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ABSTRACT
Reconnection of the magnetic lines of force is considered in case the magnetic energy exceeds
the rest energy of the matter. It is shown that the classical Sweet–Parker and Petschek models
are generalized straightforwardly to this case and the reconnection rate may be estimated by
substituting the Alfven velocity in the classical formulae with the speed of light. The outflow
velocity in the Sweet–Parker configuration is mildly relativistic. In the Petschek configuration,
the outflow velocity is ultrarelativistic whereas the angle between the slow shocks is very small.
As a result of the strong compression, the plasma outflow in the Petschek configuration may
become strongly magnetized if the reconnecting fields are not exactly antiparallel.
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1 I N T RO D U C T I O N

In highly conducting plasmas, the magnetic energy is released by
reconnection of the magnetic lines of force near the singular lines
where the magnetic field changes sign. This process has been inten-
sively studied both in laboratory plasma devices and in space (see
recent monographs by Biskamp 2000; Priest & Forbes 2000). Mag-
netic reconnection may occur in relativistic objects such as pulsars,
magnetars, active galactic nuclei or gamma-ray bursts. In pulsars,
the relativistic magnetic reconnection was proposed as a source of
the high-energy emission (Lyubarskii 1996; Kirk, Skjæraasen &
Gallant 2002) and as the solution to the σ problem (Coroniti 1990;
Lyubarsky & Kirk 2001; Kirk & Skjæraasen 2003; Lyubarsky 2003).
Similar models were also developed for the cosmological gamma-
ray bursts (Drenkhahn 2002; Drenkhahn & Spruit 2002). The mag-
netic reconnection was evoked for explanation of the rapid variabil-
ity observed in active galactic nuclei (Di Matteo 1998). The particle
acceleration in the reconnection process was proposed to operate
in radio jets (Romanova & Lovelace 1992; Birk, Crusius-Wätzel &
Lesch 2001; Jaroschek, Lesch & Treumann 2004a). The reconnec-
tion of the superstrong magnetic field is a key element of the widely
recognized model for the soft gamma repeaters (Thompson &
Duncan 1995; Lyutikov 2003). Therefore, relativistic generaliza-
tion of the classical reconnection models is in order.

Blackman & Field (1994) considered kinematics of relativistic
reconnection in the Sweet–Parker and Petschek configurations and
concluded that as a result of the Lorentz contraction, the recon-
nection rate is significantly enhanced and may approach the speed
of light. Lyutikov & Uzdensky (2002) confirmed this conclusion
for the Sweet–Parker case. In both these works, the full energy
and momentum balance was not considered, the authors imposed
instead condition of incompressibility assuming that the proper den-
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sity of the plasma remains constant. Particle acceleration in relativis-
tic current sheets was studied both in the test particle approximation
(Romanova & Lovelace 1992; Birk et al. 2001; Larrabee, Lovelace
& Romanova 2003; Kirk 2004) and in two-dimensional particle-in-
cell (PIC) simulations (Zenitani & Hoshino 2001; Jaroschek et al.
2004b).

Here, we present generalization of the Sweet–Parker and Petschek
models to the relativistic case. In our analysis, we will follow the
classical approach just substituting the non-relativistic expressions
for the fluxes of the conserved quantities by the relativistic ones. It
will be shown that the outflow velocity becomes relativistic if in the
inflow region the magnetic energy density exceeds the plasma rest
energy density. The classical formulae for the reconnection rate re-
main valid in this case if one substitutes the Alfven velocity with the
speed of light. The relativistic Petschek reconnection differs quali-
tatively from the non-relativistic one in case the reconnecting fields
are not exactly antiparallel. As a result of very strong compression, a
large field may be built up in the outflow region so that a significant
fraction of the energy is ejected from the system as the Poynting
flux.

The article is organized as follows. The Sweet–Parker regime is
considered in Section 2. In Section 3, the jump conditions at the rel-
ativistic slow shocks are obtained. These conditions are applied to
the Petschek reconnection in Section 4. Modification of the picture
in case the reconnection fields are not strictly antiparallel are consid-
ered in Section 5; the detailed consideration of this case is presented
in the Appendix. The results are summarized in Section 6.

