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On the Relationship between Parsimonious Covering and 
Boolean Minimization * 

Venu Dasigi and Krishnaprasad Thirunarayan 
Department of Computer Science and Engineering 

Wright State University Research Center, 

Dayton, OHIO 45420. 
email: vdasigi@cs.wright.edu, tkprasad@cs.wright.edu 

Abstract 
Minimization of Boolean switching func- 
tions is a basic problem in the design of logic 
circuits. The designer first comes up with 
a switching funct.ion expressed in terms of 
several binary input. variables that satisfies 
tlie desired functionality, and then attempts 
t.0 minimize the function as a sum of prod- 
ucts or product of  sums.  It turns out that 
a sum of products form of a switching func- 
tion that has no redundancy is a union of 
prime implicnnis of the function. 

In this paper we would like to es- 
plicat,e some of the relationships of the 
boolean minimization problem to a for- 
malization of obduclive inference called 
pcirsirn 071 i o  us couering . Abductive infer- 
ence ofteti occurs i n  diagnostic problems 
suc l i  as fiiiditig the ca.uses of circuit faults 
[Reiter, 871 or determining the diseases 
causing t,he symptoms reported by a pa- 
t ient [Peng and Reggia, 901. Pa,rsimonious 
covering involves covering all observed facts 
by means of a parsimonious set of explana- 

'This research was supported in part by the 
State of Ohio Research Challengegrants to both the 
aut.liow, arid in part. by the NSF grant IRI-9009587 
to the second aut,hor. 
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tions that can account for the observa.tions. 
The relationship of parsimonious covering 
to boolean minimization has been noted by 
the developers of the theory; we intend to 
pursue a detailed mapping here. 

1 Introduction 

In Boolean minimization, one is interested 
i n  minimizing the number of terms (possi- 
bly with fewer literals) in the expression of a 
Boolean switching function [Iiohavi, 781. In 
other words, the goal is to find an expression 
for a minimal cost logic circuit that causes 
the same functionality as tlie given boolean 
function. This goal is very similar to the 
abductzve goals of explaining the faults in 
circuits or diagnosing a set of medical symp- 
toms in a patient. One of the computer 
models for certain classes of abductive in- 
ference is parsimonious covering. This the- 
ory has been developed for diagnostic prob- 
lem solving [Peng and Reggia, 901, but has 
also been extended to other domains such 
as language processing [Dasigi, 891. 

Parsimonious covering involves covering 
or accounting for the set of observed mani- 
festations using a parsimonious set of possi- 
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ble causes. Once again, this is very similar 
to covering the desired switching function 
using a minimal or irredundant set of terms 
as is the goal of Boolean minimization. Not 
surpr isingly, minima lit y and i m d  un danc y 
have been used as criteria of parsimony in 
parsimonious covering theory. Several of 
these relationships have been noted by the 
developers of parsimonious covering, but 
have never been explicated before, to our 
knowledge. We pursue a detailed mapping 
here, and observe that features of either 
problem may be capt.ured in terms of those 
of the other. Thus, we hope this paper will 
be of interest to either commiinity. After 
quick reviews of Boolean minimization and 
parsimonious covering, we show how they 
capture each other’s features, and conclude 
with our plans for further work. 

2 Boolean Minimization 
Problem 

A brief review of the Boolean Minimiza.tion 
problem (henceforth referred to as 13RlP) 
follows [Kohavi, 781. The boolean con- 
.sfanis t rue and false are denoted a.s 0 and 
1 ;  t.he boolean operatmiom and, or and not 
as A ,  V and 1; and boolean variables as 
.rO. x 1 , .  . . , x , ~ .  Any boo1ea.n const,ant or 
variable is a boolean expression, and if B1 

and B2 are boolean expressions, then so are 
-Bl ,  7B2,  B1 V Bz and B1 A B2. t and 
-a are called literals. A conjunction (re- 
spectively, dis,juiiction) of literals is called 
a product term (resp. sum term) .  A prod- 
uct term (resp. sum term) containing liter- 
als involving all  input variables is called a 
ininterin (resp. i u a x t e m ) .  A boolean ex- 
pression is in sum-of-products forin (resp. 
product-of-sums f o r m )  if it is expressed as 
a. disjunction (resp. conjunction) of prod- 

uct terms (resp. sum terms). Two boolean 
expressions B1 and Bz containing vari- 
ables ( Z O , Z ~ , .  . . ,xn}  are said to be logically 
equivalent if B1 and B2 have the same val- 
ues for all possible combinations of values of 
the variables { z o , ~ , .  . . , z,,}. Correspond- 
ing to every boolean expression there ex- 
ist logically equivalent boolean expressions 
that are in sum-of-products (resp. product- 
of-sums) form. 

