On the relative class number of a relative Galois number field

By Kiichiro Ohta

(Received Aug. 27, 1971)
(Revised May 17, 1972)

§ 1. Introduction.

Let k be an algebraic number field of finite degree. Let p be any rational prime number. The p-Sylow subgroup of the absolute ideal class group of k will be called the p-class group of k whose order will be denoted by $h_{k, p}$.

Let K be a Galois extension of degree m over k. Then there are many known results as to the p-class groups of K and k in case K / k is abelian or when m is a prime power (in which case K / k is a soluble extension); in particular, many relations are known to hold between $h_{K, p}$ and $h_{k, p}$ (K. Iwasawa [2], H. Yokoi [3], [4], A. Yokoyama [5], [6], [7]).

But, at the present time, it seems that there are no convenient literatures as to the p-class groups of K and k in such case where the Galois group $G(K / k)$ is non-abelian and simple. (For instance, it is such case where the group $G(K / k)$ is isomorphic to the alternative group A_{n} of degree $n(>4)$.) So, in this paper we shall deal with the p-class groups of K and k in such special case. The main purpose of this paper is to prove the following theorem :

Theorem 1. Let k be an algebraic number field of finite degree. Let K be a Galois extension of degree m over k such that the Galois group $G(K / k)$ is non-abelian and simple. Let Ω_{K} and Ω_{k} be the absolute class fields of K and k respectively. Let p be any rational prime number prime to m. Let \bar{H} be the p-Sylow subgroup of the Galois group $G\left(\Omega_{K} / K \Omega_{k}\right)$, whose rank is denoted by r. If $\cdot \bar{H}$ is non-trivial, then we have $r>1$ and

$$
\left(p^{r}-1\right)\left(p^{r-1}-1\right) \cdots(p-1) \equiv 0 \quad(\bmod m) .
$$

After the proof of our main theorem, we shall refer to some results which are easily verified from above theorem.

§ 2. Preliminaries.

In this section we shall prove three lemmas which are required in order
to prove our main theorem.
Lemma 1. Let k, F and K be three algebraic number fields of finite degree such as $k \subset F \subset K$. Let p be any rational prime number prime to $m=[F: k]$. Assume that F and K are both Galois over k. Moreover, assume that the Galois group $G(F / k)$ of order m is non-abelian and simple, and the Galois group $G(K / F)$ is an abelian p-group whose rank is denoted by r. If we have either $r=1$ or

$$
\left(p^{r}-1\right)\left(p^{r-1}-1\right) \cdots(p-1) \not \equiv 0 \quad(\bmod m),
$$

then there exists the subfield L of K which satisfies the following (1) and (2):
(1) we have $F L=K$ and $F \cap L=k$,
(2) L is Galois over k.

Proof. For brevity we put $\bar{G}=G(K / k), \bar{N}=G(K / F)$ and $\bar{H}=G(F / k)$ and we denote the order of \bar{N} by p^{n}. Let

$$
\bar{G}=\bar{N} \sigma_{1}+\bar{N} \sigma_{2}+\cdots+\bar{N} \sigma_{m}
$$

be the disjoint union of cosets of \bar{N}. Let $\bar{\sigma}_{i}(i=1,2, \cdots, m)$ be the automorphisms of \bar{N} given by $x \rightarrow \sigma_{i}^{-1} x \sigma_{i}$ for all $x \in \bar{N}$. Then it is clear that the mapping ϕ given by $\bar{N} \sigma_{i} \rightarrow \bar{\sigma}_{i}$, for $i=1,2, \cdots, m$, is a homomorphism from \bar{H} into the automorphism group $A(\bar{N})$ of \bar{N}. Moreover, it is easily verified by the assumption for \bar{H} that the kernel of ϕ must be either the identity group \bar{E} of \bar{H} or \bar{H} itself.

Now, we assume that the kernel is \bar{E}. Then we know at once that ϕ is an injection and the image $\phi(\bar{H})$ is a subgroup of $A(\bar{N})$ which is isomorphic to \bar{H}. Since $A(\bar{N})$ must be non-abelian in our case, so we have $r>1$, and it is well known that the order of $A(\bar{N})$ is a divisor of $p^{r(n-r)}\left(p^{r}-1\right)\left(p^{r}-p\right) \cdots$ ($p^{r}-p^{r-1}$). Hence, the order m of $\phi(\bar{H})$ must be so. But this is a contradiction. Therefore, it follows immediately that the kernel of ϕ must be \bar{H} itself, and hence all $\bar{\sigma}_{i}$ must be the identity of $A(\bar{N})$. As we have $(p, m)=1$ by our assumption, this means that \bar{N} is the p-Sylow subgroup of \bar{G} such as contained in the center of \bar{G}, and hence it follows immediately by Burnside's theorem that \bar{N} has the normal p-Sylow complement \bar{Z} in \bar{G}.

