
On the Relationship of
Model Transformations Based on

Triple and Plain Graph Grammars
(Long Version)

Hartmut Ehrig, Claudia Ermel and Frank Hermann

[ehrig, lieske, frank](at)cs.tu-berlin.de
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany

Bericht-Nr. 2008/05
ISSN 1436-9915

On the Relationship of Model Transformations Based on

Triple and Plain Graph Grammars (Long Version)

Hartmut Ehrig, Claudia Ermel and Frank Hermann

[ehrig, lieske, frank](at)cs.tu-berlin.de
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany

Abstract

Triple graph grammars have been applied and implemented as a formal basis for model
transformations in a variety of application areas. They convince by special abilities in au-
tomatic derivation of forward, backward and several other transformations out of just one
specified set of rules for the integrated model defined by a triple of graphs. While many case
studies and all implementations, which state that they are using triple graph grammars, do
not use triples of graphs, this paper presents the justification for many of them. It shows a one
to one correspondence between triple graph grammars and suitable plain graph grammars,
thus results and benefits of the triple case can be transferred to the plain case.

Main results show the relationship between both graph transformation approaches, syn-
tactical correctness of model transformations based on triple graph grammars and a sound
and complete condition for functional behaviour. Theoretical results are elaborated on an
intuitive case study for a model transformation from class diagrams to database models.

Keywords: model transformation, graph transformation, triple graph transformation

1 Introduction

Model transformations are the heart of the model-driven software development approach.
Ideally, a model transformation approach supports a visual specification of the transformation
with an underlying formal foundation. Additionally, the approach should allow synchronizing
different models and keeping them consistent.

Triple Graph Grammars (TGGs) [16] have been defined to consistently co-develop two
related structures modeled by graphs. These are connected using a correspondence graph
together with its embeddings into the two graphs. TGG rules (triples of non-deleting graph
rules) generate the language of triple graphs, i.e. they describe the parallel extension of all
three graphs. Based on TGGs, triple rules can be decomposed e.g. into source and forward
rules.

In recent years, TGGs have shown to be an adequate basis to specify visual, formal and
bidirectional model transformations between different domain-specific modeling languages [10,
6, 8]. Under certain conditions (source consistency, see [6]), important properties of model
transformations based on forward rules can be shown, e.g. the bijective correspondence of
composition and decomposition of triple graph transformation sequences and information
preservation of a triple graph transformation sequence[6]. Moreover, the relation of model
transformation and model integration based on integration rules derived from triple rules has
been shown in [8].

Sample applications for model transformations using TGGs are a conversion between the
two different computer graphics file formats [2], and an approach for view consistency manage-
ment in the context of multi-view visual languages [4], where views are related to an integrated

1

model by correspondence graphs. Tools developed for typed attributed graph transformation
have been used frequently to implement model transformations based on TGGs (such as
Fujaba [17], AToM3[5], and AGG [1]). Therefore, the structure of (typed) triple graphs
have been represented as plain graphs (ordinary typed attributed graphs): the three graphs
are modeled as a single integrated graph, where the embedding of the correspondence graph
is represented by additional edges. Analogously, a single integrated type graph models the
original triple type graph.

Up to now, it has not been shown formally that the results which hold for TGGs (e.g.
the canonical decomposition of triple graph transformation sequences into source and for-
ward sequences, and their composition [6]) still hold for their representation as plain graph
grammars.

In this paper, we define a flattening functor mapping triple graphs to plain graphs. We
extend this functor to the translation of triple graph grammars and transformations. Based
on the properties of this functor, we can show that important results for triple graph gram-
mars and transformations can be transferred to plain graph grammars and transformations.
In particular, we show that TGG properties based on source consistency of triple graph trans-
formations can now be analyzed using the corresponding plain graph transformations. Our
first main theorem states that the translation leads to a bijective correspondence between a
model transformation based on forward rules in TGGs and the corresponding translated plain
model transformation. Hence, results proven for TGGs like composition and decomposition
of triple graph transformation sequences, or information preservation under the condition of
source consistency, can be transferred to the corresponding plain model transformation se-
quences. The second main theorem in this paper is concerned with correctness properties of
the translated model transformation sequences in plain graphs, such as syntactical correctness
and confluence (leading to functional behavior of model transformations).

Our main theorems are illustrated by a model transformation CD2RDBM from UML class
diagrams [14] to relational database models, a quasi-standard example which is elaborated in
[15, 3].

The paper is structured as follows: In Section 2 we start with a review of plain graphs and
graph transformation according to the double-pushout (DPO) approach [9] on the one hand,
and triple graphs and triple graph grammars according to [16] on the other hand. Section
3 reviews the derivation of source, target, forward and backward rules from TGG rules and
states the source consistency condition for model transformations based on forward rules,
which ensures that all parts of a source model are translated completely and not twice. The
functor translating triple graph transformations to plain graph transformations is defined in
Section 4. In Section 5 we relate properties of model transformations based on forward rules
from TGGs to their corresponding model transformations in plain graphs. In particular, we
show that our translation functor preserves syntactical correctness and functional behavior of
model transformations. We conclude the paper in Section 6, discussing open problems and
directions for future research.

2 Review of DPO- and Triple Graph Grammars

Graphs and graph transformations are used in a variety of types for specifying, analyzing and
optimizing systems. Here, we focus on graphs with explicit source and target functions for
edges. We recall first the main definitions of plain graphs and their transformation, which
are necessary for further constructions. For details and extensions such as attribution or type
graphs with inheritance, we refer to [9]. Note that these extensions can be applied directly
and the results will not be affected.

Definition 1. Graphs and Graph Morphisms: A graph G = (GV , GE , sG, tG) consists
of a set GV of nodes, a set GE of edges, and two functions sG, tG : GE → GV , the source
and the target function.

Given graphs G, H a graph morphism f : G → H, f = (fV , fE) consists of two functions
fV : GV → HV and fE : GE → HE that preserve the source and the target function, i.e.
fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE. Graphs and graph morphisms define the category
Graphs. A graph morphism f is injective if both functions fV , fE are injective.

2

Example 1. Class diagram as graph: The graph in Fig. 1 defines a class diagram
containing the classes “Company”, “Person” and its specialization “Customer”, an assoziation
“employee” and an attribute “cust id” of type “int”. Its visualization, thus including concrete
syntax information, is given in Fig. 2.

3:dest2:src

7:Class
name=“Customer“

4:Class
name=“Company“

1:Association
name = “employee“

5:Class
name=“Person“

9:Attribute
is_primary = true
name=“cust_id“

11:PrimitiveDataType
name = “int“

6:parent

8:attrs

10:type

Figure 1: Graph instance for abstract syntax of a class diagram

PersonCompany

cust_id : int

Customer

employee

Figure 2: Visualization of graph in Fig. 1

Definition 2. Typing: Given a distinguished graph TG, called type graph, a typed graph
G = (G, typeG) consists of a graph G = (V, E, s, t) together with a type morphism typeG :
G → TG from G to its type graph TG. A type graph is a distinguished graph TG. A tuple
(G, typeG) of a graph G together with a graph morphism typeG : G → TG is called a typed
graph. Given typed graphs G = (G, typeG) and H = (H, typeH), a typed graph morphism f is
a graph morphism f : G→ H, such that typeH ◦ f = typeG.

src

dest

attrs

type parenttype

PrimitiveDataType

name: String

Attribute
is_primary: boolean
name: String

Association

name: String

Class

name: String

Figure 3: Type graph for class diagrams

Example 2. Typing: The structure of class diagrams in the CD2RDBM example is given
by the type graph in Fig. 3 containing the types “Class”, “Attribute”, “PrimitiveDataType” and
“Association” and instances of these node types have to be linked according to the edge types
between the node types as well as attributed according to node type attributes.

Graph transformation rules specify local operations. A graph grammar specifies a graph
language as set of all those graphs that can be created by applying transformation rules
starting with a given start graph.

3

Definition 3. Typed Graph Grammar: A typed graph rule p = L
l← K

r→ R con-
sists of typed graphs L, K, and R, called the left-hand side, gluing graph, and the right-hand
side respectively, and two injective typed graph morphisms l and r. A typed graph grammar
GG = (TG, S, R) consists of a type graph TG, a start graph S and graph rules R. If a rule
p is applicable to a graph G via a morphism m : L→ G, called match, the transformation

G =
p⇒ H is defined by two pushouts (DPO diagram): L

m
��

K
loo r //

k
��

R

m∗
��

G D
l∗

oo
r∗

// H

The typed graph language L of GG is defined by L = {G | ∃ typed graph transformation S =⇒∗ G}.

RKL

:Class

:Association {new}
name = an

:src {new}

:Class

:dest {new}

1:Class

:Association
name = an

:src

2:Class
:dest

1:Class

2:Class

1:Class

2:Class

Figure 4: Graph rule insertAssociation() in complete and compact notation

Example 3. Graph Grammar: One rule of a generating graph grammar for class diagrams
is given in Fig. 4. It inserts an association between two existing classes. The rule is presented
both in complete form and compact form. The left part of Fig. 4 for complete notation contains
the rule components L, K and R as distinct graphs and numbers indicating the morphisms
l : K → L, r : K → R. The right part shows the compact form, where elements to be created
are labeled with “{new}”. If there are elements in a rule that shall be deleted, they are labeled
with “{del}” in the compact form.

In the following definitions, the concepts of graph transformation are lifted to the case of
triple graphs, an extension of plain graphs dividing elements into source, target and corre-
spondence sections. Since triple graph transformations are considered to be used for model
transformation they are restricted to non-deleting rules, which can still be seen as a special
case of general DPO graph rules.

Definition 4. Triple Graph and Triple Graph Morphism: Three graphs SG, CG,
and TG, called source, connection, and target graph, together with two graph morphisms

sG : CG→ SG and tG : CG→ TG form a triple graph G = (SG
sG← CG

tG→ TG). G is called
empty, if SG, CG, and TG are empty graphs.

A triple graph morphism m = (s, c, t) : G → H between two triple graphs G = (SG
sG←

CG
tG→ TG) and H = (SH

sH← CH
tH→ TH) consists of three graph morphisms s : SG → SH,

c : CG→ CH and t : TG→ TH such that s ◦ sG = sH ◦ c and t ◦ tG = tH ◦ c. It is injective,
if morphisms s, c and t are injective. Triple graphs and triple graph morphisms form the
category TripleGraphs.

Example 4. Triple graph: The graph in Fig. 5 shows a triple graph containing a class
diagram together with connecting reference nodes in the connection component visualized by
circles pointing to the database model of the target language. References between source and
target model denote translation correspondences and exist between classes and tables, associa-
tions and foreign keys as well as between attributes and columns. Inheritance information in
class diagrams are flattened in corresponding database models.

4

3:Table

name=“Company“

10:FKey

7:fkeys

2:ClassTableRel

24:AttrColRel

15:ClassTableRel

9:AssocFKeyRel

19:ClassTableRel

20:cols

6:src

11:dest

16:parent

21:pkey

8:Association

name = “employee“

1:Class

name=“Company“

14:Class

name=“Person“

18:Class

name=“Customer“

27:PrimitiveDataType

name = “int“

23:Attribute

is_primary = true

name=“cust_id“

25:Column

type = “int“

name = “cust_id“

22:attrs

26:type

17:Table

name=“Person“

5:Column

type = “int“

name =

“employee_cust_id“

4:cols

12:fcols
13:references

Figure 5: Triple graph for an integrated CD2RDBM model

Definition 5. Triple Graph Grammar:

A triple rule tr = L
tr→ R consists of triple graphs L

and R and an injective triple graph morphisms tr. A
triple graph grammar TGG = (TG, S, TR) consists
of a triple type graph TG, a triple start graph S and
triple rules TR typed over TG.

L = (SL

tr
��

s
��

CL
sLoo

c

��

tL // TL)

t
��

R = (SR CRsR

oo
tR

// TR)

Given a triple rule tr = (s, c, t) : L→ R, a triple graph G and a triple graph morphism
m = (sm, cm, tm) : L→ G, called triple match m, a triple graph transformation step (TGT-

step)G =
tr,m
==⇒ H from G to a triple graph H is given by three objects SH, CH and TH in

category Graph with induced morphisms sH : CH → SH and tH : CH → TH. Morphism
n = (sn, cn, tn) is called comatch.

SL

��

smuukkkk
k CLoo //

��

cmxxpppp
TL

��

tmwwoooo
G = (SG

tr

�� s′ ��

CGoo //

c′ ��

TG)

t′ ��
SR

snuu
CRoo //

cnxx
TR

tnwwooo

H = (SH CHsH

oo
tH

// TH)

The triple graph language L of TGG is defined by L = {G | ∃ triple graph transformation
S =⇒∗ G}.
Remark 1. Triple transformation steps are constructed by one pushout in category
TripleGraphs, since we consider non-deleting rules only.

Example 5. Triple rules: Rules in Fig. 6 are part of a triple graph grammar that syn-
chronously generates class diagrams and corresponding database models, where the first rule
“Class2Table” may create a class and its corresponding table at any time. The second rule
“PrimaryAttribute2Column” inserts a primary attribute for a given class, thus creating a
corresponding primary key column in the connected table of the database model. Finally,
“Subclass2Table” adds a class which inherits from an existing one, thus it is connected to the
same corresponding table as the parent class. The rules “Attribute2Column” and “Associa-
tion2ForeignKey” given in [6] are not shown here.

5

:Class {new}
name = n

:Table {new}
name = n

:Class :Table

:attrs {new} :ClassTableRel

:Attribute {new}
name = an

is_primary = true

:PrimitiveDataType{new}
name = t

:Column {new}
type = t
name = an

:AttrColRel {new}

:cols {new}

:type {new}

:pkey {new}

:Class :Table

:parent {new}
:ClassTableRel

:ClassTableRel {new}

:Class {new}
name=n

Class2Table(n:String)

PrimaryAttribute2Column
(an:String, t:String)

Subclass2Table(n:String)

:ClassTableRel {new}

Figure 6: Triple rules for CD2RDBM model transformation

3 Model Transformation based on Triple Graph
Grammars

The triple rules TR are defining the language VL = {G | ∅ ⇒∗ G via TR} of triple graphs.
Source language V LS and target language are derived by projection to the triple components,
i.e. V LS = projS(V L) and V LT = projT (V L), where projX is a projection defined by
restriction to one of the triple components, i. e. X ∈ {S, C, T}.
Definition 6. Derived Triple Rules: From each triple rule tr = L → R we have the
following source, forward, target and backward rules:

(SL

s ��

∅oo

��

// ∅)

��
(SR ∅oo // ∅)

source rule trS

(∅

��

∅oo

��

// TL)

t ��
(∅ ∅oo // TR)

target rule trT

(SR

id ��

CL
s◦sLoo

c ��

tL // TL)

t��
(SR CR

sRoo tR // TR)

forward rule trF

(SL

s ��

CL
sLoo

c ��

t◦tL // TR)

id ��
(SR CR

sRoo tR // TR)

backward rule trB

Source rules allow to create all elements of V LS as restriction of VL, but they contain less
restrictions for matches during transformation in comparison to their corresponding complete
triple rules. Thus, they possibly allow to generate more elements than V LS contains. It is
an open problem in which cases the inclusion V LS ⊆ V LS0 = {GS | ∅ =⇒∗ GS via TRS} resp.
V LT ⊆ V LT0 = {GT | ∅ =⇒∗ GT via TRT } is an equality.

Model transformations from elements of the source language VLS0 to elements of the
target language VLT0 can be defined on the basis of forward rules. Vice versa using backward
rules - which are dual to forward rules - it is also possible to define backward transformations
from target to source graphs and altogether bidirectional model transformations. In [6] we
have shown that there is an equivalence between corresponding forward and backward TGT
sequences. This equivalence is based on the canonical decomposition and composition result
(see Theorem 1 below), which is also the basis for main results of this paper and it uses the
following notion of match consistency.

Definition 7. Match and Source Consistency: Let tr∗S and tr∗F be sequences of source
rules triS and forward rules triF , which are derived from the same triple rules tri for

i = 1, . . . , n. Let further G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn be a TGT-sequence with (miS , niS)
being match and comatch of triS (respectively (mi, ni) for triF) then match consistency of

6

G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn means that the S-component of the match mi is uniquely determined
by the comatch niS (i = 1, . . . , n).

A TGT-sequence Gn0 =
tr∗F==⇒ Gnn is source consistent, if there is a match consistent sequence

∅ =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn. Note that by source consistency the application of the forward rules
is controlled by the source sequence, which generates the given source model.

Theorem 1. Canonical Decomposition and Composition Result

1. Decomposition: For each TGT-sequence

(1) G0 =
tr∗
=⇒ Gn there is a canonical match consistent TGT-sequence

(2) G0 = G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn = Gn using corresponding source rules tr∗S and
forward rules tr∗F .

2. Composition: For each match consistent transformation sequence (2) there is a canon-
ical transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse to each
other.

The proof is given in [6].

Definition 8. Model Transformation based on Forward Rules: A model transfor-

mation sequence (GS , G1 =
tr∗F==⇒ Gn, GT) consists of a source graph GS, a target graph GT ,

and a source consistent forward TGT-sequence G1 =
tr∗F==⇒ Gn with GS = proj S(G1) and

GT = proj T (Gn).
A model transformation MT : VLS0 V VLT0 is defined by model transformation sequences

(GS , G1 =
tr∗F==⇒ Gn, GT) with GS ∈ VLS0 and GT ∈ VLT0.

Example 6. Model Transformation: Using the forward rules of the triple rules in Example

5 we obtain a model transformation sequence (GS , G1 =
tr∗F==⇒ Gn, GT), where G is the triple

graph in Fig. 5 and GS = projS(G), GT = projT (G) are given by left and right parts of Fig.
5, respectively (see [6] for an explicit construction).

For each model transformation MT : VLS0 V VLT0 based on forward rules we can ensure
that it starts at models in VLS only and also ends at models in VLT , thus it corresponds
directly to the generating sequence of original triple rules, which synchronously generates
elements in all three triple components.

Fact 1. Scope of Model Transformation: For each model transformation sequence (GS ,

G1 =
tr∗F==⇒ Gn, GT) of MT : VLS0 V VLT0 with GS ∈ VLS0 and GT ∈ VLT0 we have that G1

is typed over (TGS ← ∅ → ∅) with projS(G1) = GS ∈ VLS and projT (Gn) = GT ∈ VLT , i.e.
MT : VLS V VLT .

Proof. Since G1 =
tr∗F==⇒ Gn is source consistent, we have ∅ =

tr∗S==⇒ G1 =
tr∗F==⇒ Gn match consistent

and hence, by Theorem 1 above with G0 = ∅ we have ∅ =
tr∗
=⇒ Gn. This implies Gn ∈ VL,

proj S(Gn) ∈ VLS , proj T (Gn) ∈ VLT by definition of VL, VLS and VLT . Now we have

GS = proj S(G1) = proj S(Gn) ∈ VLS and GT = proj T (Gn) ∈ VLT and ∅ =
tr∗S==⇒ G1 implies

that G1 is typed over (TGS ← ∅ → ∅).

Note that we can check whether a forward transformation sequence G1 =
tr∗F==⇒ Gn is source

consistent, thus we can check whether it defines a model transformation according to Definition

8. If the check is successful, it constructs the corresponding source rule sequence ∅ =
tr∗S==⇒

G1. Otherwise G1 =
tr∗F==⇒ Gn is not source consistent. The notation m|S denotes the source

component of match m, B(m) is the boundary of the initial pushout of m (see Chapter 6
in [9]) and B(m) ⊆ L denotes an injective embedding B(m) → L compatible with the rule
morphism and match m with L being the left hand side of the rule. If the check is successful

it leads to the sequence: ∅ =
tr1S==⇒ GS,1 . . . =

trkS==⇒ GS,k = G1 =
tr∗F==⇒ Gn.

7

Fact 2. Source Consistency Check: G1 =
tr∗F==⇒ Gn with (triF , mi)i=1...k is source consistent

iff the following source consistency check is successful, visualized by the derivation steps in the
S-component beneath.
Source Consistency Check:
For i = 0 to (k − 1) repeat the following two steps

1. construction of njS: j = k− i, if mj|S(SRj) ⊆ GS,j then restrict mj|S : SRj → GS =
GS,k to njS : SRj → GS,j, otherwise stop

2. construction of GS,j−1: stop, if B(njS) * SLj, otherwise the gluing condition is sat-
isfied and the following construction is uniquely defined: GS,j−1 is pushout complement
of SLj −trjS−−→ SRj −njS−−→ GS,j

Finally, the check is successful if GS,0 could be constructed and it is the empty graph ∅.

SL1

tr1S //

��

SR1

n1S

III

$$II

SL2

��
n(k−1)S

GGG
G

##GG

SLk

trkS //

��

SRk

nkS

III

$$II

∅ // GS,1 GS,k−1
// GS,k

SR1
//

m1|S��

SR1

$$IIIIII SR2

m2|S�� !!DD
DD

DD
D SRk

//

mk|S��

SRk

$$IIIIII

GS,k
//. . . GS,k GS,k

// GS,k

Proof. The consistency check leads to a match consistent sequence ∅ =
tr∗S==⇒ GS =

tr∗F==⇒ G. Vice

versa, if we have a match consistent sequence ∅ =
tr∗S==⇒ GS =

tr∗F==⇒ Gn then the S-component leads
to the sequence shown above, which shows that the source consistency check is successful.

The presented check of a given forward transformation sequence GS =
tr∗F==⇒ Gn is intuitively

a parsing of the source model GS by calculating the intermediate graphs of its construction
using source rules. If the check succeeds it shows that the model transformation was complete.
Furthermore, if all triple rules create parts in source and target component it is ensured that
no model element was translated twice. Considering the forward sequence given in Example
2 of [6] leading to Fig. 5 a check for source consistency succeeds.

4 Translation of Triple Graph Grammars and Trans-
formations

Most case studies and all implementations for triple graph grammars, which we are aware of,
use plain graphs as an encoding of triple graphs. But there may arise problems since there
are graphs and graph transformations not corresponding to a triple graph transformation,
whenever the correspondence component is linked with zero or multiple edges to one of the
other component. The following definition of a flattening corresponds to the intuitive trans-
lation used in tools and we show that results of the theory can be transferred to the plain
case, whenever the graphs and rules are a proper encoding of triple graphs.

Definition 9. Flattening Construction: Given a triple graph G = (SG
sG← CG

tG→ TG)
the flattening F(G) of G is a plain graph defined by the disjoint union F(G) = SG + CG +
TG + LinkS(G) + LinkT (G) with links (additional edges) defined by
LinkS(G) = {(x, y) |x ∈ CGV , y ∈ SGV , sG(x) = y},
LinkT (G) = {(x, y) |x ∈ CGV , y ∈ TGV , tG(x) = y} with sF(G)((x, y)) = x and
tF(G)((x, y)) = y, (x, y) ∈ LinkS ∪ LinkT .

Given a triple graph morphism f = (fS , fC , fT) : G → G′ the flattening F(f) : F(G) →
F(G′) is defined by F(f) = fS + fC + fT + fLS + fLT with fLS : LinkS(G) → LinkS(G′),
fLT : LinkT (G) → LinkT (G′) defined by fLS((x, y)) = (fC(x), fS(y)) and fLT ((x, y)) =
(fC(x), fT (y)).

Remark 2. The mapping of edges in CGE is disregarded, but in the following we assume
CGE = ∅ anyhow.

8

Example 7. Flattening Construction: Consider Fig. 5 showing the triple graph G =

(SG
sG← CG

tG→ TG) for our integrated CD2RDBM model. The graph F(G), resulting from
applying the flattening functor to G, consists of

• the subgraphs SG, CG and TG,

• edges LinkS(G) corresponding to the morphism SG
sG← CG, defined by LinkS(G) =

{(2, 1), (9, 8), (15, 14), 19, 18), (24, 23)} (where the numbers refer to the numbered nodes
in Fig. 5), with sF(G)((2, 1)) = 2, tF(G)((2, 1)) = 1 (analogously for all other edges in
LinkS(G)),

• and edges LinkT (G) corresponding to the morphism CG
tG→ TG), defined by LinkT (G) =

{(2, 3), (9, 10), (15, 17), (19, 17), (24, 25)}.
The following Fact 3 ensures several important properties of the flattening construction,

which are used later.

Fact 3. Properties of Flattening Construction:

1. The flattening construction defines a functor F : TripleGraphs → Graphs, which
preserves pushouts.

2. Given a triple type graph TG = (STG ← CTG → TTG) with CTGE = ∅
and flattening F(TG). Then the typed flattening construction is the functor FTG :
TripleGraphsTG → GraphsF(TG) defined by FTG(G, t) = (F(G),F(t)) and FTG(f) =
F(f). We sometimes write FTG = F for short.

3. The typed flattening FTG is injective on objects and creates morphisms, i.e. for all m′ :
FTG(L)→ FTG(G) in GraphsF(TG) there is a unique m : L→ G with FTG(m) = m′.
Especially we have FTG(A) ∼= FTG(B) iff A ∼= B, and FTG is injective on morphisms.

4. FTG preserves and reflects pushouts, i.e. (1) pushout in TripleGraphsTG iff (2) is
pushout in GraphsF(TG), and FTG creates pushouts,

L
(1)

r //

m ��

R
n��

G
f

// G′

FTG(L)

(2)

FTG (r)//

FTG (m)

��

FTG(R)

FTG (n)

��
FTG(G)

FTG (f)
// FTG(G′)

FTG(L)

(3)

FTG (r)//

FTG (m)

��

FTG(R)

n′

��
FTG(G)

f ′
// H

i.e. given r : L→ R, m : L→ G in TripleGraphsTG and pushout (3) with H, n′, f ′ in
GraphsF(TG) then there are unique G′, n, f in TripleGraphsTG, s.t. (1) is pushout
in TripleGraphsTG with FTG(G′) = H, FTG(n) = n′, and FTG(f) = f ′.

5. FTG preserves, reflects and creates pullbacks.

Proof. 1. It is straight forward to show that F is a well-defined functor F : TripleGraphs→
Graphs. Given pushout (1) in TripleGraphs we have to show pushout (2) in Graphs.

L

(1)

r //

m

��

R

n

��
G

f
// G′

F(L)

(2)

F(r) //

F(m)

��

F(R)

F(n)

��
F(G)

F(f)
// F(G′)

Pushout (1) in TripleGraphs is equivalent to commutativity of double cube (3) in
Graphs with three vertical pushouts, because pushouts in TripleGraphs are constructed
componentwise as pushouts in Graphs.

9

(3)

SL rS //

mS

��

SR

nS

��

CL

sLPP
ggPPP

tL

PP
((PP

rC //

mC

��

CR

sRQQ
hhQQQ

tR

QQQ
((QQQ

nC

��

TL rT //

mT

��

TR

nT

��

SG fS
// SG ′

CG

sGOO
ggOO

tG

OO
''OO

fC
// CG ′

sG′PP
hhPP

tG′
PP

((PP
TG fT

// TG ′

Diagram (2) is pushout in Graphs iff the V - and E-components are pushouts in Sets.
In the following we show this for the E-component, while the proof for the V -component is
similar and even simpler, because we have no LinkS- and LinkT -parts. The E-component of
(2) is shown in diagram (4) in Sets.

F(L)E

= SLE + CLE + TLE

+LinkS(L) + LinkT (L)

(4)

rS,E+rC,E+rT,E

+rLS+rLT

//

mS,E + mC,E + mT,E

+mLS + mLT

��

F(R)E

= SRE + CRE + TRE

+LinkS(R) + LinkT (R)

nS,E + nC,E + nT,E

+nLS + nLT

��
F(G)E

= SGE + CGE + TGE

+LinkS(G) + LinkT (G)

fS,E+fC,E+fT,E

+fLS+fLT

//
F(G′)E

= SG ′E + CG ′E + TG ′E
+LinkS(G′) + LinkT (G′)

Diagram (4) is the disjoint union of five diagrams, where the S-, C- and T -part are the
E-components of corresponding Graph-pushouts in (3) and hence, pushouts in Sets. We will
show that the LinkS-part (and similar the LinkT -part) is pushout in Sets. Since coproducts
of pushouts are again pushouts (in any category) (4) is a pushout in Sets. First of all,
(5) commutes, because F is a functor and (5) is the LS -part of (2). In order to show the
universal properties we assume to have h1 : LinkS(R) → X and h2 : LinkS(G) → X with
h1 ◦ rLS = h2 ◦mLS and we have to construct a unique h : LinkS(G′)→ X such that (6) and
(7) commute.

LinkS(L) rLS //

mLS

��
(5)

LinkS(R)

nLS

�� h1

��

(6)LinkS(G) fLS
//

h2 11

(7)

LinkS(G′)

h

&&
X

Given (x, y) ∈ LinkS(G′) we have x ∈ CG ′ and y ∈ SG ′ with sG′(x) = y (where we omit
the subindex V). Since CG ′ in (3) is pushout object we have either x1 ∈ CR with nC(x1) = x
or x2 ∈ CG with fC(x2) = x leading to h(x, y) defined by

h(x, y) =

{
h1(x1, y1), for nC(x1) = x and y1 = sR(x1)
h2(x2, y2), for fC(x2) = x and y2 = sG(x2).

h1(x1, y1) is well-defined and (6) commutes, because (x1, y1) ∈ LinkS(R) and nS(y1) =
nS ◦ sR(x1) = sG′(x) = y implies h ◦ nLS (x1, y1) = h(nC(x1), nS(y1)) = h(x, y). Simi-
lar h2(x2, y2) is well-defined and (7) commutes. It remains to show that h is well-defined.
For this purpose it is sufficient to show that for x = nC(x1) = fC(x2) with y1 = sR(x1)
and y2 = sG(x2) we can show h1(x1, y1) = h2(x2, y2). Pushout of the C-component and
nC(x1) = fC(x2) imply existence of x0 ∈ CL with rC(x0) = x1 and mC(x0) = x2, if rC or
nC is injective. If both are noninjective we have a chain x01, . . . , x0n connecting x1 and x2

10

and the proof is similar. In the injective case we have y0 = sL(x0) with (x0, y0) ∈ LinkS(L)
and rLS (x0, y0) = (rC(x0), rS(y0)) = (x1, y1) and similar mLS (x0, y0) = (x2, y2). Using
h1 ◦ rLS = h2 ◦mLS this implies h1(x1, y1) = h1 ◦ rLS (x0, y0) = h2 ◦mLS (x0, y0) = h2(x2, y2).

2. F : TripleGraphs→ Graphs defines FTG : TripleGraphsTG → GraphsF(TG) be-
cause for each (G, t : G→ TG) in TripleGraphsTG we have (F(G),F(t) : F(G)→ F(TG))
in GraphsF(TG) and for each morphism f : (G, t) → (G′, t′) with f : G → G′ and
t′ ◦ f = t we have F(f) : (F(G),F(t)) → (F(G′),F(t′)) with F(f) : F(G) → F(G′) and
F(t′) ◦ F(f) = F(t).

3. First we show that FTG is injective on objects. By construction of F(TG) we have
(in slight abuse of notation) F(TG) = STG + CTG + TTG + LinkS(TG) + LinkT (TG)
with sF(TG)(x, y) = x and tF(TG)(x, y) = y and CTGE = ∅ and corresponding coproduct
embeddings in Graphs respectively Sets. For (G, t) in TripleGraphsTG with t : G → TG
we have the following pullbacks (1) − (3) in Graphs and (4) − (5) in Sets, because F(t) =
tS + tC + tT + tLS + tLT .

SG

(1)

� � //

tS ��

F(G)

(2)F(t)��

TG? _oo

tT��
STG

� � // F(TG) TTG? _oo

CG

(3)

� � //

tC ��

F(G)

F(t)��
CTG

� � // F(TG)

LinkS(G)

(4)

� � //

tLS ��

F(G)E

(5)F(t)E��

LinkT (G)? _oo

tLT��
LinkS(TG)

� � // F(TG)E LinkT (TG)? _oo

These distinguished pullback constructions with inclusions in the upper and lower rows

determine completely (G, t) with G = (SG
sG← CG

tG→ TG) and CGE = ∅, where for each
e ∈ LinkS(G) ⊆ F(G)E with sF(G)(e) = x and tF(G)(e) = y we have sG,V (x) = y. Vice
versa, for each x ∈ CGV , y ∈ SGV with sG,V (x) = y we have e = (x, y) ∈ LinkS(G). Sim-
ilarly, LinkT (G) completely determines tG,V , while sG,E and tG,E are empty. This implies
for (G, t), (G′, t′) ∈ TripleGraphsTG with (F(G),F(t)) = (F(G′),F(t′)) already (G, t) =
(G′, t′) and hence injectivity of FTG on objects. FTG creates morphisms by Lemma 1. Finally
A ∼= B implies FTG(A) ∼= FTG(B), because FTG is a functor. Vice versa, FTG(A) ∼= FTG(B)
implies isomorphisms m′1 : FTG(A)

∼→ FTG(B) and m′2 : FTG(B)
∼→ FTG(A) leading to

unique morphisms m1 : A→ B and m2 : B → A with FTG(m1) = m′1 and FTG(m2) = m′2, be-
cause FTG creates morphisms. Finally, m2 ◦m1 = idA (and similar m1 ◦m2 = idB) and hence
A ∼= B, because FTG(m2 ◦m1) = FTG(m2) ◦ FTG(m1) = m′2 ◦m′1 = idFTG (A) = FTG(idA).

4. FTG : TripleGraphsTG → GraphsF(TG) preserves pushout (1), because F :
TripleGraphs→ Graphs preserves pushouts by part 1 and pushouts in TripleGraphsTG

and GraphsF(TG) are based on those in TripleGraphs and Graphs, respectively. Vice
versa, if (2) is pushout in TripleGraphsTG and let (1′) be pushout in TripleGraphsTG

then also (2′) is pushout in GraphsF(TG).

L

(1′)

r //

m

��

R

n′

��
G

f ′
// G′′

FTG(L)

(2′)

FTG (r)//

FTG (m)

��

FTG(R)

FTG (n′)

��
FTG(G)

FTG (f ′)
// FTG(G′′)

Uniqueness of pushouts implies FTG(G′) ∼= FTG(G′′) and hence G′ ∼= G′′ by part 3,
where G′ ∼= G′′ is compatible with n, n′ and f, f ′, respectively, showing that also (1) is
pushout. Finally, we show that FTG creates pushouts. Given r : L → R and m : L → G in
TripleGraphsTG and H pushout in (2) of FTG(r),FTG(m).

11

L
r //

m

��
(1)

R

n

��
n′′

��
G

f
//

f ′′
22

G′
∼

%%JJJJ

G′′

FTG(L)
FTG (r) //

FTG (m)

��
(2)

FTG(R)

n′

��
FTG (n′′)

��

FTG(G)
f ′

//

FTG (f ′′)
00

H
∼

((RRRRRRR

FTG(G′′)

Let G′′ with n′′, f ′′ be pushout of r and m. Then FTG(G′′) is also pushout and
hence, H ∼= FTG(G′′). According to the construction in part 3 we can construct G′ in
TripleGraphsTG with FTG(G′) = H. Note that in this construction sG′,V and tG′,V are
functions defined by LinkS(G′) = type−1

H (LinkS(TG)) and LinkT (G′) = type−1
H (LinkT (TG)),

respectively, because H ∼= FTG(G′′) and this functional property holds for FTG by construc-
tion. Hence, we have n′ : FTG(R)→ FTG(G′) and f ′ : FTG(G)→ FTG(G′) and by part 3 we
have unique n : R→ G′ and f : G→ G′ with FTG(n) = n′ and FTG(f) = f ′. Now reflection
of pushouts implies that (1) is pushout in TripleGraphsTG with G′ ∼= G′′.

5. Similar to part 1 we can show that F preserves pullbacks, because the LinkS- and
LinkT -diagrams can be shown to be pullbacks and the disjoint union of pullbacks in Sets
is again a pullback. This allows to show preservation, reflection and creation of pullbacks
similar to those of pushouts in part 4.

Lemma 1. Injectivity of FTG on morphisms: Given m′ : F(L)→ F(G) in GraphsF(TG)

then there is a unique m : L → G in TripleGraphsTG with F(m) = m′. This especially
implies injectivity of FTG on morphisms.

Proof. Using F(L) = SL + CL + TL + LinkS(L) + LinkT (L) and F(G) = SG + CG + TG +
LinkS(G) + LinkT (G) we obtain unique mS : SL → SG, mC : CL → CG, mT : TL →
TG, mLS : LinkS(L)→ LinkS(G), mLT : LinkT (L)→ LinkT (G), which are type compatible.
For example in the case of mS SG and SL are given by pullbacks SG = F(typeG)−1(STG) ⊆
F(G) and SL = F(typeL)−1(STG) ⊆ F(L) and mS is the unique induced morphism leading
to type compatibility.

SL
� � //

typeL,S

��

mS
%%

F(L)

F(typeL)

��

m′

''NNNNNN

SG
� � //

typeG,S
tt

yytt

F(G)

F(typeG)wwpppppp

STG
� � // F(TG)

The triple graph morphism m = (mS , mC , mT) is given by the following diagram, where
commutativity of (1) is shown below for the V -component. It is trivial for the E-component,
because CLE = CGE = ∅.

SL

(1)mS

��

CL

(2)

sLoo tL //

mC

��

TL

mT

��
SG CGsG

oo
tG

// TG

This construction implies F(m) = mS + mC + mT + mLS + mLT = m′, because m′ :
F(L)→ F(G) is uniquely determined by the S-, C-, T -, LinkS- and LinkT -components. This
also implies uniqueness of m with F(m) = m′. For commutativity of (1) (and similarly for
(2)) we use the assumption that m′ : F(L) → F(G) is a graph morphism in GraphsF(TG)

and hence also in Graphs. This implies commutativity of (3).

12

F(L)E

= SLE + CLE + TLE

+LinkS(L) + LinkT (L)

(3)

sF(L) //

tF(L)
//

mS,E + mC,E + mT,E

+mLS + mLT

��

F(L)V

= SLV + CLV + TLV

nS,E + nC,E + nT,E

+nLS + nLT

��F(G)E

= SGE + CGE + TGE

+LinkS(G) + LinkT (G)

sF(G) //

tF(G)
//

F(G)V

= SGV + CGV + TGV

For all (x, y) ∈ LinkS(L) we have mV ◦ sF(L)(x, y) = sF(G) ◦ mE(x, y). This implies
sF(G)(mLS (x, y)) = mC,V (x), because we have mV ◦ sF(L)(x, y) = mV (x) = mC,V (x) and
sF(G) ◦mE(x, y) = sF(G)(mLS (x, y)). Similar tF(G)(mLS (x, y)) = mS,V (y), which implies
mLS (x, y) = (mC,V (x), mS,V (y)).

Now, we show that the V -component of (1) commutes. Given x ∈ CLV we have sL,V (x) =
y and (x, y) ∈ LinkS(L). For (x, y) ∈ LinkS(L) we have mLS (x, y) = (mC,V (x), mS,V (y)) ∈
LinkS(G′). This implies sG,V ◦ mC,V (x) = mS,V (y) = mS,V ◦ sL,V (x). Finally, FTG(f) =
FTG(g) implies f = g by the uniqueness of the creatioin property and hence, injectivity of
FTG .

Remark 3. The typed flattening construction F : TripleGraphsTG → GraphsF(TG)

is in general not surjective and hence defines no isomorphism or equivalence of categories
TripleGraphsTG and GraphsF(TG). There are graphs (H, typeH) in GraphsF(TG) which
are not functional in the sense that for TG = (STG ← CTG → TTG) one node in
CH = type−1

H (CTG) is connected in H with zero or more than one node in SH = type−1
H (STG)

respectively in TH = type−1
H (TTG). In this case we do not obtain graph morphisms

sH : CH → SH respectively tH : CH → TH and hence no triple graph (SH ← CG → TH).
Triple graph applications exist in literature where plain graphs are used which have multiple
edges connecting the same correspondence node to various elements of the source and target
language [11, 13]. This approach does not correspond to pure morphism-based triple graphs
and hence is not covered by our translation construction.

Using Fact 3 above, the flattening functor can be extended to translate triple graph gram-
mars.

Definition 10. Translation of Triple Graph Grammars: Given a triple graph grammar
TGG = (TG, S, TR) with triple type graph TG as above, start graph S and triple rules
tr : L→ R in TripleGraphsTG , then the translation F(TGG) of TGG is the graph grammar
F(TGG) = (F(TG),F(S),F(TR)) with type graph F(TG), start graph F(S), and rules
F(TR) = {F(tr) : F(L)→ F(R) | (tr : L→ R) ∈ TR}.
Theorem 2. Translation and Creation of Triple Graph Transformations:
Given a triple graph grammar TGG = (TG, S, TR) with translation F(TGG) =
(F(TG),F(S),F(TR)) then

1. Each triple graph transformation trafo :
S =

tr1,m1====⇒ G1 =⇒ . . . =
trn,mn
====⇒ Gn in TGG can be translated into a flattened graph

transformation

F(trafo) : F(S) =
F(tr1),F(m1)
========⇒ F(G1) =⇒ . . . =

F(trn),F(mn)
=========⇒ F(Gn) in F(TGG).

2. Vice versa, each graph transformation trafo′ :

F(S) =
F(tr1),m′1======⇒ G′1 =⇒ . . . =

F(trn),m′n=======⇒ G′n in F(TGG) creates a unique (up to isomor-

phism) triple graph transformation trafo : S =
tr1,m1====⇒ G1 =⇒ . . . =

trn,mn
====⇒ Gn in TGG

with F(trafo) = trafo′, i.e. F(mi) = m′i and F(Gi) = G′i for i = 1 . . . n.

Proof. Follows from Fact 3.4.

13

5 Relationship of Model Transformation Concepts

After defining a translation from model transformations using triple graphs to those using
plain graphs and showing properties of the translation, we now elaborate properties of model
transformations from a more general point of view and again the results of previous sections
can be applied to this more abstract setting.

Typed model transformations usually work on integrated models in the translation phase
and finally restrict the model to elements of the target language. Thus, the integrated type
graph (TGS → TGST ← TGT) consists of all elements of the source and target language
and possibly further correspondence structure elements. By t>

S (G) we denote a retyping of
a source model G typed over TGS to a model typed over the integrated type graph TGST

given by the embedding TGS → TGST . Furthermore, t<
T (G) specifies a restriction of G

typed over TGST to a model G′ typed over TGT only, which can be constructed as pullback
of G → TGST ← TGT . In the following general concept graph transformation systems may
be equipped with a control condition restricting the possible transformations. Such conditions
will be explained exemplarily thereafter.

Definition 11. General Concept of Model Transformations based on graph trans-
formation: Let GRAPHS be plain graphs Graphs or triple graphs TripleGraphs.

1. Given visual languages VLS ⊆ GRAPHSTGS and VLT ⊆ GRAPHSTGT a
model transformation MT : VLS V VLT from VLS to VLT is given by MT =
(VLS , VLT , TGST , tS , tT , GTS) where TGST is an integrated type graph with injective

type graph morphisms (TGS
tS→ TGST

tT← TGT), and GTS a graph transformation
system with non-deleting rules R typed over TGST and a control condition for GTS-
transformations.

2. A model transformation sequence via MT , short MT -sequence, is given by (GS , G1 =⇒∗
Gn, GT), where GS ∈ VLS , GT ∈ VLT and G1 =⇒∗ Gn is a GTS-transformation sat-
isfying the control condition of GTS with G1 = t>

S (GS) and GT = t<
T (Gn), defined

above.

