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Abstract: We represent a set of possible worlds
The

study form a

using an 1ncomplete information database
representation techniques that we
hierarchy, which generalizes relations of constants This
hierarchy ranges from the very simple Codd-table, (1 e,
a relation of constants and distinct variables called
nulls, which stand for values present but unknown), to
much more complex mechanisms involving views on
conditioned-tables, (1 e, queries on Codd-tables together
with conditions) The views we consider are the queries
that have polynomial data-complexity on complete
information databases Our conditions are conjunctions
of equalities and nequalities

(1) We provide matching upper and lower bounds on
the  data-complexity of

testing  containement,

membership, and uniqueness for sets of possible worlds
and we fully classify these problems with 1espect to our

representation hierarchy The most surprising result 1n

this classification 1s that 1t 1s complete 1n H2p,
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whether a set of possible worlds represented by a Codd-
table 1s a subset of a set of possible worlds represented
by a Codd-table with one conjuction of inequalities

(2) We investigate the data-complexity of querying
We examine both
Our

approach 1s algebraic but our bounds also apply to

incomplete information databases
asking for certawn facts and for possible facts
logical databases We show that asking for a certain
fact 1s coNP-complete, even for a fixed first order query
on a Codd-table We thus strengthen a lower bound of
[16], who showed that this holds for a Codd-table with
a conjunction of inequalities For each fixed positive
existential query we present a polynomial algorithm
solving the bounded possible fact problem of this query
on conditioned-tables We show that our approach 1s, in
a sense, the best possible, by deriving two NP-
completeness lower bounds for the bounded possible
fact problem when the fixed query contains either

negatlon Or recursion

1. Introduction

A fundamental property of common database query
languages, such as, relational calculus, relational
algebra, [15], and Horn clause recursive rules or
DATALOG [3, 2] 1s that they can be evaluated efficiently
on complete information relational databases This 1s
the result of representing these databases by relations

of constants and of the important insight that these
languages express queries whose data-complexity 1s

within PTIME [3, 17, 1 e, they are QPTIME queries
Data-complexity 1s defined to be the complexity of



evaluating the answer as a function of the database size
and not of the query program size, which 1s assumed to
be a fixed parameter It therefore restricts the analysis
by assuming fixed relation arties, 1e, fixed tuple
widths More significantly data-complexity 15 a
reasonable measure to study computation on databases,
given that the number of tuples in a database typically
dominates (by orders of magnitude) the tuple width

and the size of an application program

In order to extend relational databases to capture
more applications one must use some mechamsm for
representing incomplete information databases [4] The
most typical (and notorious) such mechamsm are null
values  This 1s primarnly an algebraic addition to
relations but 1t has very close analogs in logical
databases, eg, [16,13]  There already 1s a large
volume of interesting work on querying incomplete
information databases, for example, 1n this paper we
refer to [4, 11, 18, 9, 10, 16, 13,7, 1] Since we cannot
reasonably survey so broad an area we refer to [10] for
The focus of

most of this work has been a search for the "correct"

a detailed recent treatment of the topic

semantics for query programs applied to incomplete
information databases There has been much less work

on the data-complexity of querying

The

contribution there 1s [16], where the computational

mcomplete

information databases most  significant
complexity of evaluating certain answers to a wide
range of second-order queries on incomplete information
databases 1s 1nvestigated The representation used there

1s one of queries on logical databases

Another (less realistic) extension, which we do not
pursue here, 15 to let the query program size be part of
the nput size Then the complexity of evaluation
increases exponentially [17, 5] This increase 1s due to a
certain incompleteness of relational algebra with respect
to the algebra of polynomials [5] Such problems were
first noted in [8, 12] and have some connections to nulls

and weak universal instances Data-complexity has the
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advantage of avoiding these anomalies, by factoring out
the query program representation and maintaining only

the combinatorics of the uncertainty in the database

The subject of our paper 15 a complete data-
complexity analysis of problems related to representing
and querying databases unth null values Our results

complement and extend both [16] and [10]