2 R E L AT I V I S T I C S W E E T – PA R K E R
R E C O N N E C T I O N

In the Sweet–Parker configuration, the oppositely directed mag-
netic fields are separated by a current sheet with a small resistivity
η. Some anomalous resistivity is assumed taking into account that,
at high enough current density, the sheet is known to be unstable
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Figure 1. Geometry of the Sweet–Parker reconnection. The current sheet
is shaded. Magnetic field lines are shown by thin arrows and the plasma
velocities by thick arrows.

to the growth of tearing mode and other instabilities. These insta-
bilities are also developed in relativistic current sheets (Zelenyi &
Krasnoselskikh 1979; Lyutikov 2003). In the spirit of the classical
reconnection models, we consider η as a phenomenological parame-
ter. The resistive dissipation of the magnetic energy within the sheet
may be visualized as diffusion of the magnetic field towards the neu-
tral plane where the oppositely directed fields annihilate. Outside
the sheet, the magnetic field is frozen into the plasma and therefore
magnetic diffusion brings the plasma into the sheet. The magnetic
energy is converted into heat within the sheet and the thermal pres-
sure thrusts the plasma out of the sheet through the sheet edges.
The steady state is achieved when the plasma inflow is balanced by
the outflow from the edges of the sheet. The reconnection rate may
be roughly estimated from the integrated balance of the energy and
momentum within the sheet.

Let the current sheet be in the xz plane and the outer magnetic
field be in the x direction (Fig. 1). The sheet width is 2� and the
sheet length is 2l. The pressure equilibrium across the sheet implies

p = B2
0

8π
, (1)

where p is the plasma pressure within the sheet, B0 the magnetic
field outside the sheet. The hot plasma in the sheet flows towards
the edges of the sheet. The flow velocity in the sheet, vout, may be
found from the momentum equation

∂

∂x

(
wv2

outγ
2
out − p

) = − jz By, (2)

where w is the enthalpy of the plasma. Here and thereafter, the speed
of light is taken to be unity. The current in the sheet is estimated
from Ampere’ law as

jz = B0

4π�
. (3)

Substituting the x derivative by 1/l, one gets

wv2
outγ

2
out − p = By B0

4π�
l. (4)

The vertical component of the magnetic field, By, may be estimated
from the flux conservation as By ∼ �B 0/l. Taking into account
equation (1), one can see that the last term in the left-hand side of
equation (4) is comparable with the right-hand side term.

Let us consider the case when the magnetic energy density in
the inflow region exceeds the plasma rest energy density. Then the
plasma in the sheet is relativistically hot and one can take w =
4p. It follows immediately from equation (4) that the plasma may

be accelerated to high Lorentz factors only if w significantly de-
creases towards the edges of the sheet. According to equation (1), p
and, consequently, w are determined by the external magnetic field,
which does not decrease significantly along the sheet. Therefore, the
plasma motion in the sheet is only mildly relativistic: γ out ∼ 1, vout

∼ 1. Of course the relativistically hot plasma may be eventually ac-
celerated to high Lorentz factors if the outer pressure considerably
decreases. However, the reconnection rate is determined by plasma
motion in the region where the magnetic field is about its maximal
value so that the pressure in this part of the sheet does not change
much.

Now let us consider the energy conservation. The energy influx is
EzB0/4π = v in B2

0/4π, where v in is the inflow velocity determined
just outside of the sheet where the magnetic field is frozen into the
plasma. The energy outflow is wvout so that the energy balance is
written as

vin
B2

0

4π
l = 4pvout�. (5)

Making use of equation (1), one obtains

vin

vout
∼ �

l
, (6)

so that the flow is roughly incompressible (recall that all the above
equations should be considered only as order of magnitude esti-
mates). Therefore, even if the reconnecting fields are not exactly
antiparallel and some small z component of the magnetic field is
present in the inflow region, the picture remains the same because
Bz remains small in the sheet and does not affect parameters of the
outflowing plasma.

