
On the relationship between logarithmic sensitivity integrals and
limiting optimal control problems ∗

Rick H. Middleton
Dept. of Electrical and Computer Engineering,

The University of Newcastle, Australia
rick@ee.newcastle.edu.au

Julio H. Braslavsky
Industrial Automation & Control

Universidad Nacional de Quilmes, Argentina
jbrasla@unq.edu.ar

Abstract

Two seemingly independent streams of control systems re-
search have examined logarithmic sensitivity integrals and
limiting linear quadratic optimal control problems. These
apparently diverse problems yield some results with an iden-
tical right hand side. The main contribution of this pa-
per is to directly explain the commonality between these
streams. This explanation involves the use of Parseval’s the-
orem to derive tight inequality bounds between frequency
domain logarithmic sensitivity integrals, and the achievable
quadratic performance of a linear time invariant system.

1 Introduction

Consider a single input single output linear time invariant
plant, with input, output, state and input disturbance denoted
by u,y,x and d respectively, described by the state space
model

ẋ = Ax+B(u+d)
y = Cx

(1)

We further denote the plant transfer function, and input-to-
state transfer function, respectively by

G(s) = C(sI−A)−1B

GX(s) = (sI−A)−1B,
(2)

and the reference trajectory for the output byr, and an error
signal bye, defined by:

e= r−y

There has been a large literature of study for systems of the
form (1). One aspect of this study has been the examina-
tion of performance limitations, from the perspective of fre-
quency domain logarithmic sensitivity integrals.

1.1 Logarithmic Sensitivity Integrals
In this line of research, linear time invariant feedback of the
error signal,e, via a controller with transfer function,K(s)
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is examined:

u(t) =−K(s)∗e(t). (3)

Define the (open) loop transfer function asL(s) = K(s)G(s).
It turns out that in this case, important sensitivity, robustness
and performance features of the feedback controller system,
are described by the sensitivity,S(s), and complementary
sensitivity function,T(s),

S(s) :=
1

1+L(s)
,

T(s) :=
L(s)

1+L(s)
= 1−S(s).

(4)

The Bode Sensitivity Integral, initiated in [2] and general-
ized in [5], [6], [12], states that for any causal, internally
stabilizing controller, the sensitivity function (4) must sat-
isfy the logarithmic integral constraint

1
π

∞∫
0

log|S( jω)|dω +
1
2

kh = ∑
pi∈CRHP

pi , (5)

wherepi ∈CRHPdenote the closed right half plane (CRHP)
open loop poles, that is, the unstable poles ofL(s); andkh is
the loop high frequency gain constant defined by:

kh = lim
s→∞

sL(s)

A dual result has been obtained in [9], [12] for the com-
plementary sensitivity function, namely, for any internally
stabilizing controller with integral action1 the complemen-
tary sensitivity function must satisfy the logarithmic integral
constraint

1
π

∞∫
0

log|T( jω)| dω

ω
2 +

kv

2
= ∑

zi∈CRHP

1
zi
, (6)

wherezi ∈CRHPdenote the CRHP open loop zeros; andkv

is the system velocity constant defined by

kv := lim
s→0

1
sL(s)

=−T ′(0)

=
∞∫

0

e(t)dt.

1Note that the assumption of integral action can be weakened to that of
having non-zero steady state gain, at the cost of additional complexity in
the equations.



Note that the results above, although motivated by the pure
error feedback case, (3), actually apply to any stable, causal
feedback structure provided only that (4) hold.

1.2 Limiting Linear Quadratic Optimal Control
We now shift attention to a seemingly unrelated area of re-
search in linear control systems, where we perform state
feedback control of (1) in order to optimize a quadratic cost,
e.g., [1], [8]. Typically, the cost would involve quadratically
weighted terms in both the state and the control signal. Lim-
iting cases arise when we permit the weighting of one of the
terms to approach zero. The first of these, where weighting
on the states is allowed to approach zero, is described below.

