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Abstract—This paper is concerned with the derivation of a progression of shadow-free image representations. First, we show that

adopting certain assumptions about lights and cameras leads to a 1D, gray-scale image representation which is illuminant invariant

at each image pixel. We show that as a consequence, images represented in this form are shadow-free. We then extend this

1D representation to an equivalent 2D, chromaticity representation. We show that in this 2D representation, it is possible to relight all

the image pixels in the same way, effectively deriving a 2D image representation which is additionally shadow-free. Finally, we show

how to recover a 3D, full color shadow-free image representation by first (with the help of the 2D representation) identifying shadow

edges. We then remove shadow edges from the edge-map of the original image by edge in-painting and we propose a method to

reintegrate this thresholded edge map, thus deriving the sought-after 3D shadow-free image.

Index Terms—Shadow removal, illuminant invariance, reintegration.

�

1 INTRODUCTION

ONE of the most fundamental tasks for any visual system
is that of separating the changes in an image which are

due to a change in the underlying imaged surfaces from
changes which are due to the effects of the scene
illumination. The interaction between light and surface is
complex and introduces many unwanted artifacts into an
image. For example, shading, shadows, specularities, and
interreflections, as well as changes due to local variation in
the intensity or color of the illumination all make it more
difficult to achieve basic visual tasks such as image
segmentation [1], object recognition [2], and tracking [3].
The importance of being able to separate illumination
effects from reflectance has been well understood for a long
time. For example, Barrow and Tenenbaum [4] introduced
the notion of “intrinsic images” to represent the idea of
decomposing an image into two separate images: one which
records variation in reflectance and another which repre-
sents the variation in the illumination across the image.

Barrow and Tenenbaum proposed methods for deriving
such intrinsic images under certain simple models of image
formation. In general, however, the complex nature of image
formation means that recovering intrinsic images is an ill-
posed problem. More recently, Weiss [5] proposed a method
to derive an intrinsic reflectance image of a scene given a
sequence of images of the scene under a range of illumination
conditions. Using many images ensures that the problem is
well-posed, but implies that the application of the method is
quite restricted. The Retinex and Lightness algorithms of
Land [6] and others [7], [8], [9], [10] can also be seen as an
attempt to derive intrinsic reflectance images under certain
restrictive scene assumptions. Specifically, those algorithms

are founded on the premise that scenes are 2D planar surfaces
constructed from a tessellation of uniform reflectance
patches. In addition, the intensity of illumination across the
scene is assumed to vary only slowly and is assumed to be
spectrally constant. Under these conditions, it is possible to
distinguish changes in reflectance from changes in illumina-
tion and to factor the latter out, thus deriving an intrinsic
reflectance image referred to as a lightness image.

Estimating and accounting for the color of the prevailing
scene illumination is a related problem which has received
much attention [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20]. In this body of work, the focus is not on deriving intrinsic
reflectance images, but rather on obtaining a rendering of a
scene as it would appear when viewed under some standard
illumination. Often, these color constancy algorithms as they
are called, are derived under the same restrictive conditions
as the lightness algorithms and factors such as specularities,
shading, and shadows are ignored. A different approach to
this problem is the so-called illuminant invariant approach
[21], [22], [23], [24], [25], [26], [27]. Instead of attempting to
estimate the color of the scene illuminant, illuminant
invariant methods attempt simply to remove its effect from
an image. This is achieved by deriving invariant quantities
—algebraic transformations of the recorded image values—
which remain constant under a change of illumination.
Methods for deriving quantities which are invariant to one or
more of illumination color, illumination intensity, shading,
and specularities have all been proposed in the literature.

In this paper, we consider how we might account for
shadows in an imaged scene: an illumination which has so far
largely been ignored in the body of work briefly reviewed
above. That accounting for the effect of shadows on color
constancy in images has not received more attention is
somewhat surprising since shadows are present in many
images and can confound many visual tasks. As an example,
consider that we wish to segment the image in Fig. 2a into
distinct regions each of which corresponds to an underlying
surface reflectance. While humans can solve this task easily,
identifying two important regions corresponding to the grass
and the path, such an image will cause problems for a
segmentation algorithm, which will quite likely return at least
three regions corresponding to shadow, grass, and path. In
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fact, identifying shadows and accounting for their effects is a
difficult problem since a shadow is in effect a local change in
both the color and intensity of the scene illumination. To see
this, consider again Fig. 2a. In this image, the nonshadow
region is illuminated by light from the sky and also by direct
sunlight, whereas in contrast, the shadow region is lit only by
light from the sky. It follows that to account for shadows, we
must be able, in effect, to locally solve the color constancy
problem—that is, identify the color of the scene illuminant at
each pixel in the scene.

We propose three different shadow-free image represen-
tations in this paper. We begin by summarizing previous
work [28], [29] which showed that given certain assumptions
about scene illumination and camera sensors it is possible to
solve a restricted color constancy problem at a single image
pixel. Specifically, given a single triplet of sensor responses it
is possible to derive a 1D quantity invariant to both the color
and intensity of the scene illuminant. This in effect provides a
1D reflectance image which is, by construction, shadow-free.
Importantly, results in this paper demonstrate that applying
the theory to images captured under conditions which fail to
satisfy one or more of the underlying assumptions, still
results in gray-scale images which are, to a good approxima-
tion, shadow-free. Next, we consider how to put some of the
color back in to the shadow-free representation. We show that
there exists an equivalent 2D representation of the invariant
image which is also locally illuminant invariant and, there-
fore, shadow free. Furthermore, we show that given this
2D representation we can put some illumination back into the
scene. That is, we can relight all image pixels uniformly
(using, e.g., the illumination in the nonshadow region of the
original image) so that the image remains shadow-free but is
closer in color to a 2D representation of the original image.
This 2D image representation is similar to a conventional
chromaticity [30] representation (an intensity invariant
representation) but with the additional advantage of being
shadow-free.

