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Abstract

Two natural classes of counting problems that are interreducible under
approximation-preserving reductions are: (i) those that admit a partic-
ular kind of efficient approximation algorithm known as an “FPRAS)”
and (ii) those that are complete for #P with respect to approximation-
preserving reducibility. We describe and investigate not only these two
classes but also a third class, of intermediate complexity, that is not known
to be identical to (i) or (ii). The third class can be characterised as the
hardest problems in a logically defined subclass of #P.
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1 The setting

Not a great deal is known about the complexity of obtaining approximate so-
lutions to counting problems. A few problems are known to admit an efficient
approximation algorithm or “FPRAS” (definition below). Some others are
known not to admit an FPRAS under some reasonable complexity-theoretic
assumptions. In light of the scarcity of absolute results, we propose to examine
the relative complexity of approximate counting problems through the medium
of approximation-preserving reducibility. Through this process, a provisional
landscape of approximate counting problems begins to emerge. Aside from the
expected classes of interreducible problems that are “easiest” and “hardest”
within the counting complexity class #P, we identify an interesting class of
natural interreducible problems of apparently intermediate complexity.

A randomised approximation scheme (RAS) for a function f : ¥* — Nis a
probabilistic Turing machine' (TM) that takes as input a pair (z,¢) € X*x(0,1)
and produces as output an integer random variable Y satisfying the condition
Pr(e™® < Y/f(z) < ef) > 3/4. A randomised approximation scheme is said
to be fully polynomial if it runs in time poly(|]z|,e!). The unwieldy phrase
“fully polynomial randomised approximation scheme” is usually abbreviated to
FPRAS.

Suppose f,g : X* — N are functions whose complexity (of approximation)
we want to compare. An approximation-preserving reduction from f to g is a
probabilistic oracle TM M that takes as input a pair (z,¢) € X* x (0,1), and
satisfies the following three conditions: (i) every oracle call made by M is of
the form (w,d), where w € X* is an instance of g, and 0 < § < 1 is an error
bound satisfying 6~! < poly(|z|,e~'); (ii) the TM M meets the specification for
being a randomised approximation scheme for f whenever the oracle meets the
specification for being a randomised approximation scheme for g; and (iii) the
run-time of M is polynomial in |z| and e~!. If an approximation-preserving
reduction from f to g exists we write f <ap g, and say that f is AP-reducible
to g. If f <ap g and g <ap f then we say that f and g are AP-interreducible,
and write f =ap g.

In arriving at a precise definition of AP-reducibility a number of issues had
to be resolved. Should the reduction be determinisitic or randomised? Should
it be Turing or many-one/Karp? Should ¢ enter explicitly into the time bound
for the reduction? As a general principle, we have always chosen the most
liberal option, i.e., the one leading to the largest class of reductions.? However,
we shall only rarely make use of the full generality our definition, prefering in
the main to work within a more restricted class of reductions.

Two counting problems play a special role in this article.

Name. #SAT.

Instance. A Boolean formula ¢ in conjunctive normal form (CNF).

LAll our Turing machines will be transducers, i.e., equipped with a write-only output tape.
In what follows, we shall not mention this fact explicitly.

2At the other extreme, Saluja, Subrahmanyam and Thakur [15] propose a very demanding
notion of approximation-preserving reduction, which is probably not suitable for our purposes.



Output. The number of satisfying assignments to .

Name. #BIS.
Instance. A bipartite graph B.
Output. The number of independent sets in B.

The problem #SAT is the counting version of the familiar decision problem SAT,
so its special role is not surprising. The (apparent) significance of #BIS will
only emerge from an extended empirical study using the tool of approximation-
preserving reducibility. This is not the first time the problem #BIS has ap-
peared in the literature. Provan and Ball show it to be #P-complete [13], while
(in the guise of “2BPMONDNEF”) Roth raises, at least implicitly, the question
of its approximability [14].

Three classes of AP-interreducible problems are studied in this paper. The
first is the class of counting problems (functions X* — N) that admit an
FPRAS. These are trivially AP-interreducible, since all the work can be em-
bedded into the reduction (which declines to use the oracle). The second is
the class of counting problems AP-interreducible with #SAT. As we shall
see, these include the “hardest to approximate” counting problems within the
class #P. The third is the class of counting problems AP-interreducible with
#BIS. These problems are naturally AP-reducible to functions in #SAT, but we
have been unable to demonstrate the converse relation. Moreover, no function
AP-interreducible with #BIS is known to admit an FPRAS. Since a num-
ber of natural and reasonably diverse counting problems are AP-interreducible
with #BIS, it remains a distinct possibility that the complexity of this class
of problems in some sense lies strictly between the class of problems admitting
an FPRAS and #SAT. Perhaps significantly, #BIS and its relatives can be
characterised as the hardest to approximate problems within a logically defined
subclass of #P that we name #RHII;.

2 Problems that admit an FPRAS

A very few non-trivial combinatorial structures may be counted ezactly using a
polynomial-time deterministic algorithm; a fortiori, they may be counted using
an FPRAS. The two key examples are spanning trees in a graph (Kirchhoff),
and perfect matchings in a planar graph (Kasteleyn). Intriguingly, both of these
algorithms rely on a reduction to a determinant, which may be computed in
polynomial time by Gaussian elimination. Details of both algorithms may be
found in Kasteleyn’s survey article [12].

There are some additional specimens that are more interesting in the context
of this article: problems that admit an FPRAS despite being complete (with
respect to usual Turing reducibility) in #P. These are more common than
exactly solvable counting problems, but still not numerous. Two representative
examples are:



Name. #MATCH.
Instance. A graph G.3
Output. The number of matchings (of all sizes) in G.

Name. #DNF-SAT.
Instance. A Boolean formula ¢ in disjunctive normal form (DNF).

Output. The number of satisfying assignments to .

#MATCH may be approximated in the FPRAS sense by “Markov chain
Monte Carlo” (Jerrum and Sinclair [8]), and #DNF-SAT by a more direct
sampling technique (Karp, Luby and Madras [11]).

3 Problems AP-interreducible with #Sat

Suppose f,g : X* = N. A parsimonious reduction (Simon [16]) from f to g is
a function g : X* — X* satisfying (i) f(w) = g(o(w)) for all w € X*, and (ii) o
is computable by a polynomial-time deterministic Turing transducer. In the
context of counting problems, parsimonious reductions “preserve the number
of solutions.” The generic reductions used in the usual proofs of Cook’s theorem
are parsimonious, i.e., the number of satisfying assignments of the constructed
formula is equal to the number of accepting computations of the given Turing
machine/input pair. Since a parsimonious reduction is a very special instance
of an approximation-preserving reduction, we see that all problems in #P are
AP-reducible to #SAT. Thus #SAT is complete for #P w.r.t. (with respect
to) AP-reducibility. The same is obviously true of any problem in #P to which
#SAT is AP-reducible.

Let A : X* — {0,1} be some decision problem in NP. One way of ex-
pressing membership of A in NP is to assert the existence of a polynomial p
and a polynomial-time computable predicate R (witness-checking predicate)
satisfying the following condition: A(z) iff there is a word y € X* such that
ly| = p(|z|) and R(z,y). The counting problem, #A : ¥* — N, corresponding
to A is defined by

#A(z) = | {y | lyl = p(|z|) and R(z,y)} |-

Formally, the counting version #A of A depends on the witness-checking pred-
icate R and not just on A itself; however, there is usually a “natural” choice
for R, so our notation should not confuse. Note that our notation for #SAT
and SAT is consistent with the convention just established, where we take “y is
a satisfying assignment to formula z” as the witness-checking predicate.

Many “natural” NP-complete problems A have been considered, and in
every case the corresponding counting problem #A is complete for #P with
respect to (conventional) polynomial-time Turing reducibility. No counterex-
amples to this phenomenon are known, so it remains a possibility that this

®Note that the graph G is no longer restricted to be planar.



empirically observed relationship is actually a theorem. If so, we seem to be
far from proving it or providing a counterexample. Strangely enough, the cor-
responding statement for AP-reducibility is a theorem.

Theorem 1 Let A be an NP-complete decision problem. Then the correspond-
ing counting problem, #A, is complete for #P w.r.t. AP-reducibility.

