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Abstract 3D object recognition from local features is
robust to occlusions and clutter. However, local features

must be extracted from a small set of feature rich key-

points to avoid computational complexity and ambigu-

ous features. We present an algorithm for the detection
of such keypoints on 3D models and partial views of ob-

jects. The keypoints are highly repeatable between par-

tial views of an object and its complete 3D model. We

also propose a quality measure to rank the keypoints

and select the best ones for extracting local features.
Keypoints are identified at locations where a unique

local 3D coordinate basis can be derived from the un-

derlying surface in order to extract invariant features.

We also propose an automatic scale selection technique
for extracting multi-scale and scale invariant features

to match objects at different unknown scales. Features

are projected to a PCA subspace and matched to find

correspondences between a database and query object.

Each pair of matching features gives a transformation
that aligns the query and database object. These trans-

formations are clustered and the biggest cluster is used

to identify the query object. Experiments on a public

database revealed that the proposed quality measure
relates correctly to the repeatability of keypoints and

the multi-scale features have a recognition rate of over

95% for up to 80% occluded objects.
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1 Introduction

Historically, 3D models were used in computer graphics
and computer aided-design (CAD) applications. These

days, we can find their applications in the film indus-

try, robotics, archaeological site preservation, forensics,

surgery, biometrics, scientific research and education
as well. Initial 3D models were synthetically generated

from geometric primitives. However, with the availabil-

ity of low cost scanners, detailed and accurate 3D mod-

els of free-form objects are becoming more popular.

This has also increased the demand for efficient and
accurate representation and retrieval techniques for 3D

free-form objects.

Campbell and Flynn [5] give a survey of 3D free-

form object recognition techniques and classify them
into appearance based recognition, recognition from 2D

silhouettes and free-form object recognition in range

data. Appearance based techniques are similar to tech-

niques applied to intensity images. These techniques
treat 3D data as range images where the pixels repre-

sent the surface depth rather than its texture. A number

of range images of the 3D object from different view-

points are used to train the system. Examples of ap-

pearance based techniques include Murase and Nayyar
[25] and the local feature histogram technique [14]. Ash-

brook et al. [2] used pairwise geometric histograms for

3D object recognition. Appearance based recognition

has also been used in the case of 3D face recognition
[4]. Recognition from 2D silhouettes are the earliest 3D

object recognition techniques because they require in-

tensity images to extract the silhouettes. Ponce and

Kriegman [30] used silhouette contours for 3D object

recognition.

The third class of techniques i.e. free-form object

recognition in range data uses pointcloud (see Fig. 3)
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or mesh representation (e.g. [22]). Campbell and Flynn

[5] argue that the computational complexity of these

techniques can become one of the prohibitive factors

if brute force matching is used. For example the clas-

sic Iterative Closest Point (ICP) algorithm [3] has been
used for surface matching but it is computationally ex-

pensive and requires an initial estimate of registration.

Other techniques have resorted to various heuristics to

reduce the amount of computation required.

Many techniques have been proposed in the litera-

ture to avoid the computational complexity of point-

cloud and mesh representations. The traditional way

was to perform a sparse sampling of the surface and

reduce computational cost at the expense of accuracy.
Later techniques used mesh decimation to reduce the

density of the mesh. Recent technique use local features

to represent the meshes. Our survey (Section 2) shows

that local features are reliable for 3D object recognition
or retrieval from cluttered scenes. However, extracting

local features at every point is computationally inef-

ficient and arbitrary sparse sampling of the object for

local feature extraction can result in sub-optimal recog-

nition performance. Both these approaches will also re-
sult in features which are not sufficiently descriptive to

uniquely characterize the object. Detecting a subset of

keypoints over the 3D model or partial surface can sig-

nificantly reduce the computational burden of the sub-
sequent feature extraction and matching phases. Ideally

such keypoints must be repeatedly detectable in differ-

ent partial views of the object and its 3D model. More-

over, the keypoints must be detected at locations where

invariant and descriptive features can be extracted.

This paper extends our prior work [20] and proposes

a multi-scale keypoint detection algorithm for extract-

ing scale invariant local features. The following are the

major differences from [20]. This paper presents a novel

quality measure to rank the keypoints unlike [20] where
a binary decision is taken to select or reject a keypoint.

The surfaces are sparsely sampled and a random sub-

set of keypoints are picked for feature extraction in [20]

whereas in this paper the keypoints are ranked accord-
ing to their quality and the best ones are selected for

feature extraction. This paper also performs extensive

keypoint repeatability experiments with respect to var-

ious criteria and demonstrates that the proposed qual-

ity measure is correlated with the repeatability of the
keypoints. In our prior work [20], keypoints and fea-

tures were extracted at a fixed scale. However, this pa-

per proposes a technique for automatically selecting the

appropriate scale at each keypoint and extracts multi-
scale and scale invariant features. Finally, this paper

presents results for 3D object retrieval from complex

scenes containing clutter and occlusions and compares

the results to two other techniques using the same pub-

lic database [22].

The rest of this paper is organized as follows. Sec-

tion 2 provides a literature survey of free-form object

recognition and keypoint identification techniques. Sec-
tion 3 describes the keypoint detection algorithm and

presents a novel keypoint quality measure. Section 4

gives results of our keypoint repeatability experiments.

Section 5 describes our automatic scale selection tech-
nique and compares the repeatability of keypoints de-

tected using fixed scale and automatic scale selection.

Section 6 describes the proposed local feature extrac-

tion and matching algorithms. Experimental results for

3D object retrieval from cluttered scenes with compar-
ison to other techniques are given in Section 7. Section

8 concludes the paper.

