
On the repeatability of the local reference frame for partial shape matching

Alioscia Petrelli and Luigi Di Stefano

CVLab - DEIS, University of Bologna

Viale Risorgimento, 2 - 40135 Bologna, Italy

alioscia.petrelli@unibo.it, luigi.distefano@unibo.it

Abstract

We investigate on local reference frames (LRF) deployed

with 3D descriptors to achieve invariance to objects’ pose.

We address the task of matching together partial views of

surfaces and propose an experimental study on a large cor-

pus of real data which allows for clearly ranking existing

LRF proposals based on their repeatability. Then, draw-

ing inspiration from analysis of the experimental findings,

we formulate a new proposal which, in particular, pecu-

liarly includes a procedure aimed at estimating a repeat-

able LRF also at border features, which is very important

when matching partial views of surfaces. Experiments show

that the new proposal neatly outperforms existing methods

in terms of repeatability, is computationally very efficient

and provide relevant benefits in practical applications.

1. Introduction

Surface matching deals with the ability of finding sim-

ilarities between 3D surfaces, often described by triangu-

lated meshes, and is a key task in scenarios such as 3D ob-

ject recognition and surface registration. Last decade re-

search on surface matching has been mainly focused on

local rather than global approaches, for the former being

able to withstand nuisances such as clutter and occlusions.

Hence, research efforts have addressed the definition of lo-

cal 3D descriptors, that is compact representations of sur-

face points based on the characteristics of their neighbor-

hood (hereinafter support). These representations should

be as distinctive and robust as possible, so as to allow

for matching corresponding points between surfaces and

then estimate aligning rigid body transformations in sur-

face registration or establish upon the presence and pose

of a model sought for in 3D object recognition. Invari-

ance to objects’ pose is an indispensable trait of every 3D

descriptor. Some authors achieve it by using descriptions

based on a Reference Axis only. This is the case e.g. of

Spin Images[6], which builds an histogram by using two

cylindrical coordinates, radial distance and elevation, de-
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Figure 1. Number of correct matches vs. repeatability of LRF.

First, 1000 points are randomly extracted from a 3D surface and

described. Then, these features are matched to a second set, which

is obtained by considering again the previous surface points and

introducing an increasing angular perturbation into the LRFs be-

fore computation of descriptors. Perturbations consist of uni-

formly distributed random rotations around the z axis (the z axis

is kept fixed since, as discussed in Sec.4, it tends to be highly

repeatable). The experiment concerns 5 LRF-descriptor pairs

(SHOT[15], PS[2], USC[14], EM[11], MeshHog[16]).

fined with respect to the surface normal at the point to be

described. By disregarding the information on the angu-

lar coordinate, Spin Images trades distinctiveness for ro-

bustness. Differently, other proposals rely on the definition

of an invariant Local Reference Frame and on the descrip-

tion of the support with respect to such LRF coordinates

[12, 2, 13, 11, 4, 17, 9, 15, 14, 7, 16]. As long as the LRF

turns out repeatable and robust to noise, the descriptor holds

the potential for higher distinctiveness since it can encode

all the shape information within the support.

However, descriptors tend to be very sensitive to the de-

gree of misalignment between LRFs at corresponding fea-

ture points. Accordingly, as highlighted by Fig.1, the effec-

tiveness of the surface matching process tend to decrease

rapidly as the repeatability of the LRF decreases. Since

defining a repeatable LRF is a challenging task, several

proposals, such as e.g. Point Signature [2] and 3D Shape

Context [5], resort to compute multiple descriptions of each



surface point in order to account for different possible ro-

tations of the object. Yet, this approach implies a growth

of the computational cost associated with the description

process in terms of both execution time as well as memory

occupancy. Moreover, the matching stage becomes more

ambiguous and significantly slower.