Representation
Incomplete information databases are representations of
sets of possble worlds For these representations we
use relations over constants, relations with null values
(Codd-tables) and relations with null values and
(the

conditroned-tables)

conditions most general ones are
Sets of possible worlds are also
represented using QPTIME queries on the worlds
worlds We restrict our attention to QPTIME queries,
since we believe they are a natural closure of what 1s
Our

from complete

expressible via common database query languages
representations form a hierarchy
information relations on constants (a single possible
world), to our simplest case of uncertainty which 1s a
Codd-table, 1e, one relation with null values that are
distinet (this

represents a "simple" set of possible worlds), to

unconstrained  variables, relation
intermediate cases of uncertainty such as a Codd-table
with conditions, and finally to the most general case of
uncertainty which 1s a QPTIME query on conditioned-

tables

We investigate our representation hierarchy from a
data-complexity perspective, 1e, we consider the tuple
width and the query (when different from the identity)
The central

as fixed parameters computational

problem 1s the containement problem "1s a given set

of possible worlds a subset of another given set of
possible worlds?" A special case of this problem is the

membership problem "i1s a given complete database

one of a given set of possible worlds?™ In the

membership problem the complete database 1s



represented by relations with constants, thus it 1s a
singleton set of possible worlds The (superficially) dual
question about representations 1s the umigueness
problem ™1s a given set of possible worlds a singleton

set consisting of a given complete database?"

Our

classification of containement (and thus membership

contribution 1 this area 1s a complete

and uniqueness) with respect to our hierarchy For this
classification we use homomorphism techniques from
from

We use the standard

database theory and logspace-reductions
computational complexity
classes PTIME (polynomial-time),
NP=ZXP, coNP=II,?, P, II,P of the polynomial-time
hierarchy [14], [6]

that

complexity and
The most surprising result here 1s
1t 1s complete in Hzp, whether a set of possible
worlds represented by a Codd-table s a subset of a set
of possible worlds represented by a Codd-table with
only one comjuction of inequalities, (Theorem 4 2)
What 1s surprising 1s that containement 1n our
framework 1s always in H2p and the highest complexity
1s reached with a minmimal amount of expressibility As
will be noted below the simplest form of uncertainty
(Codd-tables) are fairly well behaved computationally
Theorem 42 1ndicates that the addition of a
conjunction of inequalitites (not even equalities) 1s
sufficient for pr-hardness, and 1ts proof has some
difficulty Our other

31, 33, 41,

results for

43)

combinatorial
containement (Theorems are
However,

In the

combinatorially simpler than Theorem 4 2

our lower bounds are syntactically tight
reductions we use positive existential queries (the
project, natural join, union, rename, and positive select
There

queries) and Codd-tables 1s the following

exception

An 1nteresting observation 1s the breakdown of

membership and uniqueness
the

duality between the

problems due to particularities ot our

representation, (Theorem 3 1 vs Theorem 33) In fact

the query required for showing coNP-hardness 1s
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positive existential with % For positive existential
queries the uniqueness problem 1s 1n polynomial-time

This 1s an illustration of the power of £

We would like to make some remarks on our simplest
algebraic mechanmism, namely Codd-tables From a
reduction to bipartite matching (6] 1t follows that
membership 1s 1n polynomial-time for sets of worlds
represented by Codd-tables, (Theorem 31) This
distinguishes Codd-tables from Codd-tables with global
conjunctive conditions and makes our classification
much more meaningful Codd-tables with one global
conjunction of equalities and 1inequalities are our g-
tables These g-tables are similar constructs (modulo
somorphisms) with the logical databases of [16] In fact
Codd-tables implicitly assume that all constants are
distinct, but 1t 1s the additional equalities and
inequalities that give the logical databases of [16] their
expressive power Thus Codd-tables are 1somorphic to

