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ABSTRACT

This study presents a novel physical model to convert the potential energy contained in vaporous cavitation into local surface impact power
and an acoustic pressure signature caused by the violent collapse of these cavities in a liquid. The model builds on an analytical representation
of the solid angle projection approach by Leclercq et al. [“Numerical cavitation intensity on a hydrofoil for 3D homogeneous unsteady viscous
flows,” Int. J. FluidMach. Syst. 10, 254–263 (2017)]. It is applied as a runtime post-processing tool in numerical simulations of cavitating flows.
In the present study, the model is inspected in light of the time accurate energy balance during the cavity collapse. Analytical considerations
show that the potential cavity energy is first converted into kinetic energy in the surrounding liquid [D. Obreschkow et al., “Cavitation bubble
dynamics inside liquid drops in microgravity,” Phys. Rev. Lett. 97, 094502 (2006)] and focused in space before the conversion into shock wave
energy takes place. To this end, the physical model is complemented by an energy conservative transport function that can focus the potential
cavity energy into the collapse center before it is converted into acoustic power. The formulation of the energy focusing equation is based on
a Eulerian representation of the flow. The improved model is shown to provide physical results for the acoustic wall pressure obtained from
the numerical simulation of a close-wall vapor bubble cloud collapse.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5092711

NOMENCLATURE

u flow velocity vector (m/s)
xP, xS inner volume/surface location vector (m)
n surface normal vector (-)
Cc, Cv condensation/evaporation constant (kg s/m5)
cl liquid sound speed (m/s)
d, ∂, D general, partial, and material derivative operator
E energy (J)
e energy per volume (J/m3)
eS energy per surface area (J/m2)
E collapse induced kinetic energy per volume (J/m3)
h energy focusing parameter (-)
p absolute/total pressure (Pa)

pd, pa driving pressure, acoustic pressure (Pa)
p∞, pv ambient pressure, vapor pressure (Pa)
P power (W)
Pb(a) normalized projection of vector a on vector b such that

Pb(a) = a ⋅ b/(∥ a ∥∥b ∥)
R, r bubble radius, distance from bubble center (m)
S surface area (m2)
t, τ, T time, collapse time, wave period (s)
δt, ∆t time increment, simulation time step size (s)
V volume (m3)
β radiated energy fraction (-)
δ small number added to a denominator to prevent from

division by 0
θ angle (rad)
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ρ, ρl, ρv density of mixture, liquid, vapor (kg/m3)
� spatial transport operator/function
Ω solid angle (sr)
Subscripts/superscripts

pot potential
rad radiated
kin kinetic
SW shock wave
b bubble
C cell center
f cell face
0 initial

I. INTRODUCTION

Cavitation is a multiphase flow phenomenon that is often
encountered in fluid machinery such as marine propulsion systems,
water turbines, or gear pumps. It typically occurs at locations of high
flow velocities, where the pressure may drop to such low values that
the liquid evaporates. The violent collapse of cavitating structures
in regions of pressure recovery causes potentially erosive surface
impact loads. The assessment of cavitation erosion risk from numer-
ical flow simulation is still a major challenge because the erosive
aggressiveness of such impact loads strongly depends on flow phe-
nomena acting on extremely small scales in space and time. In the
present study, a novel methodology is introduced, which is specif-
ically designed to predict the cavitating flow aggressiveness from
the dynamics of the larger scale cavitating structures. The approach
builds up on previous work1,2 and is motivated by the potential
energy hypothesis,3,4 which essentially states that the initial poten-
tial energy of an imploding cavity is proportional to the pressure
difference driving the cavity collapse and the initial cavity volume.
While numerous approaches5–9 have been developed based on the
potential energy hypothesis, practically none of them have specifi-
cally addressed the question as to how the conversion of potential
energy into local surface impact power can be achieved such that the
overall energy balance is satisfied.

A step toward incorporating the energy balance of the cavity
collapse into a cavitation erosionmodel applicable to numerical flow
simulations has been achieved by Leclercq et al.,1 who have devel-
oped a cavitation intensity model to compute the local impact power
caused by imploding cavities. In its essence, the radiated power com-
puted from the local change of specific cavity volume is projected on
the solid surface in this approach. A fully continuous form of this
model has previously been developed,10 which has allowed to derive
analytical predictions on the amount of accumulated surface energy,
against which the numerical results can be verified.10 Even though
it has been shown that the overall energy balance holds at the end
of a cavity collapse, the cavitation intensity approach still misses out
to reflect the spatial and temporal focusing of the potential cavity
energy, as described by Tinguely et al.11

Based on the works by Wang and Brennen,12 Obreschkow
et al.,13 and Tinguely et al.,11 it will be discussed how the cascade
of energy during the collapse can approximately be reduced to the
focusing of the initial potential cavity energy into the collapse center
and the subsequent conversion into acoustic power. The cavitation

intensity model is complemented by an energy focusing equation
that can achieve this spatial focusing of potential cavity energy. The
model is applied to a cloud of 125 vapor bubbles collapsing under a
high ambient pressure of 40 bars. The numerical test case had been
set up earlier by Schmidt et al.14 where they investigated the charac-
teristic of a pressure signal on a numerical pressure sensor located
on a solid surface underneath the collapsing cloud. The results by
Schmidt et al.14 which they have kindly shared together with the
bubble cloud specifications, are considered a reliable reference data
set because it has been obtained from a fully compressible density-
based numerical approach and because grid size independence of
the results has been demonstrated for a fixed acoustic Courant num-
ber.14 To test the complemented cavitation intensity model against
the results by Schmidt et al.,14 an acoustic analogy is employed
which allows us to reconstruct the acoustic pressure from the cav-
itation intensity approach. The model is implemented as a runtime
post-processing tool in the open source CFD (computational fluid
dynamics) environment OpenFOAM.15

II. CAVITATION INTENSITY

A. Cavitating flow modeling

Following up on the study by Schmidt et al.14 viscous and sur-
face tension forces are assumed to be negligible for the highly inertia
driven flow problem considered in this study. The Euler equations
for momentum and mass continuity to be solved are then given by

∂

∂t
(ρu) +∇ ⋅ (ρu⊗ u) = −∇p, (1)

∂ρ

∂t
+∇ ⋅ (ρu) = 0. (2)

With γ being the liquid fraction, the density of the cavitating flow is
given by the linear mixture relation

ρ = γρl + (1 − γ)ρv , where 0 ≤ γ ≤ 1. (3)

The pure liquid and vapor phases are modeled as incompressible. In
the mixture regime, the velocity divergence is modeled by a source
term which is given by a slightly modified version16 of the cavitation
model by Merkle et al.17 Combining the mass continuity equation
given by Eq. (2) with the mixture relation given by Eq. (3) and the
modified Merkle model gives the transport equation of γ that must
be solved to achieve phase transition16

∂γ

∂t
+∇ ⋅ (γu) = p − pv

ρρl
{ Cvγ, if p ≤ pv,
Cc(1 − γ), if p > pv .