1.2.1 Minimum Energy Control: Suppose that at
t = 0 the system is initially atx(0) = B. We then seek the
control which stabilizes the system with minimum control
energy. This control can be found by optimizing the cost
functional

Ju(ε) :=
1
2

∞∫
0

u2(t)+ ε
2xT(t)x(t)dt. (7)

The minimum energy control is found by taking the limit as
ε → 0. Results in [8] may be used to derive (see [13]) that

lim
ε→0

Ju(ε) = ∑
pi∈CRHP

pi (8)

wherepi are the unstable poles of the plant. Equation (8)
shows that the minimum control energy required is propor-
tional to the unstable poles of the system. Perhaps surpris-
ingly, the RHS of (8) is precisely the RHS of (5). A dual
result is known in the cheap control case, described below.

1.2.2 Cheap Control: The cheap control problem
[11] is a dual problem to the minimum energy problem.
Here we suppose that we initially start at rest,x(0) = 0 and,
with a unit reference, seek the control which minimizes the
L2 norm of the output error. If we denote byu(∞) the final
control, which gives a steady state with zero error, then we
seek to minimize the cost functional

Je(ε) :=
1
2

∞∫
0

e2(t)+ ε
2v2(t)dt (9)

wherev = u−u(∞) is the control deviation. If we then take
the limiting case,ε → 0 (termed the “Cheap Control” case)
it can be shown [10], [13] that

lim
ε→0

Je(ε) = ∑
zi∈CRHP

1
zi

(10)

where zi are the CRHP zeros ofG(s). Now, the low-
est2 achievable tracking error depends on the non-minimum
phase zeros of the plant. Again, perhaps unexpectedly, the
RHSs of (10) and of (6) are identical.

2In terms ofL2 norm.

The main aim of this paper is to explore and explain the con-
nection between the two apparently dissimilar areas of lim-
iting optimal control, and logarithmic sensitivity integrals.

2 Sensitivity Integral and Minimum Energy Control

We first consider the case where we wish to relate the mini-
mum energy control problem and the sensitivity integral. To
do this, consider the case where the plant is initially at rest,
the input disturbance is an impulse, and the reference signal
is zero,

x(0−) = 0

d(t) = δ (t) (11)

r(t)≡ 0

Note that in this case it is easy to show thatx(0+) = B,
which corresponds to the Minimum Energy problem of Sec-
tion 1.2.1. It therefore follows from Section 1.2.1 that for
any control algorithm, the infimal control energy required
to stabilize the plant is given by (8). We denote the plant
input to state transfer function byGX(s) = (sI− A)−1B
and consider an arbitrary linear time invariant state feed-
back with transfer function,KX(s). Then, breaking the
loop at the input, we consider the loop transfer function,
L(s) = KX(s)GX(s), with sensitivity function given by (4).
We have the following result.

Theorem 1 Consider the plant (1), (2) under the conditions
(11). Then for any stabilizing dynamic feedback controller,
KX(s)

1
2

∞∫
0

u2(t)dt ≥
kh

2
+

1
π

∞∫
0

log|S( jω)|dω (12)

Proof: Since the input disturbance,d(t), is an impulse
function, and therefore has unit Laplace transform, we can
show that

U(s) =−T(s)D(s) =−T(s) (13)

Now by Parseval’s theorem, for any bounded energy control
signal,

1
2

∞∫
0

u2(t)dt =
1

2π

∞∫
0

|U( jω)|2dω

=
1

2π

∞∫
0

|T( jω)|2dω (14)



We then add and subtract1
π

∫ ∞
0 Re{T( jω)}dω from (14),

noting that 2
∫ ∞

0 Re{T( jω)}dω =
∫ ∞
−∞ T( jω)dω to obtain

1
2

∞∫
0

u2(t)dt =
∞∫
−∞

T( jω)
dω

2π

+
1

2π

∞∫
0

|T( jω)|2

−2Re{T( jω)} dω

2π

(15)

