
On the Relationship Between Lexical Semantics and Syntax for the Inference of
Context-Free Grammars

Tim Oates, Tom Armstrong, Justin Harris and Mark Nejman
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County, Baltimore, MD 21250
{oates,arm1,jharri11,mnejma1}@umbc.edu

Abstract

Context-free grammars cannot be identified in the limit from
positive examples (Gold 1967), yet natural language gram-
mars are more powerful than context-free grammars and hu-
mans learn them with remarkable ease from positive exam-
ples (Marcus 1993). Identifiability results for formal lan-
guages ignore a potentially powerful source of information
available to learners of natural languages, namely,meanings.
This paper explores the learnability of syntax (i.e. context-
free grammars) given positive examples and knowledge of
lexical semantics, and the learnability of lexical semantics
given knowledge of syntax. The long-term goal is to develop
an approach to learning both syntax and semantics that boot-
straps itself, using limited knowledge about syntax to infer
additional knowledge about semantics, and limited knowl-
edge about semantics to infer additional knowledge about
syntax.

Introduction
Learning formal languages from positive examples is a hard
problem. If the language to be learned is finite and every
string in the language is guaranteed to be presented at least
once, the learner can memorize the strings that it sees. How-
ever, if the language can contain infinitely many strings and
the learner is given a finite amount of time, then simple
memorization will not work. The learner must generalize
from the examples it sees. This is precisely the problem fac-
ing children learning their native language. For many impor-
tant classes of languages, including regular and context-free,
there are infinitely many languages that include any given set
of positive examples. The challenge facing the learner is to
avoid overgeneralization, to avoid choosing a language that
contains the examples seen thus far and is a superset of the
target language.

There is a handful of methods that are typically employed
to avoid overgeneralization and establish learnability. If the
learner knows that a given string is not in the target language,
any overly general languages that include the string can be
ruled out. A large number of learnability results reported in
the literature depend on negative examples (Angluin 1987;
Gold 1967; Oncina & Garcia 1992). In the absence of neg-
ative examples, learnability can follow from restrictionson

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the class of languages from which the target is drawn (An-
gluin 1982; Oates, Desai, & Bhat 2002; Koshiba, Maki-
nen, & Takada 2000) or on the method for selecting ex-
amples (Denis, D’Halluin, & Gilleron 1996; Li & Vitanyi
1991). Establishing learnability for context-free languages
is more difficult than for regular languages. A number of
results on the learnability of context-free languages from
positive examples require each string to be paired with its
unlabeled derivation tree (Carrasco, Oncina, & Calera 1998;
Oates, Desai, & Bhat 2002; Sakakibara 1992). Such a pair
is called apositive structural example. An unlabeled deriva-
tion tree is a parse tree in which the non-terminal labels on
interior nodes are not present.

The work reported in this paper is part of a larger effort
aimed at understanding what is required to allow a robot to
learn fragments of natural languages given qualitatively the
same inputs available to children - utterances and sensory
information about the physical context in which the utter-
ances are heard. Children rarely receive negative examples
(i.e. syntactically incorrect utterances marked as such),pay
little attention when they do, and have only a few very weak
proxies for negative examples (e.g. failure of a caregiver to
respond to an utterance as expected) (Marcus 1993). There-
fore, we focus on learning exclusively from positive exam-
ples, and on context-free languages because they are suf-
ficiently expressive to represent large fragments of natural
languages.

The key to our approach is to recognize that, in addition
to hearing utterances, children have sensory access to the
world around them. In particular, we assume that the lexicon
contains word/meaning pairs, where the meanings have been
established, for example, by some associative learning algo-
rithm (Oates 2001; Roy 1999). The purpose of natural lan-
guage communication is to share meanings. Therefore, the
goal of the learner is to efficiently arrive at a compact repre-
sentation of the language that makes it possible to determine
which strings are in the language and what their meanings
are.