Now, if we denote by L the subfield of K corresponding to \bar{Z} by the Galois theory, then it is easy to verify that L satisfies our conditions (1) and (2).

Lemma 2. Let k, F, L and K be four algebraic number fields of finite degree such as $k \subset F \subset L \subset K$. Denote the degrees [L:F] and [K:L] by m and n respectively. Assume that F and K are both Galois over k, and L is Galois over F. If we have $(m, n)=1$, then L is Galois over k.

Proof. We put $L=k(\theta)$ and $r=[F: k]$, and we denote the minimal polynomial of θ over k by $f(X)$. Then $f(X)$ whose degree is $m r$, has a factori-
zation

$$
f(X)=\phi_{1}(X) \phi_{2}(X) \cdots \phi_{r}(X)
$$

in $F[X]$, where each $\phi_{i}(X)(i=1,2, \cdots, r)$ is an irreducible polynomial of degree m. If we have $\phi_{1}(\theta)=0$, then L is the minimal splitting field of $\phi_{1}(X)$ over F. If we denote the minimal splitting fields of $\phi_{i}(X)(i=2,3, \cdots, r)$ by L_{i} respectively, then each L_{i} is a Galois extension of degree m over F, and it is the conjugate of L over k.

Now, let M be the minimal splitting field of $f(X)$ over k, then M is Galois over k, and we have $L \subset M \subset K$. Hence, it is clear that $u=[M: L]$ is a divisor of n. But, on the other hand, we have $M=L L_{2} \cdots L_{r}$, and if $m=q_{1}^{e_{1}} q_{2}^{e_{2}}$ $\cdots q_{s}^{e_{s}}$ is the prime factorization of m, then u must have the prime factorization as $u=q_{1}^{t_{1}} q_{2}^{t_{2}} \cdots q_{s}^{t_{s}}\left(t_{j} \geqq 0\right)$. Hence, in our case we have $(u, n)=1$, and consequently $u=1$. Now it is obvious that we have $L=M$.

Lemma 3. Let k, F and K be three algebraic number fields of finite degree such as $k \subset F \subset K$. Assume that F and K are both Galois over k. Let \bar{H} and \bar{Z} be two subgroups of the Galois group $G(K / F)$ such that we have $G(K / F)=$ $\bar{H} \times \bar{Z}$ (direct product). If the orders of \bar{H} and \bar{Z} are relatively prime to each other, then the subfield L of K corresponding to \bar{H} is Galois over k.

Proof. For any $\sigma \in G(K / k)$ and for any $\tau \in \bar{H}$ we have $\sigma^{-1} \tau \sigma \in \bar{H}$ because τ and $\sigma^{-1} \tau \sigma$ have the same orders. Hence, \bar{H} is a normal subgroup of $G(K / k)$, and this means immediately the holding of our assertion.

§3. The proof of main theorem.

PROOF OF THEOREM 1. Since K is Galois over k and Ω_{K} is the absolute class field of K, it is obvious that Ω_{K} is a Galois extension of k. If we denote the class numbers of K and k by h_{K} and h_{k} respectively, then h_{K} is divisible by h_{k} because we have clearly $K \cap \Omega_{k}=k$ by our assumption for the Galois group $G(K / k)$.

Now, it is evident that the order p^{n} of \bar{H} is equal to $h_{K, p} / h_{k, p}$. If we put $N=K \Omega_{k}$, and if we denote the p Sylow complement of $G\left(\Omega_{K} / N\right)$ by \bar{Z}, then it is easily verified that \bar{H} and \bar{Z} satisfy the assumption of Lemma 3 when we apply it to three fields k, N and Ω_{K}. Hence, the subfield F of Ω_{K} which corresponds to \bar{Z} is Galois over k, and we have $[F: N]=p^{n}$. Furthermore, it is evident that the Galois group $G(F / N)$ is isomorphic to \bar{H}.