A sum-of-products expression is minimal 
if there is no other expression with smaller 
number of product terms and with fewer lit- 
erals. A sum-of-products expression is irre- 
dundant if it is not possible to delete a prod- 
uct term or a literal from it witchout alter- 
ing its logical value. A niiniina.l expression 
is not always unique, but is always irredun- 
dant. However, an irredundant expression 
may not necessarily be minimal. 

An implicant of a boo1ea.n expression is 
a product term that logically implies it. A 
prime implicant of a boolean expression is 
an implicant that does not logically imply 
any other implicant of the expression. An 
essential prime implicant is a prime impli- 
cant that does not logically imply any dis- 
junction of other prime implicants. 

A boolean expression f(zo,z1,. . . ,x,%) 
represents a monotonic function, if it sat- 
isfies the following condition: 

V i  5 n : [f(zO,. . . ,z, := 0,. . . , zn) = 11 

* [f(zo (... , z i  := 1, .  . .,zn) = 11 

3 Parsimonious 
Covering Theory 

A brief review of Parsimonious Covering 
Problem (henceforth referred to as PCP) 
follows [Peng and Reggia, 901. A diagnostic 
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Figure 1:  Parsimonious Covering Problem 

problem P is a 4-tuple ( D ,  MI C, M + )  where 
D is a. finite set of disorders; A4 is a finite set 
of manifestations; C E D x M is the causa- 
tion relation; a.nd M +  C M is the set of ob- 
served manifestations. For any d, E D and 
171j E A4, e f f e c t s ( & )  = { m j  I ( d i , m j }  E 
C }  and cuuses(mj)  = {d i  I ( d , , i j }  E C}. 
For a.ny DI D, e f f e c t s ( & )  = {mj 1 
( d i , n I j )  E C A di E D r } .  The set 
DI C D is said to be a. cover of Af j  C M if 
A ~ J  C e f f e c t s ( D I ) .  

D is said to be an ezplanaiion 
of A4+ for a problem P = (D, M ,  C,  M + )  
iff E covers M +  a.nd E satisfies a given par- 
simony criterion. A cover DI of M J  is said 
t.o be naiiiinial if its cardinality is smallest 
a.mong all covers of A ~ J .  A cover DI of M J  
is mid to be irredandan,i if none of its proper 
subsets is also a cover of M J .  A minimal 
cover is irredunda.nt, but the converse does 
iiot hold. 

We illustrate the a.bove definitions with 
a.n ex amp le de- 
picted in Figure 1. { d l , d ~ , d 3 , d ~ }  are the 
diseases, ( 1 7 2 1 ,  m2, m3} are the manifesta- 
tions. { d l , d z }  is acover of { n z l , m 2 } ,  while 

A set E 

{dz}  is the minimpm cover of {ml,mz}. 
{dl,d3) and {&,d4} are twominimal covers 
of{ml,mz,ms}. {I&} and { d z , d 4 )  are both 
irredundant covers of {mz , m3); the former 
one is minimal, while the latter one is not. 
Algorithms for computing minimal and ir- 
redundant covers have been developed and 
have been extended t o  more complex knowl- 
edge structures involving chains of causal 
links (e.g., an overheated resistor may cause 
a nearby transistor to malfunction, which, 
in turn, may change the output of a gate). 