According to Frege’s principle of compositionality (Frege
1879), the meanings of phrases and sentences must be a
function solely of the meanings of the words involved. Sup-
pose rules for syntactic composition (i.e. productions in the
grammar) are in a one-to-one correspondence with rules for
semantic composition. For example, if the grammar for En-

NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION 431

glish has a syntactic production of the formS → NP VP,
then there must be a corresponding semantic rule that says
how to combine the meaning of anNP with the meaning of
a VP to get the meaning of anS. Therefore, each syntactic
parse tree has a structurally equivalent semantic parse tree.
More importantly for this paper, each semantic parse tree,
which specifies how the meanings of words and phrases are
combined to yield the meaning of a sentence, has a struc-
turally equivalent syntactic parse tree. We use lexical se-
mantics to generate possible semantic parse trees, i.e. those
that yield a coherent semantics for the sentence, and use
these trees as input to an algorithm for learning context-free
grammars from positive structural examples.

This paper explores the utility of lexical semantics with
respect to inferring context-free languages from positiveex-
amples consisting solely of strings. Although unlabeled
derivation trees are used by the learning algorithm, they are
not part of its input. Rather, they are derived from lexical se-
mantics. The main contributions are (1) the specification ofa
class of context-free grammars that can be learned from pos-
itive string examples and lexical semantics, and (2) a result
on the learnability of lexical semantics given a context-free
grammar. Our ultimate goal is to combine these two results
into a system that uses lexical knowledge obtained via asso-
ciative learning to infer some knowledge of syntax, and uses
knowledge of syntax to infer additional lexical knowledge.
Over time, such a system could bootstrap itself to increas-
ingly complete knowledge of both syntax and semantics.

Background
This section reviews one common algorithm for inferring
context-free languages from positive structural examples
and theλ-calculus, which is used to represent lexical and
compositional semantics.

Inferring Grammars from Positive Structural
Examples
A context-free grammar (CFG) is a four-tuple{N, Σ, P, S}
whereN is a finite set of non-terminals,Σ is a finite set
of terminals,P is a finite set of productions, andS ∈ N
is the start symbol.N and Σ are disjoint. A CFG is in
Chomsky Normal Form (CNF) if all productions are of the
form X → Y Z or X → σ, for X, Y, Z ∈ N andσ ∈ Σ.
For the remainder of this paper, the wordgrammar refers to
a CFG in CNF.

Let L(G) denote the language of grammarG. An un-
labeled derivation tree (UDT) fors ∈ L(G) is the deriva-
tion tree fors with the non-terminal labels on the interior
nodes removed. UDTs can be represented as parenthesized
strings. For example,(a(bc)) and((ab)c) are possible UDTs
for stringabc. In the first UDT, the stringbc is generated by
some non-terminal, say,X , and the stringaX is generated
by the start symbol.

A grammar isreversible if it is reset-free and invertible.
A grammar isreset-free if A → XY and B → XY in
P implies A = B. A grammar isinvertible if X → AY
andX → BY in P impliesA = B. Sakakibara’s algorithm
(Sakakibara 1992) takes a set of positive structural examples

Table 1: A simple lexicon with semantics and semantic
types.

Lexeme λ-calculus expression Semantic type

Nathaniel NATHANIEL e
Isabel ISABEL e
loves λx λy . LOVES(y,x) <e,<e,t >>
rests λx . RESTS(x) <e,t>

and returns the reversible grammar that has the smallest lan-
guage of all reversible grammars that contain the examples.
The algorithm labels the root of each UDT with the start
symbol and assigns unique labels to all interior nodes. The
union of the productions in the newly labeled trees serve as
the initial grammar. Since the generating grammar is known
to be reversible, pairs of non-terminals that violate the reset-
free and invertible properties are merged until no such pair
exists, at which point the algorithm terminates. LetGI(E)
be the output of this algorithm on inputE.

