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ABSTRACT

Correlates between social attention and personality traits

have been widely acknowledged in social psychology stud-
ies. Head pose has commonly been employed as a proxy
for determining the social attention direction in small group
interactions. However, the impact of head pose estimation
errors on personality estimates has not been studied to our
knowledge.

In this work, we consider the unstructured and dynamic
cocktail party scenario where the scene is captured by mul-
tiple, large field-of-view cameras. Head pose estimation is
a challenging task under these conditions owing to the un-
inhibited motion of persons (due to which facial appear-
ance varies owing to perspective and scale changes), and the
low resolution of captured faces. Based on proxemic and
social attention features computed from position and head
pose annotations, we first demonstrate that social attention
features are excellent predictors of the Extraversion and
Neuroticism personality traits. We then repeat classifica-
tion experiments with behavioral features computed from
automated estimates– obtained experimental results show
that while prediction performance for both traits is affected
by head pose estimation errors, the impact is more adverse
for Extraversion.

1. INTRODUCTION
Correlates between social attention and personality

traits have been widely investigated and acknowledged
in social psychology literature. Social attention patterns,
which denote how individuals distribute their focus-of-
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attention (FoA) during social interactions, have been found
to be excellent predictors of personality traits that mani-
fest at the individual level (e.g., Extraversion) and at the
group level (e.g., Dominance). The fact that extraverts in-
fluence the attentional patterns of peers and garner more
social attention in small group meetings is demonstrated
in [18]. Analogously, dominant people are found to pay more
attention to the other person while speaking, and less atten-
tion while listening in dyadic interactions [8].

Given that attention direction can be estimated from the
hierarchical combination of body pose, head pose and point-
of-gaze [15], social attention is usually determined based on
the direction of head pose or eye-gaze in behavioral stud-
ies. When the targets (persons) of interest are captured at
low resolutions which precludes computation of the point-of-
gaze, head pose is used as the proxy for attention in [25, 27,
3]. However, when faces can be captured at higher resolution
employing near-field cameras, determining the point-of-gaze
improves social attention estimates as shown in [26].

Typical social attention-based personality prediction
frameworks adopt the following methodology– (1) employ-
ing head pose estimates to determine the FoA for each tar-
get using Hidden Markov Model (HMM) [25] or Gaussian
mixture model (GMM)-based [3] approaches, (2) comput-
ing social attention features such as attention received from
and attention given to each target, and (3) predicting target
personality labels using a classifier to which these atten-
tion features are input. As a result, head pose estimation
errors in step (1) will impact computation of social atten-
tion features in step (2) and subsequently, the personality
classification performance. Since most head pose estimation
methods provide only a coarse measure of the head orien-
tation, which renders determination of the FoA-target diffi-
cult, a number of studies [13, 18] evaluate their personality
hypotheses using human-annotated social attention features
with automated features only used for comparison. How-
ever, no previous work has attempted to study the effects
of head pose estimation errors on personality classification
performance.

This work attempts to quantify the impact of head pose
estimation errors on personality prediction accuracy for the



unstructured and dynamic social scenario (cocktail party)
considered in [28]. Unlike structured, meeting room scenes
studied in [13, 18, 3], the party setting studied in [28] allows
for unconstrained motion of targets– therefore, personality
traits can also be modeled in terms of proxemics, which
relates to the use of the physical space by targets, in addi-
tion to social attention cues. We first demonstrate that so-
cial attention features computed from head pose annotations
are effective predictors of the Extraversion and Neuroticism
traits. We then repeat personality classification experiments
with attention features computed using two head pose esti-
mation approaches [16, 9], in order to examine the impact
of head pose estimation accuracy on personality prediction.
Our analysis reveals that, even with the use of basic so-
cial attention features, inaccurate head pose estimation can
reduce personality classification performance by over 12%
under the considered conditions, emphasizing the need for
further research in this domain.

The paper is organized as follows. A description of the
dataset and behavioral features used, classification proce-
dure adopted and personality classification results achieved
with head pose annotations are presented in Section 2. A
brief overview of the head pose estimation approaches em-
ployed in this study, and classification results achieved with
automated head pose estimates are presented in Section 3.
We summarize our findings and conclude in Section 4.

2. SOCIAL ATTENTION FEATURES FOR

PERSONALITY PREDICTION
We considered the cocktail party data presented in [28]

for our analysis. Unlike structured settings considered in
most personality studies, involving round table meetings
with seated subjects, the authors of [28] consider an un-
structured and informal social setting. Two distinguishing
factors of the cocktail party dataset are that (a) subjects
freely move around while being monitored by multiple, dis-
tant large field-of-view cameras, which makes head pose es-
timation challenging due to unrestricted body movements
and the low resolution of captured faces (see Fig.1), and (b)
the social interactions are hedonistic and experiential in na-
ture, representative of non-goal oriented groups, where the
behavior exhibited by participants is more likely to be in ac-
cordance with their real personality. In contrast, meetings
represent goal oriented groups, where participants interact
with an explicit goal, and may need to assume certain roles
to achieve the same (as in [14]).