In a recent paper [15], the importance of a unique (i.e.

not bound to a multi-description approach) and repeatable

LRF for effective and computationally efficient local sur-

face description has been pointed out. The paper presents

the first experimental study specifically aimed at assessing

the repeatability of the LRFs proposed in literature for lo-

cal surface description, together with a state-of-the-art pro-

posal for the definition of a unique and repeatable LRF. The

experimental evaluation focuses on 3D object recognition,

with clutter, occlusion and noise being the addressed nui-

sances. However, in [15] the repeatability of LRFs is not

evaluated in partial shape matching scenarios, which con-

cerns finding corresponding features between different par-

tial 3D views of a given subject. Partial shape matching is

required in surface registration, whereby a full 360◦ recon-

struction of an object is built by fusing together partial 3D

views taken from different vantage points. Additionally, 3D

object recognition may involve matching a full 3D model to

a 3D view of a scene or also one or more partial 3D views

of a model to a 3D view of the scene.

Therefore, the first contribution of this paper is an ex-

tensive benchmark study whose purpose is to analyze and

compare the repeatability of LRFs in a partial shape match-

ing scenario, so as to elucidate on the methods most appro-

priate to this important task which was not addressed by the

authors in [15]. Unlike [15], we do not consider synthetic

data with injected noise but instead evaluate LRFs on pub-

licly available datasets of partial views acquired with real

scanning systems. Moreover, as detailed in Sec.2, we con-

sider a larger set of methods than [15], including, in par-

ticular, the LRFs used in [10], that proposed in conjunction

with the MeshHog descriptor [16] and a variant of the state-

of-the-art method presented in [15].

As reported in Sec.4, our experimental evaluation show

that LRFs based on principal directions, such as e.g. those

proposed in [15] and [10], which prove highly repeatable

against the nuisances considered in [15], turn out unsuitable

to partial shape matching mainly due to the local point den-

sity variations induced by the changes of the vantage point.

On the other hand, the LRF associated with the Point Sig-

natures descriptor [2] reveal itself to be the most repeatable.

The second contribution of this paper stems from analy-

sis of the experimental findings reported in Sec.4. More pre-

cisely, since our results prove that, for every LRF, the axis

directed along the surface normal is always more repeatable

than the reference tangent direction, we conceive and pro-

pose a novel LRF which requires the computation of surface

normals only. Furthermore, we improve our novel method

in order to deal with a problem that is peculiar of partial

shape matching and occurs at the borders of 3D views. In

fact, supports that are too close to the borders of a view hold

missing regions that drastically decrease LRF repeatability.

Experiments run on the same dataset as in Sec.4 allow us

to prove that the proposed LRF exhibits the highest repeata-

bility and that its computation time is comparable to that of

the fastest -and less repeatable- existing methods.

2. Local Reference Frames Overview

In this section, we describe how to compute the LRFs

considered in our study. Most of them are based on the

computation of the eigenvectors of a covariance matrix of

the 3D coordinates of the points, pi, lying within a spherical

support of radius R centered at the feature point p.

Mian[10]: the unit vectors of the LRF are given by the

normalized eigenvectors of the covariance matrix:

Σp̂ =
1

k

k
∑

i=0

(pi − p̂)(pi − p̂)T (1)

where p̂ denotes the barycenter of the points lying within

the support:

p̂ =
1

k

k
∑

i=0

pi (2)

However, while the eigenvectors of (1) define the principal

directions of the data, their sign is not defined unambigu-

ously.

SHOT[15]: to avoid computation of (2), the barycenter

appearing in (1) is replaced with the feature point. More-

over, to improve repeatability in presence of clutter in object

recognition scenarios, a weighted covariance matrix is com-

puted by assigning smaller weights to more distant points:

Σpw =
1

∑

i:di≤R

(R−di)

∑

i:di≤R

(R−di)(pi−p)(pi−p)T (3)

with di = ‖pi −p‖2. To achieve true rotation invariance, a

sign disambiguation technique inspired by [1] is applied to

the eigenvectors of (3). In particular, the sign of an eigen-

vector is chosen so as to render it coherent with the majority

of the vectors it is representing. This procedure is applied

to the eigenvectors associated with the largest and smallest

eigenvalues, in order to attain the unit vectors defining, re-

spectively, with the x and z axes. The third unit vector is

computed via the cross-product z × x.