Montague Grammar and the λ-Calculus
The first formal treatment of natural language semantics is
typically attributed to Richard Montague. In three of his last
papers, Montague introduced an intensional logic for rep-
resenting the semantics of natural language strings (Dowty,
Wall, & Peters 1981; Partee & Hendriks 1996). The seman-
tics of words are represented as expressions in theλ-calculus
which are (typically) functions. These functions take argu-
ments and return values, both of which are also expressions
in the λ-calculus. The semantics of strings are computed
bottom-up by applying theλ-calculus expressions of lower-
level constituents to one another. Table 1 shows a small lex-
icon in the Montague framework that will serve as a running
example throughout the remainder of this section.

The λ-calculus is useful for exploring function descrip-
tions and function application. It is a model suited for
functional programming used in some languages (e.g. Lisp).
Function descriptions are created by performinglambda ab-
stractions. In lambda abstractions a variable argument is
given scope and bound to a lambda operator. These anony-
mous functions can then be applied to other expressions.

Three rules are used to reduceλ-calculus expressions:α-,
β- andη- reductions. Aλ-calculus expression, when fully
reduced, will be a first-order logic expression. Let ’[x/y]
z’ denote replacing instances of x with y in expression z.
For any two arbitrary expression, a lambda operator may
be bound to the same named variable in both. Perform-
ing an α-reduction on one of the expressions results in a
renaming of the variable to a unique name. When an expres-
sion is functionally applied to an argument expression it is
calledβ-reduction. The first lambda-operator and variable
are stripped off and the argument is substituted for each in-
stance of the variable. The final operation removes lambda-
operators which are bound to variables no longer found in
the body of the expression.

For our purposes, and generally, the processes of abstrac-
tion andβ-reduction are the most useful tools. Abstractions

432 NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION

(i.e. functions) provide the representation for lexical seman-
tics, andβ-reductions are used to compute compositional
semantics.

The following example shows the derivation of the
meaning (an expression in first-order logic) of the UDT
(Nathaniel (loves Isabel)). Note that there is ambiguity for
any given pair inside a set of parentheses as to which is the
function and which is the argument. For now, we assume
the order of application is given and it is as follows:loves
applies toIsabel andloves Isabel applies toNathaniel.
1. (Nathaniel (loves Isabel)) = (NATHANIEL (λx λy .

LOVES(y,x) ISABEL)

2. (NATHANIEL (λx λy . LOVES(y,x) ISABEL) =>β

(NATHANIEL λy . loves(y,ISABEL))

3. (NATHANIEL λy . LOVES(y,ISABEL)) =>β

loves(NATHANIEL,ISABEL)
From ordered function application we arrive at the standard
English meaning of the string.

Semantic Types
Everyλ-calculus expression has a semantic type, and these
types constrain howλ-calculus expressions compose with
one another. Types are either basic or complex. Basic types
are defined ase, entities (e.g. Nathaniel, Isabel), ort, truth
values (e.g. true, false). Complex types, which represent
types of functions, are defined recursively: ifα andβ are
types, then< α, β > is a type. Semantic types dictate the
direction of function application (i.e. when applying a func-
tion of type< γ, δ >, the argument to the function must
have typeγ). Take from Table 1 the types forIsabel and
rests, e and<e,t> respectively. The order of application
must be fromrests to Isabel to properly compose.

Each expression in theλ-calculus, being a function de-
scription, has a parameter and return value. The semantic
type of a function can be represented by< α, β > where
α and β are the semantic types of the parameter and re-
turn value respectively. There exists a many-to-one map-
ping betweenλ-calculus expressions and semantic types
(e.g.Nathaniel andIsabel are both of type e).

Learning Syntax Using Lexical Semantics
In this section we formally explore the utility of UDTs de-
rived from semantic parse trees with respect to grammatical
inference.