Two video sequences of 20 and 30 minutes duration re-
spectively and involving a total of 13 targets, constitute the
cocktail party data. Four cameras, fitted at the corners of a
4.8m× 6m room, capture the targets at all times1. Since no
audio is available as part of the data, social attention direc-
tion has to be inferred exclusively from head pose. Extraver-
sion and Neuroticism personality scores for the 13 targets
are obtained prior to the video recordings through the Big
Five Marker Scale [21] self-reported questionnaires. The Ex-
traversion scores range from 29–62 (µ = 43.5, σ = 9.8), while
Neuroticism scores are between 34 to 57 (µ = 42, σ = 6.5).

2.1 Features from manual annotations

1We did not use the data from three additional pan-tilt-
zoom cameras in this work.

To have a consistent framework for personality classifi-
cation with both manual and automated approaches, we
adopted the following procedure. For extraction of social at-
tention features from manual annotations, we employed an
annotation tool to specify each target’s position and head
pose in every video frame as shown in Fig. 1. A cuboid-
based 3D human figure model was used to denote target po-
sition and head pose– employing camera calibration informa-
tion, position/head pose in all camera views were available
upon specification in any of the views. Finer adjustments
were possible by re-annotating the most informative camera
view(s) where necessary.

Angular width of the head pose frustum was set to 45◦

so that the 360◦ head pan range is segmented into 8 in-
tervals. Based on the assumption that valid FoA-targets
in the party scenario would be the interacting peers, only
near frontal head tilts (tilt ∈ [−20◦, 20◦]) were considered
as valid. Therefore, the annotation tool was essentially used
to mark head pan, and the pose measurement for any target
exhibiting a pronounced upward/downward head tilt was
invalidated, as denoted by the black pose cone in Fig.1(b).

Once the target positions and head pose directions were
known (either through annotations or automated estimates),
a completely automated procedure was followed to com-
pute requisite social attention features for personality clas-
sification. To determine the FoA-target from head pose,
we adopted the unsupervised cognitive approach described
in [20], while using generic HMM parameters. If the states
and observations of a HMM are respectively defined by the
FoA-targets and the corresponding head pose angles, an un-
supervised approach is proposed in [20] to predict the ex-
pected viewing angle (head pan in our case) if the camera
geometry, target and FoA-target locations are known. If two
FoA-targets correspond to similar viewing angles, then the
closer one is assumed to be the FoA-target.

For personality prediction from behavioral features, we
adopted the thin slices approach [2] which is based on the
observation that humans can accurately judge others upon
observing very short sequences of expressive behaviors. We
also considered different thin slices of 30 sec, 1 min, 3 min
and 5 min durations– past studies [4, 18] have reported a
steady increase in assessment accuracy with increasing time
slice lengths. Aggregating position and head pose informa-
tion over non-overlapping 30 sec time windows, we computed
mean (µ) and standard deviation (σ) of the following quan-
tities as behavioral features over the time slice duration2:

• Proxemic features: described in terms of (i) the
minimum distance (Dist) maintained by the target from
the others; (ii) velocity (Vel) or variation in the tar-
get’s position over the considered time window, and
(iii) Relationships-based (Rel) features– as per [12],
the distances that humans maintain from others are
indicative of the social relationships they hold. Em-
ploying identical thresholds as in [28], we calculated
the number of intimate, personal-close, personal-far

and public relationships for each target.
• Social attention features: From the FoA-target es-

timates, we computed the duration proportion over a
time window for which each target gave attention to
any of the others (AG), i.e., we were interested only in
whether the target looked at any of the others and did

2Each 30 sec time window provides one sample for the com-
putation of µ, σ statistics over the time slice duration.



(a) (b)

Figure 1: Exemplar head pose annotations using the annotation tool in the four camera views shown two-
by-two. (a) The position and the head pose direction of each target are denoted by a 3D stick figure model
and a frustum of 45◦ angular width respectively. (b) Head pose of the blue target is invalidated owing to a
pronounced downward head-tilt.

not consider which specific FoA-target was attended
to (AG is scalar). Whenever the target head pose was
invalidated, or when the head pose direction did not
correspond to a valid FoA-target, AG was set to zero
for that time instant. Similarly, the duration propor-
tion for which each target received attention from at

least one of the peers over a time window (AR) was
computed. AG (attention given) and AR (attention
received) are collectively termed as attentional (Att)
features.

2.2 Personality prediction from behavioral fea-
tures

Firstly, we analyzed the power of behavioral features (ex-
cepting Rel) to predict the observed Extraversion, Neuroti-
cism scores by (1) computing the partial correlations be-
tween these entities, and (2) performing a series of backward
linear analyses to determine the effectiveness of considered
behavioral predictors and the set of best predictors for each
personality trait.

Table 1 lists the obtained Spearman correlation coeffi-
cients for behavioral features extracted over 1 min time slices
and corresponding p values. For Extraversion, only the neg-
ative correlation with ARσ is found to be significant. Con-
cerning Neuroticism, the correlations with velocity features
are close to being marginally significant. Table 2 presents
the regression analyses results, and the variables removed
from the best model for each of the considered time slices
are also listed. In general, the linear model for Extraversion
(maximum R2 of 0.9) is found to be more effective than the
model for Neuroticism (maximum R2 of 0.31) in terms of
predictive power. Also, while the best Extraversion mod-
els for the various time slice durations consistently include
some attentional features, the best models for Neuroticism
always include distance or velocity features. Finally, models
with a significant F-statistic are observed with 1 min and 5
min time slices for Extraversion, and for 5 min time slices
for Neuroticism.