SHOTb: we replace p with p̂ in (3) and apply the afore-

mentioned sign disambiguation procedure to eigenvectors.

This allows us to investigate on whether the use of the

barycenter may improve repeatability with respect to the

original proposal in [15].



EM[11]: the z axis is given by the surface normal, n, at

the feature point p. To obtain the x axis, the eigenvector of

(1) associated with the largest eigenvalue is projected onto

the tangent plane defined by n. Then, the third axis is given

by z × x.

PS[2]: the LRF associated with the Point Signatures de-

scriptor is defined as follows. The intersection of the spheri-

cal support with the surface generates a 3D curve, C, whose

points are used to fit a plane. The z axis is directed along

the normal to the fitted plane. In order to disambiguate be-

tween the two possible unit vectors, z+ and z−, the inner

product with n is computed for both, so as to chose the unit

vector yielding a positive product. The x axis is attained by

defining a signed distance from the points belonging to C

to the fitted plane. Points that lie in the same half space as

the normal to the fitted plane are given a positive distance,

those lying in the opposite half-space a negative distance.

The point with the highest positive distance is then selected,

and the projection on the fitted plane of the vector from this

point to the feature point p defines the x axis. As usual, the

third axis is computed via cross-product.

MeshHog[16]1: support points, pi, are determined ba-

sed on the geodesic rather than euclidean distance. The z
axis is given by the surface normal n, whereas identifica-

tion of the x axis is inspired by SIFT [8]. At each pi, the

discrete gradient ∇Sf(pi) is computed, function f(pi) be-

ing the mean surface curvature. Gradient magnitudes are

added to a polar histogram of 36 bins (covering 360◦) and

weighed by a Gaussian function of the geodesic distance

from p, with σ equal to half of the average mesh resolution

(hereinafter mr). To deal with aliasing and quantization,

votes are interpolated bilinearly between neighboring bins.

While in SIFT histogram bins are filled according to gra-

dient orientation, in [16] points pi are projected onto the

tangent plane defined by n and the orientation with respect

to a random axis lying on such a plane is considered. Then,

the chosen x axis orientation is given by the dominant bin

in the polar histogram. At last, y is computed as z × x.

3. Evaluation Methodology

To assess and compare the repeatability of the consid-

ered LRFs for the task of partial shape matching, we se-

lected nine datasets taken from two popular repositories:

the Stanford 3D Scanning Repository [3] (Bunny, Dragon,

Armadillo) and the AIM@SHAPE Repository2 (Amphora,

Buste, Dancing Children, Glock, Neptune, Fish). Since the

philosophy of our work is to evaluate LRFs under a vari-

ety of real working conditions, datasets are selected so as to

address different characteristics of 3D mesh acquisition sys-

1The algorithm explained here, and used to run our tests, is publicly

available on Zaharescu’s website. Indeed, it is the latest version of their

method, which is slightly different from the formulation reported in [16].
2http://shapes.aim-at-shape.net/.

tems. First of all, the chosen datasets are acquired with dif-

ferent laser scanners, e.g. the high quality Cyberware 3030

MS for the Stanford datasets and the low quality Minolta

vi700 for the Glock dataset. That involves different point

densities, with very detailed views, such as Neptune, Glock,

Dancing Children, as well as significantly coarser acquisi-

tions, i.e. Bunny, Buste and Amphora. Noise is out there

in our experiments, for it consists of the real noise injected

into the data by the employed acquisition systems. Those

considered in our study include very noisy datasets, such

as Glock, as well as much more accurate and cleaner data,

such as Neptune and Amphora. Finally, we have considered

datasets comprising different number of views, e.g. Glock,

Bunny and Fish with, respectively, 8,10 and 10 views, as

well as Dragon and Armadillo with, respectively, 61 and 91

views.

