
 

 

 

 

 
 

 

 
Copyright ©            IEEE.  

Citation for the published paper: 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

This material is posted here with permission of the IEEE. Such permission of the IEEE does 

not in any way imply IEEE endorsement of any of BTH's products or services Internal or 

personal use of this material is permitted. However, permission to reprint/republish this 

material for advertising or promotional purposes or for creating new collective works for 

resale or redistribution must be obtained from the IEEE by sending a blank email message to  

pubs-permissions@ieee.org. 

 

By choosing to view this document, you agree to all provisions of the copyright laws 

protecting it. 

 

 
 



On the Relationship between Different Size Measures in the Software Life Cycle 
 

Cigdem Gencel 
Blekinge Institute of Technology,  

Ronneby, Sweden 
cigdem.gencel@bth.se 

 

Rogardt Heldal, Kenneth Lind 
 Chalmers University of Technology, 

Gothenburg, Sweden 
heldal@chalmers.se, kenneth.h.lind@se.saab.com 

 
Abstract—Various measures and methods have been 
developed to measure the sizes of different software entities 
produced throughout the software life cycle. Understanding 
the nature of the relationship between the sizes of these 
products has become significant due to various reasons. One 
major reason is the ability to predict the size of the later phase 
products by using the sizes of early life cycle products. For 
example, we need to predict the Source Lines of Code (SLOC) 
from Function Points (FP) since SLOC is being used as the 
main input for most of the estimation models when this 
measure is not available yet. SLOC/FP ratios have been used 
by the industry for such purposes even though the assumed 
linear relationship has not been validated yet. Similarly, FP 
has recently started to be used to predict the Bytes of code for 
estimating the amount of spare memory needed in systems. In 
this paper, we aim to investigate further the nature of the 
relationship between the software functional size and the code 
size by conducting a series of empirical studies. 

Keywords-Software Size; Functional Size; Source Lines of 
Code; Function Points;  Bytes of Code;  IFPUG; COSMIC; 
ISBSG 

 

I.       INTRODUCTION 
Software size measurement involves a wide range of 

measures and methods [1][2]. This variation is mainly due 
to different size attributes of software entities produced 
throughout the software development life cycle. The major 
entities, the sizes of which are usually measured are the 
software requirements specification (SRS), design and the 
code.  In the scope of this paper we mainly focus on the 
SRS and the code sizes. 

The code size is the oldest attribute for which a number 
of measures are defined such as; Source Lines of Code 
(SLOC), number of characters, number of executable 
statements, bytes, etc. [2].  

Among those, SLOC is the most widely used traditional 
code size measure which is the key input to most software 
effort estimation models as well as to performance 
measurements. It has also been used for the normalization 
of other measures. In order to better define and to enable 
the consistent usage of SLOC, a number of studies were 
also made such as [3]. 

Bytes of code is another code size measure which is 
used for other purposes as for measuring the amount of 
spare memory needed in a system [4]. 

Measuring the size of SRS involves many measures and 
methods [2]. The older ones focused on measuring the 
number of pages, the number of requirements etc. Recent 
measures and the methods attempt at measuring size by 
trying to capture the amount of functionality laid out on 
projects’ functional user requirements (FUR) which are 
available earlier in the project lifecycle.  

The original measure; Function Points (FP) and the 
method were introduced by Albrecht and Gaffney [5][6]. 
This new measure aimed at overcoming some of the 
shortcomings of the code size measures for estimation 
purposes and performance analysis, such as their 
availability only fairly late in the development life cycle 
and their technology dependence.  

After then, the topic of Function Point Analysis (FPA) 
evolved quite a bit [7][8]. Many variations and 
improvements on the original idea were suggested some of 
which proved to be the milestones in the development of 
Functional Size Measurement (FSM). In 1996, the 
International Organization for Standardization (ISO) 
established the common principles of FSM methods and 
published ISO/IEC 14143 standard family in the following 
years [9][10][11][12][13][14][15].  

The methods which conform to ISO/IEC 14143-1 
standard [9] are accepted as international standards for 
FSM. Currently, the Common Software Measurement 
International Consortium Function Points (COSMIC FP) 
[16][17], the International Function Point Users Group 
(IFPUG) FPA [18][19], MarkII FPA [20][21], the 
Netherlands Software Metrics Association (NESMA) FSM 
[22][23] and the Finnish Software Metrics Association 
(FiSMA) FSM  [24][25] methods are the ones accepted as 
FSM standards. 