Proof. That #A € #P is immediate. The fact that #SAT is AP-reducible to
#A is more subtle. Using the bisection technique of Valiant and Vazirani, we
know [20, Cor. 3.6] that #SAT can be approximated (in the FPRAS sense) by
a polynomial-time probabilistic TM M equipped with an oracle for the decision
problem SAT.* Furthermore, the decision oracle for SAT may be replaced by
an approximate counting oracle (in the RAS sense) for #A, since A is NP-
complete, and a RAS must, in particular, reliably distinguish none from some.
(Note that the failure probability may be made negligible through repeated tri-
als [10, Lemma 6.1].) Thus the TM M, with only slight modification, meets the
specification for an approximation-preserving reduction from #SAT to #A. We
conclude that the counting version of every NP-complete problem is complete
for #P w.r.t. AP-reducibility. O

The following problem is a useful starting point for reductions.

Name. #LARGEIS.

Instance. A positive integer m and a graph G in which every independent set
has size at most m.

Output. The number of size-m independent sets in G.

Garey et al. [6] have shown that the decision problem corresponding to
#LARGEIS is NP-complete. Therefore, Theorem 1 implies the following:

Observation 2 #LARGEIS =5p #SAT.

Another insight that comes out of the proof of Theorem 1 is that the set of
functions AP-reducible to #SAT has a “structural” characterisation as the class
of functions that may be approximated (in the FPRAS sense) by a polynomial-
time probabilistic Turing transducer equipped with an NP oracle. Informally,
in a complexity-theoretic sense, approximate counting is much easier that exact
counting: the former lies “just above” NP [18], while the latter lies above the
entire polynomial hierarchy [19].

Theorem 1 shows that counting versions of NP-complete problems are all
AP-interreducible. Simon, who introduced the notion of parsimonious reduc-
tion [16], noted that many of these counting problems are in fact parsimoniously
interreducible with #SAT. In other words, many of the problems covered by
Theorem 1 are in fact related by direct reductions, often parsimonious, rather
than just by the rather arcane reductions implicit in that theorem. Since we
are interested in investigating exactly when the full power of AP-reducibility

“Only a sketch of the proof of this fact is presented in [20]; for a detailed proof, consult
Goldreich’s lecture notes [7].



is necessary, we also offer a proof of Observation 2 by direct reduction, in Ap-
pendix A.°

An interesting fact about exact counting, discovered by Valiant, is that a
problem may be complete for #P w.r.t. usual Turing reducibility even though
its associated decision problem is polynomial-time solvable. So it is with ap-
proximate counting. A counting problems may be complete for #P w.r.t. AP-
reducibility when its associated decision problem is not NP-complete, and even
when it is trivial, as in the next example.

Name. #I8S.
Instance. A graph G.
Output. The number of independent sets (of all sizes) in G.

Theorem 3 #IS =ap #SAT.

Proof. We need only demonstrate that #SAT <ap #IS, since the opposite
direction comes from the generic reduction of Cook’s theorem. We’ll actually
show #LARGEIS <ap #IS, which is sufficient by Observation 2. The “boost-
ing” technique we use was presented by Sinclair [17], but is repeated here with
a view to providing a simple, concrete example of an approximation-preserving
reduction.

Let m and G = (V,E) be an instance of #LARGEIS, and set n = |V]|.
Construct an instance G' = (V', E') of #IS as follows:

Vi =V xIr],
and
B = {{(u,i),(v,7)} : {u,0} € Eand i,j € ]},
where r is a sufficiently large number, to be chosen later, and [r] = {0,... ,r—1}

denotes the set containing the first » natural numbers. Informally, vertices in G
are transformed to r-independent sets in G’, and edges to complete bipartite
graphs on r + r vertices.

An independent set I' in G’ projects to an independent set I = 7(I') in G
in the following natural way

I=n(I'y={v €V : there exists i € [r] such that (v,i) € I'}.

Furthermore, every independent set of size k in G arises in exactly (2" — 1)*
ways as a projection of this kind. Thus, denoting by Z,,(G) the set of all size-m
independent sets in G and by Z(G’) the set of all independent sets in G’,

IZ(G)] = (2" = )™ - [Zm (@)

®In Appendix A, we give a parsimonious reduction from #SAT to #LARGEIS. This provides
a (direct) proof of Observation 2. It turns out that Observation 2 remains true even when the
definition of #LARGEIS is modified so that a “witness” is provided along with every problem
instance. In particular, along with m and G, a proper m-vertex-colouring of the complement
of G is provided. The colouring serves as a witness that every independent set of G has size
at most m. The reduction in Appendix A shows how such witnesses can be incorporated into
the constructed problem instance.



On the other hand, at most (2" — 1)™~! independent sets I’ in G’ project to
each independent set I = m(I') in G of size strictly less than m. Thus

IZ(G)] < 2" =)™+ [Zn(G)] + (2" — 1) 12"

It follows from the two inequalities that

IZ(G")] J 7

Z.m(G) = \‘
provided we choose r > n + 1. Thus we have constructed an AP-reduction
from #LARGEIS to #IS: use an oracle for #IS to approximate |Z(G")]|, divide
by (2" — 1)™, and round to the nearest integer. (The reduction is of a rather
degenerate form, with one oracle call and no use of randomisation.)

As this is the first concrete example of an approximation-preserving re-
duction, we add some technical details concerning the choice of the accuracy
parameter ¢ in the definition of reduction. If it were not for the floor function
in (1), we could simply set § = ¢, since division by a constant preserves relative
error. The discontinuous floor function could spoil the approximation when its
argument is small. However, we shall only apply the floor function in situations
where its argument is in the range (say) [N, N + 1/4] for some integer N. This
avoids technical problems, as we now see.

Suppose more generally that the true result NV is obtained by rounding a
fraction () with |Q N| < 1/4. Suppose further that the oracle provides an
approximation Q to Q satisfying Qe™° < Q < Qé? (as it is required to do with
probability at least 3/4). Set § = £/21, where ¢ is the accuracy parameter
governing the final result. There are two cases. If N < 2/e, then a short
calculation yields |C§ — @] < 1/4 implying that the result returned is exact. If
N > 2/e, then the result returned is in the range [(N — 1/4)e % — 1/2, (N +
1/4)e? 4 1/2] which, for the chosen d, is contained in [Ne™¢, Nef]. O

Other counting problems can be shown to be complete for #P w.r.t. AP-
reducibility using similar “boosting reductions.” There is a paucity of examples
that are complete for some more “interesting” reason. One result that might
qualify is the following:

Theorem 4 #IS remains complete for #P w.r.t. AP-reducibility even when
restricted to graphs of mazimum degree 25.

Proof. This follows from a result of Dyer, Frieze and Jerrum [3], though rather
indirectly. In the proof of Theorem 2 of [3] it is demonstrated that an FPRAS for
bounded-degree #IS could be used (as an oracle) to provide a polynomial-time
randomised algorithm for an NP-complete problem, such as the decision version
of satisfiability. Then #SAT <ap #IS follows, as before, via the bisection
technique of Valiant and Vazirani. O

Let H be any fixed, g-vertex graph, possibly with loops. An H -colouring of
a graph G is simply a homomorphism from G to H. If we regard the vertices
of H as representing colours, then a homomorphism from G to H induces a



g-colouring of G that respects the structure of H: two colours may be adjacent
in G only if the corresponding vertices are adjacent in H. Some examples:
K j-colourings, where K is the complete g-vertex graph, are simply the usual
(proper) g-colourings; KJ-colourings, where KJ is Ko with one loop added, are
independent sets; and S;-colourings, where Sj is the g-leaf star with loops on
all g+ 1 vertices, are configurations in the “g-particle Widom-Rowlinson model”
from statistical physics.

Name. #q-PARTICLE-W R-CONFIGS.
Instance. A graph G.

Output. The number of g-particle Widom-Rowlinson configurations in G, i.e.,
S;-colourings of G, where S; denotes the g-leaf star with loops on all ¢+1
vertices.

We will return to the problem of counting Widom-Rowlinson configurations
later in the paper. In particular, we will show (in §4) that #2-PARTICLE-
WR-CONFIGS is AP-interreducible with #BIS and (in §6) that #3-PARTICLE-
WR-CONFIGS is at least as hard as #BIS in the sense that #BIS <ap
#3-PARTICLE-WR-CONFIGS. We will also show (in §7) that for ¢ > 4, #q-
PARTICLE-WR-CONFIGS is AP-interreducible with #SAT.