The obtained results lead to some interesting observations–
the importance of attentional features and in particular, of
the AR feature, has been noted and discussed in previous
studies [18]. The significant negative correlation between
ARσ and Extraversion lends support to this finding, and
conforms to the expectation that extraverts consistently at-
tract social attention. On the other hand, past studies
(e.g., [7]) have observed that neurotic persons prefer large
social distances and tend to avoid eye contact, and distance
features are found to best predict neurotics in [28]. While
distance features constitute the best Neuroticism predictor
model for three time slice durations considered in Table 2,
the best prediction (with 5 min time slices) and strongest
correlations (even if weakly significant) are observed with
velocity features. Weak negative correlation with V elµ and
positive correlation with V elσ suggest that neurotics mostly
remain stationary, and tend to move around in spurts. Fi-
nally, in contrast to ARσ which is consistently a good pre-
dictor of Extraversion, AGµ is generally seen to be a good
predictor of Neuroticism, indicating that the amount of at-
tention given can be useful for characterizing neurotics.

2.3 Classification experiments
Upon noting that the considered proxemic and social at-

tention features are effective predictors of Extraversion and
Neuroticism, we performed a classification experiment on di-
chotomizing the raw personality scores into ’high’ or ’low’
class labels. As in [28], raw scores were thresholded based
on the median value, resulting in 7 ’high’ and 6 ’low’ scores
for Extraversion and 8 ’high’ and 5 ’low’ scores for Neu-
roticism. To evaluate classification performance given the
small number of samples and the unbalanced class distribu-
tion, a leave-pair-out cross validation (LPOCV) procedure
was adopted. In each run, a model was trained employing
time slice-based behavioral features derived from all-but-
two individuals. This model was used to predict person-
ality label for each time slice of the remaining two, with
one each denoting a positive and negative class example



Table 1: Partial Spearman correlation coefficients (ρ) and corresponding significance levels (p) considering
behavioral features computed over 1 min time slices.

Trait Distµ Distσ V elµ V elσ AGµ AGσ ARµ ARσ

Extraversion
ρ 0.647 -0.401 -0.607 0.427 -0.611 -0.171 -0.528 -0.842

p 0.165 0.431 0.201 0.398 0.197 0.756 0.282 0.036

Neuroticism
ρ -0.484 0.490 -0.702 0.685 -0.248 -0.358 -0.114 -0.351

p 0.331 0.324 0.120 0.133 0.636 0.486 0.830 0.495

Table 2: Backward linear regression analyses with behavioral features computed over the various slices. R2

denotes coefficient of determination, while p denotes significance level.

Trait 30 sec 1 min 3 min 5 min

Extraversion

Variables removed all except AGµ Distσ
Distµ, Velµ, Velσ,

ARµ

Distµ, Distσ,
Velµ, AGσ, ARµ

R2 0.267 0.904 0.545 0.8

F 1.825 6.761 2.392 11.699

p 0.211 0.026 0.137 0.002

Neuroticism

Variables removed
all except Distµ,

Distσ, AGµ
AGσ, ARµ, ARσ

Velµ, Velσ, AGσ,
ARµ, ARσ

all except Velσ

R2 0.199 0.307 0.264 0.31

F 0.747 0.621 1.078 4.984

p 0.55 0.69 0.406 0.0473

respectively. LPOCV is found to provide a classification
performance estimate which is significantly less biased than
popular cross-validation approaches like leave-one-out cross
validation (LOOCV) [1].

In addition to the individual social and proxemic features
described above, we also employed feature combinations by
concatenating the individual feature vectors for classification
(’All’ denotes use of the entire set of features). As before,
we repeated the classification experiments with features cor-
responding to various time slice durations. Three different
classification strategies were used, namely linear Support
Vector Machines (Lin SVM) [5], Random Forests (Rand
For) [24], and Locally Weighted Naive Bayes (LW-NB) [11].
Linear SVM is a non-probabilistic binary classifier, which
constructs a hyperplane such that its distance from the near-
est data point from the positive/negative class is maximum.
Random Forests construct multiple decision trees from the
training data, and classify based on the output of the tree
majority. Also, they do not require specification of a fea-
ture space as for SVMs. Locally Weighted Naive-Bayes is
a lazy classification algorithm using the Naive-Bayes (NB)
classifier where a test instance’s class is predicted from an
NB model built using a weighted set of training instances in
its neighbourhood.

Table 3 outlines the classification results in terms of 2D tu-
ples denoting the mean accuracy and F-measure (harmonic
mean of precision and recall). Due to the unbalanced class
distribution, the F-measure is a better indicator of clas-
sification performance as compared to accuracy. For Ex-
traversion, attentional features and their combinations evi-
dently produce the best classification performance. In con-
trast, minimum distance and velocity features are ineffec-
tive. Relationship-based (Rel) features produce moderate
classification performance on their own, and the best per-

formance when used in conjunction with attention features.
For Neuroticism on the other hand, minimum distance fea-
tures acquire good predictive power, while velocity features
are still ineffective. Attention features also produce impres-
sive performance on their own, and their use in combination
with Dist features generates the best result. Also, using all
behavioral features is not more beneficial than using a subset
of features for characterizing either personality trait.