a syntactically restricted form of logical database

We use the term e-table for a g-table with only
aqualities and the term i-table for a g-table with only
inequahties Our e-tables have also been described as
"V-tables" and "natve-tables* [10, 1] We use the term
conditioned-table for the most general tabular
representation that we employ These are g-tables with
local conditions, 1€, conditions attached to the tuples
They are like the "C-tables" of [10]augmented by one
conjuction of equalitites and inequalities, that is the
global condition Wlog, the local conditions of both "C-
tables" and our conditioned-tables are comjunctions of
equalities and 1nequalities Conditioned-tables are less
general than the constructs used 1n [7, 1], where global

conditions are disjuncts of conjuncts

Our representation hierarchy and classification are

illustrated in Figures 1 and 2 respectively

First let us explain Figure 1 A Codd-table (table for

short) 1s a relation with constants and variables, where



no variable occurs twice An i-table 1s a table with a
conjunction of inequalities, these are listed on the right
of the table An e-table 1s a table with a conjunction of
equalities, we do not list these on the right but
incorporate them directly in the table (this 1s standard
practice) Thus a g-table 13 an e-table together with a
conjunction of inequalities, these are listed on the right
of the e-table Finally a conditioned-table (c-table for
short) 1s an extension of a g-table with one more
column This column contains the local conditions,
where a local condition 1s a conjunction of nequalities
and equalities The sets of possible worlds represented
in this fashion naturally result from instantiating the
variables with constants and satisfying the conditions

We also allow views of such sets of possible worlds

Now let us explain Figure 2 For the containement
problem we have five cases depending on whether x-
tables are used x=c,g,e,1,(nil), these are the five cases of
Figure 2 For each one of these cases there are nine
subcases depending on the two given sets of possible
worlds, each one could be of three kinds
(1) a complete database (marked instance on Figure 2),
(n) an 1dentity view of x-tables (marked x-table on
Figure 2),

(m) a view of x-tables (marked view on Figure 2)

In every one of the five cases of Figure 2 we provide the
upper bounds, these are the lines enclosing subcases 1n
PTIME (shaded), NP (solid), coNP (dashed), and II,P
(each whole case) All the subcases "strictly® 1n NP,
coNP, H2p are shown complete 1n their respective
classes For this 1t suffices to show hardness for the
ones on Figure 2 that include references to the relevant

theorems

Querying
The view mechanism for specifying sets of possible
worlds 1s a natural step towards querying our
incomplete information database A first question is the
posarbelety problem  "given a set of tuples and given a

set of possible worlds, 1s there a possible world where
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these tuples are all true? The second question is the

—certainty problem "given a set of tuples and a set of
possible worlds, 1s there a possible world where these
tuples are not all true?™ Its negation 1s the certainty
problem  "given a set of tuples and given a set of
possible worlds are these tuples all true 1n every
possible world?" Note that certainty implies possibility
Also certainty and —(certainty) are different from

possibility and —(possibility)

There are similarities between the possibility and the
membership problems, because the size of the given set
of tuples for possibility can be of the same order of
magnitude as a possible world The difference of course
1s that membership requires the exact equahity with a
possible world If we do not restrict the size of the given
set of tuples we have the wunbounded possibility
32),

computationaly related to membership, (Theorem 3 1)

problem, (Theorem which 15 clearly
If we restrict the size of the set of given tuples we have
the bounded possibility problem This problem seems
more meanmngful than unbounded possibility, because
intwitively 1t corresponds to the practical question ™is
this (small) hist of facts even possible?™ For certainty

the unbounded and bounded versions of the problem

are polynomial-time equivalent (Proposition 2 1)
Bounded certainty corresponds to the practical
question "is this (small) hist of facts certainly true?