In the steady state, ∇ × E = 0, which implies Ez/y = 0 so that
the electric field is the same within and outside the sheet. Within
the sheet, Ez obeys Ohm’ law, which can be roughly written in the
non-relativistic form, Ez = η jz, because the plasma motion within
the sheet is only mildly relativistic. Outside the sheet, Ez = v in B 0.
Eliminating Ez and making use of equation (3), one can estimate
the inflow velocity as

vin = η

4π�
. (7)

Eliminating � from equations (6) and (7), one finds finally

vin = S−1/2; S ≡ 4πl/η � 1. (8)

So, contrary to what Blackman & Field (1994) and Lyutikov (2003)
claimed, the inflow velocity in the relativistic Sweet–Parker regime
remains much less than the speed of light. This is because the flow
velocity in the sheet remains mildly relativistic so that the recon-
nection rate is not enhanced by the Lorentz contraction.

3 J U M P C O N D I T I O N S AT T H E R E L AT I V I S T I C
S L OW S H O C K

It was noticed by Petschek (1964) that the magnetic energy may be
liberated not only in current sheets but also at slow shocks. Let us
consider jump conditions at the slow shock in case the magnetic
energy exceeds the plasma energy. Let the upstream flow be cold,
w1 = ρ 1, whereas the downstream flow relativistically hot, w2 =
4p2. In the frame of reference where the shock is at rest and the
upstream flow is perpendicular to the shock plane, conservation of
the energy and momentum fluxes are written as

ρ1γ
2
1 v1 + Bt1 Et

4π
= w2γ

2
2 vn2 + Bt2 Et

4π
, (9)
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ρ1γ
2
1 v2

1 + B2
t1

8π
= w2γ

2
2 v2

n2 + B2
t2

8π
+ p2, (10)

− Bn Bt1

4π
= w2γ

2
2 vn2vt2 − Bn Bt2

4π
. (11)

Here the plasma density, ρ, and the enthalpy, w, are measured in the
plasma rest frame whereas the electromagnetic fields in the shock
frame. Subscripts n and t refer to the normal and tangential compo-
nents, correspondingly, and we take into account continuity of Bn

and E t. The last is written as

Et = v1 Bt1 = vn2 Bt2 − Bnvt2. (12)

Shocks arising in the Petchek model are close to the switch-off
shocks for which B t2 = 0. Recently Komissarov (2003) demon-
strated that, contrary to what was claimed before, such shocks are
evolutionary not only in the non-relativistic but also in the relativistic
case. For such shocks, equation (12) yields

vt2 = − Bt1

Bn
v1. (13)

Substituting this relation into equation (11) and eliminating w2 with
the aid of equation (9), one gets

v2
1 = B2

n

(
1 − v2

1

)
4πρ1 + B2

t1

(
1 − v2

1

) , (14)

which means that the upstream flow moves with the Alfven
velocity1 as it should be. Introducing the magnetization parameter

σ ≡ B2
1

4πρ1γ
2
1

, (15)

one can see that

v1 = tan θ at σ � 1, (16)

where θ is the angle between the magnetic field and the shock plane.
This assumes θ < π/4, which is fulfilled in the Petchek picture. In
the opposite case, the upstream velocity may be found from the full
biquadratic equation (14); if B2

1 � 4πρ 1, θ > π/4, the upstream
flow is ultrarelativistic such that σ is not large. Below, we assume
θ < π/4.

Substituting equation (14) into equation (13) yields

vt2 = −cos θ

√
σ

1 + σ cos2 θ
= −

(
1 − 1

2σ cos2 θ

)
. (17)

The last equality is obtained in the limit σ � 1. Substituting equa-
tions (16) and (17) into equations (9) and (10), one can easily find
in the same limit

vn2 = sin θ

2σ cos3 θ
, (18)

γ2 = √
σ cos θ, (19)

p2 = B2
1 cos2 θ

8π
. (20)

So the downstream flow is highly relativistic and directed at the
angle ∼ 1/σ to the shock plane.