2 Related Work

Dorai and Jain [9] proposed a shape index using the

principal curvatures of the surface for 3D free-form ob-

ject recognition. Their method requires a view of the

3D object without occlusion. Spherical Attribute Im-
ages (SAI) were developed by Hebert et al. [13] to rep-

resent and recognize 3D objects that are topologically

equivalent to a sphere. This representation is also scale

invariant. Joshi et al. [16] proposed HOT curves which

relies on the localization of inflection points.
Chua and Jarvis [7] introduced point signatures for

3D object recognition. A point signature is a one dimen-

sional signature that describes the surface surrounding

a point. A limitation of the technique is that the start-
ing point of the signature may not be unique in which

case multiple signatures could be obtained from the

same point. Sumi et al. [33] used segment based stereo-

vision and local features for 3D object recognition in

cluttered environments.
Johnson and Hebert [15] proposed spin images for

local 3D shape representation and demonstrated its per-

formance for 3D object recognition in the presence of

clutter and occlusions. A spin image is formed by spin-
ning an image plane about the normal of a vertex and

summing vertices of the mesh into the bins of the image

plane. A prerequisite is that the mesh must have uni-

form resolution i.e. all edges have approximately equal

length. Mian et al. [22] proposed the tensor represen-
tation for describing partial surfaces and 3D models.

Tensors are calculated by defining three dimensional

grids over a surface and calculating the surface area that

passes through each bin. Tensors are three dimensional
compared to spin images which are 2D histograms of

the cylindrical coordinates of the mesh vertices. There-

fore, tensors have more discriminating capability than
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spin images [21] and also outperform spin images during

object recognition in cluttered scenes [22].

Most of the earlier work in the literature has focused

on feature extraction, invariance of the features to ge-

ometric transformations and their performance in 3D
object retrieval. However, there has been a considerable

research interest in the identification of keypoints for lo-

cal feature extraction. Castellani et al. [6] detected and

matched salient points for establishing correspondences
between partially overlapping 2.5D views of an object.

They applied a series of Gaussian filters on the mesh

and selected points that are maximally displaced along

the normal direction as salient points. Gelfand et al. [11]

compute an integral volume descriptor for each surface
point and pick a sparse number of points according to

the uniqueness of their descriptors. Some work on mesh

saliency from human perception point of view also ex-

ists [17] however, we are interested in points that are
significant from pattern recognition point of view and

can be repeatably identified by computer vision algo-

rithms.

Apart from identifying key or salient points, the

scale and distinctiveness of the local descriptors has also
been investigated. An interesting approach is taken by

Wessel et al. [36] who transform different local descrip-

tors into a meta Class Distribution Descriptor (CDD).

During a supervised learning phase, different types of

local descriptors, depending upon their distinctiveness
for a particular class of objects, are transformed to form

a CDD which is used for object retrieval. Unnikrishnan

et al. [34] estimate the scale, for a point sampled curve,

as a neighbourhood for which the principal eigenvec-
tor of the points is best aligned with the tangent of

the curve in an iterative procedure. This idea has been

extended to point clouds for identifying multi-scale in-

terest regions [35] where the mean curvature is used to

identify scale-space extrema. However, this definition
becomes ambiguous when the surface does not have a

constant mean curvature. Novatnack and Nishino [26]

convert the mesh model to a dense 2D normal map and

convolve it with Gaussian kernels of increasing standard
deviations. The Gaussian kernel is modified to account

for the surface distortion which occurs while parameter-

izing the mesh on a 2D plane. This scale-space represen-

tation and analysis is used to detect corners and edges

at different scales on the mesh model. The scale of each
feature is automatically selected using a method analo-

gous to the 2D scale-space theory i.e. the scale at which

the response of the feature detector is maximized. The

outcome of this approach is a set of scale-dependent
geometric features. Novatnack and Nishino [27] later

extended their technique to derive scale-invariant fea-

tures by normalizing the support size of each feature to

a constant radius. These features were used to match

rigid objects at different scales.

In existing literature, the detection of keypoints has
mainly been treated as a binary process and little im-

portance is given to explicitly rank the keypoints ac-

cording to their quality. We believe it is important to

rank keypoints using a measure that is directly related

to their repeatability and the distinctiveness of the un-
derlying local descriptor. Moreover, the performance

of keypoints and subsequent descriptors has not been

tested for object retrieval from complex scenes contain-

ing clutter and occlusions. In this paper, we cover this
gap and propose a generic keypoint detection algorithm

for the task of 3D object retrieval or recognition. We

also propose a quality measure for ranking keypoints on

3D models and partial surfaces and demonstrate that

the quality measure is directly related to the repeata-
bility of the keypoints. The identification of repeatable

keypoints increases the efficiency and accuracy of the

subsequent recognition stage. Finally, this paper pro-

poses a matching algorithm for 3D object retrieval from
cluttered scenes which is a challenging case because ob-

jects of interest could be occluded.

3 Keypoint Detection

We define keypoints (on a 3D model or 2.5D surface)

as the points which satisfy three constraints. (1) The
detected keypoints must have high repeatability be-

tween different 2.5D views and 3D model of the same

object. (2) A unique 3D coordinate basis can be de-

fined from the neighbourhood surface to extract invari-

ant local features. (3) The neighbourhood surface of
the keypoint must contain sufficient descriptive infor-

mation which uniquely characterizes that point. This

ensures that the local feature extracted at the keypoint

is unique to facilitate accurate recognition.

