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Abstract

There are currently two main types of active contours:
1) parametric active contours, which represent contours ex-
plicitly as parameterized curves; and 2) geometric active
contours, which represent contours implicitly as level sets of
two-dimensional scalar functions. In this paper, we derive
an explicit mathematical relationship between the general
formulations of parametric and geometric active contours.
Based on this relationship and the results of two recent
parametric active contours, we propose two new geomet-
ric active contours. Using both simulated and real images,
we show that the proposed algorithms have an improved
performance over both existing parametric and geometric
active contours.

1 Introduction

Active contours [9], a physically-motivated model that
can deform itself to recover object shape from digital im-
ages, have been extensively researched in the past decade
(see [14] for a recent survey on this topic). Current ac-
tive contours can be classified as either parametric ac-
tive contours (cf. [9, 2, 7]) or geometric active contours
(cf. [4, 12, 5, 25]) according to the contour representation
they used. Parametric active contours, which are physically
motivated [9, 22], represent contours explicitly as parame-
terized curves, whereas geometric active contours, based on
the theory of curve evolution [19, 1, 11] and implemented
via level set techniques [15], represent curves implicitly as
level sets of two-dimensional scalar functions.

The importance of understanding the relationship be-
tween parametric and geometric formulations of active con-
tours has been recognized. Caselles et al. [6] showed that
their proposed geometric active contours are equivalent to
the classical parametric active contours. Aubert and Blanc-
Féraud [3] revisited this equivalence and extended it to the
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3-D (active surface) case. However, the equivalence they
have shown is limited to the active contours derived from
energy minimization only, thus the question of whether the
geometric formulation can be found for the more general
active contours, such as those using non-conservative exter-
nal forces [24], is not addressed.

In this paper, we show that an explicit mathematical
relationship between the general formulations of paramet-
ric and geometric active contours can be derived using the
curve evolution theory. Based on this relationship and the
results of two recent parametric active contours, we propose
two new geometric active contours. Using both simulated
and real images, we show that the proposed algorithms have
an improved performance over both existing parametric and
geometric active contours.

2 Background

In this section, we review the relevant background infor-
mation about parametric and geometric active contours and
comment on their advantages and limitations.

2.1 Parametric active contours

The classical parametric active contours, proposed by
Kass et al. [9], are formulated by minimizing an energy
functional that takes a minimum when contours are smooth
and reside on object boundaries. Solving the energy mini-
mization problem leads to a dynamic equation that has both
internal and external forces. The external forces resulting
from this formulation are conservative forces in that they
can be written as gradients of scalar potential functions. Ac-
tive contours using non-conservative forces, however, have
been shown to have improved performance over traditional
energy-minimizing active contours (see [24, 23]). In this
section, we describe a more general formulation that is de-
rived directly from Newton's law, allowing the use of either
conservative or non-conservative forces.



Mathematically, a parametric active contour is a time-
varying curveX�s� t� � �X�s� t�� Y �s� t�� where s � ��� ��
is a parameterization and t � R� is the time. The dynamics
of the curve are governed by Newton's second law which
takes the following form

�
��X

�t�
� F damp�X� � F int�X� � F ext�X� � (1)

where � is a coefficient with units of mass, andF damp�X�,
F int�X�, and F ext�X� are the damping (or viscous), in-
ternal, and external forces, respectively.

The damping force is defined as

F damp � ��
�X

�t
� (2)

where � is the damping coefficient. The internal force is de-
rived from an internal deformation energy [9], and is given
by
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where the weighting parameters ��s� and ��s� can be used
to control the strength of the contour's tension and rigid-
ity, respectively. In practice, ��s� and ��s� are often set to
constants.

The external force is designed to pull an active contour
towards object boundaries or other features of interest. The
design of external forces is crucial since they directly de-
termine the accuracy and performance of active contours.
Many types of external forces have been developed in the
past including the well-known pressure force [7] and the
Gaussian potential force [9]. The pressure force is given by

F p�X� � wpN�X� � (4)

where wp is a scalar and N�X� is the unit normal to the
contourX. In this paper, we defineN�X� to be the inward
unit normal of the contour.