SinceT(s) is analytic in the CRHP, and fors large,T (s) ≈
kh
s it follows that

1
2π

∞∫
−∞

T( jω)dω =
1

j2π

∮
C

T(s)ds

− lim
R→∞

1
j2π

−π/2∫
π/2

T(ejθ R) je jθ Rdθ =
kh

2
. (16)

If we now substitute (16) in (15), and note that for any real
x>−1, the inequalityx≥ log(1+x) holds, then

1
2

∞∫
0

u2(t)dt =
kh

2
+

1
2π

∞∫
0

−2Re{T( jω)}+ |T( jω)|2dω

≥
kh

2
+

1
2π

∞∫
0

log
(

1−2Re{T( jω)}+ |T( jω)|2
)

dω

=
kh

2
+

1
π

∞∫
0

log|S( jω)|dω,

from which (12) follows.

Theorem 1 presents an inequality linking logarithmic sensi-
tivity and the control energy required to stabilize the plant.
Naturally, thelowestcontrol energy required is zero if the
plant is stable, in which case, the inequality (12) becomes
the trivial

∫ ∞
0 u2(t)dt ≥ 0, which follows on using (5).

The inequality (12) is one-way. The following results, based
on a dual to a result in [3] for the filtering case, establishes
that in a certain sense, the inequality in (12) is tight. We first
show that the optimal cost can be expressed in terms of the
high frequency gain.

Lemma 2 For anyε > 0, consider the problem of optimiz-
ing Ju(ε) as defined in (7) with initial state x(0+) = B. The
optimal cost in this case is

min
u

Ju(ε) =
kh

2
.

Proof: The optimal controlu
ε

for this case is the time
invariant state feedback

KX(s) = BTP
ε
, (17)

whereP
ε

is the unique symmetric positive definite solution
to the Riccati equation

P
ε
A+ATP

ε
−P

ε
BBTP

ε
+ ε

2I = 0.

Now the loop transfer function corresponding to the control
Kx(s) from (17) is

L(s) = KX(s)GX(s)

= BTP
ε
(sI−A)−1B

It therefore follows that the high frequency gain iskh =
BTP

ε
B. Furthermore, the optimal cost is [1]

min
u

Ju(ε) =
1
2

xT
0 P

ε
x0

=
1
2

BTP
ε
B,

and the result follows.

We now note that for the optimal control problem posed,
the sensitivity function and the plant transfer function are
related.

Lemma 3 For anyε > 0, consider the problem of optimiz-
ing Ju(ε) as defined in (7). Denote the sensitivity function
achieved in this case by S

ε
(s). Then for allω:

|S
ε
( jω)|2 =

1

1+ ε
2‖PX( jω)‖2

(18)

Proof: This result is a direct consequence of the Return
Difference Identity [1].

The final result we need to establish the “tightness” of (12)
is that the integral of the log of (18) can be made arbitrarily
small.

Lemma 4 For any plant input-to-state transfer function,
PX(s) = (sI−A)−1B,

lim
ε→0+


∞∫

0

log
(

1+ ε
2‖PX( jω)‖2

)
dω

= 0.

Proof: In the case whereA has no eigenvalues on
the imaginary axis, the proof is straightforward, as 0≤
log
(

1+ ε
2‖PX( jω)‖2

)
≤ ε

2‖PX( jω)‖2. More generally,

however, letγ
ε
(s) denote a marginally stable, unity high

frequency gain, minimum phase spectral factor of 1+
ε

2‖PX( jω)‖2, that is,

γ
ε
(s)γ

ε
(−s) = 1+ ε

2PX(−s)TPX(s)

=
n

∏
i=1

(
s−zi,ε

)
(

s−λ
+
i

) n

∏
i=1

(
s+zi,ε

)
(

s+ λ
+
i

)



whereλ
+
i =−

∣∣σi

∣∣+ jωi ∈CLHPdenote the marginally sta-
ble reflections of the eigenvaluesλi = σi + jωi of the matrix

A. Then log
(

1+ ε
2‖PX( jω)‖2

)
= 2log|γ

ε
( jω)| and there-

fore using a minor variant of (5)

∞∫
0

log
(

1+ ε
2‖PX( jω)‖2

)
dω = 2

∞∫
0

log|γ
ε
( jω)|dω

= 2π lim
s→∞

(s(γ
ε
(s)−1))

= 2π

n

∑
i=1

(
zi,ε −λ

+
i

)
The result then follows on noting that lim

ε→0zi,ε = λ
+
i .