(4)

B. Acoustic power and pressure

Let the radiated volume specific power radiated at some loca-
tion xP and some time instant t be ėrad(t, xP). The instantaneous
surface specific impact power at some surface location xS resulting
from the distribution of all emission sources in the domain is then
given by10

ėS(t, xS) = 1

4π ∫vol ėrad(t, xP)[(xP − xS) ⋅ n∥ xP − xS ∥3 ]dV . (5)

As illustrated in Fig. 1, n is the surface normal vector at the impact
location. Equation (5) is a fully continuous form of the solid angle

Phys. Fluids 31, 052102 (2019); doi: 10.1063/1.5092711 31, 052102-2

© Author(s) 2019

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 1. Coordinate definitions for the conversion of the volume specific power radi-
ated at location xP into local surface specific impact power at the surface location
xS (left) and illustration of the solid angle projection of radiated power on triangular

surface elements as proposed by Leclercq et al.
1 (right).

projection approach by Leclercq et al.1 Fully continuous means that
Eq. (5) represents the surface specific impact power at a point loca-
tion, whereas Leclercq et al.1 employ the solid angle Ω (see Fig. 1)
to project the radiated power on triangular surface elements of finite
size. Nevertheless, both formulations represent an energy conserva-
tive conversion of radiated energy into local surface impact power.
As Eq. (5) represents the surface specific impact power associated
with a pressure wave, it can be rewritten in terms of the acoustic
power density dP/dS such that

ėS(t, xS) = dP

dS
=

p2a
ρlcl

cos θ. (6)

In Eq. (6), ρl and cl are the liquid density and sound speed, respec-
tively, and pa is the acoustic pressure perturbation. The term cos θ
reflects the orientation of the reference surface dS relative to the
propagation direction of the encountered sound wave. In Eq. (5),
cos θ is represented by the relation cos θ = (xP − xS) ⋅ n/∣xP − xS∣.
Combining Eqs. (5) and (6) with the relation for cos θ allows to
reconstruct the acoustic pressure perturbation from the acoustic
analogy

pa(t, xS) = 1

2

¿ÁÁÀρlcl
π ∫vol

ėrad(t, xP)∥ xP − xS ∥2 dV . (7)

For a source impacting a flat surface stretched to infinity (see Fig. 1),
it has been shown analytically that the surface and time integrated
impact power, hence the accumulated surface energy, becomes2

ES(τ) = 1

2
Epot,0 (8)

as the collapse time τ is approached. Consequently, half of the initial
potential cavity energy is eventually impacting the flat surface.2

C. Energy balance during the cavity collapse

According to the potential energy hypothesis,3,4 the potential
energy of a cavity is equal to the work that the driving pressure dif-
ference pd − pv can do on its vapor volume throughout the collapse,
where pd is the driving pressure and pv is the vapor pressure. During
the collapse, the initial potential cavity energy Epot,0 is partitioned
into different forms of energy, however, such that the total energy
amount Epot,0 is conserved at any time instant.11,13 In order to dis-
cuss the relevance of the instantaneous energy balance with respect

to the cavitation intensity approach, we will first employ the sim-
plifying case of an undisturbed vapor bubble collapse. In this case,
the driving pressure pd is equal to the ambient pressure p∞ and the
potential cavity energy reduces to the potential bubble energy4

E
b
pot,0 =

4

3
πR

3
0(p∞ − pv), (9)

whereR0 is the initial bubble radius andwhere the superscript b indi-
cates that the relation is valid for a spherical undisturbed bubble. In
order to formulate the instantaneous energy balance during the col-
lapse process, the entire liquid body around the collapsing bubble
needs to be taken into account.13 As the bubble collapses, its poten-
tial energy decreases. The reduction of potential energy feeds into
kinetic energy of the liquid body. The local volume specific kinetic

energy at some distance r from the center is 1/2ρl∣u∣2(r, t). Due
to the spherical symmetry of the problem, it is convenient to inte-
grate the volume specific kinetic energy over the surface of a sphere
around the bubble center, which gives the radial kinetic energy den-
sity.With themass continuity relation r2∣u∣ = R2Ṙ, the instantaneous
radial kinetic energy density at some distance r from the bubble
center becomes

dEkin
dr
= 2πρlR

4 Ṙ
2

r2
for r ≥ R, (10)

where R = R(t) is the instantaneous bubble radius. The instanta-
neous kinetic energy of the entire liquid body follows from the radial
integration of Eq. (10), which gives13

E
b
kin = ∫

∞

R
(dEkin

dr
)dr = 2πρlṘ2

R
3

(11)

and, hence, the instantaneous change of kinetic energy around the
collapsing bubble18

dEb
kin

dt
= 2πρlR

2
Ṙ[2RR̈ + 3Ṙ

2]. (12)

From Eq. (9) follows the change of potential energy

dEb
pot

dt
= 4πR

2
Ṙ(p∞ − pv). (13)

As pointed out by Obreschkow et al.,13 the change of kinetic energy
in the liquid body and the change of potential bubble energy must

cancel each other out such that dEb
pot/dt + dEb

kin/dt = 0, which gives

the Rayleigh equation13,19

RR̈ +
3

2
Ṙ
2
= −

p∞ − pv

ρl
. (14)

Substituting the analytical solution19

Ṙ = −

¿ÁÁÀ2

3

p∞ − pv

ρl
(R3

0

R3
− 1) (15)

into Eq. (11), one finds that

E
b
kin(R = 0) = Eb

pot,0. (16)

This means that the initial potential bubble energy is fully converted
into kinetic energy as the final collapse stage is approached. Also,
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the kinetic energy around a spherical collapsing bubble focuses
toward the bubble interface over time. This is shown by combin-
ing Eq. (10) with the analytical solution for Ṙ given by Eq. (15),
which gives the dimensionless radial kinetic energy density at some
distance r from the collapse center

(dEb
kin

dr
)∗ = R0

Epot,0

dEb
kin

dr
= (R0

r
)2 R

R0
[1 − ( R

R0
)3]. (17)

Evaluating Eq. (17) at the interface shows that limR→0 (dEb
kin/dr)∗∣

r=R
= ∞, which means that the radial kinetic energy density at the
bubble interface tends toward infinity as the final collapse stage
is approached. As we further know from Eq. (16) that the kinetic
energy of the entire liquid body around the bubble approaches the

finite value Eb
pot,0, we can conclude that all the kinetic energy of the

liquid body focuses into the collapse center at the final collapse stage.
The focusing of kinetic energy is illustrated by Fig. 2, which depicts
the radial distribution of the dimensionless kinetic energy density
given by Eq. (17) for different bubble radii, hence for different time
instants of the bubble collapse. According to these simplifying con-
siderations, the shock wave emitted at the final collapse stage propa-
gates from an idealized point source. The relation between the power
radiation ėrad associated with the shock and the acoustic pressure
pa at some distance r = ∣xP − xS∣ from the source is obtained by
rewriting Eq. (7) for an isolated point source, which gives

p
2
a(t, r)∣

xP
=

ρlcl
4πr2

ėrad(t). (18)

With TSW being the pulse duration at some distance r from the
source, the radiated shock wave energy is then given by20

ESW =
4πr2

ρlcl
∫
TSW

p
2
a(t, r)dt. (19)

FIG. 2. Distribution of the dimensionless radial kinetic energy density around a
collapsing vapor bubble [see Eq. (17)] for different time instants associated with
the corresponding bubble radii R/R0; the integral of each curve represents the
kinetic energy of the entire liquid body, as given by Eq. (11).