The Gaussian potential force is defined on the entire im-
age domain and is given by

F g�x� � �rP �x� � (5)

where x is any location in an image I�x�, and P �x�, a
potential function that takes minimum at step edges or/and
lines, is defined as

P �x� � �wejr�G��x��I�x��j
��wl�G��x��I�x�� � (6)

where G��x� is a 2-D Gaussian function with standard de-
viation �, r is the gradient operator, � is the 2-D image
convolution operator, and we and wl are weighting parame-
ters for edges and lines, respectively.

We note that the mass coefficient � is often set to zero
in practice because it requires more storage and may also
cause oscillations near object boundaries. Putting all the
usual assumptions together, we find that the typical dynamic
active contour equations are given by
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Parametric active contours have been applied success-
fully in a wide range of applications (cf. [7, 21, 8, 24]).
They have two limitations due to their parametric represen-
tation, however. First, it is often necessary to dynamically
reparameterize the active contour in order to maintain a
faithful delineation of the object boundary. This leads to ad-
ditional algorithm complexity and computational overhead.
The second limitation of the parametric approach is that
topological adaptation is difficult. In particular, the split-
ting or merging of model parts requires a new topology and
the construction of a new parameterization. Sophisticated
schemes have been developed for this purpose [8, 13], but
these add to the algorithm complexity and computational
burden as well.

2.2 Geometric active contours

Geometric active contours, proposed independently by
Caselles et al. [4] and Malladi et al. [12], provide an ele-
gant solution to address the limitations of parametric active
contours described in the previous section. The formula-
tion of geometric active contours is based on curve evolu-
tion theory [19, 11, 1] and the level set method [15]. In
this framework, curves are evolved using only geometric
measures, resulting in a contour evolution that is indepen-
dent of the parameterization. As a result, one or multiple
evolving contours can be represented implicitly as a level
set of a 2-D scalar function and their parameterizations are
computed only after the deformation, thereby allowing both
reparameterization and topology adaptation to be handled
automatically.

We now briefly describe the formulation and limitations
of several representative geometric active contours. Given
a 2-D scalar function ��x� t� that embeds the contour of
interest as its zero level set, the geometric active contour
formulation, proposed by Caselles et al. [4] and Malladi et
al. [12], takes the following form

��

�t
� c�	� V��jr�j � (8)

where 	 is the level set curvature, V� is a constant, and

c � c�x� �
�

� � jr�G��x� � I�x��j
� (9)
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Figure 1. A geometric active contour using constant
expansion term can leak out weak boundary, yielding
unreliable results.

In (8), the product c�	 � V�� determines the overall evo-
lution speed of level sets of ��x� t� along their normal di-
rection. The use of curvature 	 has the effect of smoothing
the contour, while the use of V� has the effect of shrink-
ing or expanding contour at a constant speed. The speed of
contour evolution is coupled with the image data through a
multiplicative stopping term c.

This scheme works well for objects that have good con-
trast. However, when the object boundary is indistinct or
has gaps, this type of geometric active contours may leak
out because the multiplicative term only slows down the
contour near the boundary rather than completely stopping
the contour. Once the contour passes the boundary, it will
not be pulled back to recover the desired boundary.

To remedy this problem, Caselles et al. [5, 6] and
Kichenassamy et al. [10, 25] proposed the following for-
mulation

��

�t
� c�	� V��jr�j�rc � r� � (10)

The extra stopping term rc � r� is used to pull back the
contour if it passes the boundary. As noted by Siddiqi et
al. [20], however, this formulation is still subject to the
boundary leaking problem.

To further address the boundary leaking problem, Siddiqi
et al. [20] proposed the following formulation

��

�t
� �c	jr�j�rc �r���V��c�

�

�
X �rc�jr�j � (11)

We see that (11) has the additional term V��X �rc�jr�j
�,
which provides extra stopping power that can prevent the
contour from leaking through small boundary gaps. As
noted by the authors, however, these active contours can
still leak through boundary gaps when the gaps are large.

To illustrate the boundary leaking problem, we repro-
duced one of the experiments performed in [20] using a
simulated image consisting of a disk with a blurry boundary
segment. As shown in Fig. 1, a typical geometric active con-
tour leaks through this blurry boundary segment. Note that
although it is possible to carefully tune the value of V� in
this example to avoid boundary leaking, we found the value
of constant expanding/shrinking term V� is very sensitive
to the edge strength variation in general. A weak edge at a

single site is enough to allow the contour to leak, leading to
unpredictable results.