Lexical Semantics Reducing Numbers of Parse
Trees
How many semantically valid UDTs could there be for a
string? For a string of lengthn, the number of possible
UDTs is equal to the number of possible binary bracketings
of that string. Catalan, an 18th century Belgian mathemati-
cian, posed a problem for finding the number of ways to
compose factors in calculating products (Weisstein 2003).
This problem is equivalent to finding the number of binary
bracketings. Formally, C(n), thenth Catalan number, is

(2n)!
(n!(n+1)!) . For strings of lengthn, the number of binary

bracketings is equal to then − 1th Catalan number.

Table 2: A simple lexicon with semantic types.

Lexeme Semantic type

the <<e,t>,<<e,t>,t>>
dog <e,t>
cat <e,t>
hates <<<e,t>,t>, <e,t>>

The number of possible parse trees for a string grows ex-
ponentially in the length of the string. From a learnability
perspective, dealing with large numbers of trees for a single
string is not easily handled. Given lexical types for termi-
nal nodes, performing type checking on possible trees will
rule out a subset of them as compositionally invalid. Type
checking succeeds if after type composition over a tree for
a string the root node has semantic type t. Bracketed strings
of this form are calledsemantically valid.

Take, for example, the strings = the cat hates the dog
generated by some grammar. Given the length ofs is 5,
C(4) = 14. Of the 14 possible parses, 3 are valid in terms of
semantic composition: ((the cat) (hates (the dog)), ((the cat)
hates) (the dog)) and ((((the cat) hates) the) dog). As shown
above, a first order logic expression for the string can then
be constructed following the application orderings for each
of the three trees. In one case the expression denotesthe cat
is the hater of the dog and in othersthe dog is the hater of
the cat. The following is a type-checking evaluation for one
possible parse tree.

Take (the cat) in type form as (<<e,t>,<<e,t>,t>> →
<e,t>) from Table 2. Performing the application in the
order given (the cat) has type<<e,t>,t>. The type for
(the dog) is clearly equivalent. The next bracket combines
(hates (the dog)), thus the type is (<<<e,t>,t>,<e,t>>→
<<e,t>,t>) resulting in a type of<e,t>. The final combi-
nation is between the types of (the cat) and (hates (the dog))
or (<<e,t>,t> → <e,t>). The root results in a t for this
bracketing of the string.

Computing Semantically Valid Parses

For strings, typeα, and grammarG, let T (s), Tα(s), and
TG(s) denote sets of unlabeled derivation trees.TG(s) is the
set of trees that are possible given grammarG. T (s) is the
union ofTG(s) for all grammars that generates. Assuming
that lexical semantics are given,Tα(s) is the restriction of
T (s) to those trees whose root have typeα. To use seman-
tic parse trees to learn syntax, it must be possible to com-
puteTα(s) efficiently. We show that this is the case in what
follows, starting from an efficient algorithm for computing
|T (s)|.

The recurrence below can be used to compute|T (s)| bot-
tom up.M is a zero-indexedn×n array, where|s| = n, and
M [i, j] is |T (s[i . . . j])|, i.e. the number of possible UDTs
for the substring ofs ranging from positioni to positionj.
Therefore,|T (s)| = M [0, n− 1].

M [i, i] = 1

NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION 433

M [i, j] =
n∑

l=2

n−l∑

p=0

l−2∑

q=0

M [p, p + q] ∗

M [p + q + 1, p + l − 1]

Assuming the grammar is in CNF, the only way to generate a
terminal is via a production of the formX → σ. Therefore,
there is only one unlabeled derivation tree for each substring
of s of length 1 andM [i, i] = 1 for all i. All other entries are
computed bottom-up via the second line in the recurrence.
The first sum is over substring lengths,l, ranging from 2 to
n. The second sum is over all starting positions,p, in s of
strings of lengthl. Together,l andp identify a substring of
s, namely,s[p . . . p+ l−1] that must have been generated by
a production of the formX → Y Z. The third sum is over
all ways in whichY andZ can divide up that substring. For
any such division, the number of trees for the substring is
the product of the number of trees for the partY generates
and the number of trees for the part thatZ generates.