As discussed by Tinguely et al.,11 the initial potential bubble energy
is eventually partitioned into shock wave energy, dissipative ther-
mal energy, and rebound energy, where they show the latter to be
relevant for low ambient pressures significantly below 1 bar only.
Thermal dissipation has been shown to be negligible.11 Under these
circumstances, the shock wave energy ESW is approximately equal to

the initial potential bubble energy Eb
pot,0. In addition to the energy

balance by Tinguely et al.11 which addresses the collapse of spheri-
cal bubbles in particular, we also mention that some residual kinetic
energy may remain in the flow due to asymmetries in the collapse.
This residual kinetic energy may again transform into potentially
erosive energy forms, e.g., the waterhammer and stagnation pressure
imposed by the impinging liquid jet forming during the collapse of
a close wall vapor bubble.21 It is further important to mention that
the presence of noncondensable gas affects the collapse energy parti-
tion.11 However, the effect of noncondensable gas has been neglected
in the reference case study by Schmidt et al.14 and is also not the
subject of the present study.

D. Approaching the time accurate energy balance

In previous work,1,2 it has been assumed that the potential cav-
ity energy is continuously converted into radiated energy through-
out the cavity collapse, whereas it has been shown in Sec. II C that
the potential energy is gradually converted into kinetic energy13 and
focused into the collapse center, where it is eventually released in a
shock wave of higher amplitude, accordingly. The practical impli-
cation is that the events at the final collapse stage can be reflected
by the cavitation intensity approach more realistically if only the
potential energy itself is somehow accumulated into the collapse
center before being released. Against this background, an approach
is introduced that allows the focusing of the potential energy into
the collapse center and which can also reflect the dynamics of a col-
lective cloud collapse, as illustrated by Fig. 3. In a collective cloud
collapse as described by Wang and Brennen,12 the potential energy

FIG. 3. Illustration of the energy cascade governing the focusing of potential
energy.
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of the entire collective vapor bubble cloud is focused into the cloud
collapse center.

The reduction of potential cavity energy due to condensation
is absorbed in an accumulated kinetic energy field E(t, xP) until
a criterion for the conversion of this kinetic energy into radiated
acoustic energy is met. This process can formally be expressed by
the continuity equation

∂E

∂t
+ u ⋅ ∇E = −E{∇ ⋅ u}−´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

kin. energy source

− ėrad°
radiation source

, (20)

where the product rule ∇⋅ (Eu) = u ⋅ ∇E+E∇⋅u has been applied.
The kinetic energy represented by E is induced by the volume reduc-
tion of the vapor cavities in the flow. Consequently, this collapse
induced kinetic energy is generated at locations of negative veloc-
ity divergence only, denoted by {∇ ⋅ u}−. For further reference, the{}+ and {}− operator applied to some scalar quantity ' is defined as

{φ}+ ≡ max[φ, 0], {φ}− ≡ min[φ, 0]. (21)

Conversely, a positive velocity divergence associated with cavity
growth does not withdraw kinetic energy from the balance, which
means that an external energy intake into the system is needed to
create the imploding vapor cavities in the first place. Therefore, the
two terms on the right-hand side of Eq. (20) can be interpreted as
source terms in the kinetic energy balance. They represent the con-
version of potential cavity energy into kinetic energy and the conver-
sion of collapse induced kinetic energy into radiated acoustic energy,
respectively. Physical models are needed to describe both processes.
The term u ⋅ ∇E on the left-hand side of Eq. (20) represents the
conservative advective transport of E, which is responsible for the
spatial focusing of the accumulated kinetic energy. It is known that
the amount of collapse induced kinetic energy in the entire liquid
body, given by ∫vol E(t, xP)dV , is equal to the change of potential
energy that the collapsing cavities have undergone. The exact spatial
distribution of E(t, xP), however, is unknown. For this reason, the
conservative transport of the accumulated kinetic energy requires
a modeling assumption as well. We essentially assume that loca-
tions of potential energy reduction act as attractors of the collapse
induced kinetic energy that is already present in the flow field. Based
on this consideration, we further assume that this kinetic energy can
be absorbed by the interface of the collapsing cavities until a crite-
rion for the conversion of this energy into radiated acoustic energy
is met. Consequently, the model cannot correctly reflect the spatial
kinetic energy distribution around the cavity before the final col-
lapse stage. At the final collapse stage, however, where the kinetic
energy has been shown to entirely focus into the collapse center, the
model approaches the correct representation of the kinetic energy
distribution because the cavity interface, in which the kinetic energy
is stored, collapses into the center as well. This process can also be
thought of as a cascade of kinetic energy, as schematized in Fig. 3.

A model representation of Eq. (20) is given by

∂E

∂t
= (1 − β) [φ(E) − ėpot∣∇⋅u≤0]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

kin. energy flux

− β
E

δt±̇
erad

. (22)

The term φ(E) on the right-hand side of Eq. (22) represents the
cascade of the collapse induced kinetic energy and can be seen as

a model of the unknown advective transport term u ⋅ ∇E in Eq. (20).
The term ėpot∣∇⋅u≤0 is a model of the kinetic energy source term

E{∇ ⋅ u}− in Eq. (20), and it is associated with the local rate of poten-
tial energy reduction due to negative flow velocity divergence, which
is feeding into kinetic energy. Thus, φ(E) − ėpot∣∇⋅u≤0 represents the
kinetic energy flux. The radiated volume specific power ėrad is given
by a fraction 0 ≤ β ≤ 1 of the accumulated energy E radiated within
a certain time δt. The fraction β is still to be specified but formally
represents a local flow condition that triggers the conversion into
radiated acoustic energy. With the radiation source term being pro-
portional to β , the term φ(E) − ėpot∣∇⋅u≤0 must be multiplied by(1 − β) to consistently split the kinetic energy flux on the one hand
and the radiation energy flux on the other hand in such a way that
the overall amount of energy is conserved.