4 Encoding a PCP a s  a 
BMP 

We now show that an instance of PCP can 
be encoded as an instance of BMP. The set 
of diseases of PCP is the set of boolean 
variables of BMP. Covering a manifesta- 
tion m requires one of the causes(m)  to be 
present. This is equivalent to saying that 
the disjunction of d’s in causes(m) be true. 
To cover M + ,  the set of observed manifes- 
tations, we need to cover each manifesta- 
tion in M + .  Thus, the boolean expression 
obtained by conjoining the aforementioned 
disjunctions (of causative diseases) for each 
observed manifestation should be true. The 
following result specifies the relationship be- 
tween PCP and its encoding as a BMP. 

Lemma 1 Given an znstance of the d z a g -  
nostzc problem P = ( D ,  M , C ,  M + ) ,  the 
correspondeng znstance of the boolean man- 
emzzatzon as the product-of-sums expresszon 

M + } ,  where ihe set D corresponds t o  the  
set of boolean varzables. Let B,, be the cvr- 
respond zng s 11 111- of- p rod U cis e xp re ss i o n  o b- 
tazned b y  destr-tbutiny As vue7 Vs Y’ l tcu)  L U -  

ery tmplzcant of B,, corresponds io a cover 
of M + ,  every pnine amplocan2 of B,, t o  an 

B p s  = A { V M  I (dt” E C }  I n1j E 
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irredundant cover of M+;  and every prime 
implicant B,, with the least number of lit- 
erals, to  a minimal cover of M + .  

We illustra.te this with the example shown 
in  Figure 1. If M +  = {mz ,m3} ,  then the 
PCP instance can be encoded as: (dz V 
(13) A (d3  V d4). A logically equivalent sum- 
of-products form is: 

Clz A d 3  V d z  Ad4 V d3 V d3 A & .  

The prime implicants are d3 and (d? A d4). 

Only d3 qualifies to be minimal (and hence, 
irredundant), while d? A d4 is irredundant 
(but  not minimal). 

I n  general, minimal expressions are not 
unique. For instance, both 

1 x 1  A X ?  V 1 . x ~  Ay23 V 21.23 

are logically equivalent distinct minimal ex- 
pressions. On the other hand, observe that 
the Boolean expressions encoding a PCP 
does not contain the negation operator. 
'I'hus, it can be shown that 

Lemma 2 The boolean expresszon anszng 
as t he  encodzng of the PCP represents a 
inoiiotonzc funclton, whzch can he repre- 
aeitted by a unzque inintn~al  expression 211 

s ii i n -  of- p rod ii c ts f o r  in 

This lemma is the ba.sis of the follow- 
itig algorithm t.o compute a11 irredundant 
and  miniina.1 covers. Given an instance of 
a PCP, encode it a.s a BMP, and transform 
the expression so obtained into a logically 
equivalent expression in sum-of-products 
form by distributing As over Vs. Each dis- ' 

junct is an implicant of the original expres- 
sion. The set of implicants so obtained is 
talien pa.rtitioned into groups g l , g ? ,  . . . ,gn, 

where gi contains all implicants with i dis- 
tinct literals. Starting from group g2, delete 
implicants, from all groups gj, that logi- 
cally imply other implicants that appear in 
groups with lower index. This procedure 
terminates leaving only prime implicants, 
which constitute the set of irredundant cov- 
ers. The members of the nonempty group 
gi with the least index i constitute the set 
of minimal covers. 

5 Encoding a BMP as a 
PCP 

Parsimonious covering was originally con- 
ceived as a formal model of the way diag- 
nostic inferences are performed by human 
diagnosticians. The first version of the the- 
ory wa.s a generalization of the set cover- 
ing problem of ma.thema,tics [Edwards, 621. 
Parsimonious covering has found applica- 
tions in error classification in  some dis- 
crete sequential processes [Ahuja, 851, soft- 
ware engineering [Basili a.nd Ra.msey, 851 , 
growth models of biological tree structures 
[Tagamets and Reggia, 851, treatment se- 
lection [Neapolitan, et al., 871 and natural 
language processing [Dasigi, 891.  from 
this perspective, it is interesting to see yet 
another a.pplication in Boolean minimizar 
tion for prsimonious covering. 