Given lexical semantics, it is possible to computeTα(s)
using the recurrence below. Rather thanM being ann×n ar-
ray, it is ann×n×m array wherem is the number of distinct
types that can label interior nodes in a semantic parse tree.
Let δ(expr) take on value 1 ifexpr is true, and 0 otherwise.
Let typeof(expr) return the type (an integer between 0
andm − 1) of expr. Let @ denote function application.

M [i, i, t] = δ(typeof(s[i . . . i]) = t)

M [i, j, t] =
∑

t1,t2

n∑

l=2

n−l∑

p=0

l−2∑

q=0

M [p, p + q, t1] ∗

M [p + q + 1, p + l − 1, t2] ∗

δ(typeof(t1@t2) = t ∨

typeof(t2@t1) = t)

There is still only one unlabeled derivation tree for each sub-
string of length 1, but the type of that tree is the type of
the lambda expression for the meaning of the terminal. The
outer sum in the second line of the recurrence is over allm2

pairs of types. Given thans[p . . . p + l − 1] will be split at
offset q (as established by the inner three sums), that split
will yield a valid semantic parse only if the types of the two
halves are compatible, i.e. if one can be applied to the other.
If t1 is the type of the left half andt2 is the type of the right
half, and applyingt1 to t2 or applyingt2 to t1 yields typet,
thenM [i, j, t] is updated.

The recurrence above can be computed inO(m2n3) time.
Note thatm will typically be a small constant because in-
terior nodes can only be labeled by lexical types and types
out of which lexical types are composed. Also, it is trivial to
augment the computation so thatM can be used to extract
all semantically valid parses of a given type. This is done by
keeping a list of split points,q, for each(i, j, t) that yield the
desired type (i.e.t). This increases the storage required by a
multiplicative factor ofn.

Using Semantically Valid Parse Trees to Learn
Syntax
Our goal is to use lexical semantics and positive string exam-
ples to obtain positive structural examples that can be used

to learn syntax. Clearly, if for every string inL(G) there is
a single semantically valid parse, then learning is straight-
forward. Later in this section we define a class of grammars
for which this is the case. What happens, though, if there
are multiple semantically valid parses for some string(s) in
L(G)?

Let E = {s1, s2, . . .} be a set of strings. Let
T (E) = ∪si∈ET (si), and let TG(E) and Tα(E)
be defined similarly. Now consider grammar G for
which L(G) = {xcd, xab, ycd, zab} and TG(L(G)) =
{((xc)d), ((xa)b), (y(cd)), (z(ab))}. Suppose the type ofa
andc is t, and the type of all other lexical items is< t, t >.
Then the semantically valid parses of the strings inL(G) are
as follows:

Tt(L(G)) = {((xc)d), ((xa)b), (y(cd)), (z(ab)),

(x(cd)), (x(ab)), ((yc)d), ((za)b)}

For a reset-free grammar to generate these UDTs, the non-
terminal that generatescd must also generateab due to
the trees(x(ab)) and (x(cd)). Coupled with the fact that
(y(cd)) and(z(ab)) are inL, the grammar must also gener-
ate(y(ab)) and(z(cd)), neither of which are inL(G). That
is, learning a grammar based on all semantically valid parse
trees can, in some cases, lead to overgeneralization.

Even so, given a sample of strings,E, from the language
of some grammar,G, we can establish a few useful prop-
erties of the grammar learned from the structural examples
contained inTt(E). For example, the language of that gram-
mar will always be a subset of the language of the grammar
learned fromE with the true UDTs. Somewhat more for-
mally:

L(GI(TG(E))) ⊆ L(GI(Tt(E)))

To see that this is true, first note that the output ofGI is
independent of the order in which merges occur. It then suf-
fices to show that the above holds for a single merge or-
der. Suppose the merges performed by GI onTt(E) are
precisely those performed onTG(E) up to the point where
GI(TG(E)) would terminate. IfGI(Tt(E)) were to stop at
this point, the language of the resulting grammar would be
preciselyL(GI(TG(E))) because it would contain all of the
productions inGI(TG(E)) plus productions that produce all
and only the trees inTt(E) − TG(E), and these trees cor-
respond to strings inE that are inL(GI(TG(E))). Addi-
tional merging required forGI(Tt(E)) to terminate can only
add strings to the resulting language, soL(GI(TG(E))) ⊆
L(GI(Tt(E))).

