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Abstract We propose a practical defect prediction approach for companies that do
not track defect related data. Specifically, we investigate the applicability of cross-
company (CC) data for building localized defect predictors using static code features.
Firstly, we analyze the conditions, where CC data can be used as is. These conditions
turn out to be quite few. Then we apply principles of analogy-based learning (i.e.
nearest neighbor (NN) filtering) to CC data, in order to fine tune these models
for localization. We compare the performance of these models with that of defect
predictors learned from within-company (WC) data. As expected, we observe that
defect predictors learned from WC data outperform the ones learned from CC data.
However, our analyses also yield defect predictors learned from NN-filtered CC data,
with performance close to, but still not better than, WC data. Therefore, we perform
a final analysis for determining the minimum number of local defect reports in order
to learn WC defect predictors. We demonstrate in this paper that the minimum
number of data samples required to build effective defect predictors can be quite
small and can be collected quickly within a few months. Hence, for companies with no
local defect data, we recommend a two-phase approach that allows them to employ
the defect prediction process instantaneously. In phase one, companies should use
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NN-filtered CC data to initiate the defect prediction process and simultaneously
start collecting WC (local) data. Once enough WC data is collected (i.e. after a few
months), organizations should switch to phase two and use predictors learned from
WC data.

Keywords Defect prediction · Learning · Metrics (product metrics) ·
Cross-company · Within-company · Nearest-neighbor filtering

1 Introduction

Defect prediction studies usually focus on building models with available local data
(i.e. within company predictors). To employ these models, a company should have
a data repository, where project metrics and defect information from past projects
are stored. However, few companies apply this practice. We suspect that a common
reason for not using defect predictors in practice, is the lack of local data repositories.
Constructing such a repository requires keeping track of project metrics together
with related defect information. When automated tools are not used, manual effort
is inevitable to maintain these repositories.

On the other hand, there are public data repositories including projects from
companies such as NASA (Boetticher et al. 2007). In this context, we investigate
whether these public project data can be helpful for other companies for building
localized defect predictors1, especially for those with limited or no defect data
repository.

Defect prediction literature contains many examples where predictors are learned
from within company data (Arisholm and Briand 2006a; Bell et al. 2006; Ostrand
et al. 2007; Menzies et al. 2007a; Chen et al. 2005; Dekhtyar et al. 2004; Jiang et al.
2007; Nagappan and Ball 2005a). However, there exists no case that attempts to
harness cross company data. In this paper, we focus on binary defect prediction and
perform analyses to check if we can reach a conclusion in favor of either CC or WC
data. Specifically, this paper assesses the relative merits of cross-company (CC) vs
within-company (WC) data for defect prediction.

We perform a series of analyses on 10 publicly available project data from
different companies. Our analyses use the Naive Bayes data miner and are based
on static code features.2

Our analyses aim at answering the following research questions:

– Are CC data ever useful for organizations?:
Our goal is to identify the conditions under which cross-company data should be
preferred to within-company for the purposes of structuring software inspections
using outcomes of defect predictors. In the first analysis, we compare the
performance of defect predictors learned from WC data to those learned from
CC data.

1Throughout the paper, the following notation is used: a defect predictor (or predictor) means a
binary classification method that categorizes software modules as either defective or defect-free;
data refers to MxN matrices of raw measurements of N metrics from M software modules; these N
metrics are referred to as features.
2Therefore, throughout the paper, the term “data” refers to static code features.
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– How can companies filter CC data for local tuning?:
CC data includes information from many diverse projects and are heterogeneous
compared to WC data. The goal of the second analysis is to select a subset of the
available CC data that is similar to WC data and to investigate the effect of data
homogeneity on the defect prediction performance. We apply a simple nearest
neighbor (NN) filtering to CC data for automatically constructing a locally tuned
repository. We use the Euclidean distance between static code features of WC
and CC data for measuring similarity and automated selection of neighbors.3

– What is the smallest amount of local data needed for constructing a model?:
In the third analysis, we focus on WC models and determine the smallest amount
of local data needed for constructing a model. We employ an incremental
learning approach to WC data in order determine the number of samples in local
repositories for building defect prediction models.

– Can our results be generalized?:
We initially use only NASA projects in our three analyses to answer the above
questions. In order to check the external validity of our results, our last analysis
replicates all three analyses on projects from a company that has no ties with
NASA: specifically, a Turkish company writing software controllers for home
appliances.

The contributions of this paper are relevant for both academia and practice. Prior
to this paper, no study was performed to investigate the relative merits of using cross
company or within company data for constructing defect predictors. In our analysis,
in favor of the common belief, we empirically show that within company data is better
for defect prediction problem. Further, on the contrary to the common belief, we
empirically show that, the required local data for constructing defect predictors can
be easily and quickly collected. For our analysis, we have collected data from industry
and made it publicly available for the use of other researchers and practitioners.
As a practical contribution, our analysis of cross company data and the proposed
methodology allow the construction of defect predictors even for companies with no
local defect data. In summary, we observe that the defect detectors learned from site
A are found to be useful at site B, at least for the datasets we analyzed. Furthermore,
it is a result of major significance that other project’s data can be used locally (after
applying a very simple filter). Nevertheless, there may be some reluctance on the part
of programmers and managers to use data collected at other sites. Such caution is to
be expected amongst professionals striving to deliver quality products to their clients.
In this paper, we suggest that it can be quite beneficial to use data from other sites,
particularly when no local data is available. Professional developers should apply our
advise cautiously—perhaps via an initial case study on a small part of their system.

This paper is organized as follows: The next section motivates our work with
examples of industrial groups that use these detectors. Then, in Section 3, we
explain our methodology by describing the data sources, data mining algorithm
and the performance evaluation criteria. In Sections 4, 5 and 6, we describe our
analyses, results and discussions for the first three research questions stated above.

3We should carefully note that we do not make use of any conceptual similarities, since our analysis
is based on static code features. As to the issue of conceptual connections within the code, we refer
the reader to the concept location and cohesion work of Marcus et al. (2008).
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In Section 7, we replicate all three analyses in order to check the external validity
of our results. Sections 8, 9 and 10, discusses the related work, practical implications
and threats to validity respectively. We conclude our work in Section 11.

2 Motivation

2.1 Why Study WC vs CC?

The genesis of this work was several frustrating years working at NASA trying to
collect data on new projects. This proved difficult to do, for a variety of reasons
(including feuding NASA centers and contractors trying to maintain some control
over the information flow to the client). Several times in that process, we asked “Is it
necessary to collect new data? Can’t we just apply old data?”.

In the middle of 2007, we had an opportunity to evaluate CC data usage on a
Turkish software development company. That company worked in a highly compet-
itive market and a decrease in their bug rate of even 1% had an economic benefit
to them. However, that company had no historical data with which to train its defect
detectors. We therefore trained a defect detector on NASA data and applied it to
the Turkish software. Much to our surprise, that detector could “adequately” predict
errors within Turkish software (“adequate” in the sense that the Turkish client
looked at the code that triggered our detectors, found bugs, and was subsequently
interested enough to request more studies of this nature).

Based on that small informal experience, we saw:

– The business benefits in using CC data: no need to wait for local data collection;
– The adequacy of the learned detectors;

A single case study is not enough to justify a general principle. Accordingly, we
conducted the analyses described in this paper.

2.2 Why Study Defect Predictors?

Defect predictors are subtly different to other quality assurance practices. This
section highlights those differences and explains why we elect to study them.

It is insightful to contrast defect prediction from Musa-style software reliability
engineering (SRE) (Musa et al. 1987). In standard SRE, there is a track record of
post-release failures and the goal is to predict the probability of failure on demand in
the next call on the software. One of the major results of the SRE literature is that as
the software is developed and bugs are removed, this probability forms a reliability
growth curve with predictable properties.

The standard defect prediction task is different to standard SRE. Our task is
to predict defective modules during development and before delivery. Such early
lifecycle detection is important since, as Boehm reports, repair cost increases expo-
nentially, the longer a bug remains in the system (Boehm and Papaccio 1988). Hence,
we learn defect predictors from logs of pre-release defects found by a verification and
validation (V&V) team. Such defects may be seen in code from systems that is not
yet complete. Hence, many of the features used in this kind of analysis are static code
features that can be extracted from as-yet-un-executing code.



544 Empir Software Eng (2009) 14:540–578

The patterns found in pre-release defects or post-release failures can be used in
different ways. Reliability growth curves can be used to predict how long before the
running software will reach some required reliability of, i.e. one failure in 10,000 calls.
Defect predictors, on the other hand, can be used to bias the ordering of modules to
be inspected by V&V teams:

– In the case where there is insufficient resources to inspect all code (which is a very
common situation in industrial developments), defect predictors can be used to
increase the odds that the inspected code will have more defects.

– In the case where all the code is to be inspected, but that inspection process will
take weeks to months to complete, defect predictors can be used to increase the
chances that defective modules will be inspected earlier. This is useful since it
gives the development team earlier notification of what modules require rework,
hence giving them more time to complete that rework prior to delivery.