The problem of minimizing a. Boolean es- 
pression essentially consists of two nmjor 
steps: that of determining a.11 prime impli- 
cants of the function and that of selecting 
a minimal (or irredundant) subset of prime 
implicants that can cover all the minterins 
of the given boolean function. Now, it is 
obvious that there exists a straightforward 
mapping between concepts underlying par- 
simonious covering (especially in the con- 
text of dia.gnost,ic problems) a.nd those un- 
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Boolean 
M inimiastion 
minterms 
prime implicants 
implication 
2 is implied by 

2 A - y  
x covers x A -y 
boolean 

function to be 
minimized 

minimized form 
of boolean 
function 

of prime 
i nip1 ican t,s 

don ‘ t  cares 

i r redu ndan t set 

essential prime 
i nip 1 ican ts 

Parsimonious 
Covering 
manifest at ions 
disorders 
causal relation 
d causes m 

d covers m 
observed 

manifestations 

minimal cover 

irredudant cover 

manifestations 
that may or may 
not be covered 

disorders covering 
pathognomonic 
manifestations 

Table 1:  Napping between Parsimonious 
Covering and Boolean h4inimization 

tlerlying Boolean minimization. We sum- 
niarize several such relationships i n  Table 1. 

In a BRIP, a set of ininterms represent a 
hoolean espression to be minimized, ana le  
gous to a set of observed manifestations to 
he explained i n  a PCP. The minimized form 
of‘ a boolean espression always consists of 
prime implicants, just as disorders are used 
to explain manifestations. A prime impli- 
cant is said to cover all the minterms that 
Itnply it, which is analogous to a disorder’s 
potential to cover all the manifestations it 
c a n  cause. In a BMP, a prime implicant 
riiay be implied by don’t care minterms. 
Similarly, in a specific PCP, a disorder 
need not iiecessarily cause all manifesta- 

tions it can potentially cause. Any min- 
imized form of a switching function must 
consist of essential prime implicants. The 
analogous concept in a PCP would be dis- 
orders that uniquely correspond to pathog- 
nomonic manifestations. Finally, in a t y p  
ical BMP, only the minimized form of a 
boolean function may be of interest, while 
in a PCP, one can talk about minimal covers 
as well as irredundant covers. ln  diagnostic 
problems, the latter type of covers appear to 
be so interesting that they are often called 
(syntactically) minimal covers. 

6 Conclusions 

iFrom this preliminary work, we draw the 
following conclusions, which also indicate 
directions for further work: 

0 It may be noted that only the prinie 
iniplicants of a given boolean function 
in a BMP, rather than any general 
product terms, are considered analo- 
gous to disorders in a PCP. If any gen- 
eral product term were treated as the 
BMP-analog of a disorder, then there 
would be a trivial minimum cover, 
namely, 1, that can “cover” (in a differ- 
ent sense) any boolean function. The 
specific choice of prime implicants as 
the BMP-analog of disorders captures 
the important notion of logical equiva- 
lence of the minimal cover to the orig- 
inal boolean espression. 

0 As already mentioned, BMP consists of 
two major steps. An interesting obser- 
vation in this context is that in Sec- 
tion 4, a PCP has been mapped into 
the first step of a BMP (the deterini- 
nation of all prime implicants), while 
in  Section 5, the second step of a BMP 



(the selection of a minimal or irredun- 
dant subset of prime implicants that 
can cover the given boolean function) 
has been mapped into a PCP. This sug- 
gests the possibility that the complete 
BMP may be equivalent to the PCP. 
After all, parsimony (lack of redun- 
dancy) is a notion germane to  prime 
implcants. 

0 I t  does seem possible to start with a 
boolean function expressed as the sum 
of several minterms (product terms in- 
volving a l l  input variables) and cover 
it with product terms involving one 
fewer variable that are iinplicants of 
the function, and then with still smaller 
product terms, etc. Each step of cov- 
ering in this process roughly corre- 
sponds to what Peng and Reggia call 
layers (more precisely, pseudo-layers) 
[Peng and Reggia, 901. We hope that 
work in this direction identifies closer 
ties between the two formalisms and 
also that theoretical results in each 
area translate into equivalent results in  
the other. In  particular, it would be 
interesting to see if transitivity of com- 
plete sets of irredundant covers applies 
to analogous notions in the BMP. 
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