1 In the plasma rest frame, the Alfven velocity is vA = B ′
n/

√
4πρ + B ′2,

where B′ is the magnetic field in the plasma rest frame. One gets equation
(14) taking into account that in the frame moving with the Alfven velocity,
B n = B ′

n, B t = B ′
t(1 − v2

A)−1/2.

Making use of the continuity equation, ρ 1γ 1v1 = ρ 2γ 2vn2, one
finds the downstream density

ρ2 = 2ρ1 cos2 θ

√
σ

cos 2θ
. (21)

So the downstream flow is highly compressed. The downstream
temperature (or in fact the energy per particle) is easily found from
the equation of state:

T

m
= cos2 θ

4

√
σ

cos 2θ
, (22)

where m is the average particle mass (m = mp/2 in the electron–
proton plasma). Because T � m, the downstream flow may be
loaded by pairs; in this case, m becomes a function of the tempe-
rature.

4 R E L AT I V I S T I C P E T S C H E K
R E C O N N E C T I O N

In the Petschek (1964) picture, the current sheet is localized at−l < x
< l, y =0 and pairs of slow shocks stem from the edges of the sheet as
far as the outer boundary of the box at x =±L (Fig. 2). At the shocks,
the x component of the magnetic field drops to zero and the mag-
netic tension pushes the plasma away from the reconnection region
along the x-axis. In response to rapid evacuation of the plasma from
the reconnection region, the upstream plasma is sucked in towards
the xz plane, together with the upstream field. The magnetic field in
the inflow region is a small perturbation to a uniform horizontal
field, B0 x̂. The plasma pressure and inertia are negligibly small at σ

� 1; the electric force is also small because the upstream velocity is
non-relativistic, as it can be checked a posteriori. Therefore, the up-
stream field is potential, B =∇�. According to the jump conditions,
the plasma upstream of the slow shocks moves with the Alfven ve-
locity, v in = By/Bx ≈ By/B 0. It follows from the above analysis
that the angle between the shocks is only approximately 1/σ . Ne-
glecting the inclination of the shocks, one should solve Laplace’
equation in the upper half-plane with the boundary condition that
the field becomes horizontal at large distances, and that the normal
component of the field be v in B 0 between l and L at the x-axis and,
by symmetry, −v in B 0 between −L and −L.

Figure 2. Petschek reconnection. The slow shocks are shown by thick lines;
the rest elements are the same as in Fig. 1.
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116 Y. E. Lyubarsky

Following on to Petschek (1964, see also Priest & Forbes 2000),
one can write such a solution as

� = B0x − vin B0

π

{∫ −l

−L

ln[y2 + (x − ξ )2]dξ

−
∫ L

l

ln[y2 + (x − ξ )2]dξ

}
.

(23)

Then the field at the origin is

Bx (0, 0) = B0

(
1 − 2vin

π
ln

L

l

)
. (24)

Taking into account that the mechanism chokes itself off when the
field at the origin becomes too small, one can estimate a maximum
reconnection rate by putting Bx (0, 0) = 0.5B 0 to give

vin = π

4 ln L/l
. (25)

The current sheet is described by the Sweet–Parker relation (8),
which may be written as l = η/(4π v2

in). Substituting this into equa-
tion (25) and defining the Lundquist number via the external scale,
S ≡ 4π Lc/η, one gets finally

vin = π

4 ln S
. (26)

So the maximal reconnection rate may be estimated as approxi-
mately 0.1 of the speed of light. The reconnection rate does not
approach the speed of light, contrary to what was expected by Black-
man & Field (1994), because in the outflow, the Lorentz contraction
is compensated by a small angle between the slow shocks. Accord-
ing to equation (16), the inclination angle of the magnetic field in
the inflow zone is θ = v in ∼ 0.1.

5 T H E R E L AT I V I S T I C P E T S C H E K
R E C O N N E C T I O N I N C A S E Bz �= 0

Downstream of the slow shocks, the plasma is highly compressed.
Therefore, if the reconnecting fields are not strictly antiparallel,
the component of the magnetic field Bz parallel to the current may
become so large that the structure of the plasma outflow may be
significantly affected.