Lexically Unambiguous Parses
The previous section established that there exist grammars
for which the language inferred using all semantically valid
parses of the training examples is a superset of the language
inferred using the true semantic parses of the training ex-
amples. This section defines a class of grammars for which
every string in the language of such a grammar has a single
semantically valid parse. For grammars in this class, lexical
semantics ensure learnability.

For a given grammarG, let right(X) be the set of termi-
nals and non-terminals that can occur in the rightmost po-
sition of any string derivable in one or more steps from X.

434 NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION

Let left(X) be defined analogously. Letcanapply(A, B)
return true iff eitherA is of the type< α, β > andB is of
the typeα (i.e.A can be applied toB) or A is of the typeγ
andB is of the type< γ, δ > (i.e.B can be applied toA).

Theorem 1 If for every production of the form X → Y Z
in grammar G neither condition 1 nor condition 2 below
holds, then there is exactly one semantically valid parse of
every string in the language generated by G.

1. ∃A ∈ right(Y)
⋃

{Y } ∧ ∃B ∈ left(Z) s.t.
canapply(A, B)

2. ∃A ∈ right(Y) ∧ ∃B ∈ left(Z)
⋃

{Z} s.t.
canapply(A, B)

Proof: The proof will be by induction on the height of the
derivation tree that generates the string. BecauseG is in
CNF, all productions are of the formX → Y Z or X → σ.
Each non-terminal is generated by a tree of height one, and
there is only one way to semantically parse any given non-
terminal, so strings derived by a tree of height one have a
single semantically valid parse. This is the base case. The
inductive assumption is that all strings generated by a tree
of height no more thanh have a single semantically valid
parse.

Suppose some string has a derivation tree of heighth + 1
and the string has multiple semantically valid parses. Let
X be the non-terminal that roots the derivation tree, and let
Y and Z be the non-terminals that root it’s left and right
subtrees (i.e. the derivation tree was produced by expanding
X to Y Z via productionX → Y Z). The subtrees rooted
by Y andZ can have height at mosth, so by the inductive
assumption the strings they generate have a single semanti-
cally valid parse.

Therefore, the only way for the string generated byX to
have more than one semantically valid parse is for some non-
terminal on the right edge of the tree generated byY to have
a type that can be applied to the type of some non-terminal
on the left edge of the tree generated byZ (or vice versa).
However, conditions 1 and 2 above explicitly disallow this,
so there can be no string generated by a tree of heighth +
1 with multiple semantically valid parses. Inductively, the
theorem holds for strings generated by derivation trees of
any height, i.e. all strings.2

The theorem above says that there is a class of grammars
for which all strings have a single semantically valid parse.
Grammars in this class can be learned by any algorithm that
learns CFGs from unlabeled derivation trees.

Semantic Type Inference
Until now we have assumed that the learning algorithm was
given lexical semantics for all terminals. Now let us con-
sider the case where we are given the UDTs and order of
application for internal nodes for a sample of strings in a
grammar. From this information we will demonstrate how
all semantic types can be inferred using a minimal subset of
semantic types.