The above two cases are quite common. The authors of this paper are from the
United States and Turkey and only began exploring defect detectors when they
realized that their user community was making extensive use of these detectors.

Furthermore, these detectors are widely used despite the fact that they are quite
“coarse-grained”. In the following study, our only knowledge of modules will be that
they are defective or defect-free. This work makes no use of other knowledge about
a module such as its criticality or the dates on which it failed.

– Regarding failure occurence logs: When working with large teams of contractors,
it is often difficult to access precise logs on when failures occured since such
information is often corporate critical. The NASA coarse-grained information
used in this study, for example, took years of careful negotiation to acquire. All
the data passed to us was highly sanitized; e.g. this research team could not even
access project or module names.

– Regarding criticality knowledge: Our goal is to predict defective modules during
development and before delivery. Goseva and Hamill (2007) report that pre-
delivery perceptions of module criticality can be widely misleading. In their
work, they trace errors back to the modules that caused runtime faults. They
find that a remarkably small set of modules are implicated in all faults and that
set can change, radically, if the input space to the program alters.

For further notes on related work on defect predictors from static code attributes,
see Section 8.2.

3 Methodology

3.1 Data

The analyses of this paper use the static code features of 10 projects tabulated
in Table 1 and Table 2, which are downloaded from the PROMISE repository.4

Available static code features are shown in Table 3. An advantage of static code

4http://promisedata.org/repository.

http://promisedata.org/repository
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Table 1 Descriptions of ten software projects used in the paper

Source Project Language Description

NASA pc1 C++ Flight software for earth orbiting satellite
NASA kc1 C++ Storage management for ground data
NASA kc2 C++ Storage management for ground data
NASA cm1 C++ Spacecraft instrument
NASA kc3 JAVA Storage management for ground data
NASA mw1 C++ A zero gravity experiment related to combustion
SOFTLAB ar4 C Embedded controller for white-goods
SOFTLAB ar3 C Embedded controller for white-goods
NASA mc2 C++ Video guidance system
SOFTLAB ar5 C Embedded controller for white-goods

The rows labeled “NASA” come from NASA aerospace projects while the rows labeled “SOFT-
LAB” come from a Turkish software company writing applications for domestic appliances

features is that they can be quickly and automatically collected from the source code,
even if no other information is available.

Our project data are taken from software developed in different geographical
locations across North America (NASA) and Turkey (SOFTLAB). Therefore, the
static code features that are available for each project vary. While Table 3 shows
the features available for each project, Table 4 shows the common features for both
sources. While NASA and SOFTLAB are single sources of data, there are several
projects within each source. For example, NASA is really an umbrella organization
used to co-ordinate and fund a large and diverse set of projects:

– The NASA data was collected from across the United States over a a period of
five years from numerous NASA contractors working at different geographical
centers.

– These projects represent a wide array of projects, including satellite instrumen-
tation, ground control systems and partial flight control modules (i.e. Altitude
Control).

– The data sets also represent a wide range of code reuse: some of the projects are
100% new, and some are modifications to previously deployed code.

That is, even if we explore just the NASA data sets, we can still examine issues
of cross- vs within- company data use. Nevertheless, using our connections with the

Table 2 Summary of data from ten software projects of Table 1, sorted in order of number of
functional units

Source Project (# modules) examples Features loc %defective

NASA pc1 1,109 21 25,924 6.94
NASA kc1 845 21 42,965 15.45
NASA kc2 522 21 19,259 20.49
NASA cm1 498 21 14,763 9.83
NASA kc3 458 39 7749 9.38
NASA mw1 403 37 8341 7.69
SOFTLAB ar4 107 29 9196 18.69
SOFTLAB ar3 63 29 5624 12.70
NASA mc2 61 39 6134 32.29
SOFTLAB ar5 36 29 2732 22.22

4,102
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Table 3 Static code features available in Table 2 projects

# Feature pc1 kc1 kc2 cm1 kc3 mw1 ar4 ar3 mc2 ar5

1 branchcount X X X X X X X X X X
2 codeandcommentloc X X X X X X X X X X
3 commentloc X X X X X X X X X X
4 cyclomaticcomplexity X X X X X X X X X X
5 designcomplexity X X X X X X X X X X
6 halsteaddif f iculty X X X X X X X X X X
7 halsteadef f ort X X X X X X X X X X
8 halsteaderror X X X X X X X X X X
9 halsteadlength X X X X X X X X X X
10 halsteadtime X X X X X X X X X X
11 halsteadvolume X X X X X X X X X X
12 totaloperands X X X X X X X X X X
13 totaloperators X X X X X X X X X X
14 uniqueoperands X X X X X X X X X X
15 uniqueoperators X X X X X X X X X X
16 executableloc X X X X X X X X X X
17 totalloc X X X X X X X X X X
18 halsteadcontent X X X X X X X
19 essentialcomplexity X X X X X X X
20 halsteadvocabulary X X X X X X X
21 blankloc X X X X X X X X X X
22 callpairs X X X X X X
23 conditioncount X X X X X X
24 cyclomaticdensity X X X X X X
25 decisioncount X X X X X X
26 decisiondensity X X X X X X
27 halsteadlevel X X X X X X
28 multipleconditioncount X X X X X X
29 designdensity X X X X X X
30 normcyclomaticcomp. X X X X X X
31 f ormalparameters X X X X X X
32 modif iedconditioncount X X X
33 maintenanceseverity X X X
34 edgecount X X X
35 nodecount X X X
36 essentialdensity X X X
37 globaldatacomplexity X X
38 globaldatadensity X X
39 percentcomment X X X
40 numberof lines X X X

Total 21 21 21 21 39 37 29 29 39 29

Turkish software industry, we collected new data sets in the format of Table 3 from
a Turkish white- goods manufacturer. The SOFTLAB datasets ({ar3, ar4, ar5}) in
Table 1, are the controller software for:

– A washing machine;
– A dishwasher;
– And a refrigerator.
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Table 4 Static code features
shared by NASA and
SOFTLAB projects

# Feature NASA shared All shared

1 branchcount X X
2 codeandcommentloc X X
3 commentloc X X
4 cyclomaticcomplexity X X
5 designcomplexity X X
6 halsteaddif f iculty X X
7 halsteadef f ort X X
8 halsteaderror X X
9 halsteadlength X X
10 halsteadtime X X
11 halsteadvolume X X
12 totaloperands X X
13 totaloperators X X
14 uniqueoperands X X
15 uniqueoperators X X
16 executableloc X X
17 totalloc X X
18 halsteadcontent X
19 essentialcomplexity X

Total 19 17

In summary, 7 datasets are from NASA projects developed at different sites by
different teams, hence we treat each of them as if they were from 7 different compa-
nies. Remaining 3 datasets are from a Turkish company collected from software for
domestic home appliances. Therefore we use 10 projects from 8 different companies.

In all analyses, we used all available features to learn defect predictors. One
question is whether it might be better to focus on just some special subset of those
features. In previous work (Menzies et al. 2007b), we have found that there is no best
single set of features. In fact, this best set is highly unstable and changes dramatically
from data set to data set. That study is summarized, below. The main message of that
study is that it is “best” to never assume a best set of features. Rather, give them all
to a learner and let it work out which ones are best to use or ignore for a particular
application.

Feature subset selection is a technique that explores subsets of the available
features. The simplest and fastest subsetting method is to rank attributes from the
most informative to least informative. After discretizing numeric data5 then if F is
a set of features, the number of bits required to encode a class after observing a
feature is:

H(C|F) = −
∑

f∈F
p( f )

∑
c∈C

p(c| f )log2(p(c| f ) (1)

The highest ranked feature Fi is the one with the largest information gain; i.e the one
that most reduces the encoding required for the data after using that feature; i.e.

Inf oGain(Fi) = H(C) − H(C|Fi) (2)

5E.g. given an attribute’s minimum and maximum values, replace a particular value n with
(n − min)/((max − min)/10). For more on discretization, see Dougherty et al. (1995).
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% selected attributes selection
data N pd pf (seeFigure 2) method
pc1 100 48 17 3, 35, 37 exhaustive subsetting

mw1 100 52 15 23, 31, 35 iterative subsetting
kc3 100 69 28 16, 24, 26 iterative subsetting

cm1 100 71 27 5, 35, 36 iterative subsetting
pc2 100 72 14 5, 39 iterative subsetting
kc4 100 79 32 3, 13, 31 iterative subsetting
pc3 100 80 35 1, 20, 37 iterative subsetting
pc4 100 98 29 1, 4, 39 iterative subsetting
all 800 71 25

Fig. 1 Best defect predictors learned in Menzies et al. (2007b). Mean results from Naive Bayes after
a 10 repeats of (i) randomize the order of the data; (ii) divide that data into ten 90%:10% splits for
training:test. Prior to learning, all numerics where replaced with logarithms. InfoGain was then used
to select the best two or three attributes shown in the right-hand column (and if “three” performed
as well as “two”, then this table shows the results using “two”)

where H(C) comes from Eq. 1. In iterative InfoGain subsetting, predictors are learned
using the i = 1, 2..., N-th top-ranked attributes. Subsetting terminates when i + 1 at-
tributes perform no better than i. In exhaustive InfoGain subsetting, the attributes are
first ranked using iterative subsetting. Next, predictors are built using all subsets of
the top j ranked attributes. For both iterative and exhaustive subsetting, the process
is repeated 10 times using 90% of the data (randomly selected). Iterative subsetting
takes time linear on the number of attributes N while exhaustive subsetting takes
time 2 j (so it is only practical for small j ≤ N).