Let us assume that some small B z1 ≡ αB 0 is presented in the
inflow region (note that Bz has the same sign in the upper and
lower inflow regions). Then the upper and lower parts of the re-
connected magnetic field line diverge in the z direction. In this case,
the shrinkage of the field line after the reconnection is accompanied
by stretching in the z direction of the segment located within the out-
flow. Therefore the outflow should be separated from the inflow by
rotational discontinuities where the magnetic field lines turn appro-
priately. It will be shown in the Appendix that a pair of slow shocks
should appear between the rotational discontinuities in order to sat-
isfy the condition vz (y = 0) = 0. The structure of the flow is shown
in Fig. 3. In this section, we only roughly estimate parameters of
the outflow zone; the full solution is given in the Appendix.

Let ψ r be the angle the rotational discontinuity makes with the xz
plane. The magnetic field line shrinks with the speed of light there-
fore the point of intersection between the field line and the upper
rotational discontinuity move in the z direction with the velocity α

and in the y direction with the velocity ψ r. At the bottom discon-
tinuity, the corresponding velocities have opposite signs therefore
the segment of the field line between the rotational discontinuities
is inclined at the angle α/ψ r to the xz plane. The y component of

Figure 3. Petschek reconnection in the oblique case. The current flows
along the z-axis; rotational discontinuities (RD) and slow shocks (SS) stem
from the current sheet. A typical magnetic field line is shown by arrows. The
trajectory of the point of intersection between the field line and the rotational
discontinuity is shown by a dotted line.

the magnetic field practically does not vary across the discontinu-
ity. Therefore, the z component of the field in the outflow may be
estimated as

Bz,out = α

ψr
By = αθ

ψr
B0. (27)

It is taken into account in the last equality that, in the inflow zone,
the field line is inclined at a small angle θ to the xz plane (but θ

� ψ r). The estimate (27) may also be from the conservation of the
magnetic flux crossing a fluid contour,

∮
B · v× dl = 0. Choosing a

rectangular contour in the xy plane with the rotational discontinuity
as a diagonal, one finds v inBz1 = Bz,outψ r. The inflow velocity is
equal to the Alfven velocity (16) because the rotational discontinuity
moves with respect to the plasma with the Alfven velocity (see the
Appendix). Then one immediately gets equation (27).

The structure of the outflow is changed if the pressure of the
Bz field in the outflow zone becomes sufficient to compensate the
outer pressure. In the rest frame of the outflow, the field is equal
to Bz,out/γ out, where γ out is the Lorentz factor of the plasma out-
flow. Taking into account that the upstream field is not Lorentz
transformed because it is directed nearly parallel to the x-axis, one
concludes that the influence of Bz is negligible if

Bz,out 	 B0γout. (28)

In this case, the outflow parameters are described by equation (18)
and equation (19) like in the case Bz = 0, so that one can write
γout = √

σ , ψ = vn2 = θ/(2σ ). Taking this into account and elimi-
nating Bz,out from equation (27) and equation (28), one can write the
condition that Bz in the outflow region is dynamically insignificant
as

α 	 (2
√

σ )−1. (29)

In high-σ plasmas, this condition is very restrictive; it may be vio-
lated at rather small α.

In the opposite limit, the pressure and the energy in the outflow re-
gion are dominated by the magnetic field. The pressure equilibrium
in the transverse direction yields (cf. equation 28)

Bz,out = B0γout. (30)

Increasing the magnetic field at the rotational discontinuity does
not contradict to the general principles because the field strength
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On the relativistic magnetic reconnection 117

should remain the same only in the zero electric field frame. In the
laboratory frame, the field grows significantly. The energy balance
reads as

vin B2
0 = B2

z,outψr. (31)

Taking into account equation (27), one gets the half-angle between
the rotational discontinuities as

ψr = θα2 (32)

and the Lorentz factor of the outflow as

γout = 1/α. (33)

One can see that at the condition opposite to that of equation (29), the
opening angle of the outflow is larger whereas the outflow Lorentz
factor is less than the corresponding quantities obtained at Bz = 0.
The transition to the Bz = 0 case occurs when α is of the order of
the right-hand side of equation (29).