In spite of the fact that rigorous and well-defined 
measures and methods have been developed to measure the 
size for software entities throughout the software 
development process, one of the major issues still requires 
further investigation: the nature of the relationship between 
different size measures defined to measure different 
software entities [8].  

One of the main reasons for such a need is the ability to 
estimate the size of the software entities produced at the 
later phases of the life cycle such as the code, by using the 
sizes of the entities produced early in the life cycle such as 
the SRS.  



For example, the majority of software cost and effort 
estimating parametric tools such as COCOMO II  [26], 
Putnam’s Model/SLIM [27], SoftCost [28], Price-S [29] are 
based on code size as the primary input. Similarly, the 
amount of memory to be integrated in various kinds of 
hardware such as in cars, televisions, mobile phones, etc. 
requires bytes of code to be estimated when the code is not 
available yet.  

In this study, we investigate the nature of the 
relationships between functional size measures and the 
code size measures by conducting empirical studies. For the 
functional size measures, we chose two of the widely-used 
ones: COSMIC FP (CFP) and IFPUG FP.  For the code size 
measures, we chose SLOC and Bytes of Code. This paper 
is organized as follows: the related research is briefly 
summarized in the second section. We discuss the empirical 
studies we performed as well as the results obtained in the 
third section. Finally, conclusions are given in the fourth 
section. 

II.       RELATED RESEARCH 
Jones [30] developed an approach called ‘backfiring’ to 

convert the length of code measured in SLOC and the 
functional size in IFPUG FP to one another. Backfiring is 
the direct mathematical conversion of SLOC and IFPUG 
FP to one another. It is based on the assumption that the 
functional size in IFPUG FP can be converted to SLOC by 
multiplying the former with an average ratio figure derived 
from earlier project data. 

COCOMO II [26], which is a widely known effort 
estimation method, utilizes the backfiring approach to 
obtain SLOC which is the primary input in the estimation 
model. However, in a number of studies such as in 
[31][32], this kind of conversion were criticized for 
introducing extra uncertainty by adding another level of 
estimation. 

Henderson [33] and then Desharnais and Abran [34] 
presented the results of their analysis on the SLOC to 
IFPUG FP ratio. Both studies concluded that the published 
conversion ratios should be used with caution due to large 
range of variations in the ratio figures.  

Rollo [35] studied the reliability of SLOC/FP ratio by 
showing the results of an empirical study conducted on 20 
applications and concluded that the use of backfiring 
functional size to SLOC is inherently inaccurate and that 
only homogeneous data allows for acceptable results. 

Dekkers and Gunter [36] discussed the uncertainties and 
risks associated with using the backfiring method based on 
the fundamentals of these two measures. 

On the other hand, Lind and Heldal [4][37][38] found a 
significant correlation between software code size of 
components in Bytes and functional size in CFP. They 
developed a linear model to estimate the amount of 
memory required in Electronic Control Units (ECU) in cars 
from CFP before the software is available. 

The results of the literature survey shows few studies on 
the conversion of different size measures designed to 
measure different entities. More research is necessary to 
understand and explain the ‘true’ nature of these 
relationships so that they can be used reliably.   

III.       EMPIRICAL STUDIES 
We designed and conducted empirical studies in order 

to investigate the nature of the relationship between 
functional sizes (in CFP and IFPUG FP) and code sizes (in 
SLOC and Bytes) at four different granularity levels; from 
higher to lower levels. The aim of conducting these 
empirical studies is to bring into light the factors which 
influence these relationships.  

At the first and highest granularity level, we made an 
empirical study using the International Software 
Benchmarking Dataset (ISBSG) Release 10 [39] to explore 
the nature of the relationship between the length of code (in 
SLOC) and functional size (in CFP and in IFPUG FP).  

Then, we conducted a multiple-case study which 
involved two projects from an organization. We looked at 
the SLOC and CFP relationship in more detail.  

Later, at a lower granularity level, we further observed 
the relationship between SLOC and CFP among three 
modules of one of the case projects from the previous case 
study.  