Finally, we show how to recover a full-color 3D image
representation which is the same as the original image but
with shadows removed. Here, our approach is similar to that
taken in lightness algorithms [6], [7], [8], [10]. In that work, the
effects of illumination are factored out by working with an
edge representation of the image, with small edges assumed
to correspond to the slowly changing illumination while large
changes correspond to a change in reflectance. Under these
assumptions, small changes are factored out and the resulting
edge-map is reintegrated to yield an illumination-free light-
ness image. In our case, we also work with an edge-map of the
image, but we are concerned with separating shadow edges
from reflectance edges and factoring out the former. To do so,
we employ the 2D shadow-free image we have earlier
derived. We reason that a shadow edge corresponds to any
edge which is in the original image but absent from the
invariant representation and we can thus define a threshold-
ing operation to identify the shadow edge. Of course, this
thresholding effectively introduces small contours in which
we have no edge information. Thus, we propose a method for
in-painting edge information across the shadow edge.
Finally, reintegrating yields a color image, equal to the
original save for the fact that it is shadow-free.

Before developing the theory of shadow-free images it is
useful to set out some initial assumptions and limitations of

our approach. The derivation of a one-dimensional image
representation, invariant to both illumination color and
intensity, is founded on a Lambertian model of image
formation. That is, we assume that image pixel values are
linearly related to the intensity of the incident light, and that
images are free of effects such as specularities and interreflec-
tions. Furthermore, the theory is developed under the
assumption of an imaging device with perfectly narrow-band
sensors (sensors responsive to just a single wavelength of
light), and we also assume that our scenes are lit by Planckian
illuminants. Of course, not all of these assumptions will be
satisfiedforanimageofanarbitraryscene, takenwithatypical
imaging device. However, the theory we develop can be
applied to any image, and we discuss, in Section 2, the effect
that departures from the theoretical case have on the resulting
1D invariant representation. A more detailed discussion of
these issues can also be found in other works [28], [31]. It is
also important to point out that, for some images, the process
of transforming the original RGB representation to the
1D invariant representation might also introduce some
undesirable artifacts. Specifically, two or more surfaces which
are distinguishable in a 3D representation, may be indis-
tinguishable (that is, metameric) in the 1D representation. For
example, two surfaces which differ only in their intensity will
have identical 1D invariant representations. The same will be
true for surfaces which are related by a change of illumination
(as defined by our model). Similar artifacts can be introduced
when we transform an image from an RGB representation to a
1D gray-scale representation since they are a direct conse-
quence of the transformation from a higher to lower
dimensional representation. The two and three-dimensional
shadow-free representations we introduce are both derived
from the 1D invariant. This implies that the assumptions and
limitations for the 1D case also hold true for the higher
dimensional cases. The derivation of the 3D shadow-free
image also includes an edge detection step. Thus, in this case,
we will not be able to remove shadows which have no edges or
whoseedgesareveryill-defined. Inaddition,wepointout that
edge detection in general is still an open problem, and the
success of our method is therefore limited by the accuracy of
existing edge detection techniques. Notwithstanding the
theoretical limitations we have set out, the method is capable
of giving very good performance on real images. For example,
all the images in Fig. 5 depart from one or more of the
theoretical assumptions and, yet, the recovered 1D, 2D, and
3D representations are all effectively shadow-free.

The paper is organized as follows: In Section 2, we
summarize the 1D illuminant invariant representation and
its underlying theory. In Section 3, we extend this theory to
derive a 2D representation, and we show how to add
illumination back in to this image, resulting in a 2D shadow-
free chromaticity image. In Section 4, we present our
algorithm for deriving the 3D shadow-free image. Finally, in
Section 5, we give some examples illustrating the three
methods proposed in this paper and we conclude the paper
with a brief discussion.

2 ONE-DIMENSIONAL SHADOW FREE IMAGES

Let us begin by briefly reviewing how to derive one-
dimensional shadow-free images. We summarize the analy-
sis given in [28] for a three-sensor camera but note that the
same analysis can be applied to cameras with more than three
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sensors, in which case, it is possible to account for other
artifacts of the imaging process (e.g., in [32] a four-sensor
camera was considered and it was shown that, in this case,
specularities could also be removed).

We adopt a Lambertian model [33] of image formation so
that if a light with a spectral power distribution (SPD)
denoted Eð�; x; yÞ is incident upon a surface whose surface
reflectance function is denoted Sð�; x; yÞ, then the response
of the camera sensors can be expressed as:

�kðx; yÞ ¼ �ðx; yÞ
Z
Eð�; x; yÞSð�; x; yÞQkð�Þd�; ð1Þ

whereQkð�Þdenotes the spectral sensitivity of the kth camera
sensor,k ¼ 1; 2; 3and�ðx; yÞ isaconstant factorwhichdenotes
theLambertianshadingtermatagivenpixel—thedotproduct
of the surface normal with the illumination direction. We
denote the triplet of sensor responses at a given pixel ðx; yÞ
location by �ðx; yÞ ¼ ½�1ðx; yÞ; �2ðx; yÞ; �3ðx; yÞ�T .