To achieve quantitative evaluation of repeatability,

we define a set of indexes. Given a dataset D =
{V1, V2 . . . VM} consisting of M views, we denote as

V Pn = (Vh, Vk) the n-th view pair attained by consider-

ing two different views, with N = M(M−1)
2 being the total

number of view pairs withinD. For everyV Pn = (Vh, Vk),
we randomly pick up Nf (set to 1000 in the experiments)

random points pi,h from view Vh and, to each of these

features, apply the ground-truth rigid body transformation3

from Vh to Vk. If the distance between the transformed

point and the closest point pi,k in Vk is less than 2.5 * mr ,

we select FP i,n = (pi,h,pi,k) as a pair of corresponding

features in view pair V Pn. Should the number of corre-

sponding feature pairs, Nfp, be less than 0.05 · Nf , view

pair V Pn would not be considered further in the experi-

ment. Instead, given enough feature pairs FP i,n, for each

of them we compute the local reference frame at the corre-

sponding points according to the method under evaluation,

so as to come up with the local reference frame pair

LRF i,n = (LRF (pi,h) , LRF (pi,k)) (4)

Then, we calculate a set of indexes based upon the angles

between corresponding axes of the two LRFs appearing in

(4). In particular, denoted as z (pi,h) and z (pi,k) the unit

vectors defining the z axis of the two LRFs, we measure the

repeatability of the z axis by the cosine of the angle between

unit vectors:

Cos (Z)i,n = z (pi,h) · z (pi,k) (5)

Analogously, given the two corresponding LRFs in (4), we

measure the repeatability of the x axis based on unit vectors

x (pi,h), x (pi,k).
Since the third axis can always be computed from the

former two and, therefore, explicitly accounting for it is not

3Ground-truth transformations are available for all the considered

datasets.



necessary, [15] gets one single repeatability index associ-

ated with the pair LRF i,n by averaging the cosine measure-

ments taken for the x and z axes. This index, however, may

be biased by the correlation between cosine measurements

due to the x and z axes being orthogonal. To significantly

decorrelate x and z measurements, we compute the rotation

that aligns z (pi,k) to z (pi,h) and rotate x (pi,k) accord-

ingly, so as to get x′ (pi,k), which lies in the same plane

orthogonal to z (pi,h) as x (pi,h). Thus, we can define:

Cos′ (X)i,n = x′ (pi,h) · x (pi,k) (6)

and then the repeatability index as:

MeanCos′i,n =
Cos′ (X)i,n + Cos (Z)i,n

2
(7)

The previous quantity is first aggregated over all the local

reference pairs belonging to a given view pair

MeanCos′n =
1

Nfp

Nfp
∑

i=1

MeanCos′i,n (8)

and then averaged across all view pairs, so as to get the final

repeatability score associated with the given dataset:

MeanCos′ =
1

N

N
∑

n=1

MeanCos′n (9)

Since, as highlighted in Sec.2, some methods do not deal

with the inherent sign ambiguity of principal directions, we

also define two indexes aimed at quantifying separately the

repeatability of direction and sign. Considering again a LRF

pair and, e.g., the x axis, the two additional indexes are de-

fined as follows:

AbsCos (X)i,n =
∣

∣

∣
Cos (X)i,n

∣

∣

∣
(10)

Sign (X)i,n =

{

1, x (pi,h) · x (pi,k) ≥ 0

0, x (pi,h) · x (pi,k) < 0
(11)

As before, indexes are averaged through LRF pairs and

then view pairs to attain global figures of merit associated

with the considered dataset. These additional figures will

be referred to hereinafter as AbsCosX , AbsCosZ , SignX

and SignZ .

4. Evaluation of Existing Methods

All the methods presented in Sec.2 have been evaluated

on the nine chosen datasets. For every method and dataset,

we have run tests with different values of the support radius

R (i.e. 5 ·mr , 10 ·mr , 20 ·mr ). The chart in Fig.2 shows

the highest repeatability score yielded by each method on

each dataset, the table beneath reporting the corresponding

optimum values of R.

