversion. Further,

OMP and STOMP, two recently developed algorithms applicable to CS inversion, are very closely

linked to CLEAN and RELAX.

With this strong linkage of the motivations and algorithms associated with CS and sensor

arrays, one may ask what new is provided by CS, and where does CS point concerning future

research directions for array-processing applications. Concerning what is new, CS provides an

explicit, quantitative theory for design of random sensor arrays. Specifically, it quantifies how

many array elements m are required to reliably recover s angle-dependent sources embedded in

noise. It provides guarantees on algorithm performance, which may be useful in designing random

arrays for particular applications. Further, most previous random array theory was only applicable to

structures in vacuum, while the CS-based theory has been demonstrated here to be appropriate for

any linear, isotropic medium (the theory demonstrating the near-orthogonality of Green’s-function

based projections did not assume the array was in vacuum).

Concerning future research, there are several directions of interest. For example, one may consider

design of new array concepts that exploit the properties of relatively complex propagation media

placed in the presence of the sensor array. Specifically, to realize a large effective aperture while still

maintaining a relatively small number of proximate antennas, one may place the array antennas

in the presence of scatterers, as in Figure 3. The effective large aperture is manifested through

scattering from the media placed in the presence of the antennas; incident waves at a diversity

of incident angles impinge the scatterers, and ultimately make their way to the receiver antennas.

Concerning these scatterers placed in the presence of the array antennas, it is desirable that they not

break out-of-plane symmetry, to preserve polarization purity in the observed fields. This suggests

placing all randomly placed antennas in the same plane, with the surrounding scatterers defined by

spheres, with sphere equators residing in this same plane.
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Fig. 3. Antennas in presence of scatterers.

The measured data are represented as e = Φx+ν, where x represents the sparse set of significant

transform coefficients of the angle-dependent far-zone source currents. We note that the same noise

mitigation manifested by averaging multiple measurements may also be manifested through multiple

measurements (averaging) of e. A challenge for CS inversion involves a requirement for knowledge

of Φ, which is sensitive to the exact placement of the antennas and of the surrounding scattering

media (if a design like that in Figure 3 is employed). However, a given structure may be “calibrated”

to infer Φ, by simply performing far-field measurements of e, with a source antenna placed at large

R within the aforementioned plane; the array response e is then measured as a function of the source

angle φ. By performing this one-time calibration for a sufficient set of angles φ ∈ [0, 2π] (or desired

subset of angles), one may directly measure Φ. Once this one-time measurement of Φ is performed,

“standard” CS inversion algorithms may be used to recover x for an arbitrary source J(φ).

In addition to new sensor designs, there is interest in new algorithms for recovery of the source

current j. It has been demonstrated that the CLEAN [4], [20] and RELAX [15] algorithms applied in

array processing are performing a greedy or near-greedy `1-type inversion, analogous to algorithms

developed for CS [13], [14]. Compressive sensing is a very active field, motivating a large set of new

algorithms that are generally superior to these early approaches. For example, algorithms have been

developed to provide a full posterior density function on the sparse coefficients, using fast Bayesian

techniques [23], [24]. This same class of algorithms may also be adapted for improved processing

of data from random sensor arrays. In fact, almost all of the inversion algorithms developed in the

CS community recently may be directly applied to random-array processing.

Another promising direction in compressive sensing involves development of adaptive projections
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[23]–[25]. In this context one may constitute a sensor array in which the elements may be adaptively

selected, which based on the discussion in Section III corresponds to adaptive projections. It has

been demonstrated that this approach provides significant value, particularly in noise [25]. The

success of this framework for general CS applications suggests its use for the specific application

of sensor arrays.

We close by noting that some sensor arrays are synthetically constituted, for example for synthetic

aperture radar (SAR) [26] and synthetic aperture sonar (SAS) [27]. In such systems the sensor

platform most often be carefully designed to achieve as uniform sampling as possible along the

array length. Further, the data are typically measured to achieve λ/2 sampling. The compressive

sensing theory indicates that random sampling is desirable, and that the samples may be situated

greater than λ/2 apart. Random samples are likely naturally manifested by the flight of the platform,

and sampling more coarsely than λ/2 offers advantages for reduced data storage and processing.

The CS theory also provides fundamental bounds on reconstruction accuracy, as a function of

sample rate and noise level.
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