Finally, we conducted another case study to explore the 
nature of the relationship between SLOC and CFP as well 
as Bytes of Code and CFP among the components of a 
project. In the following sub-sections we discuss each of 
the empirical studies and the results we obtained.    

A. Level-1: Projects from a Benchmarking Dataset 
ISBSG 2007 Repository, CD Release 10 [39] contains 

data from 4,106 completed projects collected from the 
software organizations all over the world.  

Before making any analysis, we first filtered the data in 
the ISBSG repository to obtain the projects which reported 
the sizes in CFP, IFPUG FP and SLOC - excluding 
therefore those where these information are missing. We 
used the data of the projects, which have high Quality Data 
Rating and Function Point Rating (see Table 1).  

ISBSG rating code of A, B, C or D applied to the Data 
Quality and Function Point Count data by the ISBSG 
quality reviewers. Data Quality Rating ‘C’ is given to the 
projects for which it was not possible to assess the integrity 
of the submitted data due to significant data not being 
provided. Data Quality Rating ‘D’ is given to the projects 
to which little credibility should be given to the submitted 
data due to one factor or a combination of factors.  

As for the Function Point Rating ‘D’, this is given to the 
project data to which little credibility should be given to the 
unadjusted function point data due to one factor or a 
combination of factors. 

 



TABLE 1. FILTRATION OF ISBSG DATASET 2007 RELEASE 10 

Attribute Filtering Value 
Count Approach = ‘COSMIC’, ‘IFPUG’ 
Data Quality Rating = {A | B} 
Function Point Rating = {A | B} 

  
After the filtration process by selecting the projects 

measured by COSMIC, 29 projects remained whose SLOC 
values are reported. Since, the ‘Primary Programming 
Language” is one of the requirements of the backfiring 
technique [30], we did not include the projects in our 
analysis for which the language type is not reported.  

After the filtration, 14 projects remained; with all 
having a primary language type as C++. The data quality 
rating of all of these projects are ‘B’. The application types 
are all ‘Customization to a Product Data Management 
System’ and they are all enhancement projects.  

For this sub-dataset, the median, minimum and 
maximum SLOC values are 509, 96 and 2261, respectively.  
In Table 2, we show the ratios of SLOC/CFP for this sub-
dataset. 

TABLE 2. THE RATIOS OF  SLOC/CFP 

No of 
Projects 

SLOC / CFP 
Min Med Max Std. Dev. 

14 2.95 6.03 20.6 6.04 
 

Then, we investigated the nature of the relationship 
between SLOC and CFP (see Fig.1).  

 

 
Figure 1. The Relationship between SLOC and CFP 

R2 was found to be 0.559 for this sub-dataset. Since R2 
is between 0.5 - 0.7, we concluded that this relationship 
should be used with caution although there is an adequate 
correlation for many purposes [40]. In fact, this is also 
reflected to SLOC/CFP ratios by great variation between 
the ratios (see Table 2). 

Next, we selected the new development projects in the 
ISBSG dataset, which were measured by IFPUG FP and for 
which SLOC values reported (see Table 3). 

 
 
 

TABLE 3. THE RATIOS OF SLOC/IFPUG FP 

Progr. 
Lang. 

# of 
Prj 

SLOC / IFPUG FP 
Min Med Max Std. Dev. 

C 14 6.7 66 500 125.1 
Visual 
Basic 14 10.4 54.9 149.6 48.0 

SQL 9 78.6 226.0 329.8 81.0 
 

The SLOC per IFPUG FP values of the projects are 
given for three of the sub-datasets formed by grouping the 
projects with respect to the primary programming 
languages. This table does not include the sub-datasets 
which have less than 9 data points. 

During the analyses, three projects from the first sub-
dataset (C); three projects from the second sub-dataset 
(Visual Basic) and one project from the third sub-dataset 
(SQL) were excluded as being outliers. They all have very 
low functional size values whereas very high SLOC values. 
The development efforts for these projects are also very 
high. The reason for these differences from the other 
projects might be due to high amounts of data-manipulation 
rich requirements which cannot be measured by IFPUG FP. 
Unfortunately, the application types are not reported for 
most of these projects. Therefore, we could not conclude 
for a definite reason.  