Given (1), it is possible to derive a 1D illuminant
invariant (and, hence, shadow-free) representation at a
single pixel given the following two assumptions: First, the
camera sensors must be exact Dirac delta functions and,
second, illumination must be restricted to be Planckian [34].
If the camera sensitivities are Dirac delta functions,
Qkð�Þ ¼ qk�ð�� �kÞ. Then, (1) becomes simply:

�k ¼ �Eð�kÞSð�kÞqk; ð2Þ

where we have dropped for the moment the dependence of �k
on spatial location. Restricting illumination to be Planckian
or, more specifically, to be modeled by Wien’s approximation
to Planck’s law [34], an illuminant SPD can be parameterized
by its color temperature T :

Eð�; T Þ ¼ Ic1�
�5e�

c2
T�; ð3Þ

where c1 and c2 are constants and I is a variable controlling
the overall intensity of the light. This approximation is valid
for the range of typical lights T 2 ½2; 500; 10; 000�oK. With
this approximation, the sensor responses to a given surface
can be expressed as:

�k ¼ �Ic1�
�5
k e
� c2

T�kSð�kÞqk: ð4Þ

Now, let us form band-ratio two-vector chromaticities �:

�j ¼
�k
�p
; k 2 f1; 2; 3g; k 6¼ p; j ¼ 1; 2; ð5Þ

e.g., for an RGB image, p ¼ 2 means �p ¼ G, �1 ¼ R=G,
�2 ¼ B=G. Substituting the expressions for �k from (4) into

(5), we see that forming the chromaticity coordinates
removes intensity and shading information:

�j ¼
��5
k e
� c2

T�kSð�kÞqk
��5
p e

� c2
T�pSð�pÞqp

: ð6Þ

If we now form the logarithm �0 of �, we obtain:

�j
0 ¼ log�j ¼ log

sk
sp

� �
þ 1

T
ðek � epÞ; j ¼ 1; 2; ð7Þ

where sk � ��5
k Sð�kÞqk and ek � �c2=�k.

Summarizing (7) in vector form, we have:

�0 ¼ sþ 1

T
e; ð8Þ

where s is a two-vector which depends on surface and
camera, but is independent of the illuminant, and e is a two-
vector which is independent of surface, but which again
depends on the camera. Given this representation, we see that
as illumination color changes (T varies) the log-chromaticity
vector �0 for a given surface moves along a straight line.
Importantly, the direction of this line depends on the
properties of the camera, but is independent of the surface
and the illuminant.

It follows that, if we can determine the direction of
illuminant variation (the vector e), then we can determine a
1D illuminant invariant representation by projecting the log-
chromaticity vector �0 onto the vector orthogonal to e, which
we denote e?. That is, our illuminant invariant representation
is given by a gray-scale image I :

I0 ¼ �0T e?; I ¼ expðI 0Þ: ð9Þ

Without loss of generality, we assume that ke?k ¼ 1. Fig. 1a
illustrates the process we have just described. The figure
shows log-chromaticities for four different surfaces (open
circles), for perfect narrow-band sensors under a range of
Planckian illuminants. It is clear that the chromaticities for
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Fig. 1. (a) An illustration of the 1D invariant representation, for an ideal
camera and Planckian illumination. (b) The spectral sensitivities of a
typical digital still camera. (c) The log-chromaticities calculated using the
sensitivities from (b) and a set of daylight illuminants.

Fig. 2. An example of the 1D illuminant invariant representation. (a) The

original image. (b) and (c) Log-chromaticity representations (�1
0 and

�2
0). (d) The 1D invariant I .



each surface fall along a line (dotted lines in the figure) in
chromaticity space. These lines have direction e. The direction
orthogonal to e is shown by a solid line in Fig. 1a. Each log-
chromaticity for a given surface projects to a single point
along this line regardless of the illumination under which it is
viewed. These points represent the illuminant invariant
quantity I0 as defined in (9).

Note that to remove any bias with respect to which color
channel to use as a denominator, we can divide by the
geometrical mean �M ¼

ffiffiffiffiffiffiffiffiffiffiffi
RGB3
p

in (5) instead of a particular
�p and still retain our straight line dependence. Log-color
ratios then live on a plane in three-space orthogonal to u ¼
ð1; 1; 1ÞT and form lines exactly as in Fig. 1a [35].

We have derived this 1D illuminant invariant representa-
tion under quite restrictive conditions (though the conditions
on the camera can be relaxed to broad-band sensors with the
addition of some conditions on the reflectances [36]) and it is
therefore reasonable to ask: In practice, is the method at all
useful? To answer this question, we must first calculate the
orthogonal projection direction for a given camera. There are
a number of ways to do this but the simplest approach is to
image a set of reference surfaces (we used a Macbeth Color
Checker Chart which has 19 surfaces of distinct chromaticity)
under a series of n lights. Each surface produces n log-
chromaticities which, ideally, will fall along straight lines.
Moreover, the individual chromaticity lines will also be
parallel to one another. Of course, because real lights may be
non-Planckian and camera sensitivities are not Dirac delta
functions, we expect there to be departures from these
conditions. Fig. 1b shows the spectral sensitivities of a typical
commercial digital still camera and, in Fig. 1c, we show the
log-chromaticity coordinates calculated using these sensitiv-
ity functions, the surfaces of a Macbeth Color Checker and a
range of daylight illuminants. It is clear that the chromaticity
coordinates do not fall precisely along straight lines in this
case. Nevertheless, they do exhibit approximately linear
behavior and, so, can we solve for the set of n parallel lines
which best account for our data in a least-squares sense [28].
Once we know the orthogonal projection direction for our
camera, we can calculate log-chromaticity values for any
arbitrary image. The test of the method is then whether the
resulting invariant quantity I is indeed illuminant invariant.