Aside from containing many problems of interest, H-colourings provide an
excellent setting for testing our understanding of the complexity landscape of
(exact and approximate) counting. To initiate this programme we considered
all 10 possible 3-vertex connected Hs (up to symmetry, and allowing loops).
The complexity of exactly counting H-colourings was completely resolved by
Dyer and Greenhill [4]. Aside from H = Kj; (the complete graph with loops
on all three vertices) and H = Kjo = P3 (P, will be used to denote the
path of length n — 1 on n vertices), which are trivially solvable, the problem
of counting H-colourings for connected three-vertex Hs is #P-complete. Of
the eight Hs for which exact counting is #P-complete, seven can be shown
to be complete for #P w.r.t. AP-reducibility using reductions very similar to
those appearing elsewhere in this article. The remaining possibility for H is
S5 (i.e, 2-particle Widom-Rowlinson configurations) which we return to in the
next section. Other complete problems could be mentioned here but we prefer
to press on to a potentially more interesting class of counting problems.

4 Problems AP-interreducible with #BIS

The reduction described in the proof of Theorem 3 does not provide useful
information about #BIS, since we do not have any evidence that the restriction
of #LARGEIS to bipartite graphs is complete for #P w.r.t. AP-reducibility.
The fact that #BIS is interreducible with a number of other problems not

5Note that this statement does not contradict the general principle, enunciated in §3, that
counting-analogues of NP-complete decision problems are complete w.r.t. AP-reducibility,
since a maximum cardinality independent set can be located in a bipartite graph using network
flow.



known to be complete (or to admit an FPRAS) prompts us to study #BIS and
its relatives in some detail. The following list provides examples of problems
AP-interreducible with #BIS; more will be added later.

Name. #P4-COL.
Instance. A graph G.
QOutput. The number of Pj-colourings of G, where Py is the path of length 3.

Name. #DOWNSETS.
Instance. A partially ordered set (X, <).
Output. The number of downsets in (X, <).

Name. #1P1INSAT.

Instance. A Boolean formula ¢ in conjunctive normal form (CNF), with at
most one unnegated literal per clause, and at most one negated literal.

Output. The number of satisfying assignments to .

Name. #BEACHCONFIGS.
Instance. A graph G.

Output. The number of “Beach configurations” in G, i.e., P;-colourings of G,
where PJ denotes the path of length 3 with loops on all four vertices.

Note that an instance of #1PINSAT is a conjunction of Horn clauses, each
having one of the restricted forms = = y, -z, or y, where # and y are variables.

Theorem 5 The problems #BIS, #P4;-CoL, #2-PARTICLE-WR-CONFIGS,
#BEACHCONFIGS, #DOWNSETS and #1PINSAT are all AP-interreducible.

Proof. The problems #BIS and # P;-COL are essentially the same. A graph G
is Py-colourable iff it is bipartite, in which case two of the colours (the end
ones) point out an independent set. Conversely, each independent set in a
connected bipartite graph G arises from one of two distinct P, colourings in
this manner.” The correspondence between independent sets and P;-colourings
(trivially) constitutes a matching pair of approximation-preserving reductions
between the two problems.

The problems #DOWNSETS and #1PINSAT are also very close; indeed,
#DOWNSETS is a restricted version of #1PINSAT in which (a) all clauses have
two literals, i.e., are of the form z = y, and (b) there are no cyclic chains of
implications zg = z; = -+ = zy_1 = x¢. But, given an arbitrary instance
of #1PINSAT, any forced variables as in (a) may be removed by substituting
FALSE or TRUE and then simplifying; and any set of ¢ variables forming a

"The symmetry of P4 allows a renaming of colours; in general, the correspondence between
colourings and independent sets is 2% : 1, where & is the number of connected components
of G.



cyclic chain as in (b) may be replaced by a single variable. So #DOWNSETS
and #1P1INSAT are certainly AP-interreducible.

AP-interreducibility of all the problems other than # P;-CoOL and # 1P1NSAT
follows from the cycle of reductions

#BIS <ap #2-PARTICLE-WR-CONFIGS
<ap #BEACHCONFIGS
<ap #DOWNSETS
<ap #BIS

which are presented in Lemmas 6, 7, 8 and 9. ]

Lemma 6 #BIS <pap #2-PARTICLE-WR-CONFIGS.

Proof. Suppose B = (X,Y,A) is an instance of #BIS, where A C X x Y.
For convenience, X = {zg,... ,2p—1} and Y = {yo,... ,yn—1}. Construct an
instance G = (V, E) of #2-PARTICLE-WR-CONFIGS as follows. Let U; : 0 <
1 <n—1and K all be disjoint sets of size 3n. Then define

V = U UZ'U{UO,... ,vn_l}UK
i€[n]
and
E = U UZ(Q) U ({1)0,... ,'Un—l} X K) UK®uy U{Ul X {Uj} : (:vi,yj) € A},
i€[n]

where UZ.(2), etc., denotes the set of all unordered pairs of elements from U;. So
U; and K all induce cliques in G, and all v; are connected to all of K. Let the
Widom-Rowlinson (W-R) colours be red, white and green, where white is the
centre colour. Say that a W-R configuration (colouring) is full if all the sets
Up, ... ,Up—1 and K are bichromatic. (Note that each set is either monochro-
matic, or bichromatic red/white or green/white.) We shall see presently that
full W-R configurations account for all but a vanishing fraction of the set of all
W-R configurations.

Consider a full W-R configuration C' : V' — {red, white, green} of G. As-
sume C(K) = {red, white}; the other possibility, with green replacing red is
symmetric. Every full colouring in G may be interpreted as an independent set
in B as follows:

I={z;:green € C(U;)} U {y;: C(vj) =red}.

Moreover, every independent set in B can be obtained in this way from exactly
(237 — 2)7*1 full W-R configurations of G satisfying the condition C(K) =
{red, white}. So

IW'(G)| = 2(2°" - 2)"* - |T(B)],

where W'(G) denotes the set of full W-R configurations of G, and the factor of
two comes from symmetry between red and green.



Crude counting estimates provide
IW(G) \W'(G)] < 3(n+1)(2-2°)"3",
where W(G) denotes the set of all W-R, configurations of G. Since

3(n +1)(2-237)"3"
2(23n _ 2)n+1

<1
4

for n sufficiently large (actually n > 17) we have

IW(G)|
and the result follows as in the proof of Theorem 3 O

Lemma 7 #2-PARTICLE-WR-CONFIGS <ap #BEACHCONFIGS.

Proof. Let G = (V, E) be an instance of #2-PARTICLE-WR-CONFIGS, with
|V| = n. Construct an instance G’ = (V', E') of #BEACHCONFIGS as follows:

V' =V u{s}ulr],
and
E'=EU((V x {s})U({s} x[r]),

where r is a sufficiently large number, to be chosen later. There are four possible
colours that can be applied to the vertex s, but only two distinct ones, up to
symmetry. If one of the “end” colours is used to colour s, then all the other
vertices must receive one of two colours, and any assignment of the two colours
is permissible; thus there are 2" ways to complete the colouring of G'. If
one of the “middle” colours is used to colour s, then the induced colouring
on V is a W-R configuration, and the remaining r vertices may be tricoloured.
Combining these counts,

B(G)| =2-3"- [W(G)| +2- 27,

where B(G') denotes the set of all beach configurations of G’. Hence
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provided r is large enough. In fact r = 2n will do, as then 2"%" /3" = (8/9)",
which is less than 1/4 when n > 12. O

Lemma 8 #BEACHCONFIGS <pAp #DOWNSETS.

Proof. Let G = (V, E) be an instance of #BEACHCONFIGS, with |[V| =n. We
construct, as an instance of #DOWNSETS, a partial order on the 3n-element set
V' x[3]. For each vertex v, we impose the relationships (v,0) < (v,1) < (v, 2); for
each edge (u,v), the relationships (v,0) < (u,1), (v,1) < (u,2), (u,0) < (v,1)
and (u, 1) < (v,2). Given a downset D and a vertex v, there are four possibilities
for the set D N {(v,0),(v,1),(v,2)}: these are the four colours of a Beach
configuration. So there is a 1-1 correspondence between Beach configurations
in G and downsets in (V' x [3], <). O

10



Lemma 9 #DOWNSETS <ap #BIS.

Proof. Let (X, <) be an instance of #DOWNSETS. For convenience, identify X
with [n]. Define a bipartite graph B = (U, V, E) as follows. Let {U;,V; :i € X}
be a collection of disjoint sets with |U;| = |V;| = 2n. Then define U = (J;. x Us,
V' =Uiex Vi> and

E={(u,v):ueUAveEV;ANi=<j}.