We are now in a position to prove the following theorem.

Theorem 5 The inequality of Theorem 1 is tight in the sense
that for anyδ > 0 there exists a controller which achieves

1
2

∞∫
0

u2(t)dt ≤ δ +
kh

2
+

1
π

∞∫
0

log|S( jω)|dω. (19)

Proof: For anyδ > 0 we pick the control which optimizes
(7) for a sufficiently smallε. To see that this suffices, note
from Lemma 2 and Lemma 3 that

1
2

∞∫
0

u2(t)dt ≤ 1
2

∞∫
0

u2(t)+ ε
2xT(t)x(t)dt

= Ju(ε) =
kh

2

=
kh

2
+

1
π

∞∫
0

log|S( jω)|dω

+
1

2π

∞∫
0

log
(

1+ ε
2‖PX( jω)‖2

)
dω (20)

Equation (19) now follows since from Lemma 4 the last term
on the RHS of (20) can be made arbitrarily small.

We have therefore established that for any controller, the
logarithmic sensitivity integral and the high frequency gain
yield a lower bound on the achievable control energy for any
stabilizing controller. Moreover, by using limiting versions
(approximate minimum energy) of linear quadratic optimal
control, this lower bound is shown to be tight.

3 Complementary Sensitivity Integral and Cheap
Control

We now consider the case where we wish to relate the cheap
control problem and the complementary sensitivity integral.

To do this, consider the case where plant is initially at rest,
the input disturbance is zero, and the reference signal is a
unit step:

x(0) = 0

d(t) = 0 (21)

r(t)≡ 1(t)

We also consider the class of linear time invariant dynamic
state feedback controllers

u(t) =−KX(s)∗x(t)+KE(s)∗e(t).

In this case we define the sensitivity function (4) as the trans-
fer function from the reference signal to the error signal

e(t) = S(s)∗ r(t).

We assume that the loop transfer function has infinite steady
state gain, which ensures zero steady state error, that is,
S(0) = 0 andT(0) = 1. Note that this may be achieved either
by making(A−BK(0)) singular (i.e. generating integral ac-
tion via the state feedback) or by including integral action
in the error feedbackKE(s). The velocity constant can be
shown to satisfykv = (S′(0)). We have the following result.

Theorem 6 Consider the plant (1) under the conditions
(21). Then for any stabilizing dynamic feedback controller
with zero steady state error,

1
2

∞∫
0

e2(t)dt ≥ kv

2
+

1
π

∞∫
0

log|T( jω)| dω

ω
2 . (22)

Proof: The proof follows similar lines to the proof of The-
orem 1. Since the reference input is a unit step, (21), the
Laplace Transform of the error signal can be expressed as:

E(s) = S(s)R(s) =
S(s)

s
(23)

Now by Parseval’s theorem, for any bounded energy error
signal3,

1
2

∞∫
0

e2(t)dt =
1

2π

∞∫
0

|S( jω)|2 dω

ω
2 (24)

We then add and subtract1
π

∫ ∞
0 Re{S( jω)} dω

ω
2 from (24) to

obtain

1
2

∞∫
0

e2(t)dt =
1

2π

∞∫
−∞

S( jω)
dω

ω
2

+
1

2π

∞∫
0

|S( jω)|2−2Re{S( jω)} dω

ω
2

=
kv

2
+

1
2π

∞∫
0

(
−2Re{S( jω)}+ |S( jω)|2

) dω

ω
2

3Note that the zero steady state error plus stability assumptions ensure
that the error signal is bounded energy.