We examine the bounded possibility problem in some
detail, (Theorem 5 2) This complements the literature,
where much more attention (perhaps unjustifiably) has
been given to the certainty problem Our algorithm for
bounded possibility uses the algebraic completeness of
conditioned-tables demonstarted 1n [10] We show that
the data-complexity of bounded possibility, given a
query on conditioned-tables, 1s polynomial, provided
that the query 1s positive existential Our lower bounds
on possibility are also new and illustrate the effect both
of "negation" and of "recursien® on data complexity

Namely we extend positive existential queries 1 two



ways, always remaining within QPTIME One extension
1s the first order queries (relational calculus, relational
algebra) and the other 1s the DATALOG queries (Horn
clause recursive rules) Both extensions lead to NP-
completeness even if the conditioned-tables are Codd-
tables The proofs are of some 1nterest, because of the
syntactic simplicity of Codd-tables and the queries

used

There are two main observations in the literature on
certainty The first 1s an algorithmic observation In
its various forms this observation follows from central
results of [10] (based on "C-tables") and [16, 13] (based
on logieal databases) Namely, under particular
syntactic restrictions on conditioned-tables and using
positive queries the certainty question can be handled
exactly as if one had a complete information database
In our framework the syntactic restrictions are g-tables,
the positive queries are the DATALOG queries This leads
to Theorem 511, which we only hist for completeness
of presentation, since 1t 1s due to [10, 18] There are
some differences between certain answers from logical
databases, which might involve variables, and certain
answers from conditioned-tables, which have only
constants These differences do not affect our analysis
The second observation deals with the negative effects
of the many possible instantiations of the null values
In [18] the certainty question for a fixed first order

query on a i-table 1s shown coNP-complete, both
negation and the imequalities are used We stengthen

tlus result to a first order query on a Codd-table
(Theorem 5 1 2)

Let us briefly describe what 1s not covered by our
framework  The null values used here are values
present but unknown, sometimes constrained through
explicit conditions Thus we do not cover null values,
whose presence 1s also unknown {18] Our approach 1s

a "closed world® approach and consistent with

16, 13, 11, 10, 9, 7, 1]

mcomplete information 1s an "open world" approach,

An alternative approach to
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such as, weak universal instances The complexity

results of [8] are motivated by this latter "open world"

approach Our queries are QPTIME, and not higher
order [16] Thus our bounds are all 1n the class IT,P of
the polynomial-time hierarchy [14, 6], (see Proposition

AT

2 1) Vv E

Aa nat haov 1.
uv uvv 1 13

language for "certainty” and *possibility”, [11]

Outline
The detailed definitions are 1n Section 2, and an effort
has been made to minimize notation We now describe
our results and justify why they are tight from a

syntactic perspective

In Section 3 we study the problem of membership,
(Theorem 3 1), the problem of uniqueness, (Theorem
33), and the
(Theorem 3 2)

between Theorems 31 and 32, and an apparent
difference between Theorems 31 and 3 3

problem of unbounbed possibility

There 1s an apparent relationship

The upper
bounds 311, 321, 331, 333, indicate the "nice"
of Codd-tables and the
particularities of the uniqueness problem Let us now
For the

lower bounds 312, 322, we necessarily use an e-table,

computational character

argue why our results are syntactically tight

(see 311,321) For 313,323, we necessarily use an
1-table for the same reasons For 332 we necessarily
use a c-table, (see 331) For the lower bounds with
views 314, 324, we use positive existential queries on
The

exception 1s the query for 334, which necessarily 1s

Codd-tables, our most restricted class of queries

positive existential with 7£, (see 33 3)

In Section 4 we complete the study of the

containement problem  This generalizes membership
and umqueness Our bounds again are matching upper
(Theorem 4 1) and lower bounds (Theorems 4 2 and
43) Using the previous section together with this
section, we exhaustively examine all possibilities for the
containement problem It 1s easy to see that our

theorems completely cover all the cases of Figure 2



Our upper bounds 411, 412, al3, |use
homomorphism arguments and are further indications
of the computational properties of Codd-tables Let us
now argue why our results are syntactically tight Our
lower bounds for views 432, 433 use only positive
existential quertes and Codd-tables Our lower bound
for views 4 3 1 necessarily uses one e-table as superset,
(see 411) Finally Theorem 42 is the hardest
technically and necessarilly uses one

superset, (see 413, 412)  Theorem 42

1-table as a
1s that
"containement 1s Hzp-complete, even 1f the subset
possible worlds are represented by a Codd-table and the

superset possible worlds are represented by an 1-table®

In Section 5 we address the certainty problem
(Theorem 51) and the bounded possibility problem
(Theorem 52) The upper bound 511 is old, the lower
bound 512 1s new The upper bound 521 matches
the lower bounds 52,2, 523  Section 6 has our
conclusions and open questions (In the theorems the

shorthand rep stands for represented)