A second interesting aspect concerning time slices is that
the best classification results with Dist, Vel and Dist+Vel
features are obtained for smaller time slice durations, while
the best results with Rel and Att features are obtained with
larger time slices. When all behavioral features are com-
bined, the best results for Extraversion and Neuroticism
are obtained with 5 min and 30 sec time slices respectively.
Regarding classifiers, locally weighted Naive Bayes cumula-
tively achieves better classification as compared to random
forests and linear SVM.

It can also be seen that the classification results are in
general agreement with the correlation and linear regression
analyses, and the trends reported in [28]. In our earlier
discussion, we noted that Att features are good predictors
of Extraversion, while Dist, Vel and Att features character-
ize Neuroticism. Classification experiments also corroborate
these findings, except that the predictive power of velocity
features is not demonstrated by the observed results. As
attentional features are not considered in [28], the best clas-
sification results are obtained with Rel features for Extraver-
sion and Dist features for Neuroticism. Finally, even though
the observed accuracies and F measures are lower than those
obtained in [28] on the same dataset3, the best F-measure

3The features used in [28] are automatically obtained, while
features used in Table 3 are derived from manual annota-
tions.



scores are very still comparable (0.66 vs 0.63 for Extraversion
and 0.69 vs 0.65 for Neuroticism). Here, it must be noted
that we use LPOCV instead of LOOCV adopted in [28], and
LOOCV provides significantly more optimistic performance
estimates than LPOCV for unbalanced data.

3. PERSONALITY CLASSIFICATION WITH

AUTOMATED HEAD POSE ESTIMATES
We noted in the previous section that social attention fea-

tures, in the form of attention given and received, provide vi-
tal cues to the characterization of the Extraversion and Neu-
roticism personality traits. Computing social attention di-
rection through the proxy of head pose for the cocktail party

scenario is challenging for two reasons– (1) The fact that
only distant (even if multiple) large field-of-view cameras
can be used implies that targets’ faces can only be captured
at low resolution (typically less than 50× 50 pixels). (2) As
targets move, their facial appearance in the multiple cam-
eras varies with position, owing to changing perspective and
scale. As a target moves, the face can appear larger/smaller
and face parts can become occluded/visible due to the tar-
get’s relative position with respect to the camera (Fig. 2(a)).

As stated earlier, the motivation of this work is to study
the impact of head pose estimation errors on personality pre-
diction under these conditions. In this section, we consider
two automated head pose estimation (HPE) approaches, the
dynamic head location and pose estimation (DHLP) ap-
proach [16] and multi-task SVM method (SVM+ MTL) [9],
and compare personality classification results obtained us-
ing automatically computed features against those obtained
through manual annotations. Descriptions of the two head
pose estimation approaches are as follows:

3.1 Dynamic head location and pose (DHLP)
In [16], a simple and efficient approach to jointly esti-

mate head location and orientation, following a Bayesian
approach to object tracking is described. The method em-
ploys a Bayesian likelihood model, p(z/x), where z denotes
observed measurement (target appearance), and x denotes
target state (composed of ground coordinates + head pan
and tilt), to infer the target position and orientation. Based
on an initialization phase, a coarse 3D color+shape model
of the target is derived. Assuming a first order Markov pro-
cess for dynamics, a particle filter is used to propagate state
hypotheses (particles) for each target over time. In the pre-
diction step, a new set of particles x is sampled for each tar-
get given its current state, while in the verification step the
appearance likelihood p(z|x) is assigned to each hypothesis
x based on a matching score between the target model and
associated appearance z observed in the new images. The
re-sampling step withdraws hypothesis with low likelihood
from further propagation. The particle with the highest like-
lihood is selected in order to update the state of each target.
The particle filter output is shown in Fig. 2(b). While this
simplistic approach is fast and can be employed to determine
the location and head pose of multiple targets in real-time,
it is not designed to perform accurate head pose estimation.

3.2 Multi-task Support Vector Machine
Having seen that the target facial appearance varies with

position, one solution that explicitly accounts for such vari-

ation while estimating headpose involves the use of multi-
task learning (MTL) [10]. If we divide the physical space
into discrete regions, one can expect some similarity among
the facial appearances in the different regions and some
region-specific appearance differences owing to perspective
and scale. Given structured data that can be easily catego-
rized into groups, MTL involves learning the data in each
group as an individual task, as well as the relationships be-
tween the tasks. This, in general, leads to a better model
than a learner that does not account for task relationships.

Unlike [16] which outputs the absolute head orientation
value, we employed MTL to build a head pose classifier,
which assigns the target head pose to one of 9 classes (8
classes denoting a quantized 360◦/8 = 45◦ head pan, and
an ’invalid’ head pose class). We divided the party room
(ground plane) into 4 quadrants, and learnt an MTL clas-
sifier for each quadrant. The MTL-based head pose clas-
sification (SVM+ MTL) framework consists of three steps
(1) Tracking and head localization (2) SVM+ Multi-task
learning and (3) Classification. The particle filter tracker
employed in [16] is also used in this framework. Then, a 30
cm×30 cm×20 cm-sized dense 3D grid (with 1cm resolution)
of hypothetic head locations is placed around the estimated
3D head-position provided by the particle filter. Assuming
a spherical model of the head, a contour likelihood is then
computed for each grid point by projecting a 3D sphere onto
each camera view employing calibration information. The
grid point with the highest likelihood sum is determined as
the face location (Fig. 2(c)). Upon localization, the face is
cropped and resized to 20 × 20 pixels in each view, and 81
bin HoG [6] descriptors extracted from 4× 4 patches in the
4-view face appearance image (Fig. 2(a)) are input to the
learning module. In the test phase, depending on the target
location corresponding to a test instance (derived from the
tracker), the corresponding MTL classifier is invoked to out-
put the head pose class. A brief overview of SVM+ MTL is
provided below.