The reduction of potential energy is the result of the driving
pressure difference pd − pv acting on the specific vapor volume
approximated by (1 − γ), where pd is the pressure effectively driving
the cavity collapse22

ėpot∣∇⋅u≤0 = {∇ ⋅ u}− ρ

ρl − ρv´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−{Dγ/Dt}+

(pd − pv). (23)

The underbraced term in Eq. (23) is the material derivative of γ.
In order to derive an appropriate model for the conservative

transport term φ(E) in Eq. (22), φ(E) is formally decomposed into
a positive and a negative contribution such that

φ(E) = {φ(E)}+ + {φ(E)}−. (24)

For the amount of transported energy to be conserved, the transport
term must satisfy

∫
vol
[{φ(E)}+ + {φ(E)}−]dV = 0. (25)

It is first assumed that the reduction rate given by {φ(E)}− is pro-
portional to E to ensure that E ≥ 0 everywhere. Second, the fraction
of E reduced by {φ(E)}− per time δt is assumed to be given by the
normalized projection of ∇E(xP) on the local flow velocity vector
u(xP), which gives

{φ(E)}− = − E

δt

{u ⋅ ∇E}+∥u ∥∥∇E ∥´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P

u
(∇E)

at any location xP where ∥u ∥ > 0 ∧ ∥∇E ∥ > 0
and anywhere else {φ(E)}− = 0,

such that 0 ≤ Pu(∇E) ≤ 1. (26)

For further reference, the underbraced term in Eq. (26) formally
denotes the normalized projection of ∇E on u. This formulation
is motivated by the assumption that the flow at the interface of
a collapsing cavity is directed into the collapse center and, hence,
aligned with ∇E because E is stored in the cavity interface. The
amount of accumulated energy that is reduced by {φ(E)}− must
be absorbed by the {φ(E)}+ term. The underlying assumption for
the formulation of the {φ(E)}+ term is that the kinetic energy accu-
mulated throughout the cavity collapse is attracted by locations of
negative velocity divergence, where ėpot∣∇⋅u≤0 < 0. To this end,
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it is assumed that {φ(E)}+ is proportional to ėpot∣∇⋅u≤0 such that{φ(E)}+ = k ėpot∣∇⋅u≤0, where k is assumed to be constant in space
and must be determined such that

k∫
vol

ėpot∣∇⋅u≤0dV = −∫
vol
{φ(E)}−dV (27)

at any time instant to comply with the conservation requirement
given by Eq. (25). Thus, we get

{φ(E)}+ = ėpot∣∇⋅u≤0 ∫vol
E

δt
Pu(∇E)dV

∫
vol

ėpot∣∇⋅u≤0dV´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

at any location xP where ∫
vol

ėpot∣∇⋅u≤0dV > 0
and anywhere else {φ(E)}+ = 0. (28)

A conceptually similar mechanism to describe the interaction
between cavitation bubbles based on the volume distribution of
the velocity divergence field has been proposed by Maiga et al.23

Combining the above equations, Eq. (22) becomes

∂E

∂t
= (1 − β) [ ėpot∣∇⋅u≤0(k − 1) − E

δt
Pu(∇E)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

kin. energy flux

− β
E

δt±̇
erad

, (29)

where ėpot∣∇⋅u≤0,Pu(∇E) and k are specified by Eqs. (23), (26), and
(28), respectively.

Finally, it is assumed that the fraction β is related to the local
flow conditions and given by

β = (γ min[ p

p∞
, 1])h, where 0 ≤ β ≤ 1. (30)

According to Eq. (30), the fraction β depends on the local pressure
magnitude relative to the ambient pressure p∞ and the local liquid
fraction. The liquid fraction criterion is motivated by the thermo-
dynamic states of a water-vapor mixture, which imply that pressure
must be close to vapor pressure in the phase transition regime and
that a high amplitude pressure wave can only form in the liquid
phase. The p/p∞ term reflects the circumstance that the cascade of
collapse induced kinetic energy may also take place across the liquid
phase in a collective bubble cloud collapse, as illustrated in Fig. 3. In
such a situation, the collective cloud collapse is driven by an inward
directed bubbly shock as described by Wang and Brennen,12 where
the pressure on the downstream side of the shock front is supposed
to be smaller than p∞. The exponent h in Eq. (30) is the energy focus-
ing parameter. In the lower limit h → 0, for which β = 1 for any
γ > 0 ∧ p > 0, all the volume specific energy at the corresponding
location is released instantaneously. In the limit h →∞, the radia-
tion of energy is suppressed until the local specific volume is fully
occupied by liquid and the local pressure exceeds the ambient pres-
sure p∞. The potential energy is thenmost efficiently focused toward
the collapse center, where it is eventually radiated in a rather sudden
step. For h→∞, Eq. (30) can be rewritten as follows:

β = {1, if p > p∞ and γ = 1,
0, else.

(31)

The energy radiation criterion given by Eq. (31) in combination with
the potential energy focusing mechanism identifies the final collapse
stage in a similar way as proposed in the collapse detector method
byMihatsch et al.24 If the flow conditions determining the value of β
allow for it, the initial potential cavity energy can be entirely focused
into the collapse center. From Eq. (29) then follows that ėrad →∞ as
δt → 0. This is the equivalent situation to the events at the final col-
lapse stage of an isolated vapor bubble as found from the simplifying
considerations in Sec. II C, where the energy density in the collapse
center tends to infinity at the final collapse stage, however, with the
absolute amount of energy being finite. This behavior is the result of
not resolving the events at the finite collapse stage, which eventually
determine the exact energy density distribution within the radiated
pressure wave. This energy density distribution is formally reflected
by Eq. (19), where the total amount of shock wave energy ESW is pro-
portional to the time integral of pa over the impact duration TSW as
the wave passes some arbitrary location at a distance r from the cen-
ter. Practically, the time scale δt will be equal to the time step size
∆tmodel at which the cavitation intensity model is run in the numer-
ical flow simulation. With the complemented cavitation intensity
model, the shock wave energy ESW is consistently predicted, but
the exact temporal distribution of pa and the corresponding impact
duration TSW is beyond the resolution of the model. Consequently,
the potential energy focusing approach is supposed to improve the
time accuracy of local acoustic power and acoustic pressure signals
in the sense that the impact is more realistically focused toward the
final collapse stage while still keeping control over the overall energy
balance. However, an entirely time accurate solution for the shape of
the peak impact cannot be expected from the method.