2. Definitions and Notation
Complete Information Databases

Let the domain be the countably infinite set of
constants {0,1,2, ,c, } A relation R of arty (a) is
some finite subset of the (domain)®, where 0<a
integer A member of a relation 1s therefore a tuple t of
constants (or fact) A complete information database
(or wnstance) I of amty (a,, ,an) 1s a n-vector of
relations (R, ,R ), such that, relation R has anty (a)
1=1, ,n The relation R above 1s thus an 1nstance of
arity (a) A query q of arty (a;, ,a )—(b;, ;b )isa
function from 1nstances to instances of appropriate
arities A query q and an instance I define another
instance q(I) called the q view of I

One example of a query of anty (a;, ,a )—(a;, ,a)1s
the identity function of this arity, when 1ts arity 1s
clear from the context we will also use the symbol - to
denote an identity query Another example of queries

are boolean queries, where m=1 and b,=0  The
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output of boolean queries 1s either the empty set (with
which we encode false) or the nonempty relation of
arity (0) consisting of the empty fact (with which we
encode true) We assume a f{ixed encoding for facts and
instances With some abuse of notation, when we say
that fact t 1s in instance I we presume that the relation
of I, where t belongs, 1s also specified Given a query q
we say that the data-complezity of q 1s the complexity
of the formal language

{ (t,I) | fact t 1s in 1nstance g(I) }

The family of queries QPTIME characterizes all
efficient computations on instances, 1t consists of those
queries whose data complexity 1s 1n PTIME [3] All the
queries examined i1n this paper are in QPTIME This
family contains many subfamilies of independent
immterest In particular, we refer to three of these
subfamilies
(1) The positive existentral queries These are the
simplest, most practical, and most investigated queries
[15] They can be expressed exactly using relational
expressions with operators progect, natural join, union,
renaming, positrve select  We will express them here

using first order formulas with equality, but without

universal quantification or negation In the
conventional fashion, the relation symbols R, will
denote relations R, , which are the finite

interpretations of these symbols Because negation 1s
not allowed # cannot be used The positive existential

queries are further extended by the following two

incomparable subfamilies through "negation" and
"recursion"

(2) The first order quertes These are the domain
relational caleulus queries of [15] We will express them
here using formulas of a first order formulas with
equality, 1n the conventional fashion Since these queries
have negation ¥ may be used

(3) The DATALOG queries These are the queries most
common 1n deductive databases and can be thought of

as Horn clause recursive rules [2] For uniformity they



will be expressed here as fixpoints of positive existential

queries We assume they do not contain 5%

Incomplete Information Databases
An wncomplete information database 13 a set of
instances A central issue for such sets of instances is
their representation A number of algebraic
representations have been developed, so that, sets of
instances can be queried in a fashion similar to
complete information databases, 1e, single instances
We will use the term table (short for Codd-table [4]) for
the simplest algebraic structure wused for such a
representation Based on tables we define tables with
conditions (1e, c-,g-.e-1- tables), as well as, views of
sets of instances We assume that {x,y,z,u,v,w, } 15 a
countably infinite set of variables, disjoint from the set

of constants

A table T of arity (a) 1s the result of replacing some
occurrences of constants in a relation of arity (a) by
distinet variables, 1e, each variable occurs at most
once A tuple t of a table 1s a tuple of constants and

variables appearing as a row of T

A condition 1s a conjunct of equality atoms (of the
form x=y, x=c) and inequality atoms (of the form
x5£y, x5c¢), where the x’s and y’s are variables and the
¢'s are constants Note that we only use conjuncts of
atoms and that the boolean true and false can be

and x7#x