SVM+ MTL: An MTL framework similar to SVMs, ap-
plicable when the training data is the union of t ≥ 1 related
groups is presented in [10]. The SVM decision vector w is
decomposed into w+wr, r ∈ (1, 2, ..., t) where w,wr respec-
tively model the commonality between groups and group
specifics. The decision function is fr(xi) = (w+wr)

Tφ(xi),
where φ denotes training feature space. The optimization
problem is:

min
w,w1,...,wt

1
2
wTw + β

2

t∑

r=1

wT
r wr + C

t∑

r=1

lr∑

i=1

ξir

s.t. yir(w
Tφ(xi) + wT

r φ(xi)) ≥ 1− ξir,
ξir ≥ 0, i = 1, . . . , lr, r = 1, . . . , t

(1)

Here, all wr’s and the common w are learnt simultaneously.
β regularizes relative weights of w and wr’s. ξir’s are slack
variables for the t data groups, each comprising lr training
samples. yir’s are training labels while C regulates propor-
tion of nonseparable samples. With relevant quantities as
defined in Eq.(1), SVM+ MTL [19] is formulated as:

min
w,w1,...,wt,b,d1,...,dt

1
2
wTw + β

2

t∑

r=1

wT
r wr + C

t∑

r=1

lr∑

i=1

ξir

s.t. yir(w
Tφ(xi) + b+ wT

r φr(xi) + dr) ≥ 1− ξir,
ξir ≥ 0, i = 1, . . . , lr, r = 1, . . . , t

The goal of SVM+MTL is to find t decision functions
fr(x) = wTφ(x)+ b+wT

r φr(x)+ dr, r = 1, . . . , t. Therefore,



Table 3: Classification results obtained with the different classifiers and behavioral features extracted from
manual annotations for different time slices. The two numbers corresponding to a given feature and classifier
denote the 2D tuple specifying mean accuracy and F-measure respectively. Values in bold font denote best

performance with a particular feature (over all time slices).

Extraversion Neuroticism
Slice Dur Feature Lin SVM Rand For LW-NB Lin SVM Rand For LW-NB

30 sec

Dist 0.30,0.24 0.47,0.46 0.31,0.28 0.55,0.49 0.51,0.49 0.62,0.55
Vel 0.44,0.33 0.48,0.47 0.46,0.42 0.52,0.44 0.49,0.47 0.47,0.31
Rel 0.42,0.40 0.49,0.48 0.47,0.44 0.48,0.32 0.49,0.45 0.47,0.33
Att 0.54,0.52 0.47,0.47 0.52,0.48 0.52,0.41 0.49,0.48 0.53,0.47

Dist+Vel 0.35,0.30 0.45,0.44 0.36,0.32 0.56,0.5 0.53,0.51 0.65,0.57
Dist+Rel 0.39,0.36 0.46,0.46 0.45,0.43 0.58,0.44 0.55,0.52 0.58,0.44
Rel+Att 0.47,0.46 0.46,0.46 0.48,0.44 0.51,0.39 0.50,0.47 0.49,0.38
Dist+Att 0.45,0.44 0.47,0.47 0.40,0.34 0.57,0.45 0.52,0.50 0.59,0.51

All 0.37,0.33 0.43,0.42 0.35,0.32 0.58,0.55 0.55,0.53 0.66,0.59

1 min

Dist 0.30,0.24 0.43,0.42 0.37,0.35 0.57,0.50 0.49,0.46 0.60,0.58
Vel 0.41,0.30 0.48,0.47 0.49,0.46 0.49,0.38 0.49,0.45 0.47,0.33
Rel 0.43,0.41 0.50,0.48 0.47,0.42 0.48,0.32 0.48,0.44 0.47,0.34
Att 0.53,0.51 0.49,0.48 0.52,0.50 0.54,0.47 0.52,0.51 0.55,0.49

Dist+Vel 0.34,0.28 0.47,0.46 0.41,0.37 0.54,0.48 0.51,0.50 0.53,0.44
Dist+Rel 0.43,0.41 0.48,0.48 0.47,0.45 0.57,0.43 0.53,0.48 0.58,0.43
Rel+Att 0.47,0.46 0.47,0.46 0.46,0.43 0.52,0.41 0.49,0.46 0.48,0.39
Dist+Att 0.46,0.45 0.49,0.49 0.47,0.44 0.59,0.53 0.55,0.53 0.61,0.55

All 0.38,0.34 0.46,0.45 0.4,0.36 0.58,0.55 0.57,0.55 0.58,0.51

3 min

Dist 0.31,0.27 0.4,0.39 0.38,0.35 0.52,0.45 0.39,0.37 0.55,0.50
Vel 0.45,0.38 0.45,0.44 0.44,0.42 0.43,0.33 0.47,0.45 0.38,0.34
Rel 0.45,0.44 0.46,0.44 0.50,0.48 0.42,0.32 0.44,0.38 0.55,0.53
Att 0.60,0.59 0.49,0.48 0.58,0.55 0.52,0.47 0.55,0.54 0.57,0.56