The relationships between IFPUG FP and SLOC for 
three sub-datasets are shown in Fig.2, Fig.3 and Fig.4, 
respectively. 

For sub-dataset (C), sub-dataset (Visual Basic) and sub-
dataset (SQL), the R2 values were found as 0.26, 0.66 and 
0.61, respectively. 

For the first sub-dataset, the correlation is very weak. 
This is also observed in the very high standard deviation 
figure (125.1) in SLOC/IFPUG FP ratios in this subset 
where the median values is 66 (see Table 3). For the other 
two subsets, we concluded that these relationships should 
be used with caution since the correlation coefficients are 
not very high. Moreover, the standard deviations are 
significantly high; 48 for the second sub-dataset and 81 for 
the last one.  

It is not known whether the SLOC values for the 
projects in the ISBSG dataset are the count of logical or 
physical SLOC, uncommented or commented SLOC, 
which can affect both the correlation coefficient and the 
variation between the ratios significantly. Therefore, we 
made further case studies for which we have more detailed 
information regarding the projects as well as the 
development organization to be able to understand what 
influences the nature of the relationships.  

 
 
 
 
 
 
 



 
Figure 2. The Relationship between SLOC and IFPUG FP for C projects 

 
Figure 3. The Relationship between SLOC and IFPUG FP for Visual Basic 

projects 

 
Figure 4. The Relationship between SLOC and IFPUG FP for SQL 

projects 

B. Level 2: Projects from a Software Organization 
We conducted a multiple case study using two projects 

data to further investigate the relationship between SLOC 
and CFP for the projects completed by a specific 
organization.  

Project-1 is one of the subsystems of an avionics 
managements system for small to medium size commercial 
aircrafts on a Flight Display System. It is certified by 
Federal Aviation Administration.  

Project-2 is a Collision Avoidance Subsystem of the 
Traffic Alert and Collision Avoidance System (TCAS).  In 
this study, we measured the size of CAS-Own Aircraft 
Algorithm. Own Aircraft function determines the TCAS 
operational mode, effective sensitivity level and other 
operation parameters used by the collision avoidance logic.   

According to CHAR Method [15], the functional 
domains of Project-1 and Project-2 are ‘Complex Data 
Driven Control System’ and ‘Complex Control System’, 
respectively. 

We obtained the uncommented logical SLOC values for 
Project-1 and Project-2 by using “Understand for C++” 
which is a source code analyzer [41]. The ratios of 
SLOC/CFP values for the case projects are given in Table 
4. 

Both Project-1 and Project-2 are developed within the 
same organization by the project teams of very similar 
characteristics using the same methodology. However, for 
the first project, SLOC/CFP ratio is about 15 times greater 
than the second. One of the reasons might be attributed to 
the fact that first project involves high numbers of 
algorithmic operations which cannot be measured by 
COSMIC. Therefore, the size of this project obtained in 
CFP is smaller with respect to SLOC which measures all 
types of processes. 

TABLE 4. THE RATIOS OF SLOC/CFP 

Prj. 
No 

Functional Size 
(CFP) SLOC SLOC /CFP 

1 4,036.0 19,506 4.83 
2 945.0 289 0.31 

 

C. Level-3: Sub-systems of a Project 
In this study, we further investigated the relationship 

between CFP and SLOC for the sub-systems of Project-1 
discussed in the previous section (see Table 5).  

TABLE 5. THE RATIOS OF SLOC/CFP FOR THE SUB-SYSTEMS OF PRJ-1 

Prj. 
No 

Subsy. 
Name 

Functional 
Size (CFP) 

SLOC 
(Logical) 

SLOC/CFP 

1 A 3,505.0 12,143 3.46 
B 279.0 3,449 12.36 
C 252.0 3,914 15.53 

Total 4,036.0 19,506 4.83 
 

All subsystems of Project-1 are developed by the same 
people and all the sub-systems are of the same application 
type. However, the values of SLOC per CFP still have a 
wide degree of variation for sub-system A and the other 
sub-systems. For the sub-systems B and C, which involve 
very similar types of functionalities, the variation is not that 
significant. 