The boundary leaking problem in geometric active con-
tours is caused by the constant expanding/shrinking term,
which plays a similar role as the pressure force in paramet-
ric active contours. This problem has been addressed re-
cently in the parametric active contour literature [18, 17,
24]. The described solutions are able to move an active
contour to the desired object boundaries from a long range
without leaking through boundary gaps. It is not immedi-
ately apparent, however, how these solutions can be adapted
to the geometric active contour framework. In this paper,
we make this connection explicit by deriving a mathemat-
ical relationship between parametric and geometric active
contours. We then show how two new geometric active
contours can be obtained through this relationship, and we
demonstrate how the boundary leaking problem is solved
using these new active contour models.

3 Relationship between parametric and geo-
metric active contours

In this section, we reformulate (7) as a geometric active
contour. First, we note that Caselles et al. [6] showed that
the rigidity term in (7) does not affect the performance of
geometric active contours. Therefore, we drop the term as-
sociated with �. Second, pressure forces are treated dif-
ferently than other forces in the geometric active contour
formulation because they can cause singularities during de-
formation. We therefore choose to separate pressure forces
F p�X� from other external forces F ext�X�. With these
two modifications, the class of parametric active contours
we consider is described by the following dynamic equa-
tion

�
�X

�t
�

�

�s

�
�
�X

�s

�
� F p�X� � F ext�X� � (12)

To make the evolution (12) geometric, i.e., invariant to
changes in the parameterization of X, we consider s to be
the arc-length parameter in the following discussion.

We consider pressure forces defined by

F p�X� � wp�X�N �X� � (13)

where wp is allowed to be spatial-varying function. This
is a more general class of pressure forces than the pressure
force proposed by Cohen in [7], where wp is assumed to be
a constant. This more general force is easy to implement,
however, and can dramatically improve the performance of
an active contour, as will be demonstrated in Section 4.1.

We now derive a geometric formulation for (12). We first
recall a fundamental relationship between curve evolution
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and level set evolution. As derived in [15], the following
curve evolution

�X

�t
� V �	�N � (14)

whereN is the inward unit normal, can be reformulated as
the following level set evolution equation

��

�t
� V �	�jr�j � (15)

where the curve of interest is embedded as the zero level set
of ��x� t�. Hence, if we can recast the formulation (12) into
the standard curve evolution form defined in (14), we can
straightforwardly obtain the corresponding geometric for-
mulation using (15). A key observation here is that in order
to represent the curve evolution in level set representation,
the curve dynamics should depend only on geometric mea-
sures such as the unit normal and curvature.

Since it is known that a contour's tangential motion only
affects its parameterization but not its geometry, we mod-
ify (12) by considering only the normal components of in-
ternal and external forces. Note that the following property
holds forX�s� t�

�

�s

�
�
�X

�s

�
�N � �	 �

where 	 is the curvature. We can therefore rewrite (12) as
follows

�X

�t
� ��	� Vp � V ext �N �N � (16)

where � � �
�, Vp � wp
�, and V ext � F ext
�. Here,
we have divided through by � to make both sides have units
of velocity.

Equation (16) is in the form of (14) with speed function
V �	� � �	 � Vp � V ext �N . Therefore, using this speed
function, Equation (15) is the equivalent level set formula-
tion. For further simplification, we note that in the level set
representation, the normalN can be calculated using

N � �
r�

jr�j
�

Putting these facts together yields the following geometric
active contour evolution equation

��

�t
� V �	�jr�j � ��	� Vp�jr�j � V ext � r� � (17)

which is equivalent to (12).
We note that Vp is a function defined on the image do-

main and V ext has the meaning of a passive convection
velocity field in fluid dynamics (see [15]). The geometric
evolution equation (17) can be implemented using a fast
method (narrow-band algorithm) proposed by Malladi et

al. [12]. Note that although we distinguish the term force
from the term speed throughout the above derivation, we
will use them interchangeably in the following sections
since they have the same meaning from a numerical imple-
mentation perspective.

4 Two new geometric active contours

This section shows the application of the mathematical
relationship derived in Section 3 for designing new geomet-
ric active contours based on two recent parametric active
contours.