So even a small Bz in the upstream flow significantly affects the
structure of the outflow. At the condition reverse to that of equa-
tion (29) (but still α 	 1), the strongly magnetized (B z,out ∼ B0/α)
plane jet of the angular width (32) is ejected with the Lorentz factor
(33). In contrast with the Bz = 0 case, the energy flux is dominated
by the Poynting flux. However, the reconnection velocity is equal
to the Alfven velocity in any case. Therefore, the estimate (26) for
the reconnection rate remains valid even if Bz 
= 0.

6 C O N C L U S I O N

The above analysis demonstrates that the classical reconnection
models may be straightforwardly generalized to the relativistic
regime. This regime arises when the energy density in the inflow
region is dominated by the magnetic field. Then the Alfven velocity
is close to the speed of light. The reconnection rate in this case may
be estimated by substituting vA = c in the classical formulae. The
ejected plasma is relativistically hot so that the pair production is,
in principle, possible.

In the Sweet–Parker configuration, the plasma is pushed away
with mildly relativistic velocities. In the Petschek configuration, the
plasma is ejected with a large Lorentz factor within a very narrow
angle. The qualitative difference with the non-relativistic reconnec-
tion arises if the reconnecting fields are not strictly antiparallel. At
the non-relativistic slow shock, the compression ratio is finite so
that, if Bz is small in the inflow region, it remains small and does
not affect the outflow parameters. The plasma compression in the
relativistic Petschek reconnection is very high therefore, even at a
rather small B1z, the magnetization of the outflow may be very high
so that most of the energy of the reconnecting fields is taken away by
the Poynting flux. Therefore, the relativistic Petschek reconnection
should not be considered as a mechanism for the direct conversion
of the magnetic energy into the plasma energy. However, one can
speculate that the ejected energy is eventually transferred to the
plasma in the course of the flow expansion and/or development of
magnetohydrodynamic (MHD) instabilities.
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A P P E N D I X A : R E L AT I V I S T I C P E T S C H E K
R E C O N N E C T I O N I N T H E O B L I QU E C A S E

Let the magnetic field in the inflow zone have a non-zero component
Bz = αB 0. It was shown in Section 5, that one can neglect the
obliquity at the condition (29). In this Appendix, the opposite case,

α2σ � 1, (A1)

will be considered. The structure of the flow is shown in Fig. 3.
The outflow is confined within two rotational discontinuities. Inside
the outflow, two slow shocks occur. The rotational discontinuities
and slow shocks are inclined to the xz plane by the angles ψ r and
ψ s, correspondingly. At the rotational discontinuity, the magnetic
field line turns whereas the plasma is pushed in the x direction.
As we will see, the jump conditions require non-zero vz beyond
the discontinuity whereas, by symmetry, the plasma should move
strictly parallel to the x-axis at y = 0. Therefore, a pair of slow
shocks arises where the velocities are adjusted appropriately.

Let us first find the jump conditions at the rotational discontinu-
ities. Let us choose the coordinate system (ξ , η, ζ ) such that the
upstream magnetic field lies in the ξη plane and the discontinuity
in the ξζ plane (Fig. A1). This coordinate system is turned with
respect to that in Fig. 3 by the angle α around the y–axis and by the
angle ψ r around the z–axis. Taking into account that ψ r 	 α, θ ,
one can neglect the tangential component of the upstream velocity.
Then the continuity of the tangential component of the electric field
reads as

Eζ = v1 Bξ1 = vη2 Bξ2 − vξ2 Bη, (A2)

Eξ = 0 = vζ2 Bη − vη2 Bζ2. (A3)

Here, we take into account continuity of Bη.
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118 Y. E. Lyubarsky

Figure A1. Turn of the magnetic field at the rotational discontinuity. The
discontinuity lies in the ξζ plane. The magnetic field is shown by arrows.