Figure 1 shows the feature subset selection results reported previously (Menzies
et al. 2007b). Please note that, that study was run on many of the same NASA data
sets used in this study. The right-hand-side column of Fig. 1 reports which attributes
used in that study were selected by feature subset selection. In a result consistent
with many of the static code measures being highly correlated, note that most of the
features were removed and using 3 features was often as good as using many more.

frequency
ID in Figure 1 what type
1 2 loc_blanks locs
3 2 call_pairs misc
4 1 loc_code_and_command locs
5 2 loc_comments locs
13 1 edge_count misc
16 1 loc_executable locs
20 1 I H (derived Halstead)
23 1 B H (derived Halstead)
24 1 L H (derived Halstead)
26 1 T H (derived Halstead)
31 2 node_count misc
35 3 µ 2 h (raw Halstead)
36 1 µ 1 h (raw Halstead)
37 2 number_of_lines locs
39 2 percent_comments misc

Fig. 2 Attributes used in Fig. 1
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Fig. 3 InfoGain for KC3
attributes. Calculated from
Eq. 2. Lines show means and
t-bars show standard
deviations after 10 trials on
90% of the training data
(randomly selected)
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In terms of “which features are best to use?”, the key feature of Fig. 1 is that
different data sets selected very different “best” features. Figure 2 tallies the number
of times each feature was selected: no feature was selected all the time and many of
the features were never selected at all. This aspect can be explained by Fig. 3 which
shows the InfoGain of all the featues in one of our data sets (KC3). Note how the
highest ranked attributes (those on the left-hand-side) offer very similar information.
That is, there are no clear winners, so minor changes in the training sample (the 90%
sub-sampling used in subsetting or a cross-validation study) can result in the selection
of very different “best” attributes.

The pattern of InfoGain values of Fig. 3 (where there are many alternative “best”
features) repeats in all our data sets. This pattern explains a prior observation of
Shepperd & Ince who found 18 publications where an equal number of studies
reporting that the McCabe cyclomatic complexity is the same, is better, or is worse
than lines of code in predicting defects (Shepperd and Ince 1994). Figure 3 motivates
the following principles:

– Do not seek “best” subsets of static code attributes.
– Rather, seek for learning methods that can combine multiple partial defect

indicators like the statistical methods of Naive Bayes.

Therefore, we do not perform feature subset selection, instead we use all available
features in our analyses.

3.2 Naive Bayes Classifier

Each project in Table 2 contains information from many modules; the smallest unit
of functionality.6 To learn defect predictors, the project data are augmented with one
dependent variable holding boolean values for “defects detected”. The data mining
task is to find combinations of static code features that predict the boolean value of
the dependent variable.

In prior work we have explored a range of data mining methods for defect pre-
diction and found that classifiers based on Bayes theorem yields better performance
than rule based methods (i.e. decision trees, oneR), for the Table 2 NASA data7

(Menzies et al. 2007b). An extensive study by Lessmann et.al also shows that Naive
Bayes performs equivalently well with 15 other methods (Lessmann et al. 2008).

6In other languages, modules may be called “function” or “method”.
7SOFTLAB data were not available at that time.
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Therefore, we find Naive Bayes to be a viable choice as a classifier to use in our
analysis.

A Naive Bayes classifier (Duda et al. 1976) is based on Bayes’ Theorem. Infor-
mally, the theorem says next = old ∗ new i.e. what we’ll believe next comes from how
new evidence effects old beliefs. More formally:

P(H|E) = P(H)

P(E)

∏

i

P(Ei|H) (3)

i.e. given fragments of evidence Ei and a prior probability for a class P(H), the
theorem lets us calculate a posterior probability P(H|E). For example, in our
data sets, there are two hypotheses: modules are either defective or not: H ∈
{def ective, non Def ective}. Also, if a particular module has number of Symbols = 27
and LOC = 40 and was previously classified as “defective” then

E1 : number Of Symbols = 27
E2 : LOC = 40
H : def ective

When building defect predictors, the prior probability of each class (“defective”
or “defect-free”) is calculated, given the defect content of each module. So, if a data
set has 100 modules and 25 of them are faulty, then:

P(def ective) = 0.25

When testing new data, a module is assigned to the class with the higher posterior
probability, calculated from Eq. 3.

Naive Bayes classifiers are called “naive” since they assume independence of each
feature. While this assumption simplifies the implementation (only the frequency
counts are required for each feature), it is possible that correlated events are missed
by this “naive” approach. Domingos and Pazzani show theoretically that the inde-
pendence assumption is a problem in a vanishingly small percent of cases (Domingos
and Pazzani 1997). This explains the repeated empirical result that, on average, Naive
Bayes classifiers perform as well as other seemingly more sophisticated schemes.8

Equation 3 offers a simple method for handling missing values. Generating a
posterior probability means of tuning a prior probability to new evidence. If that
evidence is missing, then no tuning is needed. In this case Eq. 3 sets P(Ei|H) = 1
which, in effect, makes no change to P(H).

When estimating the prior probability of hypothesis H, it is common practice
(Yang and Webb 2003) to use an M-estimate as follows. Given that the total number
of hypothesis is C, the total number of training instances is I, and N(H) is the
frequency the hypothesis H within I, then

P(H) = N(H) + m
I + m · C

(4)

8Details of this issue are out of the scope of this paper. For more, please see Table 1 in (Domingos
and Pazzani 1997).
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Here m is a small non-zero constant (often, m = 1). Three special cases of Eq. 4 are:

– For high frequency hypothesis in large training sets, N(H) and I are much larger
than m and m · C, so Eq. 4 simplifies to P(H) = N(H)

I , as one might expect.
– For low frequency classes in large training sets, N(H) is small, I is large, and the

prior probability for a rare class is never less than 1
I ; i.e. the inverse of the number

of instances. If this were not true, rare classes would never appear in predictions.
– For very small data sets, I is small and N(H) is even smaller. In this case,

Eq. 4 approaches the inverse of the number of classes; i.e. 1
C . This is a useful

approximation when learning from very small data sets when all the data relating
to a certain class has not yet been seen.

The prior probability calculated in Eq. 4 is a useful lower bound for P(Ei|H). If some
value v is seen N( f = v|H) times in feature f ’s observations for hypothesis H, then

P(Ei|H) = N( f = v|H) + l · P(H)

N(H) + l
(5)

Here, l is the L-estimate and is set to a small constant (Yang and Webb (2003)
recommend l = 2). Two special cases of are:

– A common situation is when there are many examples of an hypothesis and
numerous observations have been made for a particular value. In that situation,
N(H) and N( f = v|H) are large and Eq. 5 approaches N( f=v|H)

N(H)
, as one might

expect.
– In the case of very little evidence for a rare hypothesis, N( f = v|H) and N(H)

are small and Eq. 5 approaches l·P(H)

l ; i.e. the default frequency of an observation
in a hypothesis is a fraction of the probability of that hypothesis. This is a useful
approximation when very little data is available.

For numeric features it is common practice for Naive Bayes classifiers to use the
Gaussian probability density function (Witten and Frank 2005):

g(x) = 1√
2πσ

e− (x−μ)2

2σ2 (6)

where {μ, σ } are the feature’s {mean,standard deviation}, respectively. To be precise,
the probability of a continuous feature having exactly the value x is zero, but the
probability that it lies within a small region, say x ± ε/2, is ε × g(x). Since ε is a
constant that weighs across all possibilities, it cancels out and needs not be computed.

All the static code features of Table 3 are numeric and are highly skewed. There-
fore, we replace all numeric values with a “log-filter”, i.e. N with ln(N). This spreads
out skewed curves more evenly across the space from the minimum to maximum
values (to avoid numerical errors with ln(0), all numbers under 0.000001 are replaced
with ln(0.000001)). This “spreading” can significantly improve the effectiveness of
data mining, since the distribution of log-filtered feature values fits better to the
normal distribution assumption (Menzies et al. 2007b).