Fig. 2 illustrates the method for an image taken with the
camera (modified such that it returns linear output without
any image postprocessing) whose sensitivities are shown in
Fig. 1b. Fig. 2a shows the color image as captured by the
camera (for display purposes, the image is mapped to sRGB
[37] color space)—a shadow is very prominent. Figs. 2b and
2c show the log-chromaticity representation of the image.
Here, intensity and shading are removed but the shadow is
still clearly visible, highlighting the fact that shadows
represent a change in the color of the illumination and not
just its intensity. Finally, Fig. 2d shows the invariant image
(a function of Figs. 2b and 2c) defined by (9). Visually, it is
clear that the method delivers very good illuminant
invariance: The shadow is not visible in the invariant
image. This image is typical of the level of performance
achieved with the method. Fig. 5 illustrates some more
examples for images taken with a variety of real cameras
(with nonnarrow-band sensors). We note that in some of
these examples, the camera sensors were unknown and we
estimated the illumination direction using an automatic

procedure described elsewhere [35]. In all cases, shadows
are completely removed or greatly attenuated.

In other work [28], we have shown that the 1D invariant
images are sufficiently illuminant invariant to enable accurate
object recognition across a range of illuminants. In that work,
histograms derived from the invariant images were used as
features for recognition and it is notable that the recognition
performance achieved was higher than that obtained using a
color constancy approach [38]. It is also notable that the
images used in that work were captured with a camera whose
sensors are far from narrow-band, and under non-Planckian
illuminants. An investigation as to the effect of the shape of
camera sensors on the degree of invariance has also been
carried out [31]. That work showed that good invariance was
achieved using Gaussian sensors with a half bandwidth of up
to 30 nm, but that the degree of invariance achievable was
somewhat sensitive to the location of the peak sensitivities of
the sensors. This suggests that there is not a simple relation-
ship between the shape and width of sensors and the degree of
invariance, so that the suitability of sensors is best judged on a
camera by camera basis. In other work [39], it has been shown
that it is possible to find a fixed 3� 3 linear transform of a
given set of sensor responses so that the 1D image representa-
tion derived from the transformed sensors has improved
illuminant invariance. In addition, we also note that, for any
set of camera sensors, it is possible to find a fixed 3� 3 linear
transform which when applied to the sensors brings them
closer to the ideal of narrow-band sensors [40]. Finally, we
point out that in our studies to date, we have not found a set of
camera sensors for which the 1D representation does not
provide a good degree of illuminant invariance.

3 TWO-DIMENSIONAL SHADOW FREE IMAGES

In the 1D invariant representation described above we
removed shadows but at a cost: We have also removed the
color information from the image. In the rest of this paper we
investigate how we can put this color information back in to
the image. Our aim is to derive an image representation
which is shadow-free but which also has some color
information. We begin by observing that the 1D invariant
we derived in (9) can be equally well be expressed as a 2D log-
chromaticity. Looking again at Fig. 1, we see that an invariant
quantity is derived by projecting 2D log-chromaticities onto
the line in the direction e?. Equally, we can represent the point
to which a pixel is projected by its 2D coordinates in the log-
chromaticity space, thus retaining some color information.
That is, we derive a 2D color illumination invariant as:

~�0�0 ¼ Pe?�0; ð10Þ

where Pe? is the 2� 2 projector matrix:

Pe? ¼ e?e?
T
: ð11Þ

Pe? takes log-chromaticity values onto the direction orthogo-
nal to ebut preserves the resulting quantity as a two-vector ~�0�0.
The original 1D invariant quantity I0 is related to ~�0�0 by:

I0 ¼ ~�0�0 � e?: ð12Þ

To visualize the 2D invariant image, it is useful to express the
2D chromaticity information in a 3D form. To do so, we write
the projected chromaticity two-vector ~�0�0 that lies in a plane
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orthogonal to u ¼ ð1; 1; 1ÞT in its equivalent three-space
coordinates ~��0. We do this by multiplying by the 3� 2 matrix
UT which decomposes the projector onto that plane:

~��0 ¼ UT ~��0; ð13Þ

where UUT ¼ I � uuT=kuk2 and the resulting ~��0 is a three-
vector. Note, this transformation is not arbitrary: Any 2D log-
chromaticity coordinates are othogonal to ð1; 1; 1Þ (intensity)
and, so, we must map 2D to 3D accordingly. Finally, by
exponentiating (13), we recover an approximation of color:

~�� ¼ expð~��0Þ: ð14Þ

Note that (14) is a three-dimensional representation of
2D information: ~�� contains no brightness or shading
information and, so, is still effectively a chromaticity
representation. The usual way to derive an intensity
independent representation of 3D color is to normalize a
3D sensor response � by the sum of its elements [30]. We
take our 3D representation into this form by applying an
L1 normalization:

� ¼ f ~�1�1; ~�2�2; ~�3�3gT =ð ~�1�1 þ ~�2�2 þ ~�3�3Þ: ð15Þ

This representation is bounded in ½0; 1� and we have found
that it has good stability.