Dist+Vel 0.36,0.33 0.41,0.39 0.38,0.36 0.46,0.40 0.39,0.36 0.52,0.49
Dist+Rel 0.38,0.33 0.46,0.45 0.39,0.37 0.55,0.42 0.52,0.46 0.52,0.41
Rel+Att 0.52,0.51 0.49,0.47 0.54,0.53 0.54,0.48 0.52,0.48 0.57,0.54
Dist+Att 0.51,0.50 0.50,0.49 0.50,0.49 0.58,0.42 0.53,0.52 0.55,0.49

All 0.42,0.4 0.41,0.39 0.45,0.42 0.52,0.50 0.48,0.44 0.54,0.51

5 min

Dist 0.25,0.20 0.47,0.44 0.39,0.36 0.60,0.55 0.45,0.41 0.47,0.45
Vel 0.39,0.34 0.35,0.33 0.48,0.45 0.49,0.41 0.45,0.41 0.48,0.43
Rel 0.34,0.32 0.52,0.47 0.56,0.53 0.46,0.33 0.41,0.35 0.46,0.41
Att 0.53,0.51 0.48,0.45 0.63,0.61 0.64,0.61 0.51,0.45 0.64,0.60

Dist+Vel 0.36,0.32 0.42,0.40 0.44,0.41 0.51,0.46 0.46,0.41 0.47,0.45
Dist+Rel 0.33,0.29 0.46,0.45 0.39,0.37 0.55,0.41 0.52,0.46 0.57,0.43
Rel+Att 0.40,0.39 0.49,0.47 0.64,0.63 0.57,0.53 0.51,0.44 0.53,0.48
Dist+Att 0.43,0.41 0.43,0.42 0.55,0.54 0.68,0.65 0.57,0.53 0.64,0.60

All 0.35,0.32 0.49,0.47 0.63,0.62 0.60,0.58 0.49,0.42 0.50,0.48

Table 4: Best accuracy, F-measure obtained using position, head pose estimates. Time slice duration and
classifier corresponding to the best result are specified in braces. Wherever attentional features are employed,
the superior result obtained through either of the HPE approaches is denoted in bold.

HPE Method Feature Extraversion Neuroticism

DHLP [16]

Dist 0.50, 0.50 (1 min, Rand For) 0.52, 0.50 (1 min, Rand For)
Vel 0.51, 0.51 (30 sec, Rand For) 0.52, 0.51 (1 min, LW-NB)
Rel 0.50, 0.50 (1 min, Rand For) 0.57, 0.50 (30 sec, Rand For)
Att 0.50, 0.49 (5 min, Rand For) 0.55, 0.54 (1 min, Rand For)

Dist+Vel 0.47, 0.47 (1 min, Rand For) 0.57, 0.49 (1 min, Lin SVM)
Dist+Rel 0.48, 0.48 (1 min, Rand For) 0.59, 0.55 (3 min, Rand For)
Rel+Att 0.48, 0.49 (1 min, Rand For) 0.58, 0.52 (5 min, Lin SVM)
Dist+Att 0.49, 0.47 (5 min, Rand For) 0.51,0.49 (30 sec, Rand For)

All 0.47, 0.46 (5 min, Rand For) 0.66, 0.62 (30 sec, Lin SVM)

SVM+ MTL [9]

Dist 0.50, 0.50 (1 min, Rand For) 0.52, 0.50 (1 min, Rand For)
Vel 0.51, 0.51 (30 sec, Rand For) 0.52, 0.51 (1 min, LW-NB)
Rel 0.50, 0.50 (1 min, Rand For) 0.57, 0.50 (30 sec, Rand For)
Att 0.51, 0.49 (3 min, LW-NB) 0.63, 0.56 (5 min, Lin SVM)

Dist+Vel 0.47, 0.47 (1 min, Rand For) 0.57, 0.49 (1 min, Lin SVM)
Dist+Rel 0.48, 0.48 (1 min, Rand For) 0.59, 0.55 (3 min, Rand For)
Rel+Att 0.47, 0.48 (1 min, Rand For) 0.62, 0.56 (5 min, Lin SVM)
Dist+Att 0.49, 0.49 (3 min, Rand For) 0.52, 0.51 (1 min, Rand For)

All 0.49, 0.48 (5 min, Rand For) 0.71, 0.64 (30 sec, LW-NB)



(a) (b) (c)

Figure 2: (a) When the target is free to move around, the multi-view facial appearance corresponding
to an identical 3D headpose varies due to camera perspective and scale changes for the locations P1-P3.
(b,c) illustrate the tracking and head localization procedure. Particle filter outputs are shown in (b), while
projection of the spherical head model used for shape-likelihood estimation is shown in red in (c).

each decision function fr comprises two parts: (a) the com-
mon decision function w with bias term b, and the group-
specific correction function wr with bias term dr. Also, the
feature space of fr involves two spaces, the decision space
φ and the correction space, φr. SVM+MTL improves over
regularized MTL on two counts: (i) In regularized-MTL,
the decision and correcting functions share the same fea-
ture space (φ), while they may be different in SVM+MTL,
thereby providing more flexibility and (ii) SVM+MTL con-
siders a more general form of the decision function with bias
terms (b, dr). SVM+MTL is a quadratic programming (QP)
problem. We adopted generalized sequential minimal op-
timization (SMO) [19] to solve this optimization problem.

SMO training time is of the order of ≈ N (1.6−1.9), where N
denotes training set size.