III. NUMERICAL SETUP

A. Computational grid, inital, and boundary
conditions

The bubble cloud consists of 125 nonintersecting bubbles, as
depicted in Fig. 4. The positions and corresponding radii (0.70 mm–
1.65 mm) are the same as in the study by Schmidt et al.,14 who have

FIG. 4. Bubble cluster and 1 cm × 1 cm numerical pressure sensor indicated in
black on the bottom surface.
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generated a random spatial and bubble size distribution, however,
such that the population density increases toward the cloud center.
The so obtained data set has kindly been provided by TUM/AER (see
Schmidt et al.14) in private communication as part of the EU H2020
CaFE Project. The cloud is embedded in a cubic inner domain of
20 mm edge length. The bottom surface of the inner domain is high-
lighted in green color, and the numerical pressure sensor located
right in the middle of the bottom surface is indicated in black
color. The pressure sensor signal is obtained by averaging the recon-
structed acoustic pressure pa over the sensor surface. The entire
computational domain is depicted in Fig. 5. With the bottom sur-
face area and height being 4 m × 4 m and 2 m, respectively, it is as
large that the far field boundaries can be assumed to be undisturbed.
The computational mesh is block structured and consists of uni-
form cubic cells in the inner domain. The outer domain, connecting
the inner domain with the far field boundaries, consists of hexahe-
dral cells. The number of cell layers between the inner domain and
the far field boundaries is 25, where the cell expansion ratio toward
the far field boundaries is determined such that a smooth cell size
transition to the inner domain is achieved. In order to perform a
grid sensitivity study, the inner domain (Fig. 6) is systematically
refined in x, y, and z directions. Three different grid resolutions are
investigated in this study. Following the sensitivity study by Schmidt
et al.14 the inner domains of grid 1, 2 and 3 contain 283, 553 and
1103 cells, respectively. The grids and the corresponding bubble res-
olutions are depicted by Fig. 7 for the central plane cross section view
indicated in the upper left sub-figure. The liquid fraction field is ini-
tialized such that cells entirely located within one of the bubbles are
assigned a liquid fraction of γ = 0 and cells entirely located in the liq-
uid phase are assigned a value of γ = 1. A sample algorithm is applied
to determine the liquid fraction of those cells that are cut by any bub-
ble interface.2 The density field is given by the linearmixture relation
given by Eq. (3), where the liquid and vapor densities are assumed
to be ρl = 1000 kg/m3 and ρv = 0.02 kg/m3, respectively. The initial
pressure field is determined in exactly the same way, with the vapor
pressure being pv = 2340 Pa and the liquid pressure being equal to
the far field pressure p∞ = 40 bars. This is not yet an appropriate
initial condition for the liquid pressure field, which must satisfy the

FIG. 5. Computational domain with 4 m × 4 m bottom surface area and grid
refinement toward the inner part of the domain.

FIG. 6. Cubic inner part (2 cm × 2 cm × 2 cm) of the computational domain
depicted in Fig. 4; the inner domain contains the bubble cluster depicted in Fig. 4.

Laplace equation ∇ ⋅ ∇p = 0 in order to eliminate spurious acous-
tics.14 In Sec. III B, it is explained how this condition is established
by the numerical flow solver during the first time step of the simula-
tion. One close wall bubble is marked as B1 in Figs. 4 and 7, because
its collapse will be shown to cause a localized high impact load on

FIG. 7. Cross-sectional view (indicated in the top left) of the bubble cluster initialal-
ized for different grid densities in the inner domain; the close wall bubble B1 is also
marked in Fig. 4.
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the bottom wall which will be discussed in more detail. The driving
pressure pd in Eq. (23) is assumed to be constant in space and time
and equal to the ambient pressure p∞.

B. Discretization schemes and iterative method

A segregated approach involving pressure-velocity coupling25

is employed to solve the Euler equations given by Eqs. (1) and (2)
for a collocated grid arrangement. The pressure-velocity coupling is
achieved by solving a pressure equation, followed by a velocity cor-
rection obtained by forward substitution of the previously obtained
pressure field. A beneficial feature of this method is that the pres-
sure equation contains a Laplacian term of the pressure field, which
means that the pressure equation evolves into ∇ ⋅ ∇p = 0 at the
beginning of the simulation, where the flow is still at rest. This auto-
matically provides a consistent initial condition of the pressure field,
as discussed in Sec. III A. At each time step, three inner loops are
performed over the pressure-velocity coupling step. The liquid frac-
tion transport equation given by Eq. (4) is solved separately from the
pressure-velocity coupling step and placed in an outer loop, which is
only performed once per time step. This configuration with only one
outer loop iteration is referred to as the PISO algorithm25 in Open-
FOAM.15 In order to prevent unrealistic behavior of the γ-equation
due to the sharp initial pressure jump at the bubble interfaces, the
original solver loop is slightly modified such that the pressure equa-
tion is solved before the liquid volume fraction transport equation,
thereby providing a smooth initial condition for the γ-equation.10

The L1 norm is employed to measure the global residual of the
algebraic equations to be solved. The residual is normalized by the
maximum coefficient of the corresponding matrix diagonal.26 The
solution of the pressure equation and the γ-equation is considered to
be sufficiently accurate if the corresponding residuals have dropped
below 10−11 and 10−13, respectively. The convective term in the
γ-equation and the momentum equation is discretized with the Van
Leer scheme27 and the upwind-biased linear scheme,28 respectively.
A linear discretization scheme as described by Jasak25 is applied to
the Laplacian term in the pressure equation. Time integration is lin-
ear implicit, where the implicit treatment of the mass transfer source
terms in the pressure and the γ-equation follows the procedure
described by Asnaghi et al.29

The negative velocity divergence {∇ ⋅ u}−, needed to compute
the material derivativeDγ/Dt and in last instance the acoustic power
radiation given by Eq. (23), is reconstructed from the face fluxes such
that (∇ ⋅ u)CVC = ∑f uf ⋅ Sf for each cell. The subscripts C and f
refer to the cell center and face center location, respectively.VC is the
cell volume, and Sf is the face area times the outward directed face

normal vector. It has been shown2 that this reconstruction involves
numerical errors, which would eventually violate the energy balance
in the cavitation intensity approach. To at least correct for this error
in an integral sense, we calculate the radiated power given by Eq. (23)
based on a corrected negative velocity divergence k{∇ ⋅ u}−C , where
k is determined such that the balance2

k
Ncells

∑
i=1

[(Dγ
Dt
)
C,i

VC,i] = Ncells

∑
i=−1

[(∂γ
∂t
)
C,i

VC,i] (32)

is satisfied. This correction is motivated by the circumstance that the
volume integral of the partial γ time derivative, represented by the

right-hand side of Eq. (32), correctly reflects the overall change of
vapor volume because it directly results from solving the γ transport
equation given by Eq. (4). It is noted that ∂γ/∂t includes an advective
component that does not contribute to the change of vapor volume.
However, the advective components cancel each other out in the
volume integral. By this means, the numerical errors made during
the reconstruction of {∇ ⋅ u}− are eliminated from the integral bal-
ance and the numerical conversion of radiated power into surface
impact power can be checked against the analytical prediction given
by Eq. (8). Similar to the reconstruction of the cell-centered velocity
divergence, the cell centered gradient of E in Eq. (26) is computed
from the finite volume representation (∇E)CVC = ∑f Ef Sf .