(Note that equality is allowed between i and j, so that U;UV; induces a complete
bipartite graph on 2n + 2n vertices.) Call an independent set I € Z(B) full iff
IN(U;UV;) #0 for all i € X. Denote by Z'(B) the set of all full independent
sets in B, and by D(X, <) the set of all downsets in the partial order (X, <).
Every full independent set I € Z'(B) corresponds to a downset D = {i € X :
INV; # (0}, and every downset D € D(X, <) arises from exactly (22" —1)" full
independent sets I in this way; thus

IZ'(B)| = (2*" = )" - [D(X, 2)].
By a crude estimation of non-full independent sets,

IZ(B)\T'(B)| <3"(2*" —1)" 1.
Since

3n(22n _ 1)n71

(22n _ ]_)n <

A~ =

(at least for n > 5),

P06, = | o |

and the result follows as in the proof of Theorem 3 U

#2-PARTICLE- WR-CONFIGS and #BEACHCONFIGS are in fact the first two
examples in an infinite sequence of #BIS-equivalent problems. Consider the
following sequence of counting problems, parameterised by a positive integer
parameter q:

Name. #P;-CoL.
Instance. A graph G.
Output. The number of P;-colourings of G, where Py is the path of length ¢ —1

with loops on all ¢ vertices.

Observe that #2-PARTICLE-W R-CONFIGS and #BEACHCONFIGS are the
special cases ¢ = 3 and ¢ = 4, respectively. The reductions presented in the
proofs of Lemmas 7 and 8 easily generalise to higher g so we immediately obtain.

Theorem 10 #P;-CoL =xp #BIS, for all ¢ > 3.

Clearly, the case ¢ = 2 is trivially solvable.

11



5 A logical characterisation of #BIS and its relatives

Saluja, Subrahmanyam and Thakur [15] have presented a logical characterisa-
tion of the class #P (and of some of its subclasses), much in the spirit of Fagin’s
logical characterisation of NP [5]. In their framework, a counting problem is
identified with a sentence ¢ in first-order logic, and the objects being counted
with models of ¢. By placing a syntactic restriction on ¢, it is possible to iden-
tify a subclass #RHII; of #P whose complete problems include all the ones
mentioned in Theorem 5.

We follow as closely as possible the notation and terminology of [15], and
direct the reader to that article for further information and clarification. A

vocabulary is a finite set o = {ﬁo,... ,ﬁk_l} of relation symbols of arities
705+ sTk_1. A structure A = (A, Ry, ... ,R;_1) over o consists of a universe
(set of objects) A, and relations Ry,...,Ry_1 of arities rg,... ,rp_1 on A;

naturally, each relation R; C A" is an interpretation of the corresponding
relation symbol R’i_s We deal exclusively with ordered finite structures; i.e., the
size |A| of the universe is finite, and there is an extra binary relation that is
interpreted as a total order on the universe. Instead of representing an instance
of a counting problem as a word over some alphabet Y, we represent it as a
structure A over a suitable vocabulary o. For example, an instance of #IS is a
graph, which can be regarded as a structure A = (A, ~), where A is the vertex
set and ~ is the (symmetric) binary relation of adjacency.

The objects to be counted are represented as sequences T = (T, ... ,T,—1)
and z = (29,... ,2m—1) of (respectively) relations and first-order variables. We
say that a counting problem f (a function from structures over o to numbers)
is in the class #F O if it can be expressed as

f(A) = |{(T,2) : A |= ¢(2,T)}|,

where ¢ is a first-order formula with relation symbols from o U T and (free)
variables from z. For example, by encoding an independent set as a unary
relation I, we may express #IS quite simply as

fis(A) = ‘{I Vo, y. o~y = —I(z) \/—J(y)}‘.

Indeed, #IS is in the subclass #11; C #FO (so named by Saluja et al.), since
the formula defining fis contains only universal quantification. Saluja et al. [15]
exhibit a strict hierarchy of subclasses

#Xo = #llp C #X1 C #II) C #Xg C #llo = #FO = #P

based on quantifier alternation depth. Among other things, they demonstrate
that all functions in #¥; admit an FPRAS.?

8We have emphasised here the distinction between a relation symbol R; and its interpreta-
tion R;. From now on, however, we simplify notation by referring to both as R;. The meaning
should be clear from the context.

°The class #X; is far from capturing all functions admitting an FPRAS. For example,
#DNF-SAT admits an FPRAS even though it lies in #X, \ #II; [15].

12



All the problems introduced in §4, in particular those mentioned in Theo-
rem 5, lie in a syntactically restricted subclass #RHII; C #II; to be defined
presently. Furthermore, they characterise #RHII; in the sense of being com-
plete for #RHII; with respect to AP-reducibility (and even, as we shall see,
with respect to a much more demanding notion of reducibility). We say that a
counting problem f is in the class #RHII; if it can be expressed in the form

f(A) =[{(T,2): A = Vy.¢(y.2 T)}, (2)

where 9 is an unquantified CNF formula in which each clause has at most one
occurrence of an unnegated relation symbol from T, and at most one occurrence
of a negated relation symbol from T. The rationale behind the naming of the
class #RHII; is as follows: “IT;” indicates that only universal quantification is
allowed, and “RH” that the unquantified subformula v is in “restricted Horn”
form. Note that the restriction on clauses of ¢ applies only to terms involving
symbols from T; other terms may be arbitrary.

For example, suppose we represent an instance of #DOWNSETS as a struc-
ture A = (A, <), where < is a binary relation (assumed to be a partial order).
Then #DOWNSETS € #RHII; since the number of downsets in the partially
ordered set (A, <) may be expressed as

fos(A)=|{D:Vz e A,ye A.D(z) Ay 22 = D(y)}|, (3)

where we have represented a downset in an obvious way as a unary relation D
on A. The problem #1P1INSAT is expressed by a formally identical expression,
but with < interpreted as an arbitrary binary relation (representing clauses)
rather than a partial order.'®

The main result of this section is

Theorem 11 #1PINSAT is complete for #RHIIy under parsimonious reducibil-
ity.

Proof. Consider the generic counting problem in #RHIIy, as presented in equa-
tion (2). Suppose T = (T, ... ,Tr-1),y = (Y0,--- ,ye—1) and z = (20, ... , Zm—1),
where (T;) are relations of arity (¢;), and (y;) and (2;) are first-order variables.
Let I, = |Al" and M = |A|™, and let (ng,...,nr—1) and (Co,... ¢ ar—1) be
enumerations of A* and A™. Then

L—1
A EVy. g(y,zT) iff Al A ¢(ng,2T),
q=0
and
M—-1 L—1
fa) =3 {T: A v}, (4)
s=0 q=0

10T be absolutely precise, one also needs two unary relations, U and N say, to code the
one-literal clauses.

13



where 1), s(T) is obtained from (7, (5, T) by replacing every subformula that is
true (resp., false) in A by TRUE (resp., FALSE). Now /\qL;O1 q,(T) is a CNF
formula with propositional variables T;(«;) where a; € A'i. Moreover, there is
at most one occurrence of an unnegated propositional variable in each clause,
and at most one of a negated variable. Thus, expression (4) already provides
an AP-reduction to #1P1INSAT, since f(A) is the sum of the numbers of satis-
fying assignments to M (i.e. polynomially many) instances of #1PINSAT. (To
obtain a precise correspondence we must add, in each instance, trivial clauses
T;(c;) = T;(cy) for every propositional variable T;(«;) not already occurring in
/\qL:_O1 1pq,s(T), otherwise the number of models T' will be underestimated by a
factor 2" where v is the number of unrepresented variables T;(«;).)

The above reduction is not yet parsimonious. To accomplish this, let us
distinguish the variables in the above set of instances of #1PINSAT as T;°(«;)
(s=0,1,... ,M —1). Also, write ¥ = A/Z1 o s(T%) (s =0,1,... ,M —1).
We may assume that @° contains no one-literal clauses, since the truth setting
of any such literal is forced, and the corresponding variable may be set to TRUE
or FALSE. Let wq,wo,... ,wy—_1 be new propositional variables, and suppose
wg = FALSE, wy; = TRUE for the sake of exposition. Let

=N\ N (T'()=we1)  (s=0,1,...,M—2)
1=0 ;€ Ati
r—1
and 5°= N (we =T () (s=1,2,...,M—1),
1=0 ;€ Ati

Observe that ¢ is an instance of #1PINSAT. We claim that it has exactly f(A)
satisfying assignments. To see this note that if, for a given s, some T;°(«;) is
assigned TRUE, then every T;”(«;) must be assigned TRUE for all p > s.
This is forced by the &°, =% formulae. Thus there can only be one s such that
the T;°(«;) receive both truth assignments. This is the unique s such that wy
is assigned FALSE and wg4 is assigned TRUE. Any s =0,1,... ,M — 1 is
possible but, once it is fixed, it is easy to see that ¢ is satisfied if and only if ¥*
is satisfied. The satisfying assignments are clearly disjoint for different s, and
the claim follows. O

Corollary 12 The problems #BIS, #P,-CoL, #FP;-CoL (for ¢ > 3, includ-
ing as special cases #2-PARTICLE-WR-CONFIGS and #BEACHCONFIGS) and
#DOWNSETS are all complete for #RHI1y with respect to A P-reducibility.