3.3 Classification with automated features
Upon obtaining head pose estimates for all targets in

the two party sequences using the aforementioned methods,
we determined the number of frames for which the com-
puted head pose class matched with the annotated pose
class– the overall agreement with the head pose annota-
tion was 62.1% and 40.5% with SVM+ MTL and DHLP
respectively. While this difference is expected given that
the SVM+ MTL approach is devised to explicitly account
for appearance changes with position, the fact that head
pose estimation performance is not high indicates the chal-
lenge in the party scenario. Certainly, more sophisticated
algorithms are needed for head pose determination in such
difficult conditions.

Table 4 presents the personality classification results de-
rived from automated behavioral features. Note that since
the same tracker is used in both DHLP and SVM+ MTL
implementations and therefore, identical performance is
achieved with Dist, Vel, Rel and the combination of these
proxemic features. With most features (or combinations),
classification performance obtained with automated esti-
mates is lower than that obtained using manual annotations,
especially for Extraversion. Slightly higher performance is
obtained with attentional features with SVM+MTL as com-
pared to DHLP. Even with significant difference in head pose
estimation accuracy using the two methods, the possible rea-
son for only a marginal difference in performance could be
the use of basic attentional features in our framework– we do
not consider who the target is giving attention to/ receiving
attention from, but only whether the target is giving/getting

attention at a certain time instant. Nevertheless, the sharp
dip in classification performance even with the use of these
simple features reinforces why extensive research is neces-
sary for achieving better results in this domain.

Concerning Neuroticism, results comparable to those ob-
tained with manual annotations are obtained for some fea-
ture combinations. This is possibly because of the predic-
tive power of proxemic features, e.g., Dist, for which accu-
rate estimates are still obtained using the tracker. However,
the performance obtained with automatically computed Dist
features is still poor. Overall, a best F-measure score of
0.51 and 0.64 is obtained for Extraversion and Neuroticism
(as against 0.63 and 0.65 obtained with manual annota-
tions). Consistent with the manual annotation results, in
most cases, the best results with Dist, Vel features are ob-
tained at smaller time slices, while the best results with Att
features are observed with larger time slice durations. Also,
unlike annotation-based results where LW-NB classifier per-
formed best, most best results with automated features are
obtained using Rand For and Lin SVM classifiers.

4. DISCUSSION AND CONCLUSION
In this work, we have studied the impact of head pose

estimation errors on the computation of social attention
features, and therefrom, prediction of the Extraversion and
Neuroticism personality traits. We considered the cocktail

party dataset for our analysis, which represents an unstruc-
tured social interaction scenario, where proxemic features
provide vital cues in addition to social attention features
for predicting targets’ personalities (especially Neuroticism).
The party scene also represents a challenging situation for
head pose estimation due to unhindered motion of targets
and variation in facial appearance with changing target posi-
tion. In this respect, we considered two head pose estimation
approaches– the DHLP, which simultaneously estimates tar-
get position and orientation, and SVM+ MTL, which learns
a number of head pose classifiers corresponding to differ-
ent room regions to account for position-based appearance
variations, while also learning the face appearance relation-
ships among these regions. While SVM+ MTL is found to
estimate head pose better than DHLP, errors in social at-
tention features computed using either approach adversely
impact personality classification performance, especially for
Extraversion. We believe that the unstructured and hedonis-
tic party setting is better for analyzing personality-behavior
correlates as compared to round table meetings, and more



accurate head pose estimation algorithms can immensely
help in this regard.

Another aspect to note is that when we perform personal-
ity prediction from behavioral features aggregated over thin
time slices, even the best results obtained with annotated
features are only moderately good– this is also the case with
other studies such as [18]. One possible reason for this phe-
nomenon is that human behavior may change dynamically,
but dynamic behavior is correlated with a single personal-
ity score in most studies. To this end, it may be interest-
ing to model personality in terms of personality states [23],
which refer to specific behavioral episodes, so that the per-
sonality trait is modeled as a distribution over personality
states. Finally, as no audio data was available for the cock-

tail party dataset, annotations were solely based on visual
cues. Determining the FoA purely based on visual data can
be extremely hard, especially in party scene where a group
of persons can interact while standing close to each other. In
this regard, audio cues can help predict (and annotate) FoA
better [25], and similarly, the use of head pose measurement
sensors [22] and multi-sensor sociometric badges [17], which
provide a variety of information such as the target’s speaking
time duration, extent of face-to-face interaction and physical
proximity to others.

5. ACKNOWLEDGEMENTS
This work was partially supported by A*STAR Singa-

pore under the Human Sixth Sense Program (HSSP) grant
and EIT ICT Labs SSP 12205 Activity TIK- The Interac-
tion Toolkit, tasks T1320A-T1321A. The authors would like
to thank Francesco Tobia (TeV group, Fondazione Bruno
Kessler) for developing the head pose annotation tool.

6. REFERENCES
[1] A. Airola, T. Pahikkala, W. Waegeman, B. D. Baets, and

T. Salakoski. A comparison of auc estimators in
small-sample studies. Journal of Machine Learning
Research - Proceedings Track, 8:3–13, 2010.

[2] N. Ambady and R. Rosenthal. Thin slices? of expressive
behaviors as predictors of interpersonal consequences. a
meta analysis. Psychological Bulletin, 111:156–274, 1992.

