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1. Introduction

Let G be a permutation group on a set Q. A sizable literature has grown up which
considers the action of G on the unordered subsets of 2 ; see for example [7] for a
short survey. In this field one of the basic results is that the number of orbits on
(k+ 1)-sets is not less than the number of orbits on k-sets (in the finite case one must,
of course, take k < }/Q]). It would be nice to have a theorem, in some sense
analogous to the above, concerning the lengths of the orbits.

There are many examples where an orbit on k-sets is longer than any orbit on
(k+ 1)-sets, see the end of § 2. None-the-less intuition suggests that such a situation
is somewhat exceptional. In this paper we attempt to give more plausibility to this
assertion. In fact we shall consider a rather more general situation and then classify
all exceptions when k = 2.

Theorem.

Let G be a transitive permutation group of degree n > 4. Suppose there is some 2-
element subset A such that |4°| > |29 for every 3-element subset X containing 4. IfG
is primitive then G = PSL(2,5) in its natural action on six points. Otherwise G has
three blocks of imprimitivity Q ,, Q , and Q 5 with |Q,| a power of 2. Furthermore AS =
{{o, B}l @ € Q; + Q;3 B} and G has order 3 - |Q]% - |G| with |G| < 2.

In§ 2 we obtain a preliminary result — theorem 2.1 — whichin § 3 is used to prove
the main theorem. There we also give an explicit construction of imprimitive groups
satisfying the assumptions of the theorem. We furthermore show that the incidence
relation between A and Z€¢ gives rise to cubic graphs with G as automorphism
group, including the Petersen graph for PSL(2,5).

We wish to thank Alan Camina for helpful discussions.

2. A preliminary theorem

Our notation is standard. When G is a permutation group on the set Qand I' = Q
then G, denotes the set-wise stabilizer and G, the point-wise stabilizer of I'. The
group G' = G/G; is considered as a permutation group on I'. The set of all
G-images of I' is denoted by I'®. Our first theorem is a general and elementary result.
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Theorem 2.1.
Let G be a transitive permutation group on a finite set Q and let A be a given subset
of Q of cardinality k < |Q|. Suppose that |Z¢ < |49 for every set L > A of
cardinality k + 1. Then

k+ 1> 4% > 1259 > 1. 1)
If furthermore k > 2 then either (i): every 2-element subset of Q is contained in some
G-image of A or (ii): G is imprimitive with blocks of imprimitivity Q ,, ..., Q, (1 < |Q/
< |Q|) each intersecting A in at most 1 point such that every 2-element subset of the
Sorm {0} with a; € Q; # Q; 3 a; is contained in some G-image of 4.

In the context of conclusion (i) of the theorem it is worthwhile to mention Rudio‘s
criterion for primitivity, see for instance theorem 8.1 in [8]. If G is primitive then the
G-images of 4 also separate points, that is, for a given 2-element set some G-image
of 4 contains one of the points but not both.

Proof. The order of G may be expressed inGtwo ways: |G| = |49 |G p| = |49 - |Z°®)|
G i 1and |G| = |Z€) - |G| = |29 - |47 | |Gzl From the assumption | Z¢| <
|49 it follows that

145 | > |2°9| > 1 and clearly k+1 > |4%®),

If |[4] = 2 we shall say that two distinct points .8 in Q are joined if {a, B} is
contained in some G-image of 4. It is obvious that the relation ‘“not joined* is
G-invariant, reflexive and symmetric. Furthermore we assert that it is transitive.
For, if a, B, y were three points with («, §) and (B, y) not joined but with (, y) joined,
we may assume without loss of generality that {a,y} € 4 = £ = 4 U {f}. As|4°'?
> 2 by (1) either {a, f} or {f, y} is contained in a G5-image of 4, a contradiction.
Therefore to be not joined is a G-invariant equivalence relation that clearly is not
tl.e identity relation. If not to be joined is the all-relation then every pair of distinct
points is joined so that we are in the case (i) of the theorem. In all other cases the
equivalence classes Q24, ..., @2, of the relation form a system of imprimitivity so that
by definition any pair of points from distinct classes is joined. It is now also clear
that 4 can not have two or more points in common with any of the Q,’s.00

For the case when the set 4 in theorem 2.1 consists of a single point we obtain

Corollary 2.2.
If G is a permutation group acting transitively on the finite set Q such that |Q| > | 2
for every 2-set X < Q, then G is an elementary abelian 2-group acting regularly on Q.