As in the proof of Theorem 1, using the inequalityx ≥
log(1+x), valid for for any realx>−1, we obtain

1
2

∞∫
0

e2(t)dt ≥ kv

2

+
1

2π

∞∫
0

log
(

1−2Re{S( jω)}+ |S( jω)|2
) dω

ω
2

=
kv

2
+

1
π

∞∫
0

log|T( jω)| dω

ω
2

from which (22) follows.

Theorem 6 presents an inequality linking logarithmic com-
plementary sensitivity and the tracking error energy required
to stabilize the plant. It was shown in [13] that the least
tracking error energy is the minimum energy required to sta-
bilize the unstable zeros of the plant. Hence, in particular,
the least tracking error energy becomes zero if the plant is
minimum phase, in which case the inequality (22) becomes
the trivial

∫ ∞
0 e2(t)dt ≥ 0, which follows on using (6).

Note that (22) is a one-way inequality. The following claim,
based on a dual to the results in Section 2, suggests that in a
certain sense, the inequality (22) is tight.

Theorem 7 The inequality of Theorem 1 is tight in the sense
that for anyδ > 0 there exists a controller which achieves

1
2

∞∫
0

e2(t)dt ≤ δ +
kv

2
+

1
π

∞∫
0

log|T( jω)| dω

ω
2 (25)

Proof: Firstly, we note that any linear system (1) of relative
degreer can be rewritten, after state feedback and change of
coordinates, in the “zero dynamics” form (cf. [13]):

d
dt

[
Z
ξ

]
=
[

I+ 0
B0C0 A0

][
Z
ξ

]
+
[

B1
0

]
v

e=
[

C0 0
][ Z

ξ

]
(26)

whereI+ ∈ Rr×r is a matrix which is all zeros, except for
ones on the super-diagonal,B1 =

[
0 ... 0 1

]T
, C0 =[

1 0 ... 0
]

, A0 andB0 are matrices which define the

zero dynamics with stateξ , Z =
[

e ė ... e(r−1)
]T

and
v is the deviation of the control from the steady state control,
together with a state feedback term. For simplicity we take
A0 to be completely anti-stable, that is, it has all eigenvalues
strictly in the right half plane.

Note then that the problem of minimizing the integral
square tracking error for a unit step reference is equiva-
lent to minimizing the integral square of the “output”e(t)
in (26), with initial conditionsZ(0) = −CT

0 and ξ (0) =

−A−1
0 B0C0Z(0) = A−1

0 B0. This is a singular optimal control
problem, that is, the controlv which minimizes (9) subject
to (26) is unbounded. We can, however, construct controls
which approach this singular optimal case as follows. We
denote bye∗ = −BT

0 P0ξ the target trajectory that we would
like the error signale to follow, whereP0 is the unique posi-
tive definite solution to the Riccati equation

AT
0 P0 +P0A0−P0B0BT

0 P0 = 0. (27)

We then define the target error state vector

Z∗ =
[

e∗ d
dt e
∗ ...

(
d
dt

)(r−1)
e∗
]T

(28)

and the deviation of the actual error vector from the target
asη = Z−Z∗. It then follows (after some algebraic manip-
ulations) that we can rewrite ( 26) as

d
dt

[
η

ξ

]
=
[

I+ 0
B0C0 A0−B0BT

0 P0

][
η

ξ

]
+
[

B1
0

]
w

e=
[

0 −BT
0 P0

][ η

ξ

]
(29)

where

w = v+BT
0 P0Ar

0ξ

+
[

BT
0 P0A(r−1)

0
B0 BT

0 P0A(r−2)
0

B0 ... BT
0 P0B0

]T
Z,

andη (0) =
(
BT

0 P0A−1
0 B0−1

)
CT

0 .