It is still possible that for certain 3D models, a very

large number of points may satisfy these three con-

straints. This undermines the first purpose of keypoint
detection i.e. improved efficiency by matching only a

limited number of keypoints. In such cases, the models

are sparsely sampled or a random subset of keypoints

are picked for feature extraction [20]. However, sparse

sampling or random selection of keypoints will not re-
sult in the best keypoints in terms of their repeatability

and descriptiveness of the local surface. To overcome

this problem, we propose a keypoint quality measure

based on the principal curvatures of the local surface.
This quality measure is used to rank the keypoints and

select the best N number of keypoints for subsequent

matching.
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3.1 Keypoint Detection in Full 3D Models

Let M = {v, f} be the mesh data structure of a 3D

model comprising vertices v and polygons f . Vertices

(or points) are the 3D coordinates of each point and

polygons are index numbers of the points which make

up individual polygons. Similar to computer graphics,
all polygons are essentially simple i.e. convex and pla-

nar. The normal of the plane in which the polygon lies is

the normal of the polygon and can easily be calculated

from the equation of the plane

ax + by + cz + d = 0, (1)

where the normal of the plane is [a b c]T . Since three
or more points define a polygon, Eqn. 1 can easily be

solved. The normal of a point is determined by averag-

ing the normals of all polygons that share that point

(vertex). At each sample point v = [x y z]T , a local
surface is cropped from the 3D model using a sphere of

radius r1 centered at v. The value of r1 can be chosen

depending upon how local we want the feature to be. It

is a trade off between the feature’s descriptiveness and

sensitivity to occlusions. Small values of r1 will be less
sensitive to occlusions but will contain less information

about the underlying surface and hence the feature will

be less descriptive. The value of r1 is also related to

the scale of the 3D models. For small size objects, r1

should be small and for large objects it should be large.

In Section 5 we describe a technique for automatic scale

selection.

Local surface is cropped to extracted a local coordi-

nate frame that is robust to occlusions and other global
perturbations. The idea of local surface (with or with-

out cropping) has been widely used for the extraction of

local reference frame and subsequent invariant features.

The reader is referred to the survey of Petitjean [29] for
details. Many existing methods fit a local surface to the

data points and derive the reference frame from the fit-

ted surface. However, we extract the reference frame di-

rectly from the data points for computational efficiency

and perform surface fitting later for feature extraction
only if the point qualifies as a keypoint.

The cropped surface is rotated so that the normal

of the point is aligned with the positive z-axis. Since we

are dealing with complete 3D models, the cropped sur-
face may also contain polygons that are occluded. These

polygons are removed using hidden surface removal [1].

Points that are shared only by occluded polygons are

removed. Let Lj = [xj yj zj ]
T (where j = 1, 2, . . . nl) be

the remaining points. The mean of the points is given
by

m =
1

nl

nl
∑

j=1

Lj , (2)

and the covariance matrix of L is given by

C =
1

nl

nl
∑

j=1

LjL
T
j − mmT (3)

where Lj is the jth column of L. Performing Principal

Component Analysis on the covariance matrix C gives

us

CV = DV , (4)

where V is the matrix of eigenvectors, D is the diagonal

matrix of the eigenvalues of C. The matrix L can be
aligned with its principal axes using Eqn. 5, known as

the Hotelling transform [12]:

L′

j = V(Lj − m) for j = 1 . . . nl. (5)

Let X and Y represent the x and y components of the

point cloud L′ i.e.

X = {x1 x2 . . . xnl
} and Y = {y1 y2 . . . ynl

} . (6)

δ =
max(X) − min(X)

max(Y) − min(Y)
, (7)

where δ is the ratio between the first two principal axes

of the local surface. For symmetrical surfaces, the value

of δ will be equal to 1 and for unsymmetrical surfaces,

δ will be greater than 1. To derive a unique 3D coordi-
nate basis from a surface the value of δ must be greater

than one. However, to cater for noise we chose a thresh-

old t1 > 1 and proceeded with the keypoint detection

if δ > t1. Small values of t1 will qualify every point as

a potential keypoint at this stage and result in compu-
tational complexity. Large values, on the other hand,

may eliminate good keypoints i.e. high quality value to

be calculated at a later stage. We chose t1 = 1.06 in our

experiments i.e. 6% longer first principal axis compared
to the second one.

Gelfand and Ikemoto [10] also used the covariance

matrix for selecting stable points for the quick and cor-

rect convergence of the ICP algorithm [3]. Our approach

differs from [10] because we use a 3x3 covariance ma-
trix as opposed to a 6x6 covariance matrix. We are only

interested in defining an unambiguous 3x3 coordinate

axes at the keypoints and there is no ambiguity of trans-

lation in our case because the location of the keypoint is
taken as the origin of the coordinate basis. In the case

of [10], there may be ambiguity in 3 rotations and 3

translations and hence a 6x6 covariance matrix is used.

Since translational ambiguity is not an issue in our case,

points on many surfaces that are considered unstable by
[10] can qualify as keypoints as per our criteria. Finally,

[10] requires that λ1

λ6

(the ratio between the most sig-

nificant and least significant eigenvalues) be as close to

one as possible whereas we reject points where the ra-
tio between the first two principle axes is close to one.

In automatic scale selection (see Section 5), we chose a

scale where this ratio has a local maximum.
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3.2 Keypoint Detection in Partial Views

Two changes are made in the case of partial 2.5D views.

First, hidden surface removal is not performed as the

partial view only contains surface that is visible to the

scanner. Two, a boundary condition is added to avoid

keypoints along the boundary of the view. Local surface
cropped near the boundary will have very high value of

δ even if the surface is planar. This is because part of

the surface is missing due to self occlusion. Two types of

boundary conditions are used depending upon the for-
mat of the surface data. If the surface data is present in

the form of arranged X, Y and Z grids (e.g. a range im-

age) then the boundary condition considers points that

are r1 distance away from the boundary. Internal holes

in the range image (due to sensor errors) are interpo-
lated so that the partial view has a continuous external

boundary. This method perfectly removes all boundary

points from being considered as keypoints.