3.3 Performance Evaluation

Data mining effectiveness was measured using probability of detection (pd), proba-
bility of false alarm (pf ) and balance (bal) (Menzies et al. 2007a, b). If {A, B, C, D}
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are the true negatives, false negatives, false positives, and true positives (respectively)
found by a defect predictor, then:

pd = recall = D/(B + D) (7)

pf = C/(A + C) (8)

bal = balance = 1 −
√

(0 − pf )2 + (1 − pd)
2

√
2

(9)

All these values range zero to one. Better and larger balances fall closer to the desired
zone of no false alarms (pf = 0) and 100% detection (pd = 1).

Other measures such as accuracy and precision were not used since, as shown
in Table 2, the percent of defective examples in our projects was usually very
small (median value around 13%). Accuracy and precision are poor indicators of
performance for data where the target class (i.e. defective) is so rare (for more on
this issue, see Menzies et al. 2007a, b).

The results were visualized using quartile charts. To generate these charts, the
performance measures for an analysis are sorted to isolate the median and the lower
and upper quartile of numbers. For example:

{
q1︷ ︸︸ ︷

4, 7, 15, 20, 31,

median︷︸︸︷
40 , 52, 64,

q4︷ ︸︸ ︷
70, 81, 90}

In our quartile charts, the upper and lower quartiles are marked with black lines;
the median is marked with a black dot; and vertical bars are added to mark the 50%
percentile value. The above numbers would therefore be drawn as follows:

0% � 100%

The Mann-Whitney U test (Mann and Whitney 1947) was used to test for statistical
difference between results. This non-parametric test replaces performance measure
values (i.e. pd, pf, bal) with their rank inside the population of all sorted values.
Such non-parametric tests are recommended in data mining since many of the
performance distributions are non-Gaussian (Demsar 2006).

4 Analysis #1: Are CC Data Ever Useful for Organizations?

4.1 Design

Our goal is to determine whether using cross company data is beneficial for construct-
ing defect predictors and to identify the conditions under which cross-company data
should be preferred to within-company data. Our first WC-vs-CC analysis follows the
pseudo code given in Table 5, for all 7 NASA projects of Table 1. For each project,
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Table 5 Pseudocode for Analysis 1

test sets were built from 10% of the data, selected at random. Defect predictors were
then learned from:

– CC data: all data from the other 6 projects.
– WC data: remaining 90% data of that project;

Most of the Table 1 data come from systems written in “C/C++” but at least one of
the systems was written in JAVA. For cross-company data, an industrial practitioner
may not have access to detailed meta-knowledge (e.g. whether it was developed in
“C” or JAVA). They may only be aware that data, from an unknown source, are
available for download from a certain url. To replicate that scenario, we will make
no use of our meta-knowledge about Table 1.

In order to control for order effects (where the learned theory is unduly affected
by the order of the examples) our procedure was repeated 20 times, randomizing the
order of data in each project each time. In all, we ran 280 tests to compare WC-vs-CC:

(2 data sources) ∗ (
20 randomized orderings

) ∗ (
7 projects

)

The projects’ data come from different sources and, hence, have different features.
For this analysis, only the features that are common in all NASA projects are used
(a total of 19 features). These features are marked in “NASA Shared” column of
Table 4.

4.2 Results from Analysis #1

Figure 4 shows the {pd, pf } quartile charts for CC vs WC data averaged over seven
NASA projects. The pattern is very clear: CC data dramatically increases both the
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treatment min Q1 median Q3 max

pd CC 50 83 97 100 100 •
WC 17 63 75 82 100 •

pf CC 14 53 64 91 100 •
WC 0 24 29 36 73 •

Fig. 4 Analysis #1 results averaged over seven NASA tables. Numeric results on left; quartile charts
on right. Q1 and Q3 denote the 25% and 75% percentile points (respectively). The upper quartile of
the first row is not visible since it runs from 100% to 100%; i.e. it has zero length

probability of detection and the probability of false alarms. The pd results are
particularly striking.

For cross-company data:

– 50% of the pd values are at or above 97%
– 75% of the pd values are at or above 83%;
– And all the pd values are at or over 50%.

To the best of our knowledge, Fig. 4 are the largest pd values ever reported from
these data. However, these very high pd values come at some considerable cost. We
observe in Fig. 4 that the median false alarm rate has changed from 29% (with WC)
to 64% (with CC) and the maximum pf rate now reaches 100%. Note that a 100%
pf rate means that all defect-free modules are classified as defective, which yields
inspection of all these modules unnecessarily and contradicts with the purpose of
defect prediction. However, it is not right to assess the general behavior of the CC
defect predictors with such an extreme case. We mention this issue in order to clarify
that high false alarm rates may be prohibitive in the practical application of defect
predictors.

We explain these increases in pd, pf with the extraneous factors in CC data.
More specifically, using a large training set (e.g. seven projects in Table 2) informs
of not only the sources of errors, but also numerous irrelevancies. For example,
the defect characteristics of software modules with different complexity levels or
sizes may differ (Koru et al. 2008). In this context, a complicated search algorithm’s
metrics are irrelevant to the defective behavior of a simple sum function. Since
there are few modules with extreme characteristics (i.e. complexity, size) in a single
project, their effect on the overall model are limited. However, when data from
multiple companies are combined, the number of these extreme cases, and hence
their cumulative effect on the overall model increase significantly. Therefore, factors
such as programming language constructs (i.e. object oriented vs. procedural) and
project specific requirements (i.e. availability, speed) that have impacts on the
module characteristics can be considered as extraneous factors.

Table 6 Summary of U-test results (95% confidence): moving from WC to CC

Group WC
pd→ CC WC

pf→ CC Tables |Tables|
a Increased Increased CM1 KC1 KC2 MC2 MW1 PC1 6
b Same Same KC3 1

For all projects’ results, see Fig. 5
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Table (cm1)
treatment min Q1 median Q3 max

pd CC 80 100 100 100 100 •
WC 40 60 80 100 100 •

pf CC 87 91 96 96 98 •
WC 24 27 33 38 47 •

Table (kc1)
treatment min Q1 median Q3 max

pd CC 82 88 94 94 100 •
WC 64 73 82 85 97 •

pf CC 47 49 51 53 57 •
WC 27 34 36 38 40 •

Table (kc2)
treatment min Q1 median Q3 max

pd CC 82 91 91 100 100 •
WC 55 73 82 91 100 •

pf CC 57 62 64 74 81 •
WC 14 24 31 33 45 •

Table (kc3)
treatment min Q1 median Q3 max

pd CC 60 80 80 80 100 •
WC 40 60 80 80 100 •

pf CC 14 19 24 31 38 •
WC 10 17 21 26 36 •

Table (mc2)
treatment min Q1 median Q3 max

pd CC 50 67 83 100 100 •
WC 17 33 67 67 83 •

pf CC 55 64 73 73 100 •
WC 0 27 36 45 73 •

Table (m 1)
treatment min Q1 median Q3 max

pd CC 75 75 100 100 100 •
WC 25 50 75 75 100 •

pf CC 50 55 63 66 82 •
WC 13 18 21 29 37 •

Table (pc1)
treatment min Q1 median Q3 max

pd CC 88 100 100 100 100 •
WC 38 63 63 75 88 •

pf CC 89 92 93 95 99 •
WC 17 25 27 30 34 •

Fig. 5 Project-wise Analysis #1 results for NASA projects

Hence, large training sets increase the error detection rates (i.e. pd) since there
are more known sources of errors. However, they also increase the probability of
false alarms (pf ) since there are more extraneous factors introduced to the analysis.
We will test the validity of this claim in the next analysis.
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4.3 Checking the Analysis #1 Results

Once a general result is defined (e.g. defect predictors learned from CC projects
dramatically increase both pf and pd), it is good practice to check for specific
exceptions to that pattern. Table 6 shows a summary of results when U tests with
α = 0.05 were applied to test results from each of the 7 projects in isolation and Fig. 5
shows the {pd, pf } quartile charts for Analysis #1 for each NASA project:

– For six projects, the general result holds (i.e. both (pd, pf ) increases if defect
predictors learned from CC projects are used rather than defect predictors
learned from WC projects. See group a in Table 6).

– For one project, there is no difference in the performances of the defect predic-
tors learned from CC and WC projects (see group b in Table 6).

4.4 Discussion of Analysis #1

When practitioners use defect predictors with high false alarm rates (e.g.the 64%
reported above), they must allocate a large portion of their debugging budget to the
unfruitful exploration of erroneous alarms.

In our industrial work, we have sometimes seen several situations where detectors
with high false alarms are useful:

– When the cost of missing the target is prohibitively expensive. In mission critical
or security applications, the goal of 100% detection may be demanded in all
situations, regardless of the cost of chasing false alarms.

– When only a small fraction of the data is returned. Hayes, Dekhtyar, & Sundaram
call this fraction selectivity and offer an extensive discussion of the merits of this
measure (Hayes et al. 2006).

– When there is little or no cost in checking false alarms.

Having said that, we have shown these results to five of our user groups in
the United States and Turkey and none of them could accept false alarm rates as
high as 64%. Therefore, the conditions under which the benefits of CC data (high
probabilities of detection) outweigh their high costs (high false alarm rates) are not
common.