We now select any Hurwitz polynomialγ(s) of degreer

γ (s) = sr + γr−1sr−1 + ...+ γ0,

and define the vectorΓ =
[
γ0 γ1 ... γr−1

]
and, for any

ε > 0, the scaling matrixD
ε

= diag(ε
−r ,ε−(r−1), ...,ε−1).

We consider a family of control lawsw
ε
, parameterized by

ε, and defined by

w
ε

=−ΓD
ε
η (30)

For the control law (30) it can be shown, after some algebra,
that the response,η

ε
:= D

ε
η satisfies

C0η
ε
(t) = C0e(I+−B1Γ) t

ε η (0) (31)

Sinceγ (s) is Hurwitz, it follows that
(
I+−B1Γ

)
has all its

eigenvalues strictly in the left half plane. It then follows that
there exists a constantk

η
such that

∞∫
0

(
C0η

ε
(t)
)2

dt = k
η

ε
2. (32)

We now turn to the behavior of theξ dynamics in (29) un-
der these conditions. Note that with the control (30) the re-
sponse can be split into two parts:

ξ (t) = ξ0 (t)+ ξ
η

ε
(t)

e(t) = e0 (t)+e
η

ε
(t) ,

(33)



where the subscript zero denotes the initial condition re-
sponse, i.e., the response withC0η = 0, and the subscript
η

ε
denotes the response withξ (0) = 0, but withη

ε
(t) as a

driving term. Because theξ sub-system (29) is asymptoti-
cally stable, it is also finiteL2 gain stable, which, together
with (32), guarantees that there exists a constantk1> 0 such
that

∞∫
0

e2
η

ε

(t)dt ≤ k1ε
2 (34)

On the other hand, simple observability Grammian results
give that

∞∫
0

e2
0 (t)dt = ξ

T
0 P0ξ0 = BT

0 A−T
0 P0A−1

0 B0. (35)

Thus, using the Cauchy-Schwarz inequality and equations
(34) and (35), we have that for anyε > 0 the control (30)
gives √√√√ ∞∫

0

e2 (t)dt ≤
√

BT
0 A−T

0
P0A−1

0
B0 +

√
k1ε (36)

We now turn to examining the remaining terms on the RHS
of (25). From (6), the remaining terms can be found as

kv

2
+

1
π

∞∫
0

log|T
ε
( jω)| dω

ω
2 = ∑

zi∈CRHP

1
z

εi

whereT
ε
(s) denotes the complementary sensitivity function

achieved with the control (30) andz
εi

are the zeros ofT
ε
(s).

From (23) and (33) it follows that

T
ε
(s) = 1−sE0 (s)−sE

η
ε
(s)

From (31) it follows that lim
ε→0

{
sE

η
ε
(s)
}

= 0 uniformly
for all s in the CRHP. Hence,

lim
ε→0

{
z

εi

}
= z0i

wherez0i
are the zeros ofT0 (s) = 1− sE0 (s). After some

lengthy algebra, it can be shown that

T0 (s) =
1−BT

0 P0A−1
0 B0

1+BT
0 P0

(
sI−A0

)−1
B0

,

and therefore the zeros ofT0 (s) are precisely the plant zeros,
that is, the eigenvalues ofA0. We therefore have

lim
ε→0

kv

2
+

1
π

∞∫
0

log|T
ε
( jω)| dω

ω
2

= ∑
zi∈CRHP

1
zi

= trace
[
A−1

0

]
=

1
2

BT
0 A−T

0 P0A−1
0 B0 (37)

where the last equality follows after some algebra on the
Riccati equation (27). The result then follows from (37) and
(36).

4 Conclusions

In this paper, we have briefly reviewed two seemingly dis-
parate areas of logarithmic sensitivity integrals and limiting
linear quadratic optimal control problems. The results of
this paper link these two areas, and in particular provide a
direct link between minimum energy LQ control, and the
Bode Sensitivity Integral. Dual results establish a direct link
between cheap control problems, and the complementary
sensitivity integral.
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