Buste Amphora Dancing children Glock Neptune Fish Armadillo Bunny Dragon

SHOT 10 10 20 10 10 20 10 10 10

SHOTb 10 10 20 10 10 20 10 10 10

PS 10 10 10 5 10 10 5 5 5

EM 20 5 10 20 5 5 20 5 5

MIAN 10 10 10 20 20 20 5 10 5

MeshHog 5 5 20 5 5 20 5 10 10

P 10 10 10 20 10 10 10 10 10
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Figure 2. Repeatability scores and support radii (in mr ) units.
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Figure 3. Direction and sign repeatability indexes for the z and x

axes. Radii are the same as in the table of Fig. 2.

PS exhibits neatly the highest repeatability across the

considered datasets, while the methods that fully rely on

principal directions, i.e. MIAN, SHOT and SHOTb, turn

out notably less effective. Overall, EM and MeshHog rank

somewhat in between PS and principal directions methods,

though EM even outperform PS on Fish and yields compa-

rable performance on Glock and Neptune.

To better comprehend and compare the behavior of the

different methods, we report in Fig.3 the direction and sign

repeatability indexes corresponding to the results shown in

Fig.2 (i.e. the radii are those maximizing the global repeata-

bility score MeanCos’).

Fig.3 shows how, consistently across the considered

methods and as for both direction and sign, estimation of

the z axis is significantly more repeatable than the x axis.

Let us comment on z direction first: we ascribe the high

repeatability shown by the AbsCosZ chart to estimation of

the z direction representing, for every LRF, a sort of esti-

mation of the surface normal n, which is intrinsically a well

defined direction given the nature of surfaces. In fact, it is



well-known that in principal direction methods the eigen-

vector corresponding to the smallest eigenvalue represents

a TLS estimation of the surface normal. As regards PS,

the normal to the plane that fits curve C can be seen as a

sort of surface normal, to which, in turn, usually tends to be

aligned. EM and MeshHog use directly the surface normal

n as z axis of their LRF.

However, as vouched by the SignZ chart, between prin-

cipal direction methods, MIAN exhibit the lowest sign re-

peatability since it does not attempt any disambiguation of

the sign of the eigenvector estimating the normal. This

largely accounts for the poorest performance provided by

MIAN in terms of overall repeatability (Fig.2), for the good

repeatability of the z direction being wasted due to instabil-

ity of the sign. The SHOT and SHOTb bars in the SignZ

chart prove the benefits brought in by sign disambigua-

tion in the estimation of z based on principal directions,

which determines the higher overall repeatability of these

two methods with respect to MIAN (Fig.2). However, the

best z-sign disambiguation approach is employed by PS,

which is grounded on the normal n, and the highest re-

peatability in terms of both direction and sign of the z-axis

is definitely achieved by those methods, such as EM and

MeshHog, that align it to the surface normal n.

On the other hand, defining the x axis deals with finding

a well defined direction on the tangent plane, which turns

out harder since many surfaces exhibit nearly flat or sym-

metric regions. Hence, intrinsically, estimating a repeatable

direction on the tangent plane is more difficult than estimat-

ing the plane itself (i.e. the surface normal). This explains

the significantly lower repeatability indexes for the x axis

with respect to the z axis reported in Fig.3.

As far as the x direction is concerned, the AbsCosX

chart indicates that higher repeatability is achieved by PS

and those principal directions methods that compute covari-

ances with respect to barycenter, i.e. SHOTb and MIAN.

However, PS seems less robust to noise than the latter meth-

ods, as suggested by the results on Glock, which is partic-

ularly noisy within the considered datasets. In SHOT, the

choice of computing covariances with respect to the feature

point implies a relevant decrease of the repeatability of the

x direction. Similarly, in EM the projection onto the tangent

plane of the largest eigenvector renders notably less stable

the estimated x direction.

As for x-sign repeatability, the SignX chart points out

that, overall, PS provides for the most effective approach,

although, again, the method seems quite sensitive to noise,

as vouched by the indexes measured on Glock. For princi-

pal components methods, it is clear that sign disambigua-

tion on the tangent direction is not as effective as along the

surface normal, with MIAN and EM performing now some-

what better than SHOT and SHOTb.