In summary, for most software applications, very high pf rates like the CC results
of Fig. 4 make the predictors impractical to use.

5 Analysis #2: How Can Companies Filter CC Data for Local Tuning?

The results of the first analysis restricts the use of CC data to a limited domain (i.e.
mission critical) and may look discouraging at first glance. In the first analysis we
explained our observations with the extraneous factors, that the results are affected
by the irrelevant factors in CC data. In this section we hypothesize this claim and test
for its validity.
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Table 7 Pseudocode for Analysis 2

5.1 Design

In this analysis, we try to construct more homogeneous defect datasets from CC data
in an automated manner. For this purpose we use a simple filtering method (i.e. NN)
which is to be described next. The analysis design is given in Table 7. For this analysis,
we use all common features available in NASA projects which is a total of 19 features.
These features are marked in NASA Shared column of Table 4.

5.1.1 Nearest Neighbor (NN) Filtering

Our idea behind filtering is to collect similar instances together in order to construct
a learning set that is homogeneous with the validation set. More formally, we try to
introduce a bias in the model by using training data that are similar to the validation
data characteristics. While a bias is not desired in general, it is what we seek on
purpose, since in our case we can control the bias against removing the noise in CC
data (i.e. extraneous factors). We simply use the k-Nearest Neighbor (k-NN) method
to measure the similarity between the validation set and the training candidates.
The similarity measure is the Euclidean distance between the static code features of
validation and training candidate sets. As mentioned before, we do not perform any
feature selection and use all available common features for filtering. The expected
outcome of the filtering part is to obtain a subset of available CC data that shows
similar characteristics to the local code culture.
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Fig. 6 Analysis #2 PD results
where NNpd ≥ WCpd.
Rankings computed via
Mann-Whitney (95%
confidence) comparing each
row to all other rows

quartiles
rank 0 25 50 75 100

CM1 1 CC 98 98 98 98 98 •
2 NN 76 82 82 84 84 •
3 WC 20 60 80 80 100 •

MW1 1 CC 90 90 90 90 90 •
2 NN 68 68 68 68 71 •
2 WC 0 50 50 75 100 •

PC1 1 CC 99 99 99 99 99 •
2 NN 74 77 77 77 78 •
3 WC 38 62 62 75 100 •

50%

The details of NN filter are as follows: We calculate the pairwise Euclidean
distances between the validation set and the candidate training set (i.e. all CC data).
Let N be the number of validation set size. For each validation data, we pick its
k = 10 nearest neighbors from candidate training set.9 Then we come up with a total
of 10 × N similar data points (i.e. module feature vectors). These 10 × N samples
may not be unique (i.e. a single data sample can be a nearest neighbor of many data
samples in the validation set). Using only unique ones, we form the training set and
use a random 90% of it for training a predictor.

Please note that we do not use the class information (i.e. a module is defective
or defect-free) while measuring similarity and selecting neighbors. This corresponds
to a real life case, where the development of some modules are completed and they
are ready for testing: there is no defect related information available, however static
code features are collected with automated tools.

5.2 Results

If the results of Analysis #1 are due to the extraneous factors in CC data (as we
suspect), then we would expect lower pf’s in NN results than CC results. Therefore,
for pd, we define the null hypothesis as:

H0 : NNpf ≥ CCpf

H0 is rejected by the U test with α = 0.05. Therefore, using NN filtered CC
data significantly decreases the false alarms compared to CC data. Yet, we observe
that pd’s have also decreased. However, false alarm rates are more dramatically
decreased than detection rates as seen in Figs. 6, 7, 8 and 9. For example, in CM1
project, the median false alarm rate decreases nearly one third, from 91% to 33%,
whereas the median detection rate slightly decreases from 94% to 82%. In all cases,
predictors learned from NN data dramatically reduce the high false alarm rates

9Caveat: We did not optimize the value of k for each project. We simply used a constant k = 10. We
consider it as a future work to dynamically set the value of k for a given project (Baker 2007).
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Fig. 7 Analysis #2 PD results
where NNpd < WCpd

quartiles
rank 0 25 50 75 100

KC1 1 CC 94 94 94 94 94 •
2 WC 64 76 82 85 94 •
3 NN 60 64 65 66 69 •

KC2 1 CC 94 94 94 94 94 •
2 WC 45 73 82 91 100 •
2 NN 77 78 79 79 80 •

KC3 1 CC 81 81 81 84 84 •
2 WC 20 60 80 100 100 •
3 NN 60 63 65 67 70 •

MC2 1 CC 83 83 83 83 85 •
2 WC 17 50 67 83 100 •
3 NN 56 56 56 56 58 •

50%

associated with the use of cross-company data. Often that reduction halves the false
alarm rate. For example, in MW1, the median false alarm rate drops from 68% (CC)
to 33% (NN).

Showing that defect predictors learned from NN-filtered CC data are significantly
better than the ones learned from CC data, the ideal result would be that models
based on NN-filtered can be used as a surrogate for WC data based models. This,
in turn, would mean that developers could avoid the tedious and expensive work of
local data collection. We now investigate the relation between the NN-filtered CC
data and the WC data based defect predictors.

If defect predictors learned from NN-filtered CC data out-performed the ones
learned from WC data then we would expect to notice two observations:

– Observation1: NN would have pd values above or equal to WC’s pd. The
examples displaying Observation1 are shown in Fig. 6.

– Observation2: NN would have pf values below or equal to WC’s pf . The
examples displaying Observation2 are shown in Fig. 8.

Fig. 8 Analysis s #2 PF results
where NNpf ≤ WCpf

quartiles
rank 0 25 50 75 100

KC1 1 NN 22 23 24 25 27 •
2 WC 26 32 35 37 43 •
3 CC 59 60 60 60 60 •

KC2 1 NN 24 25 25 25 27 •
1 WC 10 21 26 31 40 •
2 CC 67 67 67 67 67 •

KC3 1 NN 17 18 18 19 20 •
2 WC 7 17 21 26 31 •
3 CC 26 27 27 27 27 •

MC2 1 NN 29 30 31 32 35 •
2 WC 0 27 36 45 73 •
3 CC 71 71 71 71 71 •

50%
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Fig. 9 Analysis #2 PF results
where NNpf > WCpf

quartiles
rank 0 25 50 75 100

CM1 1 WC 16 29 33 38 49 •
2 NN 40 43 44 45 46 •
3 CC 90 91 91 91 93 •

MW1 1 WC 8 21 26 29 47 •
2 NN 30 32 33 33 36 •
3 CC 67 68 68 69 70 •

PC1 1 WC 16 24 28 31 40 •
2 NN 45 48 48 49 53 •
3 CC 94 94 94 94 94 •

50%

Please note that the conjunction of Observation1 and Observation2 is uncommon. In
fact, our results suggest that Observation1 and Observation2 are somewhat mutually
exclusive:

– As shown in Figs. 6 and 9, the examples where NN increases the probability of
detection are also those where it increases the probability of false alarms.

Hence, we cannot recommend NN as a replacement for WC. Nevertheless, if local
WC data are not available, then we would recommend processing foreign CC data
with NN.

5.3 Discussions

In Analysis #1 we have used random samples of CC data and observed that the
false alarm rates substantially increased compared to the WC models. Our new
analysis shows that NN filtering CC data removes the increased false alarm rates.
Now we argue that, using NN filtering instead of using all available CC data, helps
choosing training examples that are similar to problem at hand. Thus, the irrelevant
information in non-similar examples is avoided. However, this also removes the rich
sample base and yields a slight decrease in detection rates. Mann-Whitney tests
reveal that NN filtering is

– far better than random sampling cross company data,
– and still worse than using within company data.

The performances of defect predictors based on the NN-filtered CC vs. WC data
do not give necessary empirical evidence to make a strong conclusion. Sometimes
NN data based models may perform better than WC data based models. A possible
reason may be hidden in the processes that are implemented those projects. Perhaps,
a group of new developers were working together for the first time and correspond-
ing WC data included more heterogeneity, which is reduced by NN. Perhaps the
development methodology changed during the project, producing a different code
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culture. However, we do not have access to the internals of these projects that allows
a discussion of these observations.

6 Analysis #3: What is the Smallest Amount of Local Data Needed
for Constructing a Model?

Our results of Analyses #1 and #2 reveal that WC data models are better if data are
available. In this section, we will show that defect predictors can be learned from
very small samples of WC data.

6.1 Design

An important aspect of the Analyses #1 and #2 results is that defect predictors
were learned using only a handful of defective modules. For example, consider
a 90%/10% train/test split on pc1 with 1,109 modules, only 6.94% of which are
defective. On average, the training set will only contain 1109 ∗ 0.9 ∗ 6.94/100 = 69
defective modules. Despite this, pc1 yields an adequate median {pd, pf } results of
{63, 27}%.