Therefore, in this case study we concluded that for the 
same amounts of functionality (in CFP), similar types of 
functionalities might require similar amounts of code to be 
written. In order to further investigate this hypothesis, we 
conducted the next case study. 



D. Level-4: Components of Modules 
We performed this case study to further observe the 

relationship between the functional size and code size at a 
lower granularity level; i.e. for the components of modules. 

In this case study we investigated two types of software 
components used in vehicles from the automotive company 
General Motors (GM). For our experiment we had both the 
specifications of the components in the form of UML 
component diagrams and the source code of the 
components. For each UML component, we measured the 
functional size in CFP and obtained the software size in 
SLOC and bytes by using the tool “Understand for C++” 
and the C compiler “Green Hills Optimizing C Compiler” 
[42]. 

In our previous case studies [37][4], we  observed a 
very strong relationship between CFP and bytes for 
software components. In this study we specifically 
investigated whether we also have strong relationships 
between CFP and SLOC for the same components.  

We chose distributable type components which cannot 
be split into smaller components, and therefore have similar 
granularity levels. The reason for considering similar 
granularity level was to have a one to one mapping between 
the distributable components and the Generic Software 
Model, which is the basis of COSMIC measurement. And 
yet another reason was that for each of the experiments, we 
ensured that components involve similar functionalities.  

We first show our previous results of CFP and bytes of 
code relationship and then show our new results for the 
nature of the relationship between CFP and SLOC.  

In our previous study [4] we used 12 software 
components of Display & Indication type. They were 
randomly picked from a set of 60 components. They 
typically perform small calculations and display 
information of vehicle data such as vehicle speed, engine 
speed, etc. This type of functionality is representative of at 
least 20-25% of the features in a typical vehicle today.  

All the components were developed by the same team 
using the same methods and tools. We removed one of 
them being an outlier; extremely large CFP with respect to 
others. For these components, the median Bytes of code 
value is 1122, with a minimum 388 and a maximum 2182. 
In Table 6, the ratios of Bytes/CFP are given.   

TABLE 6. THE RATIOS OF BYTES/CFP 

No of 
components 

Bytes / CFP 
Min Med Max Std. 

Dev. 
11 72.7 83.1 97.0 7.6 

 
Fig.5 shows the relationship between Bytes of code and 

CFP.  

 
Figure 5. The Relationship between CFP and Bytes 

R2 is found to be 0.99 which shows a very high 
correlation between CFP and Bytes of code for the 
components of type Display & Indication. 

Our second experiment [37] was a replication of the 
first one using a different team and a different component 
type. Here we used the software components of the type 
Comfort & Convenience. We randomly picked 15 
components out of a set of 100 components.  

They are characterized by a combination of event-based 
user inputs causing changes of one or several digital or 
analogue output(s), and represent at least 25-35% of the 
features in a typical vehicle today.  

For this second set of components, the median Bytes 
value is 2202, with a minimum 932 and a maximum 4530. 
In Table 7, the ratios of Bytes/CFP are given.   

TABLE 7. THE RATIOS OF BYTES/CFP 

No of 
components 

Bytes / CFP 

Min Med Max Std. 
Dev. 

15 162.0 178.9 233.0 21.6 
 

Fig.6 shows similar results for the relationship between 
bytes and CFP as in our first experiment. In this case the R2 
value is found as 0.992.   

 

 
Figure 6. The Relationship between CFP and Bytes 

Then, we investigated the relationship between CFP and 
SLOC for the same two types of components. The median, 



minimum and maximum SLOC values for these 
components are 216, 115 and 832, respectively. In Table 8, 
the ratios of SLOC/CFP for the components of type Display 
& Indication are given. 

TABLE 8. THE RATIOS OF SLOC/CFP 

No of 
components 

SLOC / CFP 
Min Med Max Std. Dev. 

11 6.8 25.7 36.9 8.2 
 
Fig.7 shows the relationship between SLOC and CFP. 

R2 value was found to be 0.4855 which shows a weak 
correlation.  

 

 
Figure 7. The Relationship between CFP and SLOC 

Then, we looked at the ratios CFP/SLOC for the 
components of type Comfort & Convenience. The median, 
minimum and maximum SLOC values for these 
components are 339, 160 and 1061, respectively. In Table 
9, the ratios of SLOC/CFP are given.   