Proof. Let § # o be a point in some G,-orbit and put £ = {a, #}. Then inequality (1)
shows that |8°% = 1 so that G is regular. At the same time |ocG‘£’| = 2 shows that
every pair of points can be interchanged by a (unique) element. This implies that G is
an elementary abelian 2-group.o

In [4], lemma 2.1, it has been noted that for a regular group G of degree nand a
given k < n — 1, there always exists a set X with |Z| = k + 1 and |2 = |G| except
when k = 1 and G is an elementary abelian 2-group.
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The lengths of orbits on subsets for groups of degree n < 8 is givenin [6]; in [2]
M. Strati has examined the orbit lengths for primitive groups of degree up to 20.
There in particular the following situation was considered: some subset 4 of size k
has |4°| = |G| and 29| < |G| for every (k + 1)-element subset containing 4. The
list of groups with this property includes PSL(2,11) with n = 12 and k = 5,
PSL(2,13)withn = 14and k = 6, PSL(2,16) withn = 17 and k = 5, in their natural
representations. A further example is 4/f (7) in its representation of degree 15 with
k = 6. :

3. Proof of the main theorem

For the remainder let G be a group as in the theorem of section 1. Thus G satisfies the
following hypothesis

(*): G acts transitively on a finite set Q of n > 4 points. There is some set 4 of
cardinality 2 such that [Z° < |49 for every set X of cardinality 3 containing A.

The proofis organized according to the two cases in theorem 2.1. In the first case
G is doubly homogeneous and so in particular primitive on Q. This situation is dealt
with first.

3.1 The primitive case

Lemma 3.1.

If G satisfies (*) and acts primitively on 9, then

(1) G is doubly transitive on 0,

(i) for any 3-set X the group G* is transitive on X, and

(i) Gy is an elementary abelian 2-group having orbits of length < 2 on Q.

Proof. As|4| = 2 theorem 2.1(i) implies that G is doubly homogeneous on Q. Let
be an arbitrary 3-set. As its 2-element subsets are images of 4, the inequality (1) of
theorem 2.1 shows that G5, must move each of these 2-sets. This implies that G;, is
transitive on the points of . As this holds for any 3-set and as || = 4 simple
arguments show that G is doubly transitive, compare also to lemma 2.2 in [5]. This
proves (i) and (ii) above.

LetobeinQ\ dand X = 4U {s}. As3 > IZG“”I by inequality (1) of theorem 2.1
the G4 -orbit of ¢ has length at most 2. This implies that the square of every element
in G4 is the identity so that G, is an elementary abelian 2-group.O

Lemma 3.2.
If G satisfies (*) and acts primitively on Q then G has no regular normal subgroup.
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Proof. Suppose 1 < N <a G is a regular normal subgroup. Then N is an elementary
abelian p-group (theorem 11.1 in [8]), say |2| = |N| = p?, and G is a subgroup of the
affine linear group AGL(d,p). We show that this leads to a contradiction.

Case 1:p > 3.Let A(< Q) be a line of the affine d-dimensional space AG(d, p) and 2
< A any set of three points on 4. Since G 5y € (AGL(d, p)) (,» we have that (G(»)* =
(AGL(A))5 acts transitively on the points of X, by lemma 3.1. (ii). Simple counting
arguments now show that none of the groups AGL(1,p) have this property for p > 3.