More details on how the local surface specific impact power is
reconstructed from the source term distribution ėrad are found in
previous work.2 The solution of the additional transport equation
describing the spatial focusing of potential cavity energy is explicitly
forwarded in time. This means that all terms on the right-hand side
of Eq. (29) are assumed to be known from the previous time step
t such that ∂E/∂t is obtained by forward substitution. The updated
solution E∣t+δt is then given by the first order Taylor series expan-

sion E∣t+δt = E∣t + ∂E/∂t∣tδt + O(δt2). The time increment δt, by
which the solution is expanded, is equal to the time step size∆t. With
ėpot∣∇⋅u≤0,Pu(∇E) and k being specified by Eqs. (23), (26), and (28),
respectively, this gives

E∣t+∆t = (1 − β ∣t)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ėpot∣∇⋅u≤0∆t(k − 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0 as k≤0 ∧ ėpot∣∇⋅u≤0<0

−E(Pu(∇E) − 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤E as 0≤P

u
(∇E)≤1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRRRRRRRRRRt
(33)

for the accumulated collapse induced kinetic energy and

ėrad∣t+∆t = 1

∆t
(βE)∣t (34)

for the radiated energy. As it can be seen from Eq. (33), E ≥ 0, the
updated solution for E is bound by 0, which means that no negative
collapse induced kinetic energy can be produced by the numerical
time integration.

Furthermore, the evaluation of the terms {φ(E)}− and{φ(E)}+ given by Eqs. (26) and (28), respectively, requires some
special treatment because they are only to be evaluated at locations
where the corresponding denominator is different from zero. To
avoid a point-wise check of the denominator value, a small number
δ is added to the denominator of Eq. (26) and subtracted from the
denominator of Eq. (28) to prevent from division by zero. The value
of δ is chosen to be 10−15 such that it does not affect the accuracy of
the final result.

IV. RESULTS AND DISCUSSION

A. Sensitivity study

In order to obtain a physically converged result for the col-
lapse characteristic of the bubble cloud, it is essential to investigate
the sensitivity of the collapse time τ with respect to the mass trans-
fer coefficients of the cavitation model and the temporal resolution.
This is done for grid 2. Figure 8 shows the evolution of total vapor
volume over time for a fixed time step size ∆t = 10−8 s and for
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FIG. 8. Evolution of the dimensionless vapor volume over time (V0 is the initial
vapor volume of the cloud) for grid 2 in Fig. 7, ∆t = 10−8 and a systematic variation
of the condensation mass transfer constant Cc in Eq. (4).

differentmagnitudes of the condensation constantCc. For very small
values of Cc, a significant delay of the collapse time is observed. In
the limit Cc → 0, no condensation can take place at all. For values of
Cc ≥ 1 kg s/m

5, the curves collapse. However, this model parameter
independent behavior can only be achieved if the time step ∆t is suf-
ficiently small. Figure 9 shows the evolution of vapor volume over
time for a systematic variation of ∆t, where the condensation con-
stant is kept constant at Cc = 1000 kg s/m5. Significant delays of the
collapse time are observed for large time step sizes. As∆t approaches
10−8 s, the curves converge to a time step size independent solution.

FIG. 9. Evolution of the dimensionless vapor volume over time (V0 is the initial
vapor volume of the cloud) for grid 2 in Fig. 7, Cc = 1000 kg s/m5 and a systematic
variation of the time step size ∆t.

FIG. 10. Evolution of the dimensionless vapor volume over time (V0 is the initial
vapor volume of the cloud) for ∆t = 10−8, Cc = 1000 kg s/m5 and for the three
different grids depicted in Fig. 7.

Figure 10 further depicts the evolution of vapor volume over time
for the three different grids in Fig. 7. It is found that the evolution of
total vapor volume is practically grid insensitive for the grid densities
investigated in this study. This finding is in line with the results by
Schmidt et al.14 even though their results have been obtained from a
fundamentally different numerical method. The results are further
supported by similar findings in related studies.30–32 The collapse
time of the bubble cloud is identified by a change of sign of V̇ at
the final collapse stage and found to be τ = 6.5 × 10−5 s, which is in
good agreement with the results by Schmidt et al.14 The insensitivity
of τ with respect to the grid density is explained by the circumstance
that the bubble population density of the cloud is so high that is does
not allow for any significant pressure recovery between the bubbles.
This is illustrated by Fig. 11, depicting cross sectional views of the
pressure field at t = 0.08τ. For inertia driven cavitating flows, the
finding from this sensitivity analysis can be generalized in so far that
the time step size must be chosen as small as necessary and the mass
transfer coefficients as large as necessary. If this condition is met, the
mass transfer model always has enough capacity to achieve phase
transition within the time scale that is governed by inertia driven
flow and the local phase transition event is as far resolved in time
that no truncation errors occur. Based on the sensitivity study, the
configuration of Cc = 10 kg s/m5, ∆t = 10−8 s, and grid 2 is found to
provide a physically converged solution.

B. Physical analysis

Figure 12 depicts the evolution of the dimensionless accu-
mulated surface energy ES/Epot,0, obtained from integration of
the surface specific impact power over time and over the entire
4 m× 4 m bottom surface area. The circular markers represent
the curve obtained from the original cavitation intensity approach,
hence, without applying the energy focusing equation introduced in
Sec. II D. The other curves represent the results obtained from
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FIG. 11. γ = 0.5 isosurfaces of the vapor bubbles at time instant t = 0.08τ and
cross sectional views on the corresponding pressure field for grid 2 in Fig. 7,
Cc = 1000 kg s/m5 and ∆t = 10−8.

the potential energy focusing approach for different values of the
focusing parameter h in Eq. (30). If no potential energy focus-
ing is applied, the percentage amount of ES relative to 0.5Epot,0

corresponds exactly to the percentage of dimensionless volume
V/V0 by which the cavity has shrunk. When the potential energy
focusing is applied, the temporal evolution of the surface impact is
governed by the focusing parameter h, where the impact is more
and more delayed toward the final collapse stage as h increases.
In all cases, however, the amount of accumulated surface energy
converges to the analytically predicted value of 50% initial poten-
tial energy [see Eq. (8)] with reasonable accuracy. In the case of

FIG. 12. Evolution of the dimensionless energy accumulated on the entire bot-
tom surface; the “original” curve represents the distribution without focusing and
the remaining curves the distributions with focusing of the potential energy for a
systematic variation of the focusing parameter h in Eq. (30).

h→∞, which is computed from Eq. (31), the major amount of
energy is focused toward the final collapse stage and then released
in a rather sudden step. The lowest focusing parameter value h= 1
hardly appears to have any effect on the evolution of the accu-
mulated surface energy at all because it can only slightly delay the
release of potential cavity energy. For the parameter range 10 ≤
h ≤ 100, the energy release is effectively delayed up to the time
instant where the first isolated bubbles in the outer periphery of the
cloud have collapsed. From this moment on, the curves approach
the original curve again. This behavior is explained by the focusing
parameter h being large enough to focus the potential energy within
the isolated bubbles but being too small to effectively transport
the potential energy across the liquid phase. With further increas-
ing values of h, the energy release in the liquid phase is effectively
suppressed so that the corresponding curves approach the h → ∞
case.