An illustration of the method is shown in Fig. 3. Fig. 3a
shows the L1 chromaticity representation r of an image,
with intensity and shading information factored out:
r ¼ fR;G;Bg=ðRþGþBÞ. It is important to note that in
this representation the shadow is still visible—it represents
a change in the color of the illumination and not just its
intensity. Fig. 3b shows the illumination invariant chroma-
ticity representation derived in (10), (11), (12), (13), (14), and
(15) above. Now, the shadow is no longer visible, indicating
that the method has successfully removed the shadow,
while still maintaining some color information. Comparing
Figs. 3a and 3b, we see that the colors in the two images are
quite different. This is because the representation in Fig. 3b
has had all its illumination removed and, thus, it is in effect
an intrinsic reflectance image. To recover a color represen-
tation closer to that in Fig. 3b, we must put the illumination
back into the representation [41]. Of course, we don’t want
to add illumination back on a pixel-by-pixel basis since this
would simply reverse what we have just done and result in
an image representation which once again contains sha-
dows. To avoid this, we want to relight each pixel
uniformly by “adding back” illumination. To see how to
do this, consider again the 2D chromaticity representation
defined in (10). In this representation, illumination is
represented by a vector of arbitrary magnitude in the
direction e:

illumination ¼ �0
E
¼ aEe: ð16Þ

We can put this light back into the illuminant invariant
representation defined in (10) by simply adding the
chromaticity of the light to the invariant chromaticities:

~��0 ! ~��0 þ �0
E
¼ ~��0 þ aEe: ð17Þ

The color of the light we put back in is controlled by the
value of aE . To determine what light to add back in, we
observe that the pixels in the original image that are
brightest, correspond to surfaces that are not in shadow. It
follows then that, if we base our light on these bright pixels,
then we can use this light to relight all pixels. That is, we
find a suitable value of aE by minimizing

k�0
b
� ð~��0

b
þ aEeÞk; ð18Þ

where �0
b

and ~��0
b

correspond to the log-chromaticity and the

invariant log-chromaticity of bright (nonshadow) image

pixels. Once we have added the lighting back in this way,

we can represent the resulting chromaticity information in

3D by applying (15).
Fig. 3c shows the resulting chromaticity representation

with lighting added back in. Here, we found aE by
minimizing the term in (18) for the brightest 1 percent of
pixels in the image. The colors are now much closer to those
in the conventional chromaticity image (Fig. 3a) but are still
not identical. The remaining difference is due to the fact that
when we project chromaticities orthogonally to the illumi-
nant direction we remove illumination, as well as any part
of a surface’s color which is in this direction. This part of the
object color is not easily put back into the image. Never-
theless, for many surfaces the resulting chromaticity image
is close to the original, with the advantage that the
representation is shadow-free. Fig. 5 shows this shadow-
free chromaticity representation for a variety of different
images. In all cases, shadows are successfully removed.

4 THREE-DIMENSIONAL SHADOW-FREE IMAGES

The 2D chromaticity representation of images is often very
useful. By additionally removing shadows from this
representation, we have gained a further advantage and
increased the value of a chromaticity representation.
However, there is still room for improvement. Chromaticity
images lack shading and intensity information and are also
unnaturally colored. In some applications, an image which
is free of shadows, but which is otherwise the same as a
conventional color image would be very useful. In this
section, we consider how such an image might be obtained.

4.1 The Recovery Algorithm

Our method for obtaining full-color shadow removal has its
roots in methods of lightness recovery [8], [9], [7], [10], [6].
Lightness algorithms take as their input a 3D color image
and return two intrinsic images: one based on reflectance
(the lightness image) and the other based on illumination.
Lightness computation proceeds by making the assumption
that illumination varies slowly across an image whereas
changes in reflectance are rapid. It follows then that by
thresholding a derivative image to remove small deriva-
tives, slow changes (due, by assumption, to illumination)
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Fig. 3. (a) A conventional chromaticity representation. (b) The 2D invariant
representation (~��). (c) The 2D invariant with lighting added back in.



can be removed. Integrating the thresholded derivative
image results in the lightness intrinsic image.

Importantly, a lightness scheme will not remove shadows
since, although they are a change in illumination, at a shadow
edge the illumination change is fast, not slow. Given their
assumptions, lightness algorithms are unable to distinguish
shadow edges from material edges. However, in our case, we
have the original image which contains shadows and we are
able to derive from it 1D or 2D images which are shadow-free.
Thus, by comparing edges in the original and the shadow-free
images, we can identify those edges which correspond to a
shadow. Modifying the thresholding step in the lightness
algorithm leads to an algorithm which can recover full-color
shadow-free images. There are two important steps which
must be carefully considered if the algorithm is to work in
practice. First, the algorithm is limited by the accuracy with
which we can identify shadow edges. Second, given the
location of the shadow edges, we must give proper con-
sideration to how this can be used in a lightness type
algorithm to recover the shadow-free image.