In case the partial view data is in the form of an
unorganized pointcloud, the expected number of points

inside the radius r1 are estimated from the point cloud

density. During keypoint detection, if the local cropped

surface has substantially lower number of points than
expected, that point is dropped. Curved surfaces are

usually non-uniformly sampled by scanners and the den-

sity of points varies over the surface. Therefore, a soft

threshold is used to eliminate possible boundary points.

Any boundary points that are not detected at this stage
will get a lower quality value in the next stage and be

eliminated during the top quality feature selection.

It is interesting to note that our selection criteria

does not detect keypoints at the center of symmetric
surfaces. Examples of such surfaces are peaks, spheres,

parabolic and conic surfaces. We argue that such fea-

tures are not totally neglected by our detection criteria.

Rather than detecting a single keypoint at the center
of a symmetric surface, our algorithm detects multi-

ple keypoints around it and once features are extracted

from the neighbourhoods of the keypoints, they will

enclose the symmetric surface as well. An example of

keypoint detection on a 2D Gaussian surface is shown
in Fig. 1.

3.3 Keypoint Quality Calculation

The proposed keypoint quality measure is motivated

by the work of Shi and Tomasi [31] who defined (for
the purpose of tracking in 2D image sequences) good

feature points as exactly the ones which can be tracked

reliably. In other words, good feature points are those

Fig. 1 The proposed algorithm detects many keypoints (red
dots) around a symmetric surface (like the 2D Gaussian) but
none at the center where the principal axes of a local surface are
ambiguous.

which offer good measurements to solve their tracking

equation

Zd = e , (8)

where e is the difference between two frames of a video

sequence, d is the displacement which needs to be cal-
culated and Z is given by,

Z =

∫

W

[

∂2I(x,y)
∂x2

∂2I(x,y)
∂x∂y

∂2I(x,y)
∂x∂y

∂2I(x,y)
∂y2

]

dA . (9)

Integration is performed over a small feature window W

of the image I(x, y). Notice that the matrix in Eqn. 9 is

the Hessian matrix of second order partial derivatives

of image I(x, y). Shi and Tomasi [31] argued that good
features are those which can lead to a reliable solution

of Eqn. 8. This requires that both the eigenvalues of the

matrix Z in Eqn. 9 are large (for good signal to noise

ratio) and do not differ by several orders of magnitude.
We take a similar approach in the 3D domain and

define a keypoint quality measure based on the princi-

pal curvatures of the local surface within a neighbour-

hood of the keypoint. Since principal curvatures also

correspond to the second order derivatives of a surface,
we do not calculate them from the raw data. Instead, we

fit a surface [8] to the raw local surface data L′. Recall

that L′ has been aligned along its principal axes. Sur-

face fitting is performed using a smoothing (or stiffness)
factor that does not allow the surface to bend abruptly

thereby alleviating the effects of noise. A uniform n×n

lattice (grid) is used to sample the surface S which is

fitted [8] to the points in L′ (where n = 20) . Princi-

pal curvatures are then calculated at each point of the
surface S and the keypoint quality Qk is calculated as

K = κ1κ2 (10)

Qk =
1000

n2

∑

|K| + max(100K) + |min(100K)| (11)

+max(10κ1) + |min(10κ2)|

In the above equations, κ1, κ2 are the principle cur-

vatures and K is the Gaussian curvature. Summation,
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(a) (b) (c) (d)

Fig. 2 Complete 3D models of (a) chef, (b) chicken, (c)
parasaurolophus and (d) t-rex and their sample 2.5D views.

maximum and minimum values are calculated over the

n × n surface. Absolute values are taken so that posi-

tive and negative curvatures do not cancel each other;
negative and positive values of curvature are equally

descriptive. The constant multiplicative terms are em-

pirically chosen and used to give appropriate weights to

each term. The value of principle curvatures is mostly
less than one for smooth surfaces and since Gaussian

curvature is the product of the principle curvatures, it

is of the order to 10 smaller than the principle curva-

tures. This relationship was experimentally confirmed

using training data. Therefore, the multiplication terms
of K were chosen 10 times greater than that of the prin-

ciple curvatures. The training data also revealed that

the first term of Eqn. 11 was of the order of 100 smaller

than the principle curvatures. A possible explanation
for this relationship is that at most points on a smooth

surface the Gaussian curvature has a small value which

when averaged over the surface results in a value which

is of the order to 10 smaller than the maximum and

absolute minimum values of the Gaussian curvature.
Finally, all terms in Eqn. 11 were multiplied by 10 to

get a quality measure Qk which is always greater than

one. Recall that a smooth surfaces was fitted [8] to the

data points before the calculation of the principle cur-
vatures in order to avoid sensitivity to noise. Our results

show that this quality measure relates correctly to the

repeatability of the keypoints (see Fig. 4-c) and results

(a) (b) (c) (d)

Fig. 3 (a) Pointcloud of the chef. Keypoints with Qk > 30 are
shown as dark (red) dots. (b) Keypoints with Qk > 20. (c) Key-
points with Qk > 10. (d) Keypoints with Qk > 5.

in distinctive features capable of retrieving objects from

cluttered scenes (see Section 7).

Closely located keypoints are essentially similar as

they describe more or less the same local surface. There-

fore, a threshold d1 is used to keep minimum distance

between keypoints. In our experiments we chose d1 =
4mm i.e. twice the sampling rate of the surface. The

detected keypoints are sorted according to their qual-

ity values and starting from the highest quality key-

point, all keypoints within its radius of d1 are removed.
This ensures that, for a given neighbourhood, only the

point with the highest quality is taken as a keypoint.