Let X → Y Z be a production for which the meaning of
X is obtained by applying the meaning ofY to the meaning
of Z. Because the production obeys type constraints, ifX is

of type< α, β > thenY must be of typeα andX must be of
typeβ. Types can be inferred for a given production in CNF
in two ways. If the type ofY is known, the types ofX and
Z can be inferred. If the types ofX andZ are known, the
type ofY can be inferred. We assume that the start symbol
has the same type for all strings. Consider the following
grammar assuming left to right function application for all
productions (e.g. assuming NP applies to VP and not vice
versa):

S → NP VP

NP → DET N

VP → TV NP

VP → IV

The start symbol, S, has semantic type of t. For this gram-
mar, if we know the types of the elements of{N

⋃
Σ} that

are never used as functors in any production, we can infer
the types of all other elements of{N

⋃
Σ}. For the above

grammar the known types are of S, VP, N and IV. Knowing S
and VP allows inference of NP, which then allows inference
of DET using N, and inference of TV using VP and NP.

We say that non-terminalY never applies if it never oc-
curs in a productionX → Y Z or X → ZY for which the
meaning ofY is applied to the meaning ofZ to obtain the
meaning ofX . The following theorem defines a subset of
types that need to be known to ensure that all types are in-
ferable.

Theorem 2 For any context-free grammar G in Chomsky
Normal Form, given the types of all non-terminals that never
apply, the types of all other non-terminals can be inferred.

Proof: Let G∗ be the directed graph created from grammar
G as follows. For each production of the formX → Y Z add
nodes labeledX , Y , andZ to G∗. If Y applies toZ, add
edges from nodeY to both nodeX andZ. If Z applies toY ,
add edges from nodeZ to both nodeX andY . Each node is
marked as either known or unknown, depending on whether
the type of the associated non-terminal is known. Nodes
with out-degree zero correspond to non-terminals that never
apply, and are therefore assumed to be known. All other
nodes are initially marked unknown.

If all of the neighbors of a node are marked known, then
its type can be inferred and the node marked known. This
inference/marking step can be repeated until no new nodes
are marked known. Because the number of unknown nodes
decreases by at least one on each step, or the algorithm ter-
minates, there can be no more thanO(|N |) iterations, each
of which might need to doO(|P |) work.

Suppose there exists a grammarG for which all nodes in
G∗ are not marked known when the algorithm terminates.
Let X be the non-terminal associated with this node. If the
type ofX cannot be inferred, then the type of at least one of
its neighbors, call itY , cannot be inferred. That is, there is
path of length 1 fromX to a node whose type cannot be in-
ferred. Likewise, because the type ofY cannot be inferred,
the type of at least one of its neighbors cannot be inferred,
and this node lies on a path of length 2 fromX . Inductively,
there must be a node at the end of a path of lengthn for all

NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION 435

n ≥ 0 from X whose type cannot be inferred. However,
because a non-terminal’s type cannot be defined (even par-
tially) in terms of itself, all paths must terminate in a node
with out-degree zero inO(|N |) steps, and the types of all
such nodes are known. This is a contradiction. Therefore,
the theorem holds.2

The importance of theorem 2 is that words with types
that never apply are typically those that refer to perceptu-
ally concrete aspects of the environment, such as nouns.
That is, it is possible that an embedded learner might as-
sociatively learn the types of these words (Oates 2001;
Roy 1999), and then use knowledge of syntax to infer the
semantic types of all other words in the lexicon.

Conclusion

This paper represents the first results of our inquiry into the
relationship between meanings and learnability for context-
free grammars. Theorem 1 established that there exists a
class of grammars whose syntax can be learned from posi-
tive string examples and lexical semantics. Theorem 2 es-
tablished that it is possible to infer lexical semantics given a
grammar’s syntax and a small number of lexical types.

The work most similar to ours reported in the litera-
ture is that of Tellier and her colleagues (Tellier 1998;
Dudau-Sofronie, Tellier, & Tommasi 2001) who are also in-
terested in the role of lexical semantics in grammatical in-
ference. They propose an algorithm for inferring rigid cat-
egorial grammars given strings and their meanings, though
the algorithm has exponential complexity and it is unclear
(i.e. there is no proof) whether it converges to the target
grammar or some grammar containing the target.