Case 2: p = 3. This can be ruled out as follows. Since the order of G, is not divisible
by 3 the normal subgroup N is the Sylow 3-subgroup of G. Thus G contains
precisely n — 1 elements of order 3 each leaving n/3 sets of size 3 invariant. Therefore
a:=|{(Z.g)lg€ G, g = 3}l = (n — )n/3. On the other hand an element in Gy
cyclically permuting the points of X is, without loss of generality, an element of
order 3. Lemma 3.1.(ii) now implies that a > (). 2 so that we have the contradiction
n <3

Case 3: p = 2. Here any 3-set X is contained in a unique affine subplane II of 4
points, say IT = X' U {¢}. It follows that G5y = G,and Gy 5, € G,,,, fOrapointo’e
%.Since |Gy : Gipr | = 3 we have |G| < 3|G, |- On the other hand |2 < |49
implies that |G.5| > |Gin] = 2|G,..l, as G is doubly transitive. From this it can be
seen that Gy, has order 3|G, ,,| independently of X so that every orbit on 3-sets has
length n(n —1)/3. It follows that G has (n— 2)/2 orbits on 3-sets.

We now determine the number of orbits on 3-sets in a different way. Let S be a
Sylow 3-subgroup of G and consider NS. By lemma 3.1.(iii) this is a Frobenius
group with kernel N and complement S. By a well-known result (see for instance
theorem 10.3.1. in [3]) S is cyclic. This implies in particular that all subgroups in G
of order 3 are conjugate. Let £ and X’ be any two 3-sets in €, let A be a Sylow 3-
subgroup of G, and let B be a Sylow 3-subgroup of G(s,. When B is conjugated
onto A by an element g in G then g maps 2’ onto one of the 3-cycles of A. This shows
that there are at most (n — 1)/3 orbits on 3-sets. The inequality (n — 2)/2 < (n — 1)/3
implies n = 4 and G = Alt(4) which violates our assumption (*).0

The following lemma is a general result based upon Aschbacher’s classification
[1] of doubly transitive groups with abelian two-point stabilizer.

Lemma 3.3.

Let H be a doubly transitive permutation group of degree n without regular normal
subgroup such that the stabilizer of two distinct points is an elementary abelian 2-
group. Then H = PSL(2,5) withn = 6, H = PSL(3,2) withn =17 or H is the smallest
Ree group, H =~ PI'L(2,8), and n = 28.

Proof. Itis easy to verify that H, ;4 is an elementary abelian 2-group when H isone of
the three groups in the lemma.

Let conversely 1 # M be the minimal normal subgroup of H. According to the
theoremin [1]we have H = PSL(3,2), H is the smallest Ree group withn = 28 or M
= PSL(2,9), PSU(3,9), Sz(q), or R(q). By considering the order and structure of
M,z(Ge g*>—1/dwithd=(3,q—1),(g—1) and (g — 1) respectively) the last 3 cases
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can be ruled out immediately. When M = PSL(2,q) then M a,p 18 a cyclic group of
order g — 1 (g even) or (g — 1)/2 (q odd). This implies (g — 1)/2 = 2andsog = 5.00

We now complete the proof of the main theorem in the primitive case.

Lemma 3.4.
Let G be a primitive permutation group satisfying (*). Then G is PSL(2,5) in its
natural action of degree 6.

Proof. By lemmas 3.1 and 3.3 only the groups G = PSL(2,5) with n = 6, G =
PSL(3,2) withn = 7 and G =~ PI'L(2,8) with n = 28 can occur.

G = PT'L (2,8). This is the action on the 28 cosets of the normalizer of a Sylow 3-
subgroup S where § is a cyclic group of order 9 extended by the field automorphism
of order 3. This group contains just 8 elements of order 3 and as the stabilizer of 2
points has order co-prime to 3 we have precisely 28.8 elements of order 3. These 3-
elements leave 28.8.9 < (%®) sets of size 3 invariant, in contradiction to lemma
3.1.311).

G = PSL (3,2). Here G is transitive on the 7 lines of the 7-point plane and is also
transitive on the set of 28 triangles. However, the orbit on 2-sets has size 21 < 28.