Notice that this is a better way of limiting the number

of keypoints as opposed to sparse sampling or random

selection of keypoints [20].

4 Keypoint Repeatability Experiments

We performed our experiments on the publicly available

3D model database used in our prior work [22]. For the

repeatability experiments, we used four 3D models of

real world objects and 10 different views of each model.

Fig. 2 shows the complete 3D models and two sample
views of each model. This data was acquired with the

Minolta Vivid 910 scanner which has a spatial resolu-

tion of 640 × 480.

The keypoint quality measure provides a means of
selecting the best required number of keypoints. Alter-

natively, a cutoff threshold can be used to keep the key-

points with Qk greater than the threshold. Fig. 3 shows

keypoints detected on the 3D model of chef at differ-
ent cutoff thresholds of the quality Qk. Notice that as

the threshold is decreased, more and more keypoints

appear at less curved parts of the 3D model.

In a model based object recognition (or retrieval)
scenario, full models are matched with their partial

views (or vice versa). Therefore, keypoints were de-

tected on each 3D model and their 10 different views to
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Fig. 4 (a) Keypoint identification repeatability at Qk > 10 between full 3D models and their partial views. (b) Percentage of keypoints
as a function of quality Qk for d1 = 4mm. (c) Keypoint identification repeatability as a function of quality Qk for d1 = 4mm. The
Average number of detected keypoints for different values of Qk are shown below the curve.

calculate the repeatability between the model keypoints

and the partial view keypoints of the same object. The

partial views were registered to their full models using
ground truth registration calculated from coarse align-

ment [21] and refinement with the ICP algorithm [3].

Next the distance of every keypoint in the partial view

was calculated to the nearest neighbour keypoint in the
full model. Fig. 4-a shows the plot of keypoint repeata-

bility between the four 3D models and their respective

10 partial views each i.e. a total of 40 experiments. Key-

points with Qk > 10 were considered, resulting in 240

keypoints per view on the average. The y-axis shows the
percentage keypoints of the partial views which could

find a corresponding keypoint in the 3D model within

the distance shown on the x-axis. A similar criteria

was used by Lowe [24] for reporting the repeatability
of Scale Invariant Feature Transform (SIFT) however,

the experiments were performed on synthetic data. Fig.

4-a shows that at a nearest neighbour error of 4mm,

the repeatability of keypoints is 84.2%. Note that 4mm

is the minimum allowed distance d1 between two key-
points and is therefore selected as a benchmark error

for calculating the repeatability in the remaining ex-

periments in Fig. 4-b and Fig. 4-c.

Fig. 4-b shows the number of keypoints detected

above a given keypoint quality Qk for all the models
and partial views used in our experiments. Taking the

number of keypoints detected at Qk > 5 as a bench-

mark (i.e. 100%), the percentage of keypoints drops al-

most linearly when the threshold for Qk is increased.

This makes perfect sense however, it is interesting to
note that the repeatability of keypoints increases when

the threshold for Qk is increased. In other words, the re-

peatability increases when the number of keypoints de-

crease. Fig. 4-c shows the repeatability plot for a nearest
neighbour error of 4mm as a function of Qk threshold.

The repeatability increases from 82.1% for Qk > 5 to

95.2% for Qk > 45. The increase in the repeatability of

keypoints with increasing Qk indicates that the mea-

sure Qk correctly reflects the quality of keypoints i.e.

the higher the quality, the higher the repeatability.

5 Automatic Scale Selection

So far we have detected keypoints at a fixed scale. How-

ever, at a fixed scale, it is possible that keypoints may
never appear on the less curved or featured parts of cer-

tain 3D models. For example, the belly of the chicken in

Fig. 5-a does not contain any keypoint when detection

is performed at r1 = 20mm (sampling rate of 2mm).
This could be a problem when recognition is performed

in real scenes containing clutter and occlusions and the

only visible part of the chicken is its belly. Note, that

this is a scenario where humans can also find difficulty

in recognizing the object in the absence of any texture.
To overcome this problem, we propose keypoint detec-

tion and feature extraction at multiple scales. For ex-

ample, after lowering the scale by four times, keypoints

are detected at the less featured belly of the chicken as
well in Fig. 5-b.

Selecting the right scale for keypoints and subse-

quent features is an important problem. Detecting fea-

tures at different pre-selected scales would be an easy

alternative however, a more elegant solution is to auto-
matically determine the right scale for a keypoint and

the subsequent feature extraction. We propose an auto-

matic scale selection approach whereby the right scale

for a keypoint is determined as the neighbourhood size

(as cropped by a sphere of radius r1) for which the
ratio between the principle axes of the neighbourhood

reaches a local maximum. Fig. 5-c shows plots of the

principle axes ratio for three different points at varying

scale. Two of the points reach local maxima and are
therefore selected as keypoints at the respective scale

which means that the subsequent features (see Section

6) will be extracted at the respective scales. The scale
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Fig. 5 (a) Keypoints (with Qk > 10) shown on the pointcloud of the chicken. There are no keypoints on the belly of the chicken even
though some small scale features (feathers) exist there. These features were not picked as keypoints because they were insignificant
at the selected scale. (b) Lowering the scale by a factor of 4 detects keypoints at these locations. Only keypoints with Qk between 35
and 45 are shown for brevity. (c) Principle axes ratio with respect to scale for three points. Two of the points have a local maxima at
different scales. (d) Repeatability of keypoints between partially overlapping views using fixed scale and automatic scale selection.

on the x-axis of Fig. 5-c represents the sampling rate in

mm. A 1mm sampling rate corresponds to r1 = 10mm
and 1.5mm sampling rate corresponds to r1 = 15mm.