In view of the acoustic pressure analysis, it is noted that the
total pressure computed by Schmidt et al.14 depicted by the red
solid line in Fig. 14, is not entirely comparable with the acous-
tic pressure pa. The most obvious difference is that the total pres-
sure must be equal to the far field pressure p∞ once the pressure
perturbations caused by the cloud collapse have decayed, whereas
the acoustic pressure is a pressure perturbation itself which tends
to zero after the collapse event. At the beginning of the collapse,
the total wall pressure in close vicinity of the vapor bubble cloud
is significantly lower than the far field pressure. This is explained
by the fact that the liquid phase must satisfy the Laplace equa-
tion of pressure initially, where the close wall distance of the vapor
bubble cloud hardly allows the liquid pressure to recover on the
bottom wall. The collapse peak pressure computed by Schmidt et
al.,14 however, is supposed to be governed by the energy trans-
ported by the shock wave through the nearly incompressible liquid
phase and should, therefore, exhibit a similar characteristic as the
acoustic peak pressure reconstructed from the cavitation intensity
approach.

Figure 13 shows the acoustic pressure signals obtained from
averaging the acoustic pressure pa over the numerical pressure sen-
sor depicted in Fig. 4. The subfigure entitled “original” represents the
signal obtained from the original approach without energy focusing.
Compared to the results by Schmidt et al.,14 a strong smearing of
the signal is observed. The pronounced peak at the end of the col-
lapse that is observed in the results by Schmidt et al.14 is not present
in the “original” acoustic pressure signal at all. This clearly demon-
strates the inability of the original cavitation intensity approach to
reflect the instantaneous energy balance, as discussed in Sec. II D.
Figure 13 further depicts the acoustic pressure signal evaluated on
the numerical pressure sensor for a systematic variation of the focus-
ing parameter h. As a result of the delayed power radiation with
increasing h, a peak event forms at the end of the cloud collapse. The
peak intensifies with increasing h. For very large h, various spurious
high amplitude peaks are observed before the final collapse stage.
They are identified as spurious peaks because the fact that the by far
largest energy portion is impacting the surface at the end of the col-
lapse event (see Fig. 12) implies that there is no significant energy
content in the peaks before the final collapse stage. This is further
supported by Fig. 14, showing a 200th order Fourier approximation
of the pa-signal for h → ∞. Even for this high order approxima-
tion, the spurious peaks before the final collapse stage are filtered
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FIG. 13. Evolution of the acoustic pressure signal averaged over the numerical
pressure sensor surface depicted in Fig. 4 for a systematic variation of the energy
focusing parameter h in Eq. (30); the “original” curve represents the distribution
without potential energy focusing.

out. Figure 14 further depicts the total pressure signal computed by
Schmidt et al.14 for reference. It is observed that the total pressure
peak value occurs somewhat later than the acoustic pressure peak.
This delay is due to the time that it takes for the pressure wave to
propagate from the cloud collapse center to the bottom wall in the
compressible simulation by Schmidt et al.14 where the wave propa-
gation speed of the associated wave in the cavitation intensity model
is assumed to be infinite. A rough estimation of the wave prop-
agation time can be made by assuming a propagation speed of
cl = 1500 m/s and by assuming the cloud collapse center to be in
the middle of the inner domain, which gives an approximate propa-
gation time of 6.7 × 10−6 s. The impact time of the acoustic pressure
peak is also found to be significantly smaller than the impact time of

FIG. 14. Comparison of the acoustic pressure signal obtained from the cavitation
intensity model for maximum energy focusing (h → ∞) with the total pressure

signal computed by Schmidt et al.
14

the total pressure peak by Schmidt et al.14 As discussed in Sec. II D,
this difference is attributed to the tendency of the energy focusing
equation to release the accumulated potential energy in a sudden
step at the final collapse stage as h→∞.

A measure of the impact aggressiveness is given by the distri-
bution of surface specific energy accumulated throughout the cloud
collapse. Figure 15 depicts the accumulated surface energy distri-
bution on the bottom wall underneath the cloud, normalized by
the cloud collapse time τ = 6.5 × 10−5 s. The top figure shows the
distribution obtained from the original cavitation intensity model
without potential energy focusing and the lower figure the distri-
bution obtained from applying the focusing approach described in
Sec. II D for h→∞ (maximum focusing). In both cases, one distinct
isolated footprint is observed, which is caused by the isolated close
wall bubble marked as B1 in Fig. 4. The energy focusing approach
predicts only one more isolated footprint, which is located outside
the numerical pressure sensor surface and which has been caused
by a bubble initially located in the outer periphery of the cloud.
The original approach predicts another isolated footprint located
on the numerical pressure sensor surface and generally tends to
leave a more asymmetric impact pattern. With the major part of
the initial potential cloud energy being focused toward the collapse
center, the focusing approach leaves a rather axisymmetric foot-
print on the numerical pressure sensor as would be observed if the
impact was caused by an isolated point source. The surface energy
distribution obtained from the energy focusing approach is also of
larger magnitude as compared to the original approach. Another
effect of the collective focusing of potential energy is that the peak
value of the accumulated surface energy distribution is caused by
the collective collapse event, whereas the original approach pre-
dicts the peak value in the vicinity of the isolated collapse of
bubble B1.

The potential energy focusing is further illustrated by Fig. 16,
depicting the distribution of accumulated volume specific kinetic
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FIG. 15. Distribution of the accumulated surface specific energy normalized by the
cloud collapse time τ = 6.5× 10−5 s for the original model without potential energy
focusing (top) and maximum energy focusing h→∞ (bottom); the accumulated
surface energy is obtained from time integration of the surface specific impact
power.

energy E obtained from Eq. (33). The bubble interfaces are indi-
cated by the red solid line. It can be seen how the collapse induced
kinetic energy accumulation starts in the outer cloud periphery
and how it focuses and intensifies toward the cloud collapse center
as the collapse time τ is approached. One isolated region of pro-
nounced kinetic energy accumulation prior to the final collapse stage
is observed at the collapse location of bubble B1 in Fig. 4. In agree-
ment with the results by Schmidt et al.,14 the bubble cloud is found
to rather collapse like a structure of homogeneous water-vapor
mixture in the sense that the bubbles consecutively collapse from
the outer peripheries to the inner ones. Indeed, it has been shown
by Schmidt et al.14 that, in this particular case, the bubble cloud
can be replaced by a homogeneous structure of equivalent volume
fraction without changing the collapse characteristic. As shown by

FIG. 16. Cross-sectional view (as indicated in Fig. 7) of the distribution of the accu-
mulated volume specific energy E [see Eq. (33)] at different time instants relative
to the cloud collapse time τ = 6.5 × 10−5; the black outline represents the cubic
inner domain (2 cm × 2 cm × 2 cm) and the red solid line the γ = 0.5 isosurface
of the instantaneous bubble cloud.