Proof (sketch). Hardness is immediate from Theorems 5, 10 and 11. That each
of the problems is in the class #RHII; can be established by constructing
suitable logical formulas along the lines of (3). Suppose we represent an instance

14



of #P;-CoL as a structure A = (A,~) where A is the vertex set and ~ is a
binary relation (assumed to represent adjacency). We can express the number
of P;-colourings as follows, where, for 1 < j < g, the unary relation Cj is “true”
for a vertex iff its colour is in {c1,... ,¢;j}.

fpa(A) = ‘{Cl,... ,Co1: Vo € A,y € A
(Ci(z) = Co(z)) A+ -+ A (Cya(x) = Cyr(z)) A
(Ci(z) A~y = Ca(y)) A+ A(Cyoa(z) A~y = Cymi(y)) }.

We can represent an instance of #BIS as a structure A = (A, L,~), where
A is the vertex set, L is the set of “left” vertices and ~ is a binary relation
(assumed to represent adjacency). We can express the number of independent
sets as follows, where the unary relation X is “true” for left-vertices which are
in the independent set, and for right-vertices which are not in the independent
set.

fris(A) = ‘{X Ve e Ajye A.L(x) Nx ~y A X(x) =>X(y)}‘
O

Clearly, Corollary 12 continues to hold even if “AP-reducibility” is replaced
by a more stringent reducibility. In fact, most of our results remain true for
more stringent reducibilities than AP-reducibility. One such tightening is to “re-
stricted approximation-preserving reduction”. The definition of RA P-reduction
follows closely that of AP-reduction, but the operation of the Turing machine M
is greatly restricted. On input (z,¢), the machine M may make a single oracle
call (w,d) € X¥* x R™, and compute a positive rational ¢ € Q without recourse
to the oracle. Suppose the result from the oracle call is y € N. Then the result
returned by M is the integer closest to qy.

All the results based on ezplicit reductions in this article (not just Theo-
rem 11 and Corollary 12) hold with “RAP-reducibility” replacing “AP-reduc-
ibility.” The results that appeal to the bisection technique of Valiant and Vazi-
rani [20] seem to require a more liberal notion of reducibility.

6 Problems to which #BIS is reducible

There are some problems that we have been unable to place in any of the three
AP-interreducible classes considered in this article even though reductions from
#BIS can be exhibited. The existence of such reductions may be considered
as weak evidence for intractability, at least provisionally while the complexity
status of the class #RHII; is unclear. Two examples are #3-PARTICLE-WR-
ConFIGS (the special case of #¢-PARTICLE-WR-CONFIGS with ¢ = 3) and
#BIPARTITE ¢-COL:

Name. #BIPARTITE ¢g-COL.
Instance. A bipartite graph B.
Output. The number of g-colourings of B.

15



Three observations concerning #BIPARTITE ¢-CoL: (i) the special case
g = 2 is trivially solvable; (ii) the special case ¢ = 3 has an alternative charac-
terisation as counting Cg-colourings of a general graph, where Cg is the cycle
on six vertices; and (iii) #BIPARTITE ¢-COL includes the g-state ferromagnetic
Potts model as a special case. Observation (ii) follows from a similar argument
to that used to relate #BIS and # P;-CoOL in the proof of Theorem 5.

To interpret observation (iii), suppose G is a graph on n vertices, and set
g = 3 (say). The configurations of the 3-state ferromagnetic Potts system based
on G are the 3" possible 3-colourings, not necessarily proper, of the graph G.
Define the weight of a configuration o to be 2%, where m(o) is the number
of edges of G that are monochromatic under the 3-colouring o. Consider the
problem of computing the total weight of configurations: this is a simplified
formulation of the problem of evaluating the partition function of the 3-state
ferromagnetic Potts model at a certain non-zero temperature. The reduction
of this (weighted) counting problem to #BIPARTITE3-COL is accomplished by
mapping G to its “2-stretch,” i.e., the graph G’ obtained from G by subdivid-
ing each edge by a single additional vertex. An antiferromagnetic system is
obtained by giving weight a”(?) to configuration o, where o < 1. Notice that
(usual) graph colouring is obtained in the “zero temperature limit” as o — 0;
notice also that an antiferromagnet (repulsive) Potts system on the bipartite
graph G’ effectively models a ferromagnetic (attractive) Potts system on the
general graph G.

An intermediate problem that features in our reductions is:

Name. #BIPARTITEMAXIS.
Instance. A bipartite graph B.

Output. The number of mazimum independent sets in B.

Theorem 13 #BIS is A P-reducible to all three problems: #BIPARTITEMAXIS,
#3-PARTICLE-WR-CONFIGS and #BIPARTITE ¢-COL.

Proof. Follows from the reductions guaranteed by Lemmas 15, 16 and 17. [

The first of the three problems is actually AP-interreducible with #BIS, as the
following lemma shows:

Lemma 14 #BIPARTITEMAXIS <ap #BIS.
Proof. Since the maximum size, m, of an independent set in a bipartite graph
can be determined in polynomial time, the reduction from the proof of Theo-

rem 3 may be used. O

We now give the lemmas which we use to prove Theorem 13.

Lemma 15 #BIS <ap #BIPARTITEMAXIS.
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Proof. Let G be an instance of #BIS, with vertex set {vg,...,v,-1}. We
construct an instance, G’ of #BIPARTITEMAXIS as follows. The vertices of G’
are {vg,... ,vp—1}U{v),... ,v],_;}. The edges of G’ are the edges of G together
with {(v;,v})}. Now there is a bijection between the independent sets of G and
the maximum independent sets of G’. O

Lemma 16 #BIPARTITEMAXIS <ap #3-PARTICLE-W R-CONFIGS.

Proof. Let B = (X,Y, A) be an instance of #BIPARTITEMAXIS, where X =
{zoy... ,xn—1} and Y = {yo,... ,yn—1}. Let M be the size of a maximum
independent set in B. (Note that M can be determined from B in polynomial
time.) Construct an instance G = (V, E) of #3-PARTICLE-WR-CONFIGS as
follows, where s and ¢ are integers to be chosen below. Let U; : 0 <47 <n—1 be
disjoint sets of size s, and V; : 0 < j < n — 1 be disjoint sets of size s. Further,
let K be a set of size . Then set

v=kKulJUu )V
i€l]  jeln]
and
E=KPUu |Jv;xK) U J{Ui xV;: (z;,9;) € A}.
j€[n]

Thus K is a clique, and there is a complete bipartite graph between U]- 1%
and K. An S3-colouring corresponds to a colouring of G with colours b, 71, 7o
and r3 in which, for p # m, there are no edges between vertices coloured r, and
vertices coloured r;. A colouring is full if, for some p, K has vertices coloured b
and r, (and no other colours). Every full colouring points out an independent
set in B. The vertex y; is in the independent set if V; contains at least one
vertex coloured r,. The vertex z; is in the independent set if U; contains at least
one vertex whose colour is not b or r,. How many times does an independent
set with & u;’s and £ v;’s come up (as a full colouring)?

3(2t _ 2)(45 _ 25)/6(25)71‘716(25 _ 1)[
— 3(2t _ 2)25n(2s _ 1)k+€‘

Let Z = 3(2!—2)25"(25 — 1) Let N denote the number of maximum indepen-
dent sets in B. We will say that a full colouring is M-large if the independent
set that it points out has size M, and M -small otherwise. The number of
M-small full colourings is at most

2nZ
< 78,

2
22n3(2t _ 2)2572(25 _ 1)M—1 <

if s is sufficiently large with respect to n. The number of non-full colourings is
at most 4 - 42", which is at most Z/8 if ¢ is sufficiently large with respect to s
and n. Let Y denote the number of colourings. Then

3]

and the result follows. O
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Lemma 17 For q > 3, #BIPARTITEMAXIS <ap #BIPARTITE ¢-COL.