One of the points however, does not have a local max-

imum and is therefore not considered as a keypoint.

It is worth mentioning that in automatic scale selec-

tion, the threshold t1 is not required to be specified
and points close to the boundary are unlikely to qual-

ify as keypoints because their principle axes ratio does

not exhibit a local maximum.

We compared the repeatability of keypoints using

automatic scale selection and fixed scale. For this ex-

periment, we calculate the repeatability between the 10

partially overlapping views each of the four objects in
Fig. 2 as opposed to the repeatability between partial

views and full 3D models as shown in Fig. 4-a. This

setup is chosen to demonstrate the effectiveness of the

proposed algorithm for partial views. Since the partial
views do not have 100% overlap, repeatability is calcu-

lated for points that lie inside the overlapping regions

of the partial views. Fig. 5-d shows the repeatability of

the keypoints at fixed scale and when automatic scale

selection is used. From Fig. 5-d, it is clear that our key-
point identification algorithm works equally good for

partially overlapping views. However, the repeatability

of keypoints is slightly higher when automatic scale se-

lection is used.

6 Feature Extraction and Matching

We have validated the repeatability of the keypoint

identification algorithm in the previous sections. How-

ever, the ultimate objective of the keypoint detection

is to facilitate the subsequent 3D object retrieval task.
This relates to our last two constraints defined in Sec-

tion 2 namely invariance and descriptiveness of the fea-

tures extracted at the keypoints. In this section, we will

describe invariant feature extraction and in the next

section we validate the performance of this feature for
3D object retrieval in the presence of clutter and occlu-

sions.

Recall that the surface S fitted to the neighbour-

hood of a keypoint is aligned with its principal axes.

However, without any prior knowledge or assumption

of the shape, size and pose of the object, there could
be two possible alignments i.e. the surface will still be

aligned with its principal axes if it is rotated 180 de-

grees along the z-axis. To overcome this problem, both

possibilities are considered. For the second possibility, S

is flipped horizontally which amounts to 180o rotation
about the z-axis. While matching two surfaces, both

possibilities must be considered only for one of the sur-

faces.

Since, the surface S (and its flipped version) is de-

fined in a local coordinate basis derived from the prin-

cipal axes of the surface itself, it is rotation invariant.
This means that any feature extracted from this surface

will also be rotation invariant. At the least, the depth

values of the surface could be used as a feature vector

of dimension 20 × 20 and projected to the PCA sub-

space for dimensionality reduction [20]. Our prior work
[20] showed that these features give very high recogni-

tion rates when applied to 3D face recognition under

neutral expressions. Note that the proposed technique

applies to rigid objects only and is in contrast to the
non-rigid 3D object retrieval work of Passalis et al. [28].

In this paper, we take the depth values of the S to
form a feature vector and use a matching algorithm that

clusters possible transformations between the query and

database models for 3D object retrieval from cluttered

scenes. Note that S has already been calculated at the
keypoint detection stage and it is computationally effi-

cient to use it as a feature. Another important thing to

note is that in automatic scale selection, S will be cal-
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culated at different scales (for each keypoint) where the

ratio between the principle axes of the neighbourhood

exhibit a local maximum. Therefore, when automatic

scale selection is used, S is vectorized and normalized

to unity which means that the feature vector is effec-
tively scale invariant as well.

A dimension of 400 is quite high for the representa-

tion of a local surface. The local features are projected

to a PCA subspace. The PCA subspace can be learned
from the local features extracted from the complete 3D

models, their partial views or a combination of the two.

In either case, the local features are similar and hence

lead to the same PCA subspace. In our experiments, we
used local features of all the 3D models in the database

for training. Moreover, the same subspace was used to

project the local features of the partial views when ob-

ject retrieval was performed using partial views. Let F

be the matrix of feature vectors where each column rep-
resents a different feature from the database 3D models.

The covariance matrix of F is

C = (F− m)(F − m)T , (12)

where m is the mean feature vector. Using Singular

Value Decomposition

USVT = C , (13)

where U is the matrix of eigenvectors such that the
eigenvector corresponding to the highest eigenvalue is

in the first column. S is a sorted diagonal matrix of

the eigenvalues. A PCA subspace is defined from the

eigenvectors corresponding to the highest k eigenval-
ues. The value of k is chosen such that 95% fidelity is

preserved in the data. In our experiments, k = 10 gave

95% fidelity and therefore, the subspace feature vectors

were

F′ = U
T
k F , (14)

where UT
k is the transpose of the first k columns of

matrix U in Eqn. 13. Each feature vector in F′ has a

dimension of 10 and is normalized to a unit vector.

During 3D object retrieval, local features from the

query model are matched with the local features of each
database model. Note that they could both be complete

3D models or partial surfaces or one of them could be a

partial view and the other a complete model. Let f ′i be a

local feature from the query model (or partial surface)

and f ′j be the local feature from the database model.
These error metric between the two features is given by

e = cos−1(f ′i(f
′

j)
T ) , (15)

where the term between the brackets is the dot product

of the two vectors and e represents their mutual angle.

The value of e will vary from zero (perfectly similar

feature vectors) to π/2 (complete dissimilar or orthogo-

nal vectors). Local features from a query and database

model that give the minimum error e are considered

a match. Moreover, only one-to-one matches are con-
sidered i.e. a feature from a database model can be a

match for only one query feature. If a database model

feature turns out to be a match to more than one query

features, only the one with the minimum value of e is
considered.