Future work will proceed in a number of directions. Ulti-
mately, we want to develop algorithms that will iteratively
use incomplete lexical knowledge to infer grammar frag-
ments, and then use these fragments to infer more lexical
knowledge. The goal is to have a learner that can provably
converge on the correct lexicon and grammar by bootstrap-
ping from some small amount of knowledge about lexical
semantics obtained via associative learning.

An important result that we’re currently working toward
is an algorithm for inferring syntax when there are multiple
semantically valid parse trees for one or more strings. One
possible approach is to compute the corresponding seman-
tics of each parse and use the fact that the learner is embed-
ded in an environment to determine which parse is correct,
i.e. which one refers to the current state of the world. An
alternative approach might involve noticing when a merge
would include strings in the grammar that are not observed.

References

Angluin, D. 1982. Inference of reversible languages.Jour-
nal of the Association for Computing Machinery 29:741–
765.

Angluin, D. 1987. Learning regular sets from queries and
counterexamples.Information and Computation 75:87–
106.

Carrasco, R. C.; Oncina, J.; and Calera, J. 1998. Stochas-
tic inference of regular tree languages.Lecture Notes in
Computer Science 1433:187–198.
Denis, F.; D’Halluin, C.; and Gilleron, R. 1996. PAC learn-
ing with simple examples. InSymposium on Theoretical
Aspects of Computer Science, 231–242.
Dowty, D. R.; Wall, R. E.; and Peters, S. 1981.Introduction
to Montague Semantics. Dordrecht: Reidel.
Dudau-Sofronie, D.; Tellier, I.; and Tommasi, M. 2001.
From logic to grammars via types. In Popelı́nský, L., and
Nepil, M., eds.,Proceedings of the 3rd Workshop on Learn-
ing Language in Logic, 35–46.
Frege, F. L. G. 1879. Begriffschrift. In van Heijenoort, J.,
ed.,Frege and Godel: Two Fundamental Texts in Mathe-
matical Logic (1970). Cambridge, MA: Harvard University
Press.
Gold, E. M. 1967. Language identification in the limit.
Information and Control 10:447–474.
Koshiba, T.; Makinen, E.; and Takada, Y. 2000. Infer-
ring pure context-free languages from positive data.Acta
Cybernetica 14(3):469–477.
Li, M., and Vitanyi, P. M. B. 1991. Learning simple con-
cepts under simple distributions.SIAM Journal of Comput-
ing 20(5):911–935.
Marcus, G. F. 1993. Negative evidence in language acqui-
sition. Cognition 46(1):53–85.
Oates, T.; Desai, D.; and Bhat, V. 2002. Learning k-
reversible context-free grammars from positive structural
examples. InProceedings of the Nineteenth International
Conference on Machine Learning.
Oates, T. 2001.Grounding Knowledge in Sensors: Un-
supervised Learning for Language and Planning. Ph.D.
Dissertation, The University of Massachusetts, Amherst.
Oncina, J., and Garcia, P. 1992. Inferring regular languages
in polynomial updated time. In de la Blanca, N. P.; Sanfe-
liu, A.; and Vidal, E., eds.,Pattern Recognition and Image
Analysis. World Scientific.
Partee, B., and Hendriks, H. 1996. Montague grammar.
In van Benthem, J., and ter Meulen, A., eds.,Handbook
of Logic and Language. Amsterdam: Elsevier Science and
The MIT Press. 5–91.
Roy, D. 1999.Learning Words from Sights and Sounds: a
Computational Model. Ph.D. Dissertation, MIT.
Sakakibara, Y. 1992. Efficient learning of context-free
grammars from positive structural examples.Information
and Computation 97:23–60.
Tellier, I. 1998. Meaning helps learning syntax.Lecture
Notes in Computer Science 1433.
Weisstein, E. W. 2003. Catalan numbers. InEric Weis-
stein’s World of Mathematics.

436 NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION

