On the relative class number of a relative Galois number field

By Kiichiro Ohta

(Received Aug. 27, 1971) (Revised May 17, 1972)

§1. Introduction.

Let k be an algebraic number field of finite degree. Let p be any rational prime number. The p-Sylow subgroup of the absolute ideal class group of k will be called the p-class group of k whose order will be denoted by $h_{k,p}$.

Let K be a Galois extension of degree m over k. Then there are many known results as to the p-class groups of K and k in case K/k is abelian or when m is a prime power (in which case K/k is a soluble extension); in particular, many relations are known to hold between $h_{K,p}$ and $h_{k,p}$ (K. Iwasawa [2], H. Yokoi [3], [4], A. Yokoyama [5], [6], [7]).

But, at the present time, it seems that there are no convenient literatures as to the *p*-class groups of K and k in such case where the Galois group G(K/k) is non-abelian and simple. (For instance, it is such case where the group G(K/k) is isomorphic to the alternative group A_n of degree n(>4).) So, in this paper we shall deal with the *p*-class groups of K and k in such special case. The main purpose of this paper is to prove the following theorem:

THEOREM 1. Let k be an algebraic number field of finite degree. Let K be a Galois extension of degree m over k such that the Galois group G(K/k) is non-abelian and simple. Let Ω_K and Ω_k be the absolute class fields of K and k respectively. Let p be any rational prime number prime to m. Let \overline{H} be the p-Sylow subgroup of the Galois group $G(\Omega_K/K\Omega_k)$, whose rank is denoted by r. If $\cdot \overline{H}$ is non-trivial, then we have r > 1 and

$$(p^{r}-1)(p^{r-1}-1)\cdots(p-1)\equiv 0 \pmod{m}$$
.

After the proof of our main theorem, we shall refer to some results which are easily verified from above theorem.

§2. Preliminaries.

In this section we shall prove three lemmas which are required in order

to prove our main theorem.

LEMMA 1. Let k, F and K be three algebraic number fields of finite degree such as $k \subset F \subset K$. Let p be any rational prime number prime to m = [F:k]. Assume that F and K are both Galois over k. Moreover, assume that the Galois group G(F/k) of order m is non-abelian and simple, and the Galois group G(K/F) is an abelian p-group whose rank is denoted by r. If we have either r=1 or

$$(p^{r}-1)(p^{r-1}-1)\cdots(p-1) \equiv 0 \pmod{m},$$

then there exists the subfield L of K which satisfies the following (1) and (2):

(1) we have FL = K and $F \cap L = k$,

(2) L is Galois over k.

PROOF. For brevity we put $\overline{G} = G(K/k)$, $\overline{N} = G(K/F)$ and $\overline{H} = G(F/k)$ and we denote the order of \overline{N} by p^n . Let

$$\bar{G} = \bar{N}\sigma_1 + \bar{N}\sigma_2 + \cdots + \bar{N}\sigma_m$$

be the disjoint union of cosets of \overline{N} . Let $\overline{\sigma}_i$ $(i=1, 2, \dots, m)$ be the automorphisms of \overline{N} given by $x \to \sigma_i^{-1} x \sigma_i$ for all $x \in \overline{N}$. Then it is clear that the mapping ϕ given by $\overline{N} \sigma_i \to \overline{\sigma}_i$, for $i=1, 2, \dots, m$, is a homomorphism from \overline{H} into the automorphism group $A(\overline{N})$ of \overline{N} . Moreover, it is easily verified by the assumption for \overline{H} that the kernel of ϕ must be either the identity group \overline{E} of \overline{H} or \overline{H} itself.

Now, we assume that the kernel is \bar{E} . Then we know at once that ϕ is an injection and the image $\phi(\bar{H})$ is a subgroup of $A(\bar{N})$ which is isomorphic to \bar{H} . Since $A(\bar{N})$ must be non-abelian in our case, so we have r > 1, and it is well known that the order of $A(\bar{N})$ is a divisor of $p^{r(n-r)}(p^r-1)(p^r-p)\cdots$ (p^r-p^{r-1}) . Hence, the order m of $\phi(\bar{H})$ must be so. But this is a contradiction. Therefore, it follows immediately that the kernel of ϕ must be \bar{H} itself, and hence all $\bar{\sigma}_i$ must be the identity of $A(\bar{N})$. As we have (p, m) = 1 by our assumption, this means that \bar{N} is the p-Sylow subgroup of \bar{G} such as contained in the center of \bar{G} , and hence it follows immediately by Burnside's theorem that \bar{N} has the normal p-Sylow complement \bar{Z} in \bar{G} .

Now, if we denote by L the subfield of K corresponding to \overline{Z} by the Galois theory, then it is easy to verify that L satisfies our conditions (1) and (2).

LEMMA 2. Let k, F, L and K be four algebraic number fields of finite degree such as $k \subset F \subset L \subset K$. Denote the degrees [L:F] and [K:L] by m and n respectively. Assume that F and K are both Galois over k, and L is Galois over F. If we have (m, n) = 1, then L is Galois over k.

PROOF. We put $L = k(\theta)$ and r = [F: k], and we denote the minimal polynomial of θ over k by f(X). Then f(X) whose degree is mr, has a factori-

K. Ohta

zation

$$f(X) = \phi_1(X)\phi_2(X)\cdots\phi_r(X)$$

in F[X], where each $\phi_i(X)$ $(i=1, 2, \dots, r)$ is an irreducible polynomial of degree *m*. If we have $\phi_1(\theta) = 0$, then *L* is the minimal splitting field of $\phi_1(X)$ over *F*. If we denote the minimal splitting fields of $\phi_i(X)$ $(i=2, 3, \dots, r)$ by L_i respectively, then each L_i is a Galois extension of degree *m* over *F*, and it is the conjugate of *L* over *k*.

Now, let M be the minimal splitting field of f(X) over k, then M is Galois over k, and we have $L \subset M \subset K$. Hence, it is clear that u = [M:L] is a divisor of n. But, on the other hand, we have $M = LL_2 \cdots L_r$, and if $m = q_1^{e_1} q_2^{e_2}$ $\cdots q_s^{e_s}$ is the prime factorization of m, then u must have the prime factorization as $u = q_1^{i_1} q_2^{i_2} \cdots q_s^{i_s}$ $(t_j \ge 0)$. Hence, in our case we have (u, n) = 1, and consequently u = 1. Now it is obvious that we have L = M.

LEMMA 3. Let k, F and K be three algebraic number fields of finite degree such as $k \subset F \subset K$. Assume that F and K are both Galois over k. Let \overline{H} and \overline{Z} be two subgroups of the Galois group G(K/F) such that we have G(K/F) = $\overline{H} \times \overline{Z}$ (direct product). If the orders of \overline{H} and \overline{Z} are relatively prime to each other, then the subfield L of K corresponding to \overline{H} is Galois over k.

PROOF. For any $\sigma \in G(K/k)$ and for any $\tau \in \overline{H}$ we have $\sigma^{-1}\tau \sigma \in \overline{H}$ because τ and $\sigma^{-1}\tau \sigma$ have the same orders. Hence, \overline{H} is a normal subgroup of G(K/k), and this means immediately the holding of our assertion.

§3. The proof of main theorem.

PROOF OF THEOREM 1. Since K is Galois over k and Ω_K is the absolute class field of K, it is obvious that Ω_K is a Galois extension of k. If we denote the class numbers of K and k by h_K and h_k respectively, then h_K is divisible by h_k because we have clearly $K \cap \Omega_k = k$ by our assumption for the Galois group G(K/k).

Now, it is evident that the order p^n of \overline{H} is equal to $h_{K,p}/h_{k,p}$. If we put $N = K\Omega_k$, and if we denote the *p*-Sylow complement of $G(\Omega_K/N)$ by \overline{Z} , then it is easily verified that \overline{H} and \overline{Z} satisfy the assumption of Lemma 3 when we apply it to three fields k, N and Ω_K . Hence, the subfield F of Ω_K which corresponds to \overline{Z} is Galois over k, and we have $[F:N] = p^n$. Furthermore, it is evident that the Galois group G(F/N) is isomorphic to \overline{H} .

Now, as to the rank r of \overline{H} we assume that we have either r=1 or

$$(p^{r}-1)(p^{r-1}-1)\cdots(p-1) \equiv 0 \pmod{m}$$
.

Then, from Lemma 1 there exists the subfield L of F such that we have NL = F, $N \cap L = \Omega_k$ and L is Galois over Ω_k . Next, as we have $[F:L] = [N:\Omega_k]$

554

= m and $[L: \Omega_k] = [F: N] = p^n$, applying Lemma 2 to four fields k, Ω_k , L and F, it is easily verified that L is Galois over k. Moreover, as the Galois group G(F/L) is isomorphic to G(K/k), it follows at once that we have $K \cap L = k$ and KL = F. Hence, the Galois group G(L/k) is abelian as well as G(F/K) because they are isomorphic to each other.

On the other hand, since F is unramified over N and we have $(m, p^n) = 1$ by our assumptions, it follows easily that the ramification index of any ramified prime divisor in F/Ω_k is prime to p^n . This means immediately that L is unramified over Ω_k . Hence, L must be an unramified abelian extension of k. Now, since Ω_k is the maximal unramified abelian extension of k, we must have $L \subset \Omega_k$. But this is a contradiction to $[L:\Omega_k] = p^n$ (>1).

Thus, our theorem is proved completely.

Now, for the relative class numbers, we have immediately the following theorem. Namely:

THEOREM 2. Let k be an algebraic number field of finite degree. Let K be a Galois extension of degree m over k such that the Galois group G(K/k) is non-abelian and simple. Let p be any rational prime number prime to m, and let r be the minimal natural number such as r > 1 and

$$(p^{r}-1)(p^{r-1}-1)\cdots(p-1)\equiv 0 \pmod{m}$$
.

Denote the class numbers of K and k by h_K and h_k respectively. If $d = h_K/h_k$ is divisible by p, then d is divisible by p^r .

Moreover, the following theorem will be easily verified by making use of Theorem 1.

THEOREM 3. Let k be an algebraic number field of finite degree. Let K be a Galois extension of degree m over k such that the Galois group G(K/k) is non-abelian and simple. Let p be any rational prime number prime to m. Denote the ranks of p-class groups of K and k by $r_{K,p}$ and $r_{k,p}$ respectively. Let q_1, q_2, \dots, q_s be all the different prime factors of m, and for $i=1, 2, \dots, s$, let f_i be the order of the residue class $p \mod q_i$. If $h_{K,p}/h_{k,p}$ is divisible by p, then we have

$$\max(2, f_1, f_2, \cdots, f_s) \leq r_{K,p} - r_{k,p}.$$

PROOF. Let Ω_K and Ω_k be the absolute class fields of K and k respectively. Let \overline{H} be the *p*-Sylow subgroup of $G(\Omega_K/K\Omega_k)$, and we denote the rank of \overline{H} by r. Then, as p is prime to m, it is easily verified from Theorem 1 that we have

$$\max\left(2, f_1, f_2, \cdots, f_s\right) \leq r.$$

Now, let $C_{K,p}$ and $C_{k,p}$ be the *p*-class groups of K and k respectively. Let A_K be the ambiguous ideal class group with respect to K/k, and we put $A_{K,p} = A_K \cap C_{K,p}$. Then it is known that we have

К. Онтл

$C_{K,p} = A_{K,p} \times B_{K,p}$ (direct product)

and $A_{K,p}$ is isomorphic to $C_{k,p}$. (Cf. A. Yokoyama [6]). Hence, it follows from the class field theory that $B_{K,p}$ is isomorphic to \overline{H} and thus we obtain

$$r_{K,p} = r + r_{k,p} \,. \qquad \qquad Q. E. D.$$

Finally, as to the relative class numbers of the intermediate fields, we have the following theorem. Namely:

THEOREM 4. Let k be an algebraic number field of finite degree. Let K be a Galois extension of degree m over k such that the Galois group G(K/k) is non-abelian and simple. Let F be a proper intermediate field between k and K. Let p be any rational prime number prime to m. If $h_{K,p}/h_{k,p}$ is divisible by p, then $h_{K,p}/h_{F,p}$ is divisible by p too.