4.1 Region-based geometric active contours

Most geometric active contours use only edge informa-
tion to guide the active contour to its final destination. When
region information is also available — e.g., from image seg-
mentation — this information can be used to improve the ro-
bustness of the active contour. Here, we examine a class of
region-based parametric active contours proposed by Ron-
fard [18] and Poon et al. [17] and show how they can be
reformulated as geometric active contours to improve their
overall performance.

The essence of the region-based parametric active con-
tours described in [18, 17] is to modulate the sign of pres-
sure forces using region information so that the contour
shrinks when it is outside the object of interest and expands
when it is inside the object. We refer to this kind of pres-
sure forces as signed pressure forces and the usual pressure
forces used in the literature as unsigned pressure forces to
differ them from each other.

The form of region-based parametric active contours we
are interested in is given by

�
�X

�t
�

�

�s

�
�
�X

�s

�
� wRR�X�N�X� � F ext�X� �

(18)
where N�X� is the inward unit normal of the contour,
R�X� is computed by evaluating the region indicator func-
tion R�x� evaluated along the contourX�s� t�, wR is a pos-
itive weighting parameter, and F ext�X� is the additional
external force that may be used. The region indicator func-
tion, derived from image intensities, takes value in the range
[-1,1]. Its sign is defined to be negative inside the object of
interest and positive outside. There are various methods to
construct a region indicator function; we will present one
method later in this section. Using (12) and (17), we can
easily formulate a class of region-based geometric active
contours as follows

��

�t
� ��	� wR
�R�jr�j � V ext � r� � (19)
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Figure 2. Geometric active contours using signed pres-
sure force are robust to the presence of weak bound-
aries as demonstrated by the results on a simulated im-
age with three different initializations. The progress
of deformation is plotted from left to right for each
initialization.

To demonstrate the performance of region-based geo-
metric active contours, we carried out a series of exper-
iments on both simulated and real images. In all experi-
ments, we construct the region indicator function automati-
cally using an implementation of fuzzy classification algo-
rithm described in [16] to automatically classify an image
into multiple membership functions. The membership func-
tions, defined on each image pixel, provide a soft segmen-
tation based on image intensities. Each membership takes
a value between 0 and 1. A pixel with a high value in a
particular membership function has a high likelihood to be
in that class. Assuming the object foreground has higher
values in a particular membership function �f �x�, then the
region indicator function is given by

R�x� � �� ��f �x� � (20)

It is easy to see that the value of R�x� is in the range of
���� �� and is negative inside the object and positive outside
the object, thus satisfying the requirement of being a region
indicator function. Note that in the following experiments,
we also use an additional external force given by

F ext � r�f �x� �

Fig. 2 shows an object similar to that of Fig. 1 except that
here the blurry region is expanded to the entire right side
boundary of the disk. The rows of Fig. 2 show the results of
region-based geometric active contours starting from three
different initializations. Despite the increased blur region
along the boundary, the resulting geometric active contour
is completely immune to the boundary leaking problem due

(a) (b) (c)

(d) (e) (f)

Figure 3. From a single initialization, a region-based
geometric active contour can automatically adapt its
topology to extract the boundary of either ventricles
(top row) or the white matter (bottom row) from an MR
brain image according to the selected region indicator
function.

to the use of the extra region information. We notice that be-
cause of this robustness, higher weights can be used to sig-
nificantly increase the speed of convergence. Furthermore,
the region-based geometric active contours also enjoys an
improved robustness to various initializations, in particular,
it can now be initialized across the boundary and still con-
verges to the correct result as shown in the bottom row of
Fig. 2. Notice that the final extracted boundary contours
from three different initializations are almost indistinguish-
able.

We also applied the region-based geometric active con-
tours to a magnetic resonance (MR) brain image. Fig. 3
shows that from a single initialization, a region-based geo-
metric active contour can automatically adapt its topology
to extract the boundary of either the ventricles or the white
matter depending on the region indicator function provided.
In this experiment, a three-class fuzzy clustering is per-
formed with background pixels discarded, yielding three
membership functions for ventricles, gray matter, and white
matter tissue classes. Two region indicator functions are
then computed for both the ventricles and the white matter
according to (20).