3. The model transformation relation MT R ⊆ VLS × VLT defined by MT is given by:
(GS , GT) ∈ MT R ⇔ ∃ MT − sequence (GS , G1 =⇒∗ Gn, GT).

4. MT : VLS V VLT is called

(a) syntactically correct, if for all GTS-transformations G1 =⇒∗ Gn satisfying the con-
trol condition with G1 = t>

S (GS) and GS ∈ VLS we have GT = t<
T (Gn) ∈ VLT

(b) functional, if MT R is right unique

(c) total, if MT R is left total

(d) surjective, if MT R is right total

Most examples of model transformations based on plain graph transformation considered
in the literature fit into this general concept. A typical example is the model transformation
SC2PN from state charts to Petri nets (see Chapter 14 of [9] with restriction construction
instead of deleting rules): The control condition is given by layers, where the rules with
negative application conditions are applied as long as possible in one layer, and suitable
termination criteria have to be satisfied, before switching to the next layer. But also model
transformations based on triple rules fit into this concept as shown for forward rules in the
next example. Of course this can be done in a similar way for backward rules.

Example 8. Model Transformation based on Forward Rules: Given triple rules TR
with source rules TRS and forward rules TRF defining the triple graph language VLS and
VLT . Let TR be typed over TG = (TGS ← TGC → TGT) with tS : (TGS ← ∅ → ∅)→ TG
and tT : (∅ ← ∅ → TGT) → TG type graph embeddings and GTS = TRF with “source

consistency” as control condition, i.e. G1 =
tr∗F==⇒ Gn satisfies the control condition, if it is

source consistent. Then the model transformation MT : VLS V VLT based on forward rules
is given by MT = (VLS , VLT , TG, tS , tT , TRF)

As pointed out before, by source consistency the application of the forward rules is con-
trolled by the source sequence, which generates the given source model. Model transformations
based on forward rules are source consistent, which additionally ensures syntactical correct-
ness as well as totality and surjectivity stated below. Moreover, functional behaviour can be
characterized.

14

Theorem 3. Correctness Properties of Model Transformation based on Forward
Rules: Let MT : VLS V VLT with MT = (VLS , VLT , TGST , tS , tT , TRF) be a model
transformation based on forward rules TRF then

• each model transformation sequence (GS , G1 =
tr∗F==⇒ Gn, GT) in the sense of Def. 8 is a

model transformation sequence in the sense of Def. 11 and vice versa.

• Moreover, MT is syntactically correct, total and surjective.

• MT is functional if and only if the language VL of (∅, TR) has the S-T projection prop-
erty, i.e. for all G, G′ ∈ VL we have projS(G) = projS(G′)⇒ projT (G) = projT (G′).

Proof. By Fact 1 each model transformation sequence in the sense of Def. 8 is also one in
the sense of Def. 11 and vice versa, because G1 = t>

S (GS) is equivalent to G1 typed over
(TGS ← ∅ → ∅) and projS(G1) = GS and GT = t<

T (Gn) is equivalent to projT (Gn) = GT .

MT is syntactically correct, because we have for each source consistent G1 =
tr∗F==⇒ Gn with

G1 = t>
S (GS) and GS ∈ VLS already GT = t<

T (Gn) ∈ VLT by Fact 1 and the equivalences
above.

MT is total, because for each GS ∈ VLS we have by definition G ∈ VL with projS(G) =

GS . G ∈ VL implies ∅ =
tr∗
=⇒ G and hence, by Thm. 1 a match consistent sequence

∅ =
tr∗S==⇒ G1 =

tr∗F==⇒ G. This implies a model transformation sequence (GS , G1 =
tr∗F==⇒ G, GT)

with projS(G1) = projS(G) = GS and hence, (GS , GT) ∈ MT R which implies that MT is
total. Similarly we find for each GT ∈ VLT , triple graphs G ∈ VL and GS = projS(G) with
(GS , GT) ∈ MT R showing that MT is surjective.

Assume now that we have the S-T projection property and MT -sequences (GS ,

G1 =
tr∗F==⇒ Gn, GT) and (GS , G1 =

tr′∗F==⇒ G′m, G′T) we have to show GT = G′T . By source consis-

tency we have match consistent sequences ∅ =
tr∗S==⇒ G1 =

tr∗F==⇒ Gn with proj S(Gn) = proj S(G1) =

GS and ∅ =
tr′∗S==⇒ G′1 =

tr′∗F==⇒ G′m with proj S(G′m) = GS . By Thm. 1 we have ∅ =
tr∗
=⇒ Gn,

∅ =
tr′∗
==⇒ G′m and hence Gn, G′m ∈ VL with proj S(Gn) = GS = proj S(G′m). This implies

GT = proj T (Gn) = proj T (G′m) = G′T by S-T projection property. Similar we can show that
MT being functional implies the S-T projection property.

Example 9. Non-functional Model Transformation Consider a triple transformation
sequence based on the triple rules in Fig. 6, where at first rule Class2Table is applied, generat-
ing a Class connected to a Table. In a second step, rule Subclass2Table is applied, inserting
a subclass of the existing Class node and connecting the new Class also with the existing
Table node. In the third step, yet another Class node is created as subclass of the existing
subclass, also connected to the Table node. This 3-step triple transformation can be divided
into three target steps, where the Table node is created in the first step, and nothing happens
in the second and third step, and three backward transformation steps based on the backward
rules in Fig. 7, which are generated from the triple rules Class2Table and Subclass2Table
according to Def. 6.

:Table

name = n

:ClassTableRel {new}

:Class {new}

name = n

:Class :Table

:parent {new}

:ClassTableRel

:ClassTableRel {new}

:Class {new}

name=n

Table2Subclass(n:String)

Table2Class(n:String)

Figure 7: Backward rules generated from the triple rules Class2Table and Subclass2Table

The first backward transformation step creates a Class node and connects it to the existing
Table node. The second backward step creates a second Class node as subclass of the first one

15

and connects it to the Table node. For the third backward step, there are now two matches
possible (see Fig. 8): either the third new Class node becomes a subclass of the existing
superclass (graph G), or it becomes a subclass of the existing subclass (graph G′).

1:Class :Table

:parent

:ClassTableRel

:ClassTableRel
2:Class

:parent
:ClassTableRel

:Class

1:Class :Table

:parent
:ClassTableRel

:ClassTableRel

2:Class

1:Class :Table

:parent

:ClassTableRel

:ClassTableRel
2:Class

:parent
:ClassTableRel

:Class

two possible backward transformation steps
G G’

Figure 8: Non-functional (backward) model transformation

Both transformation sequences are match-consistent and target-consistent (the dual prop-
erty to source-consistent), but they are not functional since different results are possible when
applying the same rule. In particular, the T-S projection property (corresponding to the S-
T projection property in Thm. 3) is violated because we have projT (G) = projT (G′) but
projS(G) 6= projS(G′).

Finally, we present the translation of model transformation MT based on forward rules
into plain model transformation F(MT) and show that the correctness properties of MT are
preserved for F(MT).

Definition 12. Translation of Model Transformation based on Forward Rules:
Given MT = (VLS , VLT , TG, tS , tT , TRF) as in Example 8 then the translated model
transformation F(MT) is a plain model transformation defined by F(MT) = (F(VLS),
F(VLT),F(TG), F(tS),F(tT),F(TRF)) where F : TripleGraphsTG → GraphF(TG) is
the typed flattening functor (see Def. 10) and a graph transformation sequence trafo′ :

G′0 =
F(tr1,F),m′1
========⇒ G′1 =⇒ . . . =

F(trn,F),m′n
========⇒ G′n satisfies the plain control condition, if G′0 =

F(G0) and the uniquely created triple graph transformation trafo : G0 =
tr1,F ,m1
=====⇒ G1 =⇒

. . . =
trn,F ,mn
======⇒ Gn (by Thm. 2) is source consistent.