PROOF. Let Ω_K and Ω_k be the absolute class fields of K and k respectively. Let M be the subfield of Ω_K such that the Galois group $G(\Omega_K/M)$ is the p-Sylow complement of $G(\Omega_K/K\Omega_k)$. Then, M is Galois over k from Lemma 3, and the Galois group $\overline{H} = G(M/K\Omega_k)$ is a p-group of order p^n with n > 1 by our assumption and Theorem 1. Moreover, since we have $[K\Omega_k : \Omega_k] = m$ and (m, p) = 1, if we apply the Schur's theorem as to the extension of group to $G(M/\Omega_k)$, $G(K\Omega_k/\Omega_k)$ and \overline{H} , then we have the decomposition as following:

$$G(M/\Omega_k) = \overline{H}\overline{Z}$$
.

Here, it is obvious that \overline{Z} is isomorphic to $G(K\Omega_k/\Omega_k)$. If we denote by L the intermediate field between Ω_k and M corresponding to \overline{Z} by the Galois theory, then we have clearly $L \cdot K\Omega_k = M$ and $L \cap K\Omega_k = \Omega_k$. Furthermore, it follows that L is not Galois over Ω_k . Because, if we assume otherwise, then it follows from Lemma 2 that L is Galois over k and the Galois group G(L/k), which is isomorphic to G(M/K), is an abelian group. Since M is unramified over $K\Omega_k$ and we have $(m, p^n) = 1$ by our assumptions, it is easily verified that L is unramified over Ω_k . Hence, it follows clearly that L is an unramified abelian extension of k and we must have $L \subset \Omega_k$ by the definition of Ω_k . But it is a contradiction to $[L : \Omega_k] = p^n$. Therefore, if we put $L = \Omega_k(\theta)$ and if we denote by f(X) the minimal polynomial of θ over Ω_k , then M must be the minimal splitting field of f(X) over Ω_k because \overline{Z} is nonabelian and simple. On the other hand, it is easily verified that f(X) is irreducible in $K\Omega_k[X]$ and we have $M = K\Omega_k(\theta)$.

Finally, let Ω_F be the absolute class field of F. As we have $F \cap \Omega_k = k$, it is obvious that we have $\Omega_k \subset \Omega_F$. Now, if we assume that $h_{K,p}/h_{F,p}$ is not divisible by p, then we have $h_{K,p} = h_{F,p}$ and as ([K:F], p) = 1 in our case it follows at once that the *p*-class groups of K and F are isomorphic to each other. Moreover, if we denote by N the field which corresponds to the *p*-Sylow

556

complement of $G(\Omega_F/F\Omega_k)$, then the Galois group $G(N/F\Omega_k)$ is isomorphic to \overline{H} and we have $N \cdot K\Omega_k = M$ and $N \cap K\Omega_k = F\Omega_k$ clearly. Therefore, since f(X) is a polynomial in $F\Omega_k[X]$, it is easily verified that by taking a suitable root θ' of f(X) we have $N = F\Omega_k(\theta')$. As N is Galois over $F\Omega_k$ and f(X) is irreducible in $F\Omega_k[X]$, N must be the splitting field of f(X) and hence we must have $M \subset N$. But this is impossible because we have [M:N] = [K:F] > 1 by our assumption.

Thus, our theorem is proved completely.

Meijō University

References

- M. Ishida, Class numbers of algebraic number fields of Eisenstein type, J. of Number Theory, 2 (1970), 404-413.
- [2] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 257-258.
- [3] H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J., 29 (1967), 31-44.
- [4] H. Yokoi, On the divisibility of the class number in an algebraic number field, J. Math. Soc. Japan, 20 (1968), 411-418.
- [5] A. Yokoyama, On class numbers of finite algebraic number fields, Tôhoku Math.
 J., (2) 17 (1965), 349-357.
- [6] A. Yokoyama, Über die Relativklassenzahl eines relative Galoisschen Zahlkörpers von Primzahlpotenzgrad, Tôhoku Math. J., (3) 18 (1966), 318-324.
- [7] A. Yokoyama, On the relative class number of finite algebraic number fields, J. Math. Soc. Japan, 19 (1967), 179-185.
- [8] H. Zassenhaus, Lehrbuch der Gruppentheorie 1, Leipzig, 1937.