Analysis #3 was therefore designed to check the smallest amount of data needed
to learn defect predictors. The design is given in Table 8. Analysis #3 is essentially
the same as the first analysis, but without the cross-company study. Instead, analysis
#3 took the 7 NASA projects of Table 1 and learned predictors using:

– reduced WC data: a randomly selected subset of up to 90% of each project data.

After randomizing the order of the data, training sets were built using just the first
100, 200, 300, . . . data samples in the project. After training the defect predictor, its
performance is tested on the remaining data samples not used in training.

Analysis #1 only used the features found in all NASA projects. For this analysis,
we imposed no such restrictions and used whatever features were available in each
data set.

Table 8 Pseudocode for Analysis 3
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6.2 Results from Analysis #3

Equation 9 defined “balance” to be a combination of {pd, pf } that decreases if
pd decreases or pf increases. As shown in Fig. 10, there was very little change in
balanced performance after learning from 100,200,300,... examples. Indeed, there
is some evidence that learning from larger training sets had detrimental effects:
the more training data, the larger the variance in the performance of the learned
predictor. Observe how, in kc1 and pc1, as the training set size increases (moving
right along the x-axis) the dots showing the balance performance start spreading out.
We conjecture that this effect is due to the presence of occasional larger outliers in
the training data (the probability of discovering these increases as the training set
grows inside and, if the learner trains on them, then the resulting theory has more
variance.)
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Fig. 10 Results from Analysis #3. Training set size grows in units of 100 examples, moving left to
right over the x-axis. The MC2 results only appear at the maximum x-value since MC2 has less than
200 examples
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The Mann-Whitney U test was applied to check the visual trends seen in Fig. 10.
For each project, all results from training sets of size 100,200,300. . . were compared to
all other results from the same project. The issue was “how much data are enough?”
i.e. what is the minimum training set size that never lost to other training set of a
larger size. Usually, that min value was quite small:

– In five tables {cm1, kc2, kc3, mc2, mw1}, min = 100;
– In {kc1, pc1}, min = {200, 300} instances, respectively.

We explain the analysis #3 results as follows. This analysis used simplistic static
code features such as lines of code, number of unique symbols in the module, etc.
Such simplistic static code features are hardly a complete characterization of the
internals of a function. We would characterize such static code features as having
limited information content (Menzies et al. 2008). Limited content is soon exhausted
by repeated sampling. Hence, such simple features reveal all they can reveal after a
small sample.

6.3 Checking the Analysis #3 Results

There is also some evidence that the results of Analysis #3 (that performance
improvements stop after a few hundred examples) have been seen previously in the
data mining literature. To the best of our knowledge, this is the first report of this
effect in the defect prediction literature.

– In their discussion on how to best handle numeric features, Langley and John of-
fer plots of the accuracy of Naive Bayes classifiers after learning on 10,20,40,..200
examples. In those plots, there is little change in performance after 100 instances
(John and Langley 1995).
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Fig. 11 Y-axis shows plateau point after learning from data sets that have up to X examples (from
Orrego 2004). The left plot shows results from using Naive Bayes (nbk) or a decision tree learner (j48)
(Quinlan 1992a) to predict for discrete classes. Right plot shows results from using linear regression
(lsr) or model trees (m5) (Quinlan 1992b) to learn predictors for continuous classes. In this study,
data sets were drawn from the UC Irvine data repository (Blake and Merz 1998)
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Table 9 An estimate of the effort required to build and test 100 modules

100 modules may take as little as two to four person months to construct. This estimate was
generated as follows:

– In the cm1 data base, the median module size is 17 lines. 100 randomly selected modules would
therefore use 1700 LOC.

– To generate an effort estimate for these modules, we used the on-line COCOMO (Boehm 2000)
effort estimator (http://sunset.usc.edu/research/COCOMOII/expert_cocomo/expert_cocomo2000.
html). Estimates were generated assuming 1700 LOC and the required reliability varying from
very low to very high.

– The resulting estimates ranged from between 2.4 and 3.7 person months to build and test those
modules.

– Orrego (2004) applied four data miners (including Naive Bayes) to 20 data sets to
find the plateau point: i.e. the point after which there was little net change in the
performance of the data miner. To find the plateau point, Oreggo used t-tests to
compare the results of learning from Y or Y + � examples. If, in a 10-way cross-
validation, there was no statistical difference between Y and Y + �, the plateau
point was set to Y. As shown in Fig. 11, many of those plateaus were found at
Y ≤ 100 and most were found at Y ≤ 200. Please note that these plateau sizes
are consistent with the results of Analysis #3.

6.4 Discussion of Analysis #3

In the majority of cases, predictors learned from as little as one hundred examples
perform as well as predictors learned from many more examples. This suggests that
the effort associated with learning defect predictors from within-company data may
not be overly large. For example, Table 9 estimates that the effort required to
build and test 100 modules may be as little as 2.4 to 3.7 person months. However,
practitioners should use this approach cautiously. The populations of one hundred
examples in our experiments are randomly selected from completed projects with
stratification. Therefore, in practice, any one hundred sample may not necessarily
reflect the company characteristics and constructing this initial set may take longer
than expected.

7 Replication: Can Our Results be Generalized?

Analyses # 1 to # 3 were based on NASA projects. For the external validity of the
conclusions of those Analyses, we replicate the same analyses on SOFTLAB projects
of Table 1.

For each SOFTLAB project, we follow the same procedure as in Analyses # 1 and
#2; i.e. 10% of the rows of each data set are selected at random for constructing test
sets. Then three different types of defect predictors are constructed. First type are
defect predictors trained with cross company data (i.e. all 7 NASA projects). Second
type of defect predictors are trained with within company data (i.e. random 90%

http://sunset.usc.edu/research/COCOMOII/expert_cocomo/expert_cocomo2000.html
http://sunset.usc.edu/research/COCOMOII/expert_cocomo/expert_cocomo2000.html
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Overall results on SOFTLAB data
treatment min Q1 median Q3 max

pd CC 88 88 95 100 100 •
WC 35 40 88 100 100 •

pf CC 52 59 65 68 68 •
WC 3 5 29 40 42 •

Table (ar3)
treatment min Q1 median Q3 max

pd CC 88 88 88 88 88 •
WC 88 88 88 88 88 •

pf CC 62 65 65 65 65 •
WC 40 40 40 40 42 •

Table (ar4)
treatment min Q1 median Q3 max

pd CC 95 95 95 95 95 •
WC 35 40 40 40 40 •

pf CC 52 55 56 59 60 •
WC 3 3 3 5 5 •

Table (ar5)
treatment min Q1 median Q3 max

pd CC 100 100 100 100 100 •
WC 88 100 100 100 100 •

pf CC 57 68 68 68 68 •
WC 29 29 29 29 29 •

Fig. 12 Analysis #1 results for the SOFTLAB projects. Overall and individual results are shown
respectively

rows of remaining SOFTLAB projects10). Finally, the third type are defect predictors
trained with nearest neighbor filtered cross company data (i.e. similar rows from 7
NASA tables).

The SOFTLAB projects include 29 static code features, 17 of which are common
with the NASA projects. In order to simplify the comparison between these new
projects and Analyses #1 and #2, we used only these shared attributes in our CC
analyses. On the other hand we use all available features in WC analyses for
SOFTLAB projects. In the following external validity analysis, we treated each
NASA project as cross- company data for SOFTLAB projects.

Figure 12 shows the results:

– The pd values for CC data increase compared to WC data with the cost of
increased pf.

– CC data shifts {Q1, median} of pf from {5, 29} to {59, 65}.
– For CC data:

10In order to reflect the use in practice, we do not use the remaining 90% of the same project for
training, we rather use a random 90% of data from other projects. Please note that all WC analysis
in this paper reflects within-company, not within project simulations. Since SOFTLAB data are
collected from a single company, learning a predictor on some projects and to test it on a different
one does not violate within company simulation.
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Fig. 13 Analysis #2 PD results
for the SOFTLAB projects
where NNpd ≥ WCpd.
Rankings computed via
Mann-Whitney (95%
confidence) comparing each
row to all other rows

quartiles
rank 0 25 50 75 100

AR4 1 CC 35 90 100 100 100 •
2 NN 65 65 70 70 70 •
3 WC 35 40 40 40 45 •

AR3 1 CC 75 88 88 88 88 •
1 NN 88 88 88 88 88 •
1 WC 88 88 88 88 88 •

AR5 1 CC 88 100 100 100 100 •
1 NN 100 100 100 100 100 •
1 WC 88 100 100 100 100 •

50%

– 25% of the pd values are at 100%.
– 50% of the pd values are above 95%
– And all the pd values are at or over 88%.