Let us begin by defining the recovery algorithm. We use
the notation �kðx; yÞ to denote the gray-scale image
corresponding to a single band of the 3D color image.
Lightness algorithms work by recovering an intrinsic image
from each of these three bands separately and combining
the three intrinsic images to form a color image. We observe
in (4) that under the assumption of Dirac delta function
sensors, sensor response is a multiplication of light and
surface. Let us transform sensor responses into log space so
that the multiplication becomes an addition:

�0kðx; yÞ ¼ �0ðx; yÞ þE0ð�k; x; yÞ þ S0ð�k; x; yÞ þ q0k: ð19Þ

In the original lightness algorithm, the goal is to remove
illumination and as a first step toward this, gradients are
calculated for the log-image:

rx�
0
kðx; yÞ ¼

@

@x
�0kðx; yÞ

ry�
0
kðx; yÞ ¼

@

@y
�0kðx; yÞ: ð20Þ

These gradients define edge maps for the log image. Next, a
threshold operator T ð�Þ is defined to remove gradients of
small magnitude:

T ðri�
0
kðx; yÞÞ ¼

0 if kri�
0
kðx; yÞk < �

ri�
0
kðx; yÞ otherwise;

�
ð21Þ

where i 2 fx; yg and � is the chosen threshold value.
In our case, the goal is not to remove illumination per se

(the small values in (21) above) but rather we wish only to
remove shadows. In fact, we actually want to keep the
illuminant field and rerender the scene as if it were captured
under the same single nonshadow illuminant. To do this, we
must factor out changes in the gradient at shadow edges. We
can do this by modifying the threshold operator defined in
(21). In principle, identifying shadows is easy: We look for
edges in the original image which are not present in the
invariant representation. However, in practice, the procedure
is somewhat more complicated than this. For now, let us
assume that we have identified the shadow edge and leave a

discussion of how we find it to the next section. Let us define a
function qsðx; yÞwhich defines the shadow edge:

qsðx; yÞ ¼
1 if ðx; yÞ is a shadow edge
0 otherwise:

�
ð22Þ

We can then remove shadows in the gradients of the log
image using the threshold function TSð�Þ:

TSðri�
0
k; qsðx; yÞÞ ¼

0 if qsðx; yÞ ¼ 1
ri�

0
k otherwise;

�
ð23Þ

where again i 2 fx; yg. That is, wherever we have identified
that there isashadowedgeweset thegradient inthelog-image
tozero, indicating that there is nochangeat this point (which is
true for the underlying reflectance). After thresholding, we
obtain gradients where sharp changes are indicative only of
material changes: There are no sharp changes due to
illumination and, so, shadows have been removed.

We now wish to integrate edge information in order to
recover a log-image which does not have shadows. We do
this by first taking the gradients of the thresholded edge
maps we have just defined to form a modified (by the
threshold operator) Laplacian of the log-image:

r2
TS
�0kðx; yÞ ¼

rxTS rx�
0
kðx; yÞ; qsðx; yÞ

� �
þryTS ry�

0
kðx; yÞ; qsðx; yÞ

� �
:

ð24Þ

Now, let us denote the shadow-free log-image which we
wish to recover as ~��0ðx; yÞ and equate its Laplacian to the
modified Laplacian we have just defined:

r2~��0kðx; yÞ ¼ r2
TS
�0kðx; yÞ: ð25Þ

Equation (25) is the well-known Poisson equation. The
shadow-free log-image can be calculated via:

~�k�k
0ðx; yÞ ¼ r2

� ��1r2
TS
�0kðx; yÞ: ð26Þ

However, since the Laplacian is not defined at the image
boundary, we must specify boundary conditions for
uniqueness. Blake [8] made use of Neumann boundary
conditions, in which the normal derivative of the image is
specified at its boundary. Here, we use homogeneous
Neumann conditions: The directional derivative at the
boundary is set to zero.

There are two additional problems with recovering
~�k�k
0ðx; yÞ according to (26) caused by the fact that we have

removed shadow edges from the image. First, because we
have modified the edge maps by setting shadow edges to
zero, we can no longer guarantee that the edge map we are
integrating satisfies the integrability condition. For the edge
map to be integrable, the following condition should be
met (cf. [42]):

ryrx�
0
kðx; yÞ ¼ rxry�

0
kðx; yÞ: ð27Þ

The second problem is caused by the fact that to ensure
shadows are effectively removed, we must set to zero, edges
in quite a large neighborhood of the actual shadow edge. As a
result, edge information pertaining to local texture in the
neighborhood of the shadow edge is lost and the resulting
(shadow-free) image is unrealistically smooth in this region.
To avoid this problem, rather than simply setting shadow
edges to zero in the thresholding step, we apply an iterative
diffusion process which fills in the derivatives across shadow
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edges, bridging values obtained from neighboring nonsha-
dow edge pixels. We also deal with the problem of
integrability at this stage by including a step at each iteration
to enforce integrability, as proposed in [43].

This iterative process is detailed below where t denotes
artificial time:

1. Initialization, t ¼ 0, calculate:

rx�
0
kðx; yÞ

� �t! TS rx�
0
kðx; yÞ; qsðx; yÞ

� �
ry�

0
kðx; yÞ

� �t! TS ry�
0
kðx; yÞ; qsðx; yÞ

� �
:

2. Update shadow edge pixels ði; jÞ:

rx�
0
kði; jÞ

� �t!
rx�

0
kði� 1; jÞ

� �t�1þ rx�
0
kði; j� 1Þ

� �t�1

rx�
0
kðiþ 1; jÞ

� �t�1þ rx�
0
kði; jþ 1Þ

� �t�1
;

ry�
0
kði; jÞ

� �t!
ry�

0
kði� 1; jÞ

� �t�1þ ry�
0
kði; j� 1Þ

� �t�1

þ ry�
0
kðiþ 1; jÞ

� �t�1þ ry�
0
kði; jþ 1Þ

� �t�1
:

3. Enforce integrability by projection onto integrable
edge map [43], and integrate:

Fxðu; vÞ ¼ F½rx�
0
k�; Fyðu; vÞ ¼ F½ry�

0
k�;

ax ¼ e2�iu=N � 1 ; ay ¼ e2�iv=M � 1;

Zðu; vÞ ¼
a�xFxðu; vÞ þ a�yFyðu; vÞ

jaxj2 þ jayj2
; �0ð0; 0Þ ¼ 0;

ðrx�
0Þt ¼ F�1 axZ½ �; ðry�

0Þt ¼ F�1 ayZ
� 	

;

where image size is M �N and F½�� denotes the
Fourier Transform. Here, we use forward-difference
derivatives f�1; 1gT , f�1; 1g corresponding to the
ax; ay above in the Fourier domain: i.e., the Fourier
transform of a derivative rxZ in the spatial domain
corresponds to multiplication by axðuÞ in the Fourier
domain—this result simply follows by writing �0ðnþ
1Þ � �0ðnÞ in terms of Fourier sums in the Discrete
Fourier Transform (DFT). The projection step deriv-
ing Zðu; vÞ follows [43], but for a forward-difference
operator.

4. I f kðrx�
0Þt � ðrx�

0Þt�1k þ kðry�
0Þt � ðry�

0Þt�1k � 	,
t! tþ 1, go to 2.
where 	 defines the stopping criterion.

Finally, we then solve the Poisson equation (26) using a
final round of enforcing integrability by projection as above,
with the reintegrated image given by

~��0kðx; yÞ ¼ F�1 Zðu; vÞ½ �: ð28Þ

We actually operate on an image four times the original
size, formed by symmetric replication in x and y, so as to
enforce periodicity of the data for the DFT and homo-
geneous Neumann boundary conditions.

Equation (28) recovers ~��0kðx; yÞ up to an unknown
constant of integration. Exponentiating ~��0kðx; yÞ, we arrive

at the reconstructed gray-scale image ~��kðx; yÞ (up to an
unknown multiplicative constant). Solving (26) for each of
the three color bands results in a full color image
~�� ¼ f~��1 ~��2 ~��3gT , where the shadows are removed.

To fix the unknown multiplicative factors, we apply a
mapping to each pixel which maps the brightest pixels
(specifically, the 0.005-percentile of pixels ordered by
brightness) in the recovered image to the corresponding
pixels in the original image.

4.2 Locating Shadow Edges

To complete the definition of the recovery algorithm, we
must specify how to identify shadow edges. The essential
idea is to compare edge maps of the original image to those
derived from an invariant image, and to define a shadow
edge to be any edge in the original which is not in the
invariant image. We could start by calculating edge maps as
simple finite difference approximations to gradients,

rx�Iðx; yÞ ¼ �Iðx; yÞ 	 f�1; 0; 1gT =2;

ry�Iðx; yÞ ¼ �Iðx; yÞ 	 f�1; 0; 1g=2; ð29Þ

where�Iðx; yÞ is the intensity image, taken here as the L1 norm
of the original image: �I ¼ ð1=3Þð�1 þ �2 þ �3Þ. Unfortu-
nately, as Fig. 4a illustrates, finite differencing produces
nonzero values at more locations than those at which there are
true edges. Thus, while in the example in Fig. 4a the edges of
the road and the shadow are clear, so too are many edges due
to the texture of the imaged surfaces as well as noise in the
image. Obtaining the true edges in which we are interested
from these edge maps is nontrivial, as evidenced by the large
literature on edge detection (see [44] for a review).

For a more careful approach, we begin by applying a
smoothing filter (specifically the Mean-Shift algorithm
proposed in [45]) to both the original image and the
2D invariant image derived by exponentiating the invariant
log image. This has the effect of suppressing features such
as noise and high frequency textures so that in subsequent
processing fewer spurious edges are detected. Then, we
replace simple differencing by the Canny edge detector [46],
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Fig. 4. (a) An edge-map obtained using simple finite differencing
operators. (b) Edges obtained using the Canny operator on the Mean-
Shifted original image. (c) Edges obtained using the Canny operator on
the Mean-Shifted 2D invariant image. (d) The final shadow edge. (e) The
recovered shadow-free color image.



returning estimates for the strength of horizontal and
vertical edges at each image location:

k ~rrx�iðx; yÞk ¼ Cx �iðx; yÞ½ �
k ~rry�iðx; yÞk ¼ Cy �iðx; yÞ½ �; ð30Þ

where Cx½�� and Cy½�� denote the Canny (or any other well-
behaved) operators for determining horizontal and vertical
edges, respectively.

We determine an edge map for the invariant image in a
similar way, first calculating horizontal and vertical edge
strengths for each channel of the 2D invariant image:

k ~rrx�kðx; yÞk ¼ Cx �kðx; yÞ½ �
k ~rry�kðx; yÞk ¼ Cy �kðx; yÞ½ �: ð31Þ

The edge maps from the two channels are then combined by

a max operation:

k ~rrx ~��ðx; yÞk ¼ max Cx½~��1ðx; yÞ�; Cx½~��2ðx; yÞ�ð Þ
k ~rry ~��ðx; yÞk ¼ max Cy½~��1ðx; yÞ�; Cy½~��2ðx; yÞ�

� �
;

ð32Þ

where maxð�; �Þ returns the maximum of its two arguments at
each location ðx; yÞ. Figs. 4b and 4c show the resulting edge
maps for the original image (calculated by (30)) and the
invariant image (calculated by (31)-(32)). While still not
perfect, the real edges in each image are now quite strong and
we can compare the two edge maps to identify shadow edges.