[3] S. O. Ba and J.-M. Odobez. Recognizing visual focus of
attention from head pose in natural meetings. IEEE
Transactions on Systems, Man, and Cybernetics—Part B:
Cybernetics, 39(1):16–33, 2009.

[4] D. R. Carney, C. R. Colvin, and J. A. Hall. A thin slice
perspective on the accuracy of first impressions. Journal of
Research in Personality, 41:1054–1072, 2007.

[5] C. Cortes and V. Vapnik. Support-vector networks. In
Machine Learning, pages 273–297, 1995.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients
for human detection. In Computer Vision and Pattern
Recognition, pages 886–893, 2005.

[7] S. De Julio and K. Duffy. Neuroticism and proxemic
behavior. Perception and Motor Skills, 45(1):51–55, 1977.

[8] J. F. Dovidio and S. L. Ellyson. Decoding visual
dominance: Attributions of power based on relative
percentages of looking while speaking and looking while
listening. Social Psychology Quarterly, 45(2):106–113, 1982.

[9] T. Evgeniou and M. Pontil. Regularized multi–task
learning. In Int’l conference on Knowledge Discovery and
Data Mining, pages 109–117, 2004.

[10] T. Evgeniou and M. Pontil. Regularized multi-task
learning. In ACM Int’l Conference on Knowledge Discovery
and Data Mining, 2004.

[11] E. Frank, M. Hall, and B. Pfahringer. Locally weighted
naive bayes. In Uncertainty in Artificial Intelligence, pages
249–256, 2003.

[12] E. T. Hall. The hidden dimension. Anchor Books, 1963.

[13] H. Hung, D. B. Jayagopi, S. Ba, J.-M. Odobez, and
D. Gatica-Perez. Investigating automatic dominance
estimation in groups from visual attention and speaking
activity. In Int’l Conference on Multimodal Interfaces,
pages 233–236, 2008.

[14] D. B. Jayagopi, H. Hung, C. Yeo, and D. Gatica-Perez.
Modeling dominance in group conversations using
nonverbal activity cues. IEEE Trans. Audio, Speech and
Lang. Proc.- Special issue on multimodal processing in
speech-based interactions, 17(3):501–513, 2009.

[15] S. R. Langton, R. J. Watt, and I. Bruce. Do the eyes have
it? cues to the direction of social attention. Trends in
Cognitive Science, 4(2):50–59, 2000.

[16] O. Lanz and R. Brunelli. Dynamic head location and pose
from video. In Int’l Conference on Multisensor Fusion and
Integration for Intelligent Systems, pages 47–52, 2006.

[17] B. Lepri, J. Staiano, G. Rigato, K. Kalimeri, A. Finnerty,
F. Pianesi, N. Sebe, and A. Pentland. The sociometric
badges corpus: A multilevel behavioral dataset for social
behavior in complex organizations. In Int’l Conference on
Social Computing, pages 623–628, 2012.

[18] B. Lepri, R. Subramanian, K. Kalimeri, J. Staiano,
F. Pianesi, and N. Sebe. Connecting meeting behavior with
extraversion - a systematic study. IEEE Transactions on
Affective Computing, 3(4):443–455, 2012.

[19] L. Liang and V. Cherkassky. Connection between svm+
and multi-task learning. In Int’l Joint Conference on
Neural Networks, 2008.

[20] J.-M. Odobez and S. O. Ba. A Cognitive and Unsupervised
MAP Adaptation Approach to the Recognition of the
Focus of Attention from Head Pose. In Int’l Conference on
Multi-Media & Expo, 2007.

[21] M. Perugini and L. Di Blas. Analyzing personality-related
adjectives from an eticemic perspective: the big five marker
scale (bfms) and the italian ab5c taxonomy. Big Five
Assessment, pages 281–304, 2002.

[22] A. K. Rajagopal, R. Subramanian, R. L. Vieriu, E. Ricci,
O. Lanz, K. Ramakrishnan, and N. Sebe. An adaptation
framework for head-pose classification in dynamic
multi-view scenarios. In Asian conference on Computer
Vision, pages 652–666, 2012.

[23] J. Staiano, B. Lepri, R. Subramanian, N. Sebe, and
F. Pianesi. Automatic modeling of personality states in
small group interactions. In ACM Int’l conference on
Multimedia, pages 989–992, 2011.

[24] L. B. Statistics and L. Breiman. Random forests. In
Machine Learning, pages 5–32, 2001.

[25] R. Stiefelhagen, J. Yang, and A. Waibel. Modeling focus of
attention for meeting indexing based on multiple cues.
IEEE Transactions on Neural Networks, 13(4):928–938,
2002.

[26] R. Subramanian, J. Staiano, K. Kalimeri, N. Sebe, and
F. Pianesi. Putting the pieces together: multimodal
analysis of social attention in meetings. In Int’l Conference
on Multimedia, pages 659–662, 2010.

[27] M. Voit and R. Stiefelhagen. Deducing the visual focus of
attention from head pose estimation in dynamic multi-view
meeting scenarios. In Int’l Conference on Multimodal
interfaces, pages 173–180, 2008.

[28] G. Zen, B. Lepri, E. Ricci, and O. Lanz. Space speaks:
towards socially and personality aware visual surveillance.
In ACM Int’l Workshop on Multimodal Pervasive Video
Analysis, pages 37–42, 2010.