Now, as to the rank r of \bar{H} we assume that we have either $r=1$ or

$$
\left(p^{r}-1\right)\left(p^{r-1}-1\right) \cdots(p-1) \not \equiv 0 \quad(\bmod m) .
$$

Then, from Lemma 1 there exists the subfield L of F such that we have $N L$ $=F, N \cap L=\Omega_{k}$ and L is Galois over Ω_{k}. Next, as we have $[F: L]=\left[N: \Omega_{k}\right]$
$=m$ and $\left[L: \Omega_{k}\right]=[F: N]=p^{n}$, applying Lemma 2 to four fields k, Ω_{k}, L and F, it is easily verified that L is Galois over k. Moreover, as the Galois group $G(F / L)$ is isomorphic to $G(K / k)$, it follows at once that we have $K \cap L=k$ and $K L=F$. Hence, the Galois group $G(L / k)$ is abelian as well as $G(F / K)$ because they are isomorphic to each other.

On the other hand, since F is unramified over N and we have $\left(m, p^{n}\right)=1$ by our assumptions, it follows easily that the ramification index of any ramified prime divisor in F / Ω_{k} is prime to p^{n}. This means immediately that L is unramified over Ω_{k}. Hence, L must be an unramified abelian extension of k. Now, since Ω_{k} is the maximal unramified abelian extension of k, we must have $L \subset \Omega_{k}$. But this is a contradiction to $\left[L: \Omega_{k}\right]=p^{n}(>1)$.

Thus, our theorem is proved completely.
Q.E.D.

Now, for the relative class numbers, we have immediately the following theorem. Namely :

THEOREM 2. Let k be an algebraic number field of finite degree. Let K be a Galois extension of degree m over k such that the Galois group $G(K / k)$ is non-abelian and simple. Let p be any rational prime number prime to m, and let r be the minimal natural number such as $r>1$ and

$$
\left(p^{r}-1\right)\left(p^{r-1}-1\right) \cdots(p-1) \equiv 0 \quad(\bmod m) .
$$

Denote the class numbers of K and k by h_{K} and h_{k} respectively. If $d=h_{K} / h_{k}$ is divisible by p, then d is divisible by p^{r}.

Moreover, the following theorem will be easily verified by making use of Theorem 1.

THEOREM 3. Let k be an algebraic number field of finite degree. Let K be a Galois extension of degree m over k such that the Galois group $G(K / k)$ is non-abelian and simple. Let p be any rational prime number prime to m. Denote the ranks of p-class groups of K and k by $r_{K, p}$ and $r_{k, p}$ respectively. Let $q_{1}, q_{2}, \cdots, q_{s}$ be all the different prime factors of m, and for $i=1,2, \cdots, s$, let f_{i} be the order of the residue class $p \bmod q_{i}$. If $h_{K, p} / h_{k, p}$ is divisible by p, then we have

$$
\max \left(2, f_{1}, f_{2}, \cdots, f_{s}\right) \leqq r_{K, p}-r_{k, p}
$$

Proof. Let Ω_{K} and Ω_{k} be the absolute class fields of K and k respectively. Let \bar{H} be the p-Sylow subgroup of $G\left(\Omega_{K} / K \Omega_{k}\right)$, and we denote the rank of \bar{H} by r. Then, as p is prime to m, it is easily verified from Theorem 1 that we have

$$
\max \left(2, f_{1}, f_{2}, \cdots, f_{s}\right) \leqq r
$$

Now, let $C_{K, p}$ and $C_{k, p}$ be the p-class groups of K and k respectively. Let A_{K} be the ambiguous ideal class group with respect to K / k, and we put $A_{K, p}=A_{K} \cap C_{K, p}$. Then it is known that we have

$$
\left.C_{K, p}=A_{K, p} \times B_{K, p} \quad \text { (direct product }\right)
$$

and $A_{K, p}$ is isomorphic to $C_{k, p}$. (Cf. A. Yokoyama [6]). Hence, it follows from the class field theory that $B_{K, p}$ is isomorphic to \bar{H} and thus we obtain

$$
r_{K, p}=r+r_{k, p}
$$

Finally, as to the relative class numbers of the intermediate fields, we have the following theorem. Namely:

THEOREM 4. Let k be an algebraic number field of finite degree. Let K be a Galois extension of degree m over k such that the Galois group $G(K / k)$ is non-abelian and simple. Let F be a proper intermediate field between k and K. Let p be any rational prime number prime to m. If $h_{K, p} / h_{k, p}$ is divisible by p, then $h_{K, p} / h_{F, p}$ is divisible by p too.