It is known from the general theory that the proper density and
entropy do not change at these sort of discontinuities. Employing
this fact from the beginning, we need only three equations in order
to find the rest of the parameters. One can conveniently choose the
continuity of the flow,

γ1v1 = γ2vη2, (A4)

and the ηη and ηζ components of the momentum flux:

B2
ξ2 + B2

ζ2 − E2
η2 = B2

ξ1; (A5)

ργ 2
2 vη2vζ2 − 1

4π

(
Bη Bζ2 + Eη2 Eζ

) = 0, (A6)

where

Eη2 = Bζ2vξ2 − Bξ2vζ2 = Bζ2 Bξ1

Bη

v1. (A7)

In the last equality, vζ2 and vξ2 were eliminated with the aid of
equations (A2) and (A3).

Substituting equations (A2) and (A7) into equation (A6) yields

ργ 2
2 v2

η2 = B2
ξ1

4π

(
tan2 θ − v2

1

)
, (A8)

where θ is the angle between the discontinuity and the upstream
magnetic field. Then with account of equation (A4), one gets

v2
1 = tan2 θ

(
1 − 1

σ

)
, (A9)

where σ � 1 is defined by equation (15). So the upstream velocity
is the same as in the aligned case therefore obliquity does not affect
the reconnection rate.

Now let us return to equation (A8) and eliminate, with the aid of
equations (A2) and (A3), vζ2 and vξ2 from γ 2. Then substituting v1

from equation (A9) yields the equation for vη2:[
B2

ζ2 + B2
ξ2

B2
η

+ 1 + 1

tan2 θ (1 − tan2 θ )

]
v2

η2

+ 2
Bξ2

Bη

vη2 − 1

σ
= 0 .

(A10)

In order to avoid cumbersome expressions, let us take into account
that in the case of interest |B ξ2| 	 |B ζ2| and, as follows from the
preliminary estimates (see Section 5) and will be confirmed below

by rigorous evaluation, |B η/B ζ2| ∼ θα 	 θ . Then the solution of
equation (A10) at the condition (A1) is written as

vη2 = − Bη

Bζ2

(
1 +

√
B2

ξ2

B2
ζ2

+ 1

σ

)
. (A11)

The magnetic field downstream of the discontinuity is perpendicular
to the x-axis2 (see Fig. 3). Therefore,

Bξ2 = −αBζ2. (A12)

Then equation (A11), equation (A2) and equation (A3) yield at the
condition (A1):

vη2 = − Bη B2
ξ2

B2
ζ2

; vζ2 = 2α; vξ2 = −1 + 2α2. (A13)

Substituting equations (A7), (A9) and (A12) into equation (A5), one
finds

Bξ1 = −αBζ2 (A14)

and then

vη2 = −2θα2, γ2 = 1

2α2
. (A15)

Now let us return to Fig. 3 and the coordinate system xyz. It fol-
lows form equation (A14) that in the outflow, Bz = B 0/α. Projecting
v2 on to the x-axis, one finds v x2 = 1 − α2/2 so that the outflow
moves in the x direction with the Lorentz factor γ out = 1/α in accord
with the estimate (33). By symmetry, the flow should move exactly
in the x direction at y = 0. However, projections of v2 on the y- and
z-axis are non-zero. Therefore, a pair of slow shocks arise in the
outflow in order to adjust the velocities appropriately.

Let us now find parameters of the slow shocks necessary to make
the plasma move exactly in the x direction. Note that the quantities
upstream of the shock are the same as downstream of the rotational
discontinuity; we retain them with the index 2. The post-shock quan-
tities will be denoted by the index 3. The jump conditions may be
conveniently found in the frame moving in the x direction with
the Lorentz factor γ out; the physical quantities in this frame will be
marked by prime (Fig. A2). In this frame, plasma moves only in the
transverse direction with the Lorentz factor

γ ′
2 = γ2/γout = 1/2α, (A16)

whereas the shocks and rotational discontinuities move in the y
direction with the non-relativistic velocities

V ′
s = ψsγout = ψs/α and V ′

r = ψr/α, (A17)

correspondingly. The velocity v2 was calculated above with respect
to the rotational discontinuity. With respect to the shock, the up-
stream normal velocity is

v′
n2 = v′

η2 + V ′
r − V ′

s = −2αθ + (ψr − ψs)/α. (A18)

It follows from the estimates in Section 5 and will be confirmed
below that the velocities of the shock and rotational discontinuity
are much less than the speed of light, therefore the full Lorentz
transformation is not necessary.