TABLE 9. THE RATIOS OF SLOC/CFP 

No of 
components 

SLOC / CFP 
Min Med Max Std. Dev. 

15 9.2 26.1 65.8 15.4 
 

Fig.8 shows the relationship between SLOC and CFP.  
 

 
Figure 8. The Relationship between CFP and SLOC 

We found R2 as 0.417 which shows a weak relationship 
between SLOC and CFP. 

E. Discussion of the Results 
In this study, we first investigated the relationship 

between the functional size (CFP and IFPUG FP) and the 
code size (SLOC) by means of empirical studies. 

The results of our empirical studies showed that there is 
a wide variation between the values of these ratios, 
especially at the higher granularity levels such as at 
benchmarking dataset or organization levels. At the project-
subsystem or component levels, the variations did not show 
significant improvement and we still observed weak 
correlation and significant variation for the SLOC/CFP 
ratios.  

One major reason for the weak relationship might be the 
fact that the assumption of linear relationship between these 
two measures is inherently inaccurate. Moreover, the 
correlation measures only the quality of linear 
relationships. If the data have a strong quadratic or 
exponential relationship, the correlation may not be a good 
measure of the strength of this relationship.  

Another reason may be related to the functional 
domains of the projects and the applicability of the FSM 
method to measure their size. The existence of projects 
which involve functionalities that cannot be measured by 
the applied FSM method may even result in lower 
functional size values corresponding to higher SLOC 
values when comparing the projects. 

  For example, FSM methods are not able to measure 
the functional sizes of algorithmic operations and 
manipulations and result in smaller sizes in terms of FP 
with respect to SLOC. Although we minimized this effect 
by choosing the components which have very similar 
functionalities, still even at a component level, there still 
exist variations in the SLOC/CFP ratio. Therefore this 
cannot be attributed to this reason in these cases. 

One another possible reason might be due to different 
viewpoints. In FSM methods, the amount of functionality is 
measured at a fixed level of abstraction, i.e. at the 
transaction level, which is defined from the user’s point of 
view. The sizes of each of the transactions are measured 
separately in FP and then they are summed up to obtain the 
total size figure. SLOC, on the other hand, represents the 
size from the designer’s point of view. The amounts of 
functionality in very similar transactions are measured 
separately in FP, although the corresponding SLOC might 
not reflect the change in the functionality at the same rate. 

In this study, we also investigated the relationship 
between the functional size (CFP) and the code size (Bytes 
of Code) by means of empirical studies. 

We observed that the degree of variation for the ratios 
Bytes of code per FP is significantly smaller than the SLOC 
per FP. Moreover, the R2 values are surprisingly high. One 
of the reasons why bytes of code better correlates to CFP 
might be due to how SLOC and Bytes of code are 



measured. We obtained SLOC values by using a tool such 
as Understand [41] for this case whereas we obtained Bytes 
of code using a C compiler. The tool depends on the user to 
point out exactly the parts of the library files that are 
needed, and reports a SLOC result even if there is any code 
missing. Thus, SLOC values might contain too much or too 
little code. The compiler on the other hand always does a 
uniform job, linking in all code used by the components. In 
addition, compiler optimization will most likely remove 
some of the different programming styles.  

Another significant reason might be the fact that the 
Bytes of code obtained from the compiler relate to CFP 
better since CFP also measures the amount of functionality 
independent of how the functionality is implemented. 
However, since we obtained these results only for a limited 
amount of components, further research is required so that 
this conclusion can be generalized. Moreover, how these 
two measures relate when measured at the module or 
project level should also be investigated. 

  The empirical studies discussed in this paper involve a 
couple of validity threats. First of all, the case studies are 
conducted in different contexts due to availability of the 
data. At a higher level, we used the ISBSG dataset which 
involves projects data from all over the world. Although we 
tried to make the analysis on a homogenous dataset as 
much as possible, still the projects are collected from 
different organizations. Therefore, it is better to conduct  
similar types of empirical studies using similar projects 
data from one organization and which are developed by the 
same programming language type.  

IV.CONCLUSION 
Traditionally, it is assumed that the ratios of Code size 

(in SLOC, Bytes of Code, etc.) to Functional Size (in 
IFPUG FP or CFP, etc.) can be used to predict the code size 
at an earlier time in the software life cycle when we are 
able to measure the functional size of the software.  