Theorem 4. Properties of Translation Given a model transformation MT =
(VLS , VLT , TGST , tS , tT , TRF) based on forward rules TRF of TR and F(MT) the trans-
lated plain model transformation then

1. there is a bijective correspondence between MT - and F(MT)-model transformation se-
quences,

2. F(MT) is syntactically correct, total and surjective and

3. F(MT) being functional is equivalent to MT being functional.

Proof. Given an MT -model transformation sequence (GS , G1 =
tr∗F==⇒ G, GT) we obtain by Def.

12 the F(MT)-model transformation sequence (F(GS),F(G1) =
F(tr∗F)
====⇒ F(Gn),F(GT)), be-

cause F(tr∗F) satisfies the plain control condition and t<
S (GS) = G1 implies F(tS)>(F(GS)) =

F(G1) and t<
T (Gn) = GT implies F(tT)<(F(GT)) = F(Gn) because F preserves pullbacks by

Fact 3. Vice versa, each F(MT)-model transformation sequence creates a unique MT -model
transformation sequence using again Def. 12 and the fact that F creates pushouts and pull-
backs by Fact 3. Injectivity of F by Fact 3 implies that we have a bijective correspondence
between MT - and F(MT)-model transformation sequences. This implies by Thm. 3 that
F(MT) is syntactically correct, total and surjective and F(MT) functional is equivalent to
MT functional.

16

6 Discussion

In this paper we address the problem that frequently TGGs and model transformations based
on forward rules are implemented using plain graphs and transformations. In order to clarify
how the results from the theory of TGGs do relate to corresponding plain graph representa-
tions, a formal translation from triple graphs and transformations according to [16] to plain
graphs and transformations according to [9] is presented. Based on this translation functor,
we relate properties of model transformations by forward rules to their corresponding model
transformations in plain graphs and show in particular that the functor preserves syntactical
correctness and functional behavior of model transformations.

Our main results show that for each model transformation based on forward rules there is
an equivalent model transformation based on plain rules, defined by the translation functor.
Analogously, such an equivalence exists for model transformation based on (target-consistent)
backward rules. Hence, model transformations based on triple rules are bidirectional but not
necessarily functional in one or both directions.

There are model transformations based on plain rules which are unidirectional and cannot
be represented by equivalent model transformations based on triple rules.

The control criterion for forward rules is source consistency which is different from usual
control criteria for plain rules, like layered graph transformation with termination criteria for
rules with/without negative application conditions (NACs) [12] or graph constraints [7]. Note
that NACs are not necessary for termination of forward transformations in our setting, since
by source consistency the source sequence, which generates the given source model, controls
the application of the forward rules.

Correctness properties are mainly given for triple case in Thm. 3 which are inherited by
translated plain model transformations, but there remain the following open questions:

1. What are suitable syntactical criteria for functionality of model transformations?

2. Extending the approach to triple rules with NACs – what is the relationship between
the source consistency control condition for forward rules on the one hand and NAC-
consistency together with termination of model transformations on the other hand?

Furthermore, practical applications sometimes use plain graphs, which do not correspond
to triple graphs according to [16], because morphisms between triple components cannot be
defined accordingly. For instance edges and attributes occur in the component graph but have
no connection to source and target model elements, thus morphisms of the triple graph cannot
be total. These constructions are used to store information about the history and dependencies
of executed integration steps, and thus they do not directly belong to the integrated model
and can be stored separately. In other examples one node of the correspondence component
may be connected to multiple nodes of the source resp. target component, which again does
not correspond to triple graphs (e.g. [11, 13]). It remains unclear whether the theoretical
results including those of [6] and [8] for triple graph transformations can be transferred to
plain graph grammars, which do not directly correspond to TGGs.

References

[1] AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

[2] N. Aschenbrenner and L. Geiger. Transforming scene graphs using Triple Graph Gram-
mars - A practice report. In Proc. Third International Workshop and Symposium on
Applications of Graph Transformation with Industrial Relevance (AGTIVE 2007), Uni-
versität Kassel, Germany, October 2007.

[3] J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt. Model transformations in practice
workshop. In J.-M. Bruel, editor, MoDELS Satellite Events, volume 3844 of Lecture
Notes in Computer Science, pages 120–127. Springer, 2005.

[4] J. de Lara and E. Guerra. Model View Management with Triple Graph Grammars. In
A. Corradini et al., editor, Proceedings of the Third International Conference on Graph
Transformation (ICGT 2006), volume 4178 of LNCS, Natal, Brazil, 2006. Springer.

[5] J. de Lara and H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-Modelling,
2007. http://atom3.cs.mcgill.ca/.

17

[6] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Information preserving
bidirectional model transformations. In M. B. Dwyer and A. Lopes, editors, Fundamental
Approaches to Software Engineering, volume 4422 of LNCS, pages 72–86. Springer, 2007.

[7] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Theory of Constraints and Appli-
cation Conditions: From Graphs to High-Level Structures . Fundamenta Informaticae,
74(1):135–166, 2006.

[8] H. Ehrig, K. Ehrig, and F. Hermann. From Model Transformation to Model Integration
based on the Algebraic Approach to Triple Graph Grammars. In J. de Lara, C. Ermel,
and R. Heckel, editors, Workshop on Graph Transformation and Visual Modelling Tech-
niques (GT-VMT’08). Electronic Communications of the EASST, 2008. accepted for
publication.

[9] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs. Springer Verlag, 2006.

[10] H. Giese and R. Wagner. Incremental Model Synchronization and Transformation with
Triple Graph Grammars. In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors,
Proc. of the 9th International Conference on Model Driven Engineering Languages and
Systems (MoDELS), LNCS, Genoa, Italy, October 2006. Springer.

[11] J. Greenyer and E. Kindler. Reconciling TGGs with QVT. In G. Engels, B. Opdyke,
D. Schmidt, and F. Weil, editors, 10th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS’07), volume 4735 of LNCS, pages 16–30.
Springer, 2006.

[12] A. Habel, R. Heckel, and G. Taentzer. Graph Grammars with Negative Application
Conditions. Special issue of Fundamenta Informaticae, 26(3,4):287–313, 1996.

[13] E. Kindler and R. Wagner. Triple graph grammars: Concepts, extensions, implementa-
tions, and application scenarios. Technical Report Technical Report tr-ri-07-284, Software
Engineering Group, Department of Computer Science, University of Paderborn, 2007.

[14] Object Management Group. OMG Unified Modeling Language (OMG UML), Superstruc-
ture, V2.1.2, November 2007.

[15] OMG. MOF QVT Final Adopted Specification (05-11-01).
http://www.omg.org/docs/ptc/05-11-01.pdf, 2005.

[16] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In G. Tin-
hofer, editor, WG94 20th Int. Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, volume 903 of Lecture Notes in Computer Science, pages 151–163, Heidelberg, 1994.
Springer Verlag.

[17] Software Engineering Group, University of Paderborn. Fujaba Tool Suite, 2007. http:
//wwwcs.uni-paderborn.de/cs/ag-schaefer/Lehre/PG/Fujaba/projects/tgg/index.html.

18