2 Strictly speaking, the magnetic field line should be perpendicular to the x-
axis only at y = z = 0 (by symmetry) that is only between the slow shocks.
Above the shock, the magnetic field line lies in the plane set by the normal
to the shock and the field line between the shock. Taking into account that
ψ s is much less than all other angles involved, one can safely assume that
the field is perpendicular to the x-axis already downstream of the rotational
discontinuities.
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Figure A2. Structure of the flow in the frame moving in the x direction
with the Lorentz factor γ out, view end on. The magnetic field line is shown
by thin arrows, the rotational discontinuities (RD) and slow shocks (SS) by
thick lines, and velocities of the discontinuities by thick arrows.

Downstream of the shock, the plasma is at rest with respect to
the primed frame of reference therefore, with respect to the shock,
tangential velocity is zero and the normal velocity is

v′
3 = −V ′

s = −ψs/α. (A19)

The angle between the upstream magnetic field and the shock is

ϕ2 =
∣∣∣∣ B ′

n

B ′
t2

∣∣∣∣ =
∣∣∣∣ Bn

Bt2

∣∣∣∣ = − Bη

Bζ2
= θα. (A20)

Continuity of the tangential component of the electric field and of
the normal component of the magnetic field take the form

B ′
t2

(
v′

n2 − v′
t2ϕ2

) = B ′
t3v

′
3, (A21)

B ′
t2ϕ2 = B ′

t3ϕ3. (A22)

Now the continuity of the energy and momentum fluxes may be
written as

ρ2γ
′2
2 v′

n2 = 4p3γ
′
3v

′
3 + B ′

t2 B ′
t3

4π
v′

3

(
ϕ2

ϕ3
− 1

)
, (A23)

ρ2γ
′2
2 v

′2
n2 = 4p3γ

′
3v

′2
3 + p3 + B

′2
t2

8π
v′

3

(
ϕ2

2

ϕ2
3

− 1

)
, (A24)

ρ2γ
′2
2 v′

n2v
′
t2 + B ′

n B ′
t2

4π

(
ϕ2

ϕ3
− 1

)
= 0. (A25)

Inspection of equation (A25), with account of equations (A16) and
(A18), shows that ϕ3 − ϕ2 	 ϕ2 at the condition (A1). Moreover
one can safely neglect dynamical pressure as compared with the
thermal and magnetic pressure in equation (A24). Then one gets

p3 = B
′2
t2

4π

(
1 − ϕ2

ϕ3

)
. (A26)

Substituting this relation into equation (A23) and eliminating
ρ 2γ

′2
2 v′

n2 with the aid of equation (A25) (one can put v t2 = 1 and
γ 3 = 1 there), one finds

ϕ2 = −3v′
3, (A27)

which yields, with account of equation (A19) and equation (A20),

ψs = 1

3
θα2. (A28)

Substituting equation (A27) into equation (A21), with account of
equation (A20), yields

v′
n2 = −(4/3)ϕ2 = −(4/3)θα. (A29)

Now one finds from equation (A18), (A28) and (A29) that

ψr = θα2 (A30)

in accord with the estimate (32).
One can find from the Lorentz transformation that B ′

n =
B n/γ out = θα B 0; B ′

t2 = αB z2 = B 0. It follows from equation
(A25) that

1 − ϕ2

ϕ3
= 1

3α2σ
. (A31)

Then equation (26) yields

p3 = B2
0

12πα2σ
. (A32)

Now one can find the ratio of the energy transferred away by the
plasma and by the electromagnetic field:

4pγ 2
outψs

B2
z ψr/4π

= 1

3α2σ
. (A33)

So at the condition (A1), the energy of the reconnecting field is
transferred away predominantly in the form of the Poynting flux.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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