Proof. Let Ω_{K} and Ω_{k} be the absolute class fields of K and k respectively. Let M be the subfield of Ω_{K} such that the Galois group $G\left(\Omega_{K} / M\right)$ is the p-Sylow complement of $G\left(\Omega_{K} / K \Omega_{k}\right)$. Then, M is Galois over k from Lemma 3 , and the Galois group $\bar{H}=G\left(M / K \Omega_{k}\right)$ is a p-group of order p^{n} with $n>1$ by our assumption and Theorem 1. Moreover, since we have $\left[K \Omega_{k}: \Omega_{k}\right]=m$ and $(m, p)=1$, if we apply the Schur's theorem as to the extension of group to $G\left(M / \Omega_{k}\right), G\left(K \Omega_{k} / \Omega_{k}\right)$ and \bar{H}, then we have the decomposition as following :

$$
G\left(M / \Omega_{k}\right)=\bar{H} \bar{Z} .
$$

Here, it is obvious that \bar{Z} is isomorphic to $G\left(K \Omega_{k} / \Omega_{k}\right)$. If we denote by L the intermediate field between Ω_{k} and M corresponding to \bar{Z} by the Galois theory, then we have clearly $L \cdot K \Omega_{k}=M$ and $L \cap K \Omega_{k}=\Omega_{k}$. Furthermore, it follows that L is not Galois over Ω_{k}. Because, if we assume otherwise, then it follows from Lemma 2 that L is Galois over k and the Galois group $G(L / k)$, which is isomorphic to $G(M / K)$, is an abelian group. Since M is unramified over $K \Omega_{k}$ and we have $\left(m, p^{n}\right)=1$ by our assumptions, it is easily verified that L is unramified over Ω_{k}. Hence, it follows clearly that L is an unramified abelian extension of k and we must have $L \subset \Omega_{k}$ by the definition of Ω_{k}. But it is a contradiction to $\left[L: \Omega_{k}\right]=p^{n}$. Therefore, if we put $L=$ $\Omega_{k}(\theta)$ and if we denote by $f(X)$ the minimal polynomial of θ over Ω_{k}, then M must be the minimal splitting field of $f(X)$ over Ω_{k} because \bar{Z} is nonabelian and simple. On the other hand, it is easily verified that $f(X)$ is irreducible in $K \Omega_{k}[X]$ and we have $M=K \Omega_{k}(\theta)$.

Finally, let Ω_{F} be the absolute class field of F. As we have $F \cap \Omega_{k}=k$, it is obvious that we have $\Omega_{k} \subset \Omega_{F}$. Now, if we assume that $h_{K, p} / h_{F, p}$ is not divisible by p, then we have $h_{K, p}=h_{F, p}$ and as ($[K: F], p$) $=1$ in our case it follows at once that the p-class groups of K and F are isomorphic to each other. Moreover, if we denote by N the field which corresponds to the p-Sylow
complement of $G\left(\Omega_{F} / F \Omega_{k}\right)$, then the Galois group $G\left(N / F \Omega_{k}\right)$ is isomorphic to \bar{H} and we have $N \cdot K \Omega_{k}=M$ and $N \cap K \Omega_{k}=F \Omega_{k}$ clearly. Therefore, since $f(X)$ is a polynomial in $F \Omega_{k}[X]$, it is easily verified that by taking a suitable root θ^{\prime} of $f(X)$ we have $N=F \Omega_{k}\left(\theta^{\prime}\right)$. As N is Galois over $F \Omega_{k}$ and $f(X)$ is irreducible in $F \Omega_{k}[X], N$ must be the splitting field of $f(X)$ and hence we must have $M \subset N$. But this is impossible because we have $[M: N]=[K: F]$ >1 by our assumption.

Thus, our theorem is proved completely.

Meijō University

References

[1] M. Ishida, Class numbers of algebraic number fields of Eisenstein type, J. of Number Theory, 2 (1970), 404-413.
[2] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 257-258.
[3] H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J., 29 (1967), 31-44.
[4] H. Yokoi, On the divisibility of the class number in an algebraic number field, J. Math. Soc. Japan, 20 (1968), 411-418.
[5] A. Yokoyama, On class numbers of finite algebraic number fields, Tôhoku Math. J., (2) 17 (1965), 349-357.
[6] A. Yokoyama, Über die Relativklassenzahl eines relative Galoisschen Zahlkörpers von Primzahlpotenzgrad, Tôhoku Math. J., (3) 18 (1966), 318-324.
[7] A. Yokoyama, On the relative class number of finite algebraic number fields, J. Math. Soc. Japan, 19 (1967), 179-185.
[8] H. Zassenhaus, Lehrbuch der Gruppentheorie 1, Leipzig, 1937.