Proof. Let B = (X,Y, A) be an instance of #BIPARTITEMAXIS, where X =
{zoy... ,xpn—1} and Y = {yo,... ,yn—1}. Let M be the size of a maximum
independent set in B. Construct an instance G = (V, E) of #BIPARTITE ¢-COL
as follows, where r, s and £ are integers to be chosen below. Let U; : 0 <1 < n—1
be disjoint sets of size r, and V; : 0 < ¢ < n—1 be disjoint sets of size s. Further,
let I be a set of size (¢ — 2)¢ and I5 be a set of size 2¢. Let iy be a vertex that
is not in any of these sets. Then set

V="{igpunuLulJUul]JV
i€[n] J€[n]
and
E=({io} x 1)U (I x L)u | {io} xU) U | (Vj x Ih)
i€[n] Jj€[n]

U U{Ul x V. (:Ei,yj) € A}

A g-colouring of G is full if exactly g—2 colours are used to colour the vertices
in I. Every full colouring points out an independent set in B. Consider a full
colouring in which blue is not used to colour any vertices in I; U {ig}. Vertex x;
is in the independent set if U; contains at least one blue vertex and vertex y;
is in the independent set if V; contains at least one blue vertex. Let f(a,b)
denote the number of onto functions from a set of size a to a set of size b. Let
z=1g((¢ —1)/(¢ — 2)). How many times does an independent set with k w;’s
and j v;’s come up (as a full colouring)?

k
o ) fla-Dta—22 - @ - (2 21) L ()
q—2 ’ 25 — 1
Let N denote the number of maximum independent sets in B. Let
q
z=2(,7,) fa-Dta-22" (- 2" @ 1",

As in the proof of Lemma 16, we wish to show that the total contribution
of the non-full colourings is small. To this end, let

oly) = (Z) f((a—2)6.y) (g — ).

o(y) is the number of colourings of I; U I in which I is coloured with exactly

y colours. Thus, g(y) = 0 unless y € {1,... ,¢ —1}. We will choose £ to be

sufficiently large that, for a positive constant c,

-1

olg—2) < ) o(y) < olg — 2)(1 + exp(—cf)). (6)
y=1

LS

(We will show later that equation (6) holds for an appropriate choice of £.)
Equation (6) implies that the total contribution of the non-full colourings is at

most

o(q — 2) exp(—cl)q" ",
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If 7 is at least a sufficiently large polynomial in ¢, n, r, and s then this is at
most o(q — 2) exp(—cf/2) which is at most Z/8. As in the proof of Lemma 16,
the number of M-small full colourings is also at most Z/8.

Let Y be the number of colourings. Now we are almost finished except that

1. we still need to show that equation (6) holds as long as / is sufficiently
large with respect to the constant ¢, and

2. unlike the situation in the proof of Lemma 16, the number of M-large
full colourings is not precisely NZ. That is, we have ignored the extra
factor of (%) in equation (5). To finish, we must show that the

parameters r and s can be chosen such that for any & € [0, n]

27 — 1\*
68§<25_1> <¢, (7)

where € is a given accuracy parameter.

Now we show that equation (6) holds as long as ¢ is sufficiently large with
respect to the constant ¢. In particular, we show that for sufficiently large ¢
there is a positive constant ¢ such that for all y € {1,... ,¢—3,q — 1}, we have
o(y) < olg — 2) exp(—ct).

First, consider y € {1,... ,q — 3}. In this case (as long as £ > 21In(q — 2)),
Lemma 18 and the definition of p show that

olg=2) _ () (-2 ER%
oW (7) < Y ) (1~ ool 6/2))(q—y> '

If ¢ is sufficiently large then this is at least exp(cf), since

(q—2>(‘1‘2)/2 _ <1+q—2—y>(q_2)/2>1+ (q—2> <q—2—y>
(0 (0 - 2 (0

q—2—-y\ (q—2 q—2-y q—y
() ()=

Finally, consider y = ¢ — 1. As before,

olg—2) _ (%) <q —2

>
(qgl) q9- 1

This is at least exp(cf), since

-1 q—2 1 q—2
<Z—2> =<1+q—2> <7

We now conclude the proof by showing that the parameters r and s can be
chosen such that, for any £ € [0,n] equation (7) holds. Note that we want r
and s to be at most polynomial in n and £~'. Also, we must make s at least a
sufficiently large multiple of n (say 1000n) so that the number of M-small full

(g—2)¢
> (1 —exp(—£/2))2%.
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colourings stays below Z/8. Let W be be a positive integer such that [zWW] is
at least 1000n. Let R = [(16(In2)Wn)/(7e)]. Finally, let r = Wz, where z is
chosen from Corollary 20.

There are two cases. If zr — |zr| < W/R then we set s = |zr]. Otherwise,
we set s = [zr]. To finish, we just need to show that equation (7) is satisfied
either way. Let § = ¢/n. For the first case,

(In2)(zr — |2r]) < (In2)W/R < 7§/16 < In(1 +0/2),

where the rightmost inequality relies on the fact that 6 < 1/2. Exponentiating
both sides,
277 < alerl(1 4 5/2) < 2lzrl g2l — 1),

Thus,
9zr _ 9lar]
— <.
2\_er -1
Adding 1 to both sides,
2r _ 5
o — 1 <140<e€.

The second case is analogous.

Lemma 18 If a and b are positive integers and a > 2blnb then
b (1 — exp(—a/(20))) < f(a,b) < b°.

Proof. The right-hand inequality is straightforward, and the left-hand inequal-
ity can be derived as follows.

fla,b) 2 b = b(b—1)" = " (“b(l‘ %>>

> b*(1 — bexp(—a/b)) = b° <1 —eXp (_a <% B %)))
om(3)

Lemma 19 For any positive integer R there is an x € [1,... , R] such that
min(zz — |zz|, [22] — zz) < 1/R.

Proof. Fori € [1,...,R], let u; denote zi — | zi|. If there is an i such that p; <
1/R then take x = i. Otherwise, there are ¢ # j such that 0 < p; —p; < 1/R,
so take z = |i — j|. O

Corollary 20 For any positive integer W and any positive integer R, there is
an z € [1,... , R] such that

min(zWz — |z2Wz|, [zWz] — 2Wz) < W/R.
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7 An erratic sequence of problems

In this section, we consider a sequence of H-colouring problems. Let Wr, be
the graph with vertex set V, = {a,b,c1,... ,¢,} and edge set

By ={(a,0)} U{(b,)} U U{(b, ¢i)} U U{(ci, ¢i)}

Wry is just Ky with one loop added. Wry is called “the wrench” in [1]. Consider
the problem #¢g-WRENCH-COL, which is defined as follows.

Name. #q-WRENCH-COL.

Instance. A graph G.

Output. The number of Wr,-colourings of G.

In this section, we prove the following theorem.
Theorem 21

e For q <1, #¢g-WRENCH-COL is AP-interreducible with #SAT.
e #2-WRENCH-COL is AP-interreducible with #BIS.
e For g > 3, #qg-WRENCH-COL is AP-interreducible with #SAT.

Theorem 21 indicates that either (i) #BIS is AP-interreducible with #SAT
(which would be surprising) or (ii) the complexity of approximately counting
H-colourings is non-monotonic. Since Wryp-colourings are independent sets, the
theorem follows from Theorems 3 and 5 and Lemmas 15, 22, 23, 24 and 25. As
starting points for our reductions, we will use the following problems.

Name. #LARGEIS-CuUBIC.

Instance. A positive integer m and a connected cubic graph G in which every
independent set has size at most m.

Output. The number of size-m independent sets in G.

Name. #LARGECUT.
Instance. A positive integer k and a connected graph G in which every cut'!

has size at most k.

QOutput. The number of size-k cuts of G.

Garey et al. [6] have shown that the decision problems corresponding to
these counting problems are NP-complete. Therefore, Theorem 1 shows that the

"Recall that a “cut” of a graph is a partition of its vertex set into two subsets and that the
size of the cut is the number of edges which span the two subsets.
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counting problems are AP-interreducible with #SAT. A direct (nearly parsimo-
nious) reduction from #SAT to #LARGEIS-CUBIC appears in Appendix A and
a direct parsimonious reduction from #SAT to #LARGECUT appears in [9].!2

Lemma 22 #LARGECUT <pp #1-WRENCH-COL.