This paper investigated whether it is reliable to use such 
ratios when estimating the code size for different purposes. 
The results of our empirical studies showed that there is a 
wide variation between the values of the SLOC/IFPUG FP 
and SLOC/CFP ratios. The variation increases as we 
measure at higher granularity levels such as at 
benchmarking dataset or organizational levels. 

Most of the software organizations which use 
parametric effort estimation models use SLOC/FP ratios to 
predict the code size and then use the value as an input to 
cost estimation models. However, the results of this study 
showed that even obtained at the component level, using 
these ratios can cause significant amount of error. 
Therefore, we conclude that software organizations should 
not continue using these ratios unless their local studies 
show acceptable results. 

On the other hand, we observed a very strong 
relationship between CFP and Bytes of Code at the 

component level. We believe that it is promising to conduct 
further research on the nature of this relationship.  

REFERENCES 
[1] L.M. Laird, M.C. Brennan, Software Measurement and 

Estimation: A Practical Approach, John Wiley and Sons, 
Inc., Hoboken, New Jersey, 2006. 

[2] N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous & 
Practical Approach, PWS Publishing Company, 1997.  

[3] R. Park, “Software Size Measurement: A Framework for 
Counting Source Statements”, Technical Report CMU/SEI-
92-TR-020. 

[4] K. Lind, and R. Heldal, “Estimation of Real-Time System 
Software Size using Function Points”, Proc. of the Nordic 
Workshop on Model Driven Engineering (NW-MoDE), 
2008. 

[5] A.J. Albrecht, “Measuring Application Development 
Productivity”, in Proceedings IBM Applications 
Development Symposium, Monterey, California, October 14-
17, 1979. 

[6] A.J. Albrecht, and J.E. Gaffney, “Software Function, Source 
Lines of Code, and Development Effort Prediction: A 
Software Science Validation”, IEEE Transactions on 
Software Engineering, vol. SE-9, no. 6, November 1983. 

[7] C. Symons, “Come Back Function Point Analysis 
(Modernized) – All is Forgiven!)”, Proc. of the 4th European 
Conference on Software Measurement and ICT Control, 
FESMA-DASMA 2001, Germany, 2001, pp. 413-426. 

[8] C. Gencel, and O. Demirors, “Functional Size Measurement 
Revisited”, ACM Transactions on Software Engineering and 
Methodology (TOSEM), Vol.17, No.3, 2008, 71-106. 

[9] ISO/IEC 14143-1: Information Technology -- Software 
Measurement -- Functional Size Measurement -- Part 1: 
Definition of Concepts, February 2007. 

[10] ISO/IEC 14143-1:1998 Information Technology - Software 
Measurement - Functional Size Measurement - Part 1: 
Definition of Concepts, 1998. 

[11] ISO/IEC 14143-2:2002: Information Technology - Software 
Measurement - Functional Size Measurement - Part 2: 
Conformity Evaluation of Software Size Measurement 
Methods to ISO/IEC 14143-1:1998, 2002. 

[12] ISO/IEC FCD 14143-6:2005: Guide for the Use of ISO/IEC 
14143 and related International Standards, 2005. 

[13] ISO/IEC TR 14143-3:2003: Information Technology- 
Software Measurement - Functional Size Measurement - Part 
3: Verification of Functional Size Measurement Methods, 
2003. 

[14] ISO/IEC TR 14143-4:2002: Information Technology- 
Software Measurement - Functional Size Measurement - Part 
4: Reference Model, 2002. 

[15] ISO/IEC TR 14143-5:2004: Information Technology- 
Software Measurement - Functional Size Measurement - Part 
5: Determination of Functional Domains for Use with 
Functional Size Measurement, 2004. 

[16] COSMIC: The Common Software Measurement 
International Consortium FFP, version 3.0, Measurement 
Manual, 2007. 

[17] ISO/IEC 19761:2003: COSMIC Full Function Points 
Measurement Manual v. 2.2, 2003. 



[18] IFPUG, Function Point CPM, Release. 4.1, IFPUG, 
Westerville, OH, 1999. 