4.2 Geometric GVF active contours

The geometric active contour formulation derived in
Section 3 allows us to use a non-conservative vector field
as its passive convection velocity field. An example of a
non-conservative vector field used by the parametric active
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contours is the gradient vector flow (GVF) field proposed
by Xu and Prince [24]. The use of GVF has been shown
to have larger capture range and ability to converge into
boundary concavities. However, it was only used previ-
ously in parametric active contours [24, 23]. Coupling the
GVF with geometric active contours has two advantages.
First, it improves upon the parametric GVF active contours
by allowing automatic topology adaptation. Second, it is
not as susceptible to boundary leaking as the existing ge-
ometric active contours. Finally, we note that it compli-
ments region-based geometric active contours by being able
to work directly with an edge map when region information
is not available or cannot be reliably estimated.

A GVF field is defined as the equilibrium solution of a
generalized vector diffusion equation

�v

�t
� g�jrf j�r�

v � h�jrf j��v �rf� � (21)

where v�x� �� � rf , �v
�t denotes the partial derivative
of v�x� t� with respect to t, r� is the Laplacian operator
(applied to each spatial component of v separately), and f
is an edge map that has higher value at the desired object
boundary and can be derived using any edge detector. Note
that t is independent of the time variable used in (17). The
functions g�r� and h�r� are spatially varying weights that
control the amount of diffusion in GVF. In this paper, we
choose

g�r� � expf��r
	��g

h�r� � �� g�r� �

where 	 is a scalar and r is a dummy variable.
Using (12) and (17) and excluding the pressure force, we

obtain the following evolution equation for geometric GVF
active contours

��

�t
� �	� 	v � r� � (22)

where 	v can be either the GVF field itself or the GVF field
normalized by its magnitude at nonzero locations. Fig. 4
shows an example in which a geometric GVF active con-
tour was applied to a simulated image containing an object
that has both boundary gaps and concavities. In Fig. 4(a), a
contour is initialized across the object boundary. Figs. 4(b)
and 4(c) plot the contour deforming towards the desired ob-
ject boundary. The final result shown in Fig. 4(d) demon-
strates the ability of the geometric GVF active contour to
recover the boundary reliably in the presence of both bound-
ary concavities and gaps.

Fig. 5 shows the result of applying a geometric GVF ac-
tive contour to segment the left ventricle (LV) of a human
heart from an MR image. The original image and its com-
puted edge map are shown in Figs. 5(a) and 5(b), respec-
tively. Figs. 5(c)-(f) show two contours initialized within

(a) (b) (c) (d)

Figure 4. A geometric GVF active contour is initial-
ized across the object boundary in a simulated image
(a) and deforms into the desired object shape by simul-
taneously detecting boundary concavities and bridg-
ing boundary gaps (b)-(d).

(a) (b) (c)

(d) (e) (f)

Figure 5. Segmentation of the left ventricle (LV) of
a human heart using multiple geometric GVF active
contours. The MR image of the LV (a) and its com-
puted edge map (b). Two initial contours (c) merge
and extract the inner wall of the LV (d)-(e).

the LV merge automatically to extract the inner wall of the
LV. Notice that a good result is obtained despite the pres-
ence of both image noise and weak boundaries (near top and
right along the LV inner wall as shown in the edge map).

We also applied the geometric GVF active contour on
a noisy ultrasound cardiac image as shown in Fig. 6(a).
Fig. 6(b) shows the computed edge map. Notice that the
edge map contains weak edges along the LV boundary as
well as spurious edges inside the LV. Fig. 6(c) shows a sin-
gle contour is initialized within the LV, and Figs. 6(d)-(e)
show the contour expands outward and finds the desired LV
boundary. We note that applying the conventional geomet-
ric active contour described by (10) on this image failed to
produce a desirable result.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Segmentation of the LV on a cardiac ul-
trasound image from a single geometric GVF active
contour. The ultrasound image of the LV (a) and its
computed edge map (b). The geometric active contour
expands outward and finds the LV boundary (d)-(e).

5 Conclusion

We have derived an explicit mathematical relationship
between the general formulations of parametric and geo-
metric active contours. Based on this relationship and two
recent parametric active contours, we proposed two new ge-
ometric active contours. Using both simulated images and
real images, we demonstrated that the new geometric active
contours have flexible initialization and robust final result
while addressing the boundary leaking problem faced by
the conventional geometric active contours. With the ex-
plicit mathematical relationship derived in this paper, it is
conceivable that additional new geometric active contours
may be developed from other parametric active contours,
and vice versa.
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