We use two criteria to determine whether or not a given
edge corresponds to a shadow. First, if at a given location
the original image has a strong edge but the invariant image
has a weak edge, we classify that edge as a shadow edge.
Second, if both the original image and the invariant image
have a strong edge, but the orientation of these edges is
different, then we also classify the edge as a shadow edge.
Thus, our shadow edge map is defined as:

qsðx; yÞ ¼
1 if k ~rr�ik > �1 & k ~rr�k < �2

or k ~rrx�ik
k ~rry�ik

� k
~rrx�k
k ~rry�k










 > �3

0 otherwise;

8>><
>>:

ð33Þ

where �1, �2, and �3 are thresholds whose values are
parameters in the recovery algorithm. As a final step, we
employ a morphological operation (specifically, two dila-
tions) on the binary edge map to “thicken” the shadow edges:

qsðx; yÞ ! qsðx; yÞ 
Dð Þ 
D; ð34Þ

where 
 denotes the dilation operation and D denotes the
structural element, in this case, the eight-connected set. This
dilation has the effect of filling in some of the gaps in the
shadow edge. Fig. 4d illustrates a typical example of a
recovered shadow edge map qsðx; yÞ. It is clear that even
after the processing described, the definition of the shadow
edge is imperfect: there are a number of spurious edges not
removed. However, this map is sufficiently accurate to
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Fig. 5. Some example images. From left to right: original image, 1D invariant representation, 2D representation, and recovered 3D shadow-free image.



allow recovery of the shadow-free image shown in Fig. 4e
based on the integration procedure described above.

5 DISCUSSION

We have introduced three different shadow-free image
representations in this paper: A 1D invariant derived from
first principles based on simple constraints on lighting and
cameras, a 2D chromaticity representation which is equiva-
lent to the 1D representation but with some color information
retained and, finally, a 3D full color image. Fig. 5 shows some
examples of these different representations for a number of
different images. In each example, all three representations
are shadow-free. The procedure for deriving each of the three
representations is automatic, but there are a number of
parameters which must be specified. In all cases, we need to
determine the direction of illumination change (the vector e
discussed in Section 2). This direction can be found either by
following the calibration procedure outlined in Section 2
above or, as has recently been proposed [35] by using a
procedure which determines the illuminant direction from a
single image of a scene having shadow and nonshadow
regions. The examples in Fig. 5 were obtained based on the
latter calibration procedure. In addition to the calibration
step, in the 2D representation we also have a parameter to
control how much light is put back in to the image. We used
the procedure described in Section 3 to determine this
parameter for the examples in Fig. 5.

Recovering the 3D representation is more complex and
there are a number of free parameters in the recovery
algorithm. As a first step, the original full-color images were
processed using the mean shift algorithm which has two free
parameters: a spatial bandwidth parameter which was set to 16
(corresponding to a 17� 17 spatial window), and a range
parameter which was set to 20. The process of comparing the
two edge maps is controlled by three thresholds: �1, �2, and �3.
�1 and �2 relate to the edge strengths in the original and the
invariant image, respectively. We chose values of �1 ¼ 0:4
and �2 ¼ 0:1 after the gradient magnitudes have been scaled
to a range ½0; 1�. Our choice for these parameters is
determined by the hysteresis step in the Canny edge
detection process. �3 controls the difference in the orientation
between edges in the original image and those in the
invariant. Edges are classified into one of eight possible
orientations, but by taking advantage of symmetry we need
consider only four of them. So, �3 is set equal to �=4. These
parameters were fixed for all images in Fig. 5 and, although
the recovered shadow edge is not always perfect, the
resulting shadow-free image is, in all cases, of good quality.
We note however, that the algorithm in its current form will
not deliver perfect shadow-free images in all cases. In
particular, images with complex shadows, or diffuse
shadows with poorly defined edges will likely cause
problems for the algorithm. However, the current algorithm
is robust when shadow edges are clear, and we are currently
investigating ways to improve the algorithm’s performance
on the more difficult cases. In addition, it is possible for the
method to misclassify some edges in the original image as
shadow edges. For example, if two adjacent surfaces differ in
intensity, an edge detector will find an edge at the border of
these two surfaces. However, in the 1D invariant image
intensity differences are absent, and so no edge will be found
in this case. Thus, the edge between the two surfaces will

wrongly be classified as a shadow edge. Indeed, the fifth
example in Fig. 5 exhibits such behavior: The boundary
between the painted white line on the road surface, and the
road surface itself, is not fully recovered, because the two
surfaces (paint and road) differ mainly in intensity. A similar
problem can arise if adjacent surfaces are related by a color
change in the direction in which illumination changes. Here
again, an edge will be found in the original image, but will be
absent from the invariant images. The examples in Fig. 5 (and
the many other images we have processed) suggest that such
problems arise only infrequently in practice. However, in
future work, we intend to investigate ways to overcome these
problems.

In summary, we conclude that the approach to shadow
removal proposed in this paper yields very good perfor-
mance. In all three cases (1D, 2D, and 3D), the recovered
images are of a good quality and we envisage that they will
be of practical use in a variety of visual tasks such as
segmentation, image retrieval, and tracking. As well, the
method raises the possibility of enhancing commercial
photography such as portraiture.
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