A peculiar issue of partial shape matching which was

not addressed in [15] consists in surfaces being seen by

angularly offset vantage points. As a result, between two

angularly distant views of a given feature the distribution

of points within the support can change significantly, since

in each view the portion of the support closer to the cam-

era turns out denser than the farther one. This asymmetry

has a significant impact on the repeatability of LRF meth-

ods based on principal directions, since these tend to point

towards the denser portion of the support. We found that

this occurs particularly with non-barycentric methods (i.e.

SHOT), while use of the barycenter (i.e. MIAN, SHOTb)

tends to mitigate the effect of the asymmetric density varia-

tions induced by viewpoint changes. However, such vari-

ations have a detrimental impact on sign-disambiguation

with both SHOT and SHOTb, since the choice of the sign is

guided by the denser portion of the support. Finally, we be-

lieve that also MeshHog is affected by the local point den-

sity variations issue, since the x axis orientation relies on

a polar histograms which is populated based on the spatial

position of the points within the support.

5. A Novel LRF Proposal

As shown in Sec. 4, the normal n at p is quite repeat-

able and thus represents a good starting point for the direc-

tion and sign of the z axis, even though it may turn out not

enough robust with very noisy datasets (see EM and Mesh-

Hog on Glock in the AbsCosZ chart of Fig.3). Conversely,

it is difficult to define a repeatable direction on the tangent

plane. We also argue that not necessarily the most appro-

priate support radius for estimation of the z axis is the same

as for the x axis. Starting from these considerations, we

assemble a novel LRF that outperforms PS in terms of re-

peatability and robustness and requires a significantly less

computation time.

In order to estimate robustly the z direction, we fit a

plane to the support points pi. To disambiguate the sign,

we compute the average normal, ñ, over support points and

then take the inner product between ñ and the two possible

unit vectors z+ and z−, so as to chose the unit vector yield-

ing a positive product. Tuning experiments have shown that

a support radius Rz as small as 5 ·mr provides the best esti-

mation of the z axis throughout all the considered datasets.

The basic intuition for estimation of the x axis consists in

trying to rely again on surface normals, since normals prove

repeatable. Hence, we find the point pi within a support

of radius Rx showing the largest angle between its normal

ni and the previously defined z axis, then point the x axis

towards such a point. For the sake of robustness, we do not

strictly consider ni but instead compute the average normal

over a neighborhood of pi. More precisely, given a point pi

and denoted as A (pi) the set of the adjacent points of pi



on the mesh, we define

ring0 (pi) = pi

ring1 (pi) = ring0 (pi) ∪ A (pi) (12)

...

ringr (pi) = ringr−1 (pi) ∪ {A (pr) : pr ∈ ringr−1 (pi)}

Then, nr,i denotes the normal at pi obtained by averag-

ing normals over all the points belonging to ringr (pi).
Thus, for every point pi within the support we compute

the cosine of the angle between nr,i
4 and the unit vector

defining the z axis, , denoted as cos i, in order to select the

point pmin yielding the lowest cosine. The x axis is then

given by the normalized projection onto the tangent plane

of the vector from p to the selected pmin. Since pmin usu-

ally lies close to the margin of the support, to speed up the

computation we consider only the points pi having distance

to p greater than Tm × Rx (we choose Tm = 0.85).

The proposed method, and all those introduced in sec.

2 alike, suffers from a problem peculiar of partial shape

matching and highlighted by Fig.4: the support of a feature

point located close to the border of a view shows missing

surface points that dramatically deteriorate the repeatability

of LRF estimation. In particular, Fig.4 depicts two corre-

sponding points extracted from two different views of the

surface together with the LRFs yielded by the method de-

scribed so far herein. For the support in the left view, the

method finds pmin (and therefore the x axis) in a region that

is missing in the support shown in the right view, because

in the latter the point is too close to the border. Hence, in

the right view the method selects another point, so that two

different x directions are estimated in the two views.

A trivial solution to this problem may consist in discard-

ing feature points close to borders, for instance by rejecting

those with border distance lower than the support radius.