The remaining list of matches (or correspondences)
between the query and database model are clustered

based on their relative transformation. Recall that each

keypoint was extracted after aligning the local surface

L with its principal axes (Eqn. 5). V together with the
location of the keypoint v defines a local coordinate ba-

sis of the surface L′. More precisely, V contains three

orthogonal vectors pointing in the x, y and z-axes and

v contains the origin of the new local 3D coordinate ba-

sis. The rigid transformation required to align a query
feature to a database feature is given by

R = VT
q Vd , (16)

t = vq − vdR , (17)

where Vq and Vd are the orthogonal vectors (see Eqn.
4) of the query and database feature respectively and

vq and vd are the location of the keypoints. R is the

rotation matrix and t is the translation vector that will

align the two features and hence their underlying 3D
models. The rotation matrix R is converted to Euler

angle rotations and concatenated with the translation

vector to form a six dimensional vector. This vector

represents the six degrees of freedom i.e. three rotations

and three translations along the x, y and z-axis. This
vector is calculated for all matching pairs of features

between the query and database model and used to

cluster the matches. Clustering can also be performed

using the motion matrix itself over the manifold space
[32] however, in our case, the local features are robust

and give good results using simple methods such as the

k-means and hierarchical clustering. We tested both k-

means and hierarchical clustering methods in our ex-

periments and obtained similar results. Matching pairs
of features that agree on the same rotation and trans-

lation will fall into the same cluster. The cluster that

contains the maximum number of matches defines the

correct transformation between the query and database
model. The average error e and the size of the largest

cluster also give the similarity between the query and

database model.
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(a) (b)

(c) (d)

Fig. 6 Illustration of matching partial views (left) to full models (right). Only half the matches in the largest cluster are shown as
blue lines.
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Fig. 7 (a) Confusion matrix of matching 10 partially overlapping views each of the four objects. The dark diagonal indicates high
similarity between neighbouring (overlapping views). Dark dots away from the diagonal indicate false positives. (b) Precision recall
curve calculated from the matrix.

7 3D Object Retrieval Experiments

We performed 3D object retrieval experiments using the

publicly available database [22]. This section presents

both qualitative and quantitative results for object re-
trieval using fixed scale and automatic scale selection.

7.1 Fixed scale Features

Fig. 6 shows qualitative results for matching partial

views of the chef, parasaurolophus, chicken and t-rex

with their complete 3D models. The matching pairs of
keypoints are indicated by straight lines. Only half the

number of matches in the largest cluster are shown. All

matching experiments were performed at a single scale

i.e. r1 = 20mm. One of the side effects of a single fixed

scale is that regions which have a small surface area

e.g. the head of the parasaurolophus, do not contribute
towards the final cluster of matches. This is mainly be-

cause they either do not qualify as keypoints due to the

boundary condition (see Section 3.2) or cause large per-

turbations in the local coordinate basis or the extracted
feature since the 20×20 lattice used to fit a local surface

S is large compared to available surface data points i.e.

L′. This problem is overcome in the next Section by us-

ing automatic scale selection which extracts multiscale

local features at keypoints which increases the number
of correct matches and hence increase the chances of

correct 3D object retrieval.



11

(a) (b) (c)

Fig. 8 Illustration of 3D model and view based object retrieval from a real wold scene containing clutter and occlusions. A full model
is used to retrieve the chef in (a) whereas partial views are used to retrieve the T-rex in (b) and parasaurolophus in (c).

In the next experiment, we made a database of 40

partial views of the four objects. The first 10 partial

views of each object were considered where each view
had a partial overlap with the next view in the se-

quence. Each view was then used turn by turn as a

query to retrieve its partially overlapping view (or views)

from the remaining database of 39 views. Each query

view was expected to retrieve the next and previous
view in the sequence except for the first (i.e. view 1,

11, 21 and 31) and last views (i.e. 10, 20, 30, 40) in

the sequence which were expected to retrieve only the

next or previews views respectively. Fig. 7-a shows the
confusion matrix of matching all the 40 views of the

database with each other. The similarity score was cal-

culated as the weighted sum of the normalized number

of matches in the largest cluster and the normalized

average error between the matching pairs of features
in the largest cluster. The thick dark diagonal of the

confusion matrix indicates the high similarity between

the neighbouring overlapping views of the same object.

Some dark patches away from the diagonal indicate
false positives. Fig. 7-b shows the precision recall curve

of the experiment indicating a 94.5% precision at 100%

recall. It is important to emphasize that we calculate

our results purely on the basis of feature matching un-

like Novatnack and Nishino [27] who also consider the
area of overlap between the two views after registering

them. Feature matching can be performed efficiently

using indexing whereas calculating the overlap between

two views is a costly process.

Fig. 8 shows qualitative results for 3D object re-
trieval from a cluttered scene. Note that 3D object re-

trieval or recognition in a real scene containing clutter

and occlusion is a very challenging scenario. In Fig. 8-a,

a complete 3D model of the chef is used to retrieve its
partial (and occluded) view from the cluttered scene.

However, in Fig. 8-b and Fig. 8-c partial views of the t-

rex and parasaurolophus are used for 3D object retrieval

from the cluttered scene. Partial views were used to il-

lustrate that the retrieval can also be done with partial

views as long as some overlap exists between the query
view and the view of the object in the scene.

7.2 Multi-scale Features

In automatic scale selection, features are extracted at

multiple scales and normalized with respect to the scale.

Therefore, these features are scale invariant and can be

used for object retrieval at different unknown scales.