[19] ISO/IEC 20926, Software engineering - IFPUG 4.1 
Unadjusted FSM Method - Counting Practices Manual, 2003. 

[20] MkII FPA Counting Practices Manual Version 1.3.1, 
UKSMA: United Kingdom Software Metrics Association, 
1998 

[21] ISO/IEC 20968, Software engineering - Mk II Function Point 
Analysis - Counting Practices Manual, 2002 

[22] NESMA, Definitions and Counting Guidelines for the 
Application of Function Point Analysis, Version 2.0, 
NESMA, 1997. 

[23] ISO/IEC 24570:2005: Software engineering - NESMA FSM 
Method v.2.1 - Definitions and counting guidelines for the 
application of Function Point Analysis, 2005. 

[24] P. Forselius, Finnish Software Measurement Association 
(FiSMA), FSM Working Group: FiSMA Functional Size, 
2004. 

[25] ISO/IEC 29881:2008, Software Engineering -- FiSMA 
functional size measurement method version 1.1, 
International Organization for Standardization, 2008. 

[26] B.W. Boehm, E. Horowitz, R. Madachy, D. Reifer, K.C. 
Bradford, B. Steece, A. Brown, S. Chulani, C. Abts,, 
Software Cost Estimation with COCOMO II. Prentice Hall, 
New Jersey 2000. 

[27] L.H, Putnam, “A general empirical solution to the macro 
software sizing and estimating problem”, IEEE Transactions 
on Software Engineering, July 1978, pp. 345-361. 

[28] R. Tausworthe, “Deep Space Network Software Cost 
Estimation Model”, Jet Propulsion Laboratory Publication 
81-7, 1981. 

[29] R.E., Park, “PRICE S: The calculation within and why”, 
Proceedings of ISPA Tenth Annual Conference, Brighton, 
England, July 1988. 

[30] C. Jones, “Backfiring: converting lines of code to function 
points”, Computer, Vol. 28,  Issue: 11, 1995, 87-88 

[31] L. Santillo, “Error Propagation in Software Measurement and 
Estimation”, in IWSM/Metrikon 2006 conference 
proceedings, Potsdam, Berlin, Germany, 2-3 November 
2006. 

[32] R. Neumann, and L. Santillo, “Experiences with the usage of 
COCOMOII”. In Proc. of Software Measurement European 
Forum 2006, 2006, 269-280. 

[33] G.S. Henderson, “The Application of Function Points to 
Predict Source Lines of Code for Software Development”, 
An MSc Thesis submitted to Air Force Inst. of Tech., 
Wright-Patterson AFB, OH, Report Number: AD-A258447, 
AFIT/GCA/LSY/92S-4, 1992. 

[34] J.M. Desharnais, J.M., and A. Abran, “Approximation 
Techniques for Measuring Function Points”, In Proc. of the 
13th Inter. Workshop on Software Measurement (IWSM 
2003), 23-25 Sept. 2003, Montréal, Canada, Springer-Verlag, 
2003, 270-286. 

[35] T. Rollo, “Functional Size measurement and COCOMO – A 
synergistic Approach”. In Proc. of Software Measurement 
European Forum 2006, 2006, 259-267. 

[36] C. Dekkers, and I. Gunter, “Using Backfiring to Accurately 
Size Software: More Wishful Thinking Than Science?”, IT 
Metrics Strategies, Vol. VI, No.11, 2000, 1-8. 

[37] K. Lind, and R. Heldal, “Estimation of Real-Time Software 
Code Size using COSMIC FSM”, Proc. of the IEEE Intl. 
Symposium on Object/component/service-oriented Real-time 
distributed Computing (ISORC 2009), March 2009. 

[38] K. Lind, and R. Heldal, “Estimation of Real-Time Software 
Component Size”, Nordic Journal of Computing (NJC), 
2009. 

[39] ISBSG (International Software Benchmarking Standard 
Group) Dataset, ISBSG Dataset 10, 2007, 
http://www.isbsg.org 

[40] K. Maxwell, Applied Statistics for Software Managers, 
Prentice Hall, 2002, ISBN 0130417890 

[41] Understand for C++, http://www.scitools.com/ucpp.html 
[42] Green Hills Optimizing C Compiler, http://www.ghs.com 