Proof. Let k and G = (V, E) be an instance of #LARGECUT. Construct an
instance G' = (V', E') of #1-WRENCH-COL as follows, where the size of V is n
and s and ¢ are integers to be determined below. For every vertex u of G let
A, and Al be disjoint sets of size 2s, let B, and B, be disjoint sets of size 7s,
and let V,, = A, U B, U B!, U Al,. Let B,[i] denote the ith element of B,. For
every edge e of G let S, and S! be disjoint sets of size t. Then set

SICRRCES)

E/:(UAuxBUUA;xB;U U {(Bu[z'],B;[z'm)

ueV i€{l,...,7s}

and

u( U BuxseuB,’,xseuB;xsgquxs;).
(u,w)EE

A wrench-colouring of G’ is a colouring of the vertices of G’ with colours g, b
and r such that every neighbour of every colour-g vertex is coloured b. Thus, in
a wrench-colouring of G’, every edge is coloured with one of the six colour-
ings (g,b), (b,9), (b,b), (b,7), (r,b) and (r,r). A wrench-colouring is full
if, for every vertex u of GG, the set of colourings assigned to edges between
B, and Bj], is either exactly C; = {(g,b), (b,b), (b, ), (r,b),(r,7)} or exactly
Co = {(b,9), (b,b), (r,b), (b,r), (r,r)}. Note that in the first case A, is coloured b
and A!, has no g. In the second case, A!, is coloured b and A, has no g. Every
full wrench-colouring points out a cut of G. The vertex u of G is in the left side
of the partition in the first case and in the right side in the second case. Recall
that f(a,b) denotes the number of onto functions from a set of size a to a set
of size b. How many times does a size-j cut come up (as a full colouring)?

2(f(7s,5)22%)"27¢.

Let Z = 2(f(7s,5)2%%)"2%. Let N denote the number of k-cuts. We say that
a full colouring is k-large if the cut that it points out has size & and k-small
otherwise. The number of k-small full colourings is at most 2" Z/2! which is at
most Z/8 as long as t > n + 3. We conclude the proof by showing that the

12Recall that it was possible to modify the definition of #LARGEIS so that a “witness”
was provided along with the instance. Similarly, it is possible to modify the definitions of
#LARGEIS-CuUBIC and #LARGECUT so that witnesses are provided along with the input. For
example, a witness for #LARGECUT could be used to check that the instance has no cuts of
size exceeding k.
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number of non-full colourings is at most Z/8. In particular, let C denote the
set of colourings assigned to edges between B, and B!. In each case (below)
the number of colourings is exponentially smaller (as a function of s) than Z.
In our calculations, we use Lemma 18 and we assume that s is sufficiently large
compared to ¢, so we do not have to worry about any additional factor (up to

32t(g)) which might arise due to having more possibilities for colouring vertices
in S, or S, (for any e).

1. |IC] > 5 but C # C; and C # Cy: A, and A}, are coloured b, so there
are at most 6°° possibilities for colouring the vertices in V, which is
exponentially fewer than f(7s,5)22% (since 67 < 5722).

2. |C] = 4: A, and A, have no vertices with colour g, so there are at most
475925925 possibilities for colouring the vertices in V,, which is exponen-
tially fewer than f(7s,5)2%% (since 472222 < 5722).

3. |C| < 3: There are at most 37°32932% possibilities for colouring the vertices
in V,,, which is exponentially fewer than f(7s,5)2% (since 373232 < 5722).

O

Lemma 23 #2-WRENCH-COL <ap #DOWNSETS.

Proof. Let G = (V,E) be an instance of #2-WRENCH-COL. Following the
proof of Lemma 8, we construct an instance of #DOWNSETS, a partial order on
the 2n-element set V x[2]. For each edge (u,v) of G, we impose the relationships
(u,0) < (v,1) and (v,0) < (u,1). Given a downset D and a vertex u of G, there
are four possibilities for the set D, = D N {(u,0), (u,1)}. These possibilities
correspond to the four colours of an Wra-colouring of G. If D,, = {(u, 1)} then u
is mapped to vertex a of Wry and if D,, = {(u,0)} then u is mapped to vertex b
of Wri. Now there is a 1-1 correspondence between Wri-colourings of G and
downsets in (V' x [2], <). O

Lemma 24 #BIPARTITEMAXIS <ap #2-WRENCH-COL.

Proof. Similar to the proof of Lemma 16. U

Lemma 25 For q > 3, #LARGEIS-CUBIC <ap #¢-WRENCH-COL.

Proof. Let m and G be an instance of # LARGEIS-CUBIC. Let n be the num-
ber of vertices of G. First, construct a graph G’ from G. For every ver-
tex u of G, let V]u] be the graph with vertex set {uy,us,us, uq,us} and edge
set {(u1,u4), (u2,uq), (us,us), (u1,us), (u2,us), (us,us)}. G' will be constructed
from the graphs V[u] and from some additional edges. In particular, if v is the
1’th smallest neighbour of v in G and u is the j’th smallest neighbour of v in G,
then we add (u;,vj) to G’. Next, construct a graph G” from G’. Let r be
sufficiently large with respect to n and let s = 1.17. Every vertex uy, u9, or
uz in G’ corresponds to an independent set in G” of size r. Every vertex u4 or
us in G’ corresponds to an independent set in G” of size s. Every edge of G’
corresponds to a complete bipartite graph in G”.
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A G'-colouring is is a colouring which maps each of the 5n vertices of G’ to
a non-empty subset of V;, in such a way that

1. if vertices a and 3 of G’ are adjacent and the colour of « includes a then
the colour of 3 is {b}, and

2. if vertices @ and 8 of G’ are adjacent and the colour of « includes ¢; (for
any i € {1,... ,q}) then the colour of /3 is a subset of {b,¢;}.

We will say that a G’-colouring is “independent” if, for every vertex u of G
either

1. uy, up and ug are coloured V;, and u4 and us are coloured {b}, or
2. uy, ug and ug are coloured {b} and uy and us are coloured V.

There is a 1-1 correspondence between independent sets of G and independent
G'-colourings. (u is in the independent set iff u; is coloured Vj.) Furthermore,
every Wr,-colouring of G” points out a G’-colouring and every size-M inde-
pendent set of @ corresponds to f(r, g+ 2)*™ f(s,q + 2)2("7M) Wr,-colourings
of G", where f(z,y) denotes the number of onto functions from a set of size z
to a set of size y, as in the proof of Lemma 17. Let N denote the number of
size-m independent sets in G. Let Y denote the number of Wry-colourings of
G". We will say that an independent G'-colouring is “full” if the independent
set that it points out has size m. Claim 3 (below) shows that if C' is a non-full
G'-colouring then the fraction of Wr,-colourings of G"” which correspond to C
is exponentially small (as a function of 7). This implies that

Y

N =
F(roq+ 2> f(s,q + 2)*™™

We say that a G’-colouring C' is “exponentially unlikely” when the fraction
of Wry-colourings of G” which correspond to C is exponentially small (as a
function of 7). We now complete the proof of the lemma by proving Claims 1-
3. In each case, the fact that the specified fraction is exponentially large in r
follows from Lemma 18.

Claim 1 If, in G'-colouring C, some, but not all, of the vertices in V[u] are
coloured {b,c;} (for some vertex u of G and some i € {1,... ,q}) then C is
exponentially unlikely.

Proof of Claim 1.

1. Suppose that u; is coloured {b,c;} and both u4 and us are coloured {b}.
Then the G'-colouring C’ obtained by recolouring w; with V; and all
neighbours of u; with {b} corresponds to a factor of f(r,q + 2)/f(r,2)?
more Wr,-colourings of G” than C. This factor is exponentially large in r
since g > 2. If r is sufficiently large with respect to n then it exceeds the
number of G'-colourings, so C' is exponentially unlikely.
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2. Suppose that u; and u4 are coloured {b,¢;} and us is coloured {b}. Then
the G'-colouring C’ obtained by recolouring us with {b,¢;} corresponds
to a factor of f(s,2) more Wrg-colourings of G” than C.

3. Suppose that u; and ug and us are coloured {b, ¢;} and u3 is coloured {b}.
Then the G'-colouring C’ obtained by recolouring u4 and us with V5 and
u1, up and ug with {b} corresponds to a factor of f(s, q+2)%/(f(s,2)?f(r,2)?)
more Wrg-colourings of G” than C.

4. Suppose that u4 is coloured {b,c;} and all of its neighbours are coloured
{b}. Then the G'-colouring C’ obtained by recolouring u4 with V, corre-
sponds to a factor of f(s,q+2)/f(s,2) more Wr,-colourings of G” than C.

By symmetry, these are the only cases.

Claim 2 If, in G'-colouring C, some vertez of G' has a colour other than V,
or {b}, then C is exponentially unlikely.