Matching between multi-scale features at unknown scales
of the objects is performed in a similar way except that

only the three rotations and the scale ratio between

the matching pairs of features are used to cluster the

matches. Translation is not used because correct match-
ing pairs will not have the same translation if the query

and target object have different scales. Fig. 9 shows

two partially overlapping views of the parasauralophus

matched at different scales. Note that unlike the fixed

scale features which matched only at the large regions
of the parasauralophus (see Fig. 6-b), multi-scale fea-

tures are also matched from the smaller regions e.g.

the head, neck, tail and foot. This is because features

are extracted at smaller scales from these regions. Fig.
10 shows object retrieval from a cluttered scene at un-

known scale. The proposed algorithm was able to find

a large number of correct correspondences in this com-

plex case. A few incorrect matches do end up in the

biggest cluster because clustering is performed using ro-
tations from individual pairs of matches. These matches

are easily eliminated as outliers when determining the

overall transformation between the query and target

object.

In our final experiment, we use the multi-scale fea-
tures for object retrieval from all the 50 cluttered scenes

[22] and compare the results to tensor matching [22]

and the spin image matching [15]. The tensors and spin
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Fig. 9 Scale invariant matching between two partially overlap-
ping views at different unknown scales.

Fig. 10 Scale invariant object retrieval from a cluttered scene.

images were both calculated using fixed neighbourhood

regions. For a fare comparison, we used the spin image

recognition implementation available at [19] and used

recognition without spin image compression. Four to

five objects were placed randomly and scanned from a
single viewpoint to construct 50 complex scenes con-

taining clutter and occlusions [22]. Matching was per-

formed using multi-scale features (i.e. automatic scale

selection) but for comparison reasons the query object
and scene were both at the same scale. The correspon-

dences in the largest cluster were used to align the query

object with the scene. If the query object was aligned

correctly to its view in the scene, the recognition was

considered a success. In the event of alignment to a dif-
ferent object or incorrect alignment, the recognition was

considered a failure. The object recognition results are

presented with respect to occlusion for easy compari-

son with the other two techniques. Occlusion is defined
according to [15] as

occlusion = 1−
object surface area visible in scene

total surface area of object
(18)

Ground truth occlusions were automatically calcu-
lated for correctly recognized objects i.e. by registering

the object to the scene, and manually calculated for

objects that could not be recognized due to excessive
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Fig. 11 Recognition rate of the proposed keypoint features com-
pared to the tensor matching and spin images.

occlusion. The ground truth occlusions, locations and
orientations of objects in the scenes are available at

[23] along with the mesh data. Fig. 11 shows the re-

sults of our experiment and compares the performance

of the proposed algorithm with tensor matching [22]
and spin image matching [15]. The proposed keypoint

matching algorithm has 100% recognition rate up to

70% occlusion. The recognition rate is above 95% up

to 80% occlusion. This performance is better than the

spin image matching and almost equal to the tensor
matching. However, the proposed algorithm’s perfor-

mance degrades more gracefully with increasing occlu-

sion. Moreover, the recognition rate of our proposed

algorithm in Fig. 11 is calculated purely on the basis
of matching features and as opposed to [22] no costly

verification steps were used.

The time required to calculate the scale invariant
features depends upon the density of the pointcloud,

the number of scales over which the search is performed

and the shape of the object. Objects with rich features

tend to take more time compared to objects with pla-
nar surfaces because more points qualify as keypoints

in the initial stages. Using pointclouds with 2mm res-

olution and searching over 6 scales, our Matlab imple-

mentation of the algorithm can detect 50 keypoints/sec

and extract local features from them at the same time
on a 2.3 GHz machine with 4GB RAM. Likewise, the

matching time also depends upon the number of local

features. Our Matlab implementation takes 0.12 sec-

onds to match 500 local features of a query object to
1000 local features of a complex scene and cluster the

matches.

8 Conclusion and Discussion

We presented a keypoint detection algorithm along with

an automatic scale selection technique for subsequent
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feature extraction. The automatic scale selection tech-

nique facilitates multi-scale features which are scale in-

variant and can be used for matching objects at differ-

ent and unknown scales. We also proposed a keypoint

quality measure which is used to rank keypoints and
select the best keypoints for further processing. The

detected keypoints are highly repeatable between 3D

models and its partial 2.5D views and between par-

tially overlapping 2.5D views. Our results show that
the proposed keypoint quality measure is in agreement

with the repeatability of the keypoints as higher qual-

ity keypoints have higher repeatability rates. This is

of great significance as only a few keypoints that are

highly repeatable can be used to extract features and
reduce computational complexity.

We performed extensive experiments for object re-
trieval from complex scenes containing clutter and oc-

clusions. Our results show that the proposed features

are highly distinctive and achieve over 95% recogni-

tion rate up to 80% occlusion in complex scenes. It is
important to emphasize that the results presented in

this paper are purely on the basis of feature matching

and costly verification steps have been avoided. Such

verification steps include the calculation of the area of

overlap between the query and target object after reg-
istering them using the corresponding pairs of features.

A more accurate overlap is some times calculated af-

ter iteratively refining the registration with the ICP

algorithm [3]. Another common verification step in 3D
object retrieval is active space violation which deter-

mines if any part of the query object after registration

to the scene comes in the way of the sensor. Although,

such verification steps can significantly improve the re-

sults, they are computationally costly and overshadow
the performance of the 3D descriptors. Reporting com-

bined results using feature matching followed by one

or more of the verification procedures makes it hard to

separate the performance of the feature matching from
the overall framework.

Another important aspect of the proposed features
is that each feature has an underlying local 3D reference

frame and a single pair of correctly matching features

is sufficient to align the query model (or partial view)

with the database model (or partial view). This means
that clustering can be performed using individual pairs

of matches. In the absence of these 3D reference frames,

an CN
3 search would need to be performed to cluster the

matches (where N is the total number of matches and

3 is the minimum number of correspondences required
to register two surfaces).
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