These results also provide evidence for the validity of our conclusions for Analysis
#3. In Analysis #3, we conclude that the minimum number of instances for train-
ing a defect predictor is around 100 − 200 data samples. Please note that three
SOFTLAB projects ar3, ar4 and ar5 have {63,107, 36} modules respectively. Thus,
the minimum number of training samples occurs when a predictor is trained from
(ar3 + ar5) projects. In this case, only (63 + 36) ∗ 0.90 = 90 training samples are used
to construct a defect predictor for the ar4 project. Similarly, the maximum number of
training samples occurs when a predictor is trained from (ar3 + ar4) projects. Then
(63 + 107) ∗ 0.90 = 153 training samples are used to construct a defect predictor for
the ar5 project. Therefore, the WC results in Fig. 12 are achieved using a minimum
of 90 and a maximum of 153 training samples.

Figures 13, 14 and 15 shows Observation1 (i.e. NNpd ≥ WCpd) and Observation2
(i.e. NNpf ≤ WCpf ) for SOFTLAB projects. Please recall that these observations
were mutually exclusive for NASA data. The pattern is similar in SOFTLAB
projects:

– for ar4 mutual exclusiveness hold: NNpd ≥ WCpd and NNpf > WCpf

– for ar3 and ar5: NNpf ≤ WCpf . If the observations were mutually exclusive, we
would expect NNpd < WCpd. While this is not the case for pd, we observe that
NNpd = WCpd and NNpd �> WCpd (see Fig. 13).

Fig. 14 Analysis #2 PF results
for the SOFTLAB projects
where NNpf ≤ WCpf

quartiles
rank 0 25 50 75 100

AR3 1 NN 38 38 38 38 40 •
2 WC 40 40 40 40 42 •
3 CC 38 55 56 60 80 •

AR5 1 NN 21 25 25 25 32 •
2 WC 29 29 29 29 29 •
3 CC 29 46 50 50 79 •

50%
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Fig. 15 Analysis #2 PF results
for the SOFTLAB projects
where NNpf > WCpf

quartiles
rank 0 25 50 75 100

AR4 1 WC 3 3 3 5 7•
2 NN 24 25 25 25 28 •
3 CC 6 47 62 67 78 •

50%

In summary, the WC, CC and NN patterns found in American NASA rocket
software are also observed in software controllers of Turkish domestic appliances.
While this is not the definitive proof of the external validity of our results, we find it
very compelling that they are reproducable in different companies.

8 Related Work

8.1 Neighborhood Reasoning

Our use of nearest neighbor is somewhat similar to k-NN classifier or reasoning by
analogy. A k-NN classifier returns the majority class in the “k” nearest neighbors
to the test instance. Lessman et.al. benchmark k-NN against 19 other learners and
found that it was one of the four worst methods for defect prediction (Lessmann
et al. 2008).

In reasoning by analogy, inference about some new case is made by partial match
to prior cases, then applying some repair or generalization procedure to the matched
cases. Like k-NN, reasoning by analogy makes use of some distance metric that finds
old cases similiar (i.e. nearer) to the new case. While reasoning by analogy is a
common effort estimation method (e.g. Shepperd and Schofield 1997), it is far less
common to see it applied to defect prediction. One reason for this is the typical size
of the training set: effort estimation typically deals with dozens of prior examples
while defect training sets can have thousands of examples. We conjecture that as the
data set grows in size, simple induction over many instances may be more powerful
than complex analogical reasoning over a handful of examples.

Our work is most similar to that of Khoshgoftaar and Seliya (2003) who aug-
mented k-NN with a counting procedure that was a slightly more sophisticated
decision procedure than “return the majority class”. Our approach differs to theirs
in that we bundle together the k-nearest neighbors, then pass that bundle from a
full-fledged classifier (Naive Bayes).

8.2 On Defect Prediction Using Static Code Features

We study defect predictors learned from static code attributes since they are useful,
easy to collect, and widely-used.

Useful: Defect predictors are considered useful, if they provide a prediction
performance that is comparable to or better than manual reviews (Moser et al. 2008).
This paper finds defect predictors with a probability of detection of 80%, or higher.
This is higher than currently-used industrial methods such as manual code reviews:
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– A IEEE Metrics 2002 (Shull et al. 2002) panel concluded that manual software
reviews can find ≈60% of defects11

– In 2004, Raffo (personnel communication) reports that the defect detection
capability of industrial review methods can vary from probability of detec-
tion: pd = T R(35, 50, 65)%12 for full Fagan inspections (Fagan 1976), to pd =
T R(13, 21, 30) for less-structured inspections.

Further, defect predictors based on static code features are considered as static
analysis, since they do not require the execution of code. Zheng et.al. compares
automated static analysis (ASA) with manual inspections on Nortel software and
conclude that “our results indicate that ASA is an economical complement to other
verification and validation techniques.”

Easy to collect: Employing defect predictors in practice should not take too much
time (Moser et al. 2008) for data collection and constructing the models themselves.
An advantage of static code features is that they can be quickly and automatically
collected from the source code, even if no other information is available. Static code
attributes like lines of code and the McCabe/Halstead attributes can be automatically
and cheaply collected, even for very large systems (Nagappan and Ball 2005b). By
contrast, other methods such as manual code reviews are labor-intensive; e.g. each
member of a review team can inspect 8 to 20 LOC/minute (Menzies et al. 2002).
Furthermore, other features (e.g. number of developers, the software development
practices used to develop the code) may be unavailable or hard to characterize.

Widely used: Many researchers use static features to guide software quality
predictions (see Nagappan and Ball 2005b; Menzies et al. 2002, 2004; Halstead 1977;
Mccabe 1976; Chapman and Solomon 2002; Polyspace 2008; Hall and Munson 2000;
Nikora and Munson 2003; Khoshgoftaar and Seliya 2004; Tang and Khoshgoftaar
2004; Porter and Selby 1990; Tian and Zelkowitz 1995; Srinivasan and Fisher 1995).
Verification and validation (V&V) textbooks advise using static code features to
select modules worthy of manual inspections (Rakitin 2001).

Nevertheless, there are many reasons to doubt the value of static code attributes
for defect prediction. Static code attributes are hardly a complete characterization
of the internals of a function. Fenton offers an insightful example where the same
functionality is achieved using different programming language constructs result-
ing in different static measurements for that module (Fenton and Pfleeger 1995).
Fenton uses this example to argue the uselessness of static code attributes. Further,
Fenton & Pfleeger note that the main McCabe’s attribute (cyclomatic complexity, or
v(g)) is highly correlated with lines of code (Fenton and Pfleeger 1995). Shepperd and
Ince repeated that result, commenting that “for a large class of software it (cyclomatic
complexity) is no more than a proxy for, and in many cases outperformed by, lines
of code” (Shepperd and Ince 1994).

However, if the above criticisms are correct then we would predict that, in general,
the performance of a defect predictor learned by a data miner should be very poor.

11That panel supported neither Fagan’s claim (Fagan 1986) that inspections can find 95% of defects
before testing nor Shull’s claim that specialized directed inspection methods can catch 35% more
defects that other methods (Shull et al. 2000).
12T R(a, b , c) is a triangular distribution with min/mode/max of a, b , c.
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Table 10 Some representative pds and pf s for prediction problems from the UC Irvine machine
learning database (Blake and Merz 1998)

Data Probability of

Detection False alarm

Pima diabetes 60 19
Sonar 71 29
Horse-colic 71 7
Heart-statlog 73 21
Rangeseg 76 30
Credit rating 88 16
Sick 88 1
Hepatitis 94 56
Vote 95 3
Ionosphere 96 18
Mean 81 20

These values were generated using the standard settings of a state-of-art decision tree learner (J48).
For each data set, ten experiments were conducted, where a decision tree was learned on 90% of
the data, then tests are done of the remaining 10%. The numbers shown here are the average results
across ten such experiments

More specifically, the supposedly better static code attributes such as Halstead and
Mccabe should perform no better than just simple thresholds on lines of code.

Neither of these predictions are true, at least for the data sets used in this
study. The defect predictors learned from static code attributes perform surprisingly
well. Formally, learning a defect predictor is a binary prediction problem where
each module in a project has been labeled as “defect-free” or “defective”. The
learning problem is to build some predictor which guesses the labels for as-yet-
unseen modules. In this paper we find predictors (i.e. for SOFTLAB projects) with a
probability of detection (pd) and probability of false alarm (pf) of

median(pd) = 88; median(pf ) = 29

Table 10 lets us compare our new results against standard binary prediction results
from the UC Irvine machine learning repository of standard test sets for data miners
(Blake and Merz 1998). Our median(pd, pf ) are very close to the standard results of
mean(pd, pf )=(81%,20%) which is noteworthy in two ways:

1. It is unexpected. If static code attributes capture so little about source code (as
argued by Shepherd, Ince, Fenton and Pfleeger), then we would expect lower
probabilities of detection and much higher false alarm rates.