Unfortunately, in surface registration, as the two views to

be matched together are acquired from increasingly offset

viewpoints, the deployable features tend to diminish and lie

close to the -opposite- borders of the views. Consequently,

relatively distant views can hardly be registered unless bor-

der features are effectively described and matched.

For this reason, we have improved our method so as to

try to estimate a repeatable LRF at border points too. The

improvement stems from the observation, which might per-

haps seem paradoxical, that the presence of missing points

brings in useful information about the surface shape within

the support. Indeed, besides self-occlusions, a missing re-

gion is due to surface normals being too inclined with re-

spect to the line of sight of the acquisition system, for an ac-

quisition system being able to acquire a surface patch only

if the normals are sufficiently parallel to its line of sight.

4r = 2 in chosen our experiments

Figure 4. LRFs of two corresponding points extracted from two

partial views. x axes are shown as red arrows, y axes are in green,

z axes point outward from the image. The behavior of surface

normals is illustrated by assigning a darker blue to points having

normals more inclined with respect to the z axis. In both views,

the LRF found at the point is opaque whereas the LRF found in

the other view is overlaid semi-transparently for comparison.
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Therefore, while the normals of non-missing regions point

in the direction of the line of sight, the normals of miss-

ing regions do not. Hence it is likely that, had missing

regions been acquired, their normals would have been the

most inclined within the support with respect to normal at

the acquired feature point (e.g., as in Fig.4). Since we de-

fine the x axis based on the point, pmin, showing the most

inclined normal, when there is a missing region we try to

assess whether pmin should be more likely located within

the missing region.

The improvement consists of three stages. In the first, we

look for missing regions within the support. In the second,

we evaluate whether a missing region may include pmin.

In the last one, we try to localize pmin. More specifically,

in the first stage, a random axis lying on the fitted plane is

computed (the yellow arrow in Fig.5). For every considered

pi (the green points in Fig.5), the vector from p to pi is pro-

jected onto the fitted plane. The counterclockwise angle θi
between the random axis and this vector is computed. We

identify a missing region when ∆θ between two consecu-

tive points along the angular direction is larger than 2π ×
Th (we use Th = 0.2).

For every found missing region, the second stage consid-

ers the points pa and pb at the boundaries of the region (the



Rz r Tm Th TS

5 ·mr 2 0.85 0.2 0.1

Table 1. Parameters of the proposed method.
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Figure 6. Computation times for all methods.

two red points in Fig.5) and uses them to quickly estimate if

the region contains pmin. We assume that a missing region

contains pmin if nr,a and nr,b are sufficiently inclined with

respect to the others nr,i, and therefore if

S = (|cosa|+ |cosb|)/2 (13)

is greater than TS (our tuning tests show that TS = 0.1 is

the best choice), where cosa and cosb are normalized in the

range [0,1] by:

|cosi| = 1.0−
cosi −min (cosi)

1.0−min (cosi)
(14)

If a support contains several missing regions, we consider

only that with the greatest S . The last stage aims at finding

an angle θt between θa and θb that estimates the position of

pmin. Intuitively, θt is closer to θa if |cosa| is greater than

|cosb| and vice versa. Hence, formally:

t =
(|cosb| − |cosa|) + 1.0

2
; t ∈ [0, 1] (15)

θt = θa + (θb − θa)t (16)

Finally, the x axis is obtained by rotating the random axis

by θt around the z axis. Table 1 summarizes the parameters

of our method together with the suggested default values

resulting from the tuning process.

6. Evaluation of the Novel Proposal

The chart in Fig.2 shows that our proposal (P, yellow

bar) consistently outperforms other methods throughout all

datasets, including the very noisy Glock where, in particu-

lar, our approach turns out significantly more robust. As for

the support radius, similarly to Sec. 4, we have tested our

proposal with Rx equal to 5·mr , 10·mr and 20·mr and, for

each dataset, chosen the value yielding the highest repeata-

bility (see the table in Fig.2). It is worth pointing out, that,
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Figure 7. Repeatability scores on MeshDog keypoints.

compared to other methods, our proposal seem to be no-

tably more stable with respect to the choice of the support

radius across data gathered in different working conditions.