Wang and Brennen,12 it strongly depends on the density of the
bubble population whether a bubble cloud exhibits this collective
behavior. In sparsely populated clouds, the bubbles tend to behave
as individual units.12 Based on their early numerical computations
on collapsing vapor bubble clouds, Wang and Brennen12 propose
that the focusing of potential energy across the individual bubbles
into the inner peripheries of a densely populated cloud is gov-
erned by an inward directed bubbly shock or condensation shock
wave. As discussed in Sec. II D, this mechanism is reflected by
Eq. (30), which suppresses the source radiation until the pressure
in the liquid phase has exceeded the driving pressure. Thus, the
potential cavity energy is accumulated and transported on the low
pressure side of the bubbly shock front. This also means that the
capability of the improved cavitation intensity model to reflect the
potential energy focusing driven by the inward directed conden-
sation shock strongly depends on the capability of the flow solver
to resolve this flow phenomenon. It has been shown that even
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semiempirical mass transfer approaches involving adjustable model
coefficients can resolve condensation shock states10,31 if the prereq-
uisites discussed in Sec. IV A are met. Indeed, the formation of
an inward directed bubbly shock as described by Wang and Bren-
nen12 is indicated by Fig. 17, depicting a cross-sectional view of the
distribution of the total pressure (left) and the velocity magnitude
(right) for different time instants. It can be seen how a discontinu-
ity in both the pressure and the velocity field forms across the outer
cloud periphery at t = 0.83τ, which gets more pronounced as τ is
approached.

Despite the fact that the impact load characteristics are well
captured by the method presented in this study, some uncertain-
ties remain. One uncertainty concerns the driving pressure pd in
Eq. (23), which is assumed to be constant and equal to the ambi-
ent pressure p∞ for the entire cloud surface. However, due to the
effects of wall interaction and the interaction of rather isolated bub-
bles with the close by bubble cloud, the driving pressure distribution
is in fact neither constant in space nor constant in time and the

FIG. 17. Cross-sectional view (as indicated in Fig. 7) of the distribution of the total
pressure (left) and the velocity magnitude for different time instants relative to the
cloud collapse time τ = 6.5 × 10−5; the black outline represents the cubic inner
domain (2 cm × 2 cm × 2 cm).

assumption that pd(t, xP) = p∞ can only be an approximation of
the actual condition experienced by the collapsing cloud. The prob-
lem of not exactly knowing the effective driving pressure pd in the
cavitation intensity approach has been discussed in detail in previ-
ous work.2 It is also noted that as discussed in Sec. II D, one can
still not expect an entirely time accurate representation of the acous-
tic impact signal. The delay of the collapse impact toward the final
collapse stage due to the spatial focusing of potential cavity energy
reflects the bubble cloud dynamics more accurately than the orig-
inal cavitation intensity approach, but the exact events at the final
collapse stage are beyond the model resolution. As a result, the
model theoretically allows us to transfer the shock wave energy at an
infinitely small impact duration. It is also mentioned that the trans-
mitted shock wave energy computed in the present study is associ-
ated with the idealized situation of zero noncondensable gas content.
The relation between gas content and shock wave energy derived
by Tinguely et al.,11 Fortes-Patella et al.,33 and Brennen34 might be
employed in future work to complement the model by the effect
of noncondensable gas. Finally, the reconstruction of the velocity
divergence needed for the computation of the local acoustic power
source terms is subjected to numerical errors, which is why the cor-
rection given by Eq. (32) has been applied. By means of this correc-
tion, the volume integrated energy balance could be satisfied in the
present study. As already discussed in previous work,2 however, this
correction cannot be applied to any arbitrary flow situation. There-
fore, a best possible reconstruction of the velocity divergence field
is a key factor for the reliability of the method presented in this
study.

V. CONCLUSION

A novel methodology is presented in this study, which allows
for the computation of the acoustic power and pressure from the
change of potential energy of collapsing vapor cavities in a liquid.
The essential feature that has been added to the original model for-
mulation found in previous works1,2 is an energy focusing equation
which can realistically focus the potential cavity energy into the col-
lapse center prior to its conversion into acoustic power. Compared
to the previous approaches, the physics of a cavity collapse are cap-
tured more accurately by the new model because it accounts for the
fact that the potential cavity energy is mostly converted into kinetic
energy of the surrounding liquid during the collapse and that the
conversion into acoustic power only takes place at the final collapse
stage.11,13

The capability of the new model is demonstrated for the col-
lapse of a vapor bubble cloud for which a more realistic and time
accurate acoustic pressure signal is obtained. From the analysis of
the acoustic pressure signal and the accumulated surface energy dis-
tribution, it has been shown that the spatial focusing of cavity energy
caused by the collective cloud collapse12 is all in all well captured. An
energy focusing parameter h has been introduced to demonstrate the
gradual transition of the model from the previous nonfocusing for-
mulation (h = 0) to the maximal energy focusing form as h → ∞.
The latter case fully adopts the instantaneous energy balance during
the cavity collapse, describing how the reduction of potential cavity
energy feeds into kinetic energy of the surrounding liquid prior to
the final collapse stage.13 Therefore, the limit h→∞, where acoustic
energy radiation only takes place at the final cavity collapse stage, is
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considered as the physically correct model configuration for future
studies.

Some uncertainties concerning the potential energy content
remain because the distribution of the collapse driving pressure is
not exactly known. Nevertheless, the methodology presented in this
study can be relevant for the prediction of cavitation erosion risk in
engineering applications because the control of the energy balance
allows for a reliable and physical prediction of the surface impact
distribution as long as the dynamics of the larger scale cavitating
structures are sufficiently well captured by the computational grid.

SUPPLEMENTARY MATERIAL

See supplementary material for data files to reproduce the
h→∞ surface energy curve in Fig. 12, the h → ∞ acoustic pres-
sure signal in Fig. 13, its 200th order Fourier approximation in
Fig. 14, and the h → ∞ surface energy distribution depicted in
Fig. 15. The material further includes a data file with the bubble
positions and corresponding radii to reproduce the initial bubble
cloud depicted in Fig. 4. This data set has kindly been provided by
TUM/AER (see Schmidt et al.14) in private communication as part of
the EU H2020 CaFE Project (Grant Agreement No. 642536). Please
refer to the work of Schmidt et al.14 when using the bubble cloud
specifications.
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