2. These (pd, pf ) results are better than currently used industrial methods such
as the pd≈60% reported at the 2002 IEEE Metrics panel or the median(pd) =
[21..50] reported by Raffo.13

13Please note that we can only compare the defect detection properties of automatic vs manual
methods. Unlike automatic defect prediction via data mining, the above manual inspection methods
don’t just report “true,false” on a module, Rather, the manual methods also provide specific
debugging information. Hence, a complete comparison of automatic vs manual defect prediction
would have to include both an analysis of the time to detect potential defects and the time required
to fix them. Manual methods might score higher to automatic methods since they can offer more clues
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9 Practical Implications

While Table 10 shows that our defect detectors work nearly as well as standard data
mining methods, it does not necessarily demonstrate that false alarm rates of around
29% are useful in an industrial context. For example, Arisholm and Briand have
certain concerns on the practical usage of defect predictors (Arisholm and Briand
2006b). They argue that if X% of the modules are predicted to be faulty and if those
modules contain less than X% of the defects, then the costs of generating the defect
predictor is not worth the effort.

Let us analyze the testing efforts on MW1 project from Arisholm and Briand’s
point of view. For MW1, there are a total of 403 modules with 31 defective and 372
defect-free ones. CC model yields 90% pd and 68% pf, and one should examine
280 modules, which is around a 31% reduction in inspection efforts compared to
examining all modules. Yet, we argue that 68% pf rate is quite high and using NN
we are able to reduce it to 33% along with 68% pd. This corresponds to examining
144 modules, a reduction of 47% compared to exhaustive testing (and we assume an
exhaustive test should examine 274 modules for detecting 68% defects, as Arisholm
and Briand suggests).

This analysis can be extended for all projects used in this paper. For instance, the
company from which SOFTLAB data in Table 1 are collected is keen to use our
detectors, arguing that they operate in a highly competitive market segment where
profit margins are very tight. Therefore reducing the cost of the product even by 1%
can make a major difference both in market share and profits. Their applications
are embedded systems where, over the last decade, the software components have
taken precedence over the hardware. Hence their problem is a software engineering
problem. According to Brooks (1995), half the cost of software development is in
unit and systems testing. The company also believes that their main challenge is the
testing phase and they seek predictors that indicate where the defects might exist
before they start testing. Their expectation from the predictor is not to detect all
defects, but to guide them to the problematic modules so that they can detect more
defects in shorter times. Hence, any reduction in their testing efforts allows them to
efficiently use their scarce resources.

Considering the results of our analyses, if a company lacks local data, we would
suggest a two-phase approach. In phase one, that organization uses imported CC
data, filtered via NN. Also, during phase one, the organization should start a data
collection program to collect static code attributes. Phase two commences when
there is enough local WC data to learn defect predictors. During phase two, the
organization would switch to new defect predictors learned from the WC data.

An important issue worth more mentioning is the concern about the time required
for setting up a metric program (i.e. in order to collect data for building actual defect
predictors). Our incremental WC results suggest that, in the case of defect prediction,
this concern may be less than previously believed. Kitchenham et al. (2007) argue

back to the developer about what is wrong with the method. However, such an analysis is beyond
the scope of this paper. Here, we focus only on the relative merits of different methods for predicting
error prone modules.
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that organizations use cross-company data since within-company data can be so hard
to collect:

– The time required to collect enough data on past projects from within a company
may be prohibitive.

– Collecting within-company data may take so long that technologies change and
older projects do not represent current practice.

In our analysis we observe that as few as 100 modules are enough to learn adequate
defect predictors. When so few examples are enough, it is possible that projects can
learn local defect predictors that are relevant to their current technology in just a few
months.

Further, our experiences with our industry partners show that data collection is
not necessarily a major concern. Static code attributes can be automatically and
quickly collected with relatively little effort. We have found that when there is high
level management commitment, it becomes a relatively simple process. For the three
projects of SOFTLAB data, neither the static code attributes, nor the mapping of
defects to software modules were available when the authors attempted to collect
these data. Since these were smaller scale projects, it was sufficient to spend some
time with the developers and going through defect reports. Although not all projects
have 100 modules individually, the company has a growing repository from several
projects and enough data to perform defect prediction.

We also have experience with a large scale telecommunication company, where a
long-term metric program for monitoring complex projects (around 750,000 lines of
code) requires introducing automated processes. Again with high level management
support, it was possible to employ appropriate tool support and these new processes
were introduced easily and invisibly to the staff. For that project, we have now
a growing repository of defects mapped with source code (around 25 defects per
month). Software in that project are being developed for more than 10 years and
have very low defect rates. We have obtained the first results in the 8th month of
the project and it is planned to be completed in 12 months. In summary setting up a
metric program for defect prediction can be done more quickly than it is perceived.

10 Threats to Validity

In prior work we have explored a range of data mining methods for defect prediction
and found that classifiers based on Bayes theorem work best for the Table 1 data
(Menzies et al. 2007b). Since that study, we have tried to find better data mining
algorithms for defect prediction. To date, we have failed. Other researchers have also
failed to improve our results. For example, Lessmann et al. investigate the statistical
difference of the results between 19 learners, including naive Bayes, on the NASA
projects (Lessmann et al. 2008). Figure 16 shows that the simple Bayesian method
discussed above ties in first place along with 15 other methods.

Our analyses do not involve a value-based approach. We do not consider that
fixing defects in a module may be more critical than fixing defects in another one.
One reason is that our data sources do not consistently include necessary data (i.e.
the severity level of defects). If and when data are available, same kind of analysis
should be repeated considering this issue.
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Fig. 16 x-axis shows the rank
of the data miners given in the
y-axis. All the methods whose
top ranks are 4 to 12 are
statistically insignificantly
different. From Lessmann
et al. (2008)

Another point is that descriptions of software modules only in terms of static code
attributes can overlook some important aspects of software including: the type of
application domain; the skill level of the individual programmers involved in sys-
tem development; contractor development practices; the variation in measurement
practices; and the validation of the measurements and instruments used to collect the
data. For this reason some researchers augment, or replace static code measures with
other information such as the history of past faults or changes to code or number of
developers who have worked on the code (Graves et al. 2000). Yet again, we have
used all available data in our data sources, which are the static code features of the
projects.

The external validity of generalizing from NASA examples has been discussed
elsewhere (Menzies et al. 2007b). In summary, NASA uses contractors who are
contractually obliged to demonstrate their understanding and usage of current in-
dustrial best practices. These contractors service many other industries; for example,
Rockwell-Collins builds systems for many government and commercial organiza-
tions. For these reasons, other noted researchers such as Basili et al. (2002) have
argued that conclusions from NASA data are relevant to the general software
engineering industry.

Nevertheless, it is always wise to test claims of external validity. Hence:

– The SOFTLAB data were, initially, in reserve. Our first three analyses are based
solely on the aerospace applications found in the NASA data.

– Our last analysis checked if the SOFTLAB data exhibit the same pattern as the
NASA data.

SOFTLAB data sets were deliberately chosen to be as far removed as possible
from American aerospace software applications (i.e. Turkish home appliances con-
troller software). Please note that this software was developed via methods that
are both culturally and organizationally different to NASA aerospace software.
Turkish domestic appliances company software are developed by a small team
of 2-3 people. The development is carried out in an ad-hoc, informal way rather
than formal, process oriented approach in NASA. Furthermore, the company is
a profit and revenue driven commercial organization, whereas NASA is a cost
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driven government entity. This implies that our approach is widely applicable among
different development practices. More precisely, our approach is independent of the
processes that yield the final product, at least for the wide range of projects that we
have analyzed.

11 Conclusion

In this study, we have analyzed defect predictors of static code features, constructed
by cross company vs. within company data and found clear, unambiguous conclu-
sions:

– CC-data dramatically increase the probability of detecting defective modules
(i.e. from median value 75 to 92);

– But CC-data also dramatically increase the false alarm rate (i.e. from median
value 29 to 64).

– NN-filtering CC data avoids the high false alarm rates by removing irrelevancies
in CC data (i.e. from median value 64 to 32). This removal takes place by
automatically selecting similar project data in terms of available static code
features and discarding non-similar ones.

– Yet WC-data models are still the best and they can be constructed with small
amounts of data (i.e. 100 examples).

Interpreting these in terms of the posed questions in the introduction, we conclude
that:

– CC data are useful in extreme cases such as mission critical projects, where the
cost of false alarms can be afforded. Therefore, CC data should be used only
when WC data are not available.

– Pruning CC data with NN-filter allows the use of CC data for constructing
practical defect predictors in other domains. NN-filtered CC data yields much
better results than raw CC data, yet closer but worse results than WC data.

– The best option of using WC data requires the collection of a mere hundred
examples from within a company and can be done in a short time (i.e. a few
months).

– We observe the same patterns not only in aerospace software from NASA, but
also in software from a completely different company located in another country.
While this is a strong evidence of generality, we take great care not to interpret
it as a proof of external validity.

We conclude our findings by proposing a two-phase approach for initiating defect
prediction process:

– Phase1: Use NN filtered CC data to make local predictions and start to collect
WC data.

– Phase2: After a few hundred examples are available in the local repository
(usually a few months), discard the predictor learned on CC data and switch
to those learned from WC data.
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