G = PSL (2,5). This group is transitive on the 15 sets of size two. On 3-sets it has
2 orbits of size 10 each and so satisfies (*).o

We note that the action of G = PSL(2,5) on the subsets of Q@ = GF(5) U {o0}
yields a construction of the Petersen graph. Let 4 = Q be of size 2,2 < Qofsize 3
and put E = 4, P = X°. Then the incidence relation (i.e. containment) between P
and E can be shown to be that of the Petersen graph with P as point set and E as edge
set.

3.2 The imprimitive case

We now suppose that G is an imprimitive group satisfying the hypothesis (*).
According to theorem 2.1(ii) there is a system Q = {Q2,,Q,,...,Q,} of imprimitivity
such that a pair of points is contained in a G-image of 4 if and only if they are not
in the same €, This implies in particular that the permutation group G
= G/Giq,, .10y is doubly homogeneous on the r elements of ¢ and hence
primitive,

Lemma 3.5.

Let G be an imprimitive group statisfying (*).

() Ifox'eQ andf¢Q; forsomei = 1,...,r then some element in G interchanges a,
o' and fixes B.

() Ifr > 3 andif £ are any 3 blocks in 2 then some element in G5 permutes ¥
cyclically.

(i) For 3 distinct indices i, j, k let H = G, o,y o and o€ Q;. Then Q; is contained
in or is an orbit of H,.
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Proof. (i) Put 2 = {a, «,8}. As {0, B} and {«/, B} are G-images of 4 but not {o, &'},
some element in Gy, interchanges «, o fixing f, this follows from inequality (1) in
theorem 2.1.

(i) Let & = {Q,, Q,, Q;} and choose points o; in Q;, | < i.< 3. Put 2 =
{o1, 05, ®3}. Then, again by inequality (1), some g in Gy, acts as a 3-cycle on 2. As
the Q;'s are blocks of imprimitivity the corresponding element g in G is a 3-cycle
on Z.

(iii) Let a € ©;, B Q, and let o |, &, be any two pointsin Q;. Put Z; = {a, B, o;} fori =
1,2. As we have seen above there are g;€ G5y © Hwithg; = («,2,f)...and g, =
(a5, B, @)... so that g, g,(0) = o and g, g,(&;) = a,.0

Lemma 3.6.
If G satisfies (*) and is imprimitive withr > 4 blocks of imprimitivity thent = 6 and G
is PSL(2,5) in its natural action.

Proof: We shall prove that G in its action on Q satisfies the assumptions of theorem
2.1. As we clearly are in the primitive case for this action the lemma then follows
from the previous section and in particular from lemma 3.4.

Let 4 = {Q,,Q,} and Q some further block of imprimitivity. Put & = {Q, Q,,
Q,}. We have to show that |45] > |{£€] or, equivalently |Gg, 0, 0, > |Gia,.0,- Let
H denote the group G, 0,0, and a the order of Giq,,q,)- As the points of @, U 2,
are joined by m? G-images of 4 wherem = |Qand 4 = {«, a,} witha L €Q,,a,€
Q,, and as these G-images clearly are Gm .o,-images, we have a = m 2|Gpl. We
now determine the order of H. Let £ = {ot,,00,,003} With a3 € Q3. Then Gy < H as
Q,,Q,,Q, are blocks of imprimitivity so that Hiy = Gp. Applying lemma 3.5 (ii1)
twice shows that any pair a ;, o 2 witha,eQ, and a, € Q, iscontained in at least one
H-image of Z. Thus |[Z¥] > m2, (m = |Q))), so that |H| > |Hy| m?= |Gnlm?. As
|G| > | Gyl by assumption, we have |Gig, o, 0, > |Gig, 0, and the proof of the
lemma is complete.O

Lemma 3.7.

If G satisfies (*) and is imprimitive let A = {ay, a,} withoa, € Q  anda, € Q,. Then
(1) Gy is the identity on Q, U Q,,

(i) in G no two blocks can be interchanged,

(iii) » = 3 with G = Alt(3).