Fig.6 reports, for all methods and datasets, the measured

average computation time (in ms) spent to estimate the LRF

at a feature point. The chart indicates that PS is definitely,

and significantly, the slowest method while our proposal

yields computational times comparable to faster methods

(i.e. SHOT, SHOTb, MIAN and EM).

In surface matching applications, the issue of nearly flat

or symmetric regions may be dealt with to a certain extent

by using a suitable feature detector, so as to describe dis-

tinctive points only. Yet, to avoid biasing the evaluation

towards the features found by a particular type of detec-

tor, we have chosen to randomly pick-up feature points.

This might, however, introduce a smoothness bias given

that many features will likely be picked up within nearly

flat or symmetric regions. Therefore, to complement the

evaluation, we have run an additional set of experiments on

MeshDog keypoints5 [16]. The results in Fig.7 show that,

overall, our proposal turns out again, neatly, the most re-

peatable LRF and that the evaluation on keypoints is con-

sistent with the ranking between existing method discussed

in Sec.4 (i.e. PS best method, then EM-MeshHog, principal

directions approaches notably less effective).

Finally, to provide an indication of the solid practical

benefits which can be brought in by the use of a good

LRF estimation algorithm with respect to a less repeatable

method, we propose a qualitative experiment. In particu-

lar, following the automatic 3D reconstruction pipeline de-

tailed in [11], we try to register and fuse together 18 par-

tial 3D views (Fig.8a) of an object acquired by a Space-

time Stereo set-up. To this purpose, we use the SHOT LRF

and the SHOT descriptor to match randomly extracted fea-

ture points between the views. This would provide a coarse

registration, to be then handed over to a standard tool (i.e.

Scanalyze) in order to end-up with the final 3D reconstruc-

tion. However, due to the difficulty of this registration task,

5Starting from 5 * mr , we have used 3 scale space levels and deter-

mined the support radius R for LRFs based on the characteristic scale pro-

vided by the detector.
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Figure 8. 3D reconstruction based on the SHOT descriptor: (a) ini-

tial views. (b) coarse registration with SHOT LRF (c) coarse reg-

istration and (d) reconstruction with the proposed LRF (e) coarse

registration and (f) reconstruction with PS LRF. A 3D visualiza-

tion of the results is provided in the supplementary material.

to be ascribed to the presence of large symmetric regions on

object’s surface, the coarse registration turns out so inaccu-

rate (Fig.8b) that Scanalyze cannot perform the final recon-

struction. We then simply use the SHOT descriptor with the

LRF proposed in this paper and, thanks to its much higher

repeatability, succeed in achieving a very good coarse reg-

istration (Fig.8c) that allows Scanalyze to provide an accu-

rate 3D reconstruction (Fig.8d). Moreover, we also try the

SHOT descriptor with the PS LRF: the coarse registration

(Fig.8e) is not as accurate as to permit a final reconstruction

without artifacts (highlighted by green circles in Fig.8f).

7. Final Remarks

The proposed approach yields state-of-the-art perfor-

mance among LRF estimation algorithms. It turns out very

repeatable and robust to noise, and seems also more eas-

ily tunable as regards the main parameter, i.e. the radius of

the support used to define the reference axis on the tangent

plane. As for the other parameters, although we have not

carried out so far a formal sensitivity analysis, we are confi-

dent that the suggested ones provide reasonable default val-

ues, since they proved effective across a large set of data

acquired by different types of systems and under different

working conditions. Another future direction of investiga-

tion concerns analysis of LRFs repeatability with respect to

imprecise feature localization, which is an important prac-

tical issue not dealt with in our present work. Nonetheless,

the proposed 3D reconstruction experiment provides indi-

cations of a remarkable robustness of the proposed method,

since feature points are extracted by means of the -by far-

less precise detection method, i.e. they are picked up ran-

domly from each view.
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