Proof of Claim 2. Suppose (for contradiction) that C’ is not exponentially
unlikely and that it has a vertex z whose colour is not {b} or V,. z must
have a neighbour with a colour other than {b} (otherwise C' would be expo-
nentially unlikely, since exponentially more Wr,-colourings correspond to the
G'-colouring obtained from C by recolouring z with V;). Since the colour of z
is not {¢;} (otherwise C would be exponentially unlikely), it must be {b,¢;} (for
some i € {1,...,q}). Now consider the connected component U’ of G' which
contains z and has every vertex coloured {b,¢;}. By Claim 1, this corresponds
to a connected component U of G, of size, say, £. We will show that that C
is exponentially unlikely. First, suppose that the maximum degree of a vertex
in the subgraph of G induced by U is less than three. In this case, obtain a
G'-colouring C' from C' by recolouring [¢/2] of the vertices in U with V; and
the rest of them with {b}. C' corresponds to a factor of

F(r,q+2)32 f (s, g + 2)242
F(r,2)* f(s,2)*

more Wrg-colourings of G” than C. If the subgraph of G induced by U has
maximum degree three then, since it is not equal to Ky (otherwise it would be
all of G), it has an independent set of size I of size at least £/3. (This follows
from Brooks’ theorem [2], which says that if a connected graph I' is not a
complete graph and has maximum degree A > 3, then it is A-colourable.) Now
obtain C' from C by re-colouring the vertices in U’ to encode the independent
set I. (That is, if a vertex u is in the independent set, colour wi, us and ug
with V, as before.) Since f(r,q +2)% > f(s,q+ 2)?, C' corresponds to a factor
of at least

Frq+ 2P f(s,q+2)2/?
f(r,2)3f(s,2)%
more Wr-colourings of G” than C. This factor is exponentially large in r since
q> 2.
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Claim 3 If G'-colouring C is not full then it is exponentially unlikely.

Proof of Claim 3. Suppose (for contradiction) that C’ is not exponentially
unlikely and that for some vertex u of GG, some but not all of the vertices in
{w1,u2,u3} have colour V. (By Claim 2, the others and w4 and us have colour
{b}.) Then, C corresponds to exponentially fewer Wry-colourings of G” (by a
factor of f(s,q+2)2/f(r,q+2)?) than the G'-colouring C' obtained from C by
recolouring u4 and us with V, and u;, ug and ug with {b}. If all of u;, up and u3
have colour {b} and C is not exponentially unlikely then u4 and us have colour
Vg4 Thus, if C' is not exponentially unlikely, it is independent. As we saw before,
the number of Wry-colourings of G” corresponding to a size-M independent
set of G is f(r,q+2)*M f(s,q+2)>" M. Since f(r,q + 2)3/f(s,q + 2)% is
exponentially large as a function of r, C is also full. U

Essentially the same reduction yields:

Lemma 26 For q > 4, #LARGEIS-CUBIC <ap #¢-PARTICLE-W R-CONFIGS.

Appendix A: A direct reduction from #Sat to #LargelS

Garey et al. [6] present a (conventional) many-one/Karp reduction from 3-
SAT (the decision version of #SAT restricted to formulas with three literals
per clause) to MAXIS-CUBIC (the decision version of #LARGEIS-CuUBIC). Let
@ = C1A---AC, be an instance of 3-SAT in the variables zy,... ,z,. By adding
extra tautological clauses of the form z; V —z; V —x; or z; V z; V —x; it is easy
to arrange for there to be equal numbers of negated and unnegated occurrences
of each literal. We assume this has been done. A cubic graph G = G(yp) is
constructed that has an independent set of size m =r + >, t; = 5r/2 iff ¢ is
satisfiable. For each variable z; there is a cycle of length 2¢;, where ¢; is the
number of occurrences of the literal z; (equals the number of occurrences of
the literal —z;) in . For each clause C; there is a triangle (complete graph on
three vertices or K3); each vertex in the triangle stands for a particular literal
in C;. Thus the total number of vertices in G is 3r + ), 2t; = 6r. Note that G
is the complement of a m-partite graph, with m = 5r/2, so there is certainly no
independent set of size greater than m. (Each variable-cycle contains #; disjoint
copies of Ko, and each clause-triangle is a K3.)

To achieve an independent set of size m it is necessary to choose one of
two possible independent sets of size t; in each variable-cycle. Interpret one
of these as z; = 0 and the other as z; = 1. Additional edges are added to G
joining variable-cycles to clause-triangles. These are placed so as to allow a
vertex in a clause-triangle to be included in an independent set of size m iff the
corresponding literal is true. Notice that this can be achieved by a collection
of edges which are pairwise vertex disjoint. Thus G is cubic. Refer to [6] for a
more formal description of G.

The reduction as it stands is not parsimonious: each satisfying assignment
in ¢ corresponds to [] j #j independent sets in G, where p; is the number of
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literals in C; made true by the assignment. Rather than change Garey et
al.’s construction, we instead massage the formula ¢ to avoid the problem just
identified. Starting with an arbitrary CNF formula ¢ we first construct a 3-CNF
formula ¢’ (i.e., one with three literals per clause) that has the same number of
satisfying assignments as ¢’. Next, we construct from ¢’ a 3-CNF formula ¢
that has the same number of satisfying assignments as ¢, and for which every
satisfying assignment has the following property: in ry clauses there is one true
literal, in o clauses there are two, and in r3 three. Here rq, 72,73 depend only
on the formula ¢” and not on the satisfying assignment. Thus the composite
reduction ¢ — ¢ — ¢’ — G(¢") expands the solution set by a constant factor
2"3"3: not a parsimonious reduction, but the next best thing.

The transformations ¢ — ¢’ and ¢’ — ¢ are both based on the equivalence
of the two formulas

(aVbe ) and (aVbOV-z)A(aV-bVI)A(-aVbVx)A(—aV bV ).

(8)

These enable us to introduce a new variable = and force it to be the disjunction
of two existing variables a and b. In particular, a k-term clause £y V -V €4
may be rewritten (lg V -+ V lg_3V x) A (ly—2 V lp—1 < x), where z is a new
variable, and then rewritten further as a five-clause CNF formula using (8). By
iterating this process we may efficiently transform an arbitrary CNF formula ¢
into a 3-CNF formula ¢’. The transformation is clearly parsimonious.

To achieve the property required of ", we transform each clause a VbV ¢
of ¢ to

(aVbe )N (zVesy) AN(yVyVy),

where z and y are new variables. This transformation is parsimonious, but
does not, as it stands, have the specific property required of ¢”. However if we
conjoin dummy clauses (aV—b < z), (maVb < 2') and (—aV —b < 2”")—where
z, 7' and 2" are new variables whose values are ignored—we symmetrise the
first clause so that it is oblivious to the values of a and b. The same trick can
be applied to the second clause. Now transform the eight clauses thus obtained
via (8). The result is a 33 clause 3-CNF formula for which every satisfying
assignment has the following property: in 16 clauses exactly one literal is true,
in 12 clauses exactly two literals are true, and in the remaining 5 clauses all
three literals are true. This completes the construction of ¢”.

Appendix B: A glossary of problems

As an aid to navigation, Table 1 contains a complete list of problems considered
in this article, with their complexity status and a note of where to find them.
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Problem name ‘ Defined in ‘ Status Refer to
#BEACHCONFIGS 84 =ap #BIS Thm. 5
#BIPARTITE ¢-COL 86 >ap #BIS Thm. 13
# P;-CoL 84 =ap #BIS Thm. 5
#P;-CoL 64 =ap #BIS (¢ > 3) | Thm. 10
#q-WRENCH-COL 87 =ap #SAT (¢ < 1) | Thm. 21
#2-WRENCH-COL 87 =ap #BIS Thm. 21
#q-WRENCH-COL 87 =ap #SAT (¢ > 3) | Thm. 21
#DOWNSETS 84 =ap #BIS Thm. 5
#1S 63 =AP F#SAT Thm. 3
#BIS §1 (primal) Thm. 5
#LARGEIS-CuUBIC 87 =Ap F#SAT App. A
#LARGEIS 83 =Ap F#SAT Obs. 2
#BIPARTITEMAXIS 86 =ap #BIS Thm. 13,Lem. 14
#MATCH §2 FPRAS 8]

#SAT §1 (primal) Section 3
#DNF-SAT §2 FPRAS [11]
#1PINSAT 84 =ap #BIS Thm. 5
#2-PARTICLE-WR-CONFIGS | §3 =ap #BIS Thm. 5
#3-PARTICLE-WR-CONFIGS | §3 >ap #BIS Thm. 13
#q-PARTICLE-WR-CONFIGS | §3 =Ap #SAT (¢ > 4) | Lemma 26

Table 1: A list of counting problems
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