Proof. (i) Let BeQ,UQ,\ 4and ¥ = {ay, x,, f}. Then inequality (1) gives 1 =
1Z°@| = |2%4) 50 that G, fixes every pointin @, U 2, \ 4. As the Q;'s are blocks
of imprimitivity also a, and o, are fixed by G,.

(ii) Suppose that in G two blocks 2, and @, can be interchanged so that there is
some g in G with Qf = Q, and Qf = Q,. Let 4 be as above. Then by lemma 3.5.(i)
we may assume that g fixes 4 as a set so that by part (i) above g would have to be the
identity on Q, U Q,, a contradiction.

(iii) As G is doubly homogeneous but not doubly transitive (by (ii)) lemma 3.6
implies that r < 4 and hence r = 3 with G = Alt(3).0
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Lemma 3.8.

If G satisfies (*) and is imprimitive with blocks Q,, Q,, Q5 then

(i) If oy € Q, then G,, acts transitively as an elementary abelian 2-group on Q , and on
Q5. In particular || = 2% for some integer x.

(i) Let M = Giq,3. Then M = Gyq,,i = 2 and 3, and M is normal in G with |G : M|
= 3.

(111) The group Gy is normal in M with [M:G,| = 2%* and has order < 2.

Proof. (i) Let H = G,,. By lemma 3.7. (ii) H fixes both Q, and Q; as sets and is
transitive on ; (i = 2 or 3) by lemma 3.5.(i). When a, € 2, then H,, is the identity
onQ,UQ, (putd = {a,,a,}in lemma 3.7.(i)). This together with lemma 3.5.(i)
implies that H acts transitively as an elementary abelian 2-group on Q,fori = 2 or 3.
Thus |Q,] = 2*.

(11) this follows immediately from lemma 3.7.(ii).

(iii) Let 4 = {a}, o0, } with a; € ;. Thus G, (= M) fixes every point of @, U Q2,. By
the argument in (i) above [M : G 4| = 22*. If m € M then also (G,,)™ fixes 4 so that
G, is normal in M.

Let K = Gy with 2 = {a, a,, a3}, a; € Q;. Then K, , by lemma 3.7. (i), is the
identity on 2. Taking 4; = X'\ {;} wehave K, < G, fori = 1,2,3so0 that K, =1
by lemma 3.7.(i). This shows that K has order 3. The hypothesis (¥) now implies that
|Gyl < 2.0

With the above lemma the proof of the main theorem is complete. We conclude
with a construction of an infinite family of imprimitive groups that satisfy the
hypothesis (*).

3.3 A construction of imprimitive groups with short orbits on 3-sets

Let V be the vector space over GF(2) of dimension x with a fixed subspace F of
dimensionatmost 1. Let @ = {(i,v)lie Z/3,ve V } and G the set {(j;t o, t 1, ,)|j € Z/3,
t;eVandt, + t, + t, e F}actingon Qbytherule (it o, t4,£,): (i, 0)—=( + j,v + t).
Thus G is a permutation group on Q of order |G| = 3.|V | 2.|F| acting transitively with
blocks of imprimivity Q; = {(i, v)Jve V},i = 0, 1 or 2.

Let 4 = {(0, v), (1, v)} for some v € V. It is easy to see that

(i): Gy = G, has order |F|] < 2.

If 2 = {(0, v), (1, v), (2, v)} o 4 for some v € Vthen

(i1): G¢z induces a cycle on X and has order 3.

If 2" = {(0, v), (1, v), (0, v)} > 4 for some v # v € Vthen
(1i1): Gz has order 2|F|.

This shows that | < |49 for any 3-set containing 4 so that G is a genuine
exception to the main theorem.

Let Z be a 3-set as in (ii) above. Counting the number of pairs (4*,X*) with 4* € 4€,
Z* € 2% and 4* < X* we observe that

(iv) every A* is contained in |F| 3-sets from X€, and clearly

(v) every Z* contains 3 sets from A4€.
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Thus, if |F| = 2, then the containment relation between 2¢ and A€ yields a graph
with X6 as set of vertices and A€ as set of edges. This graph has valency 3 with G
acting both vertex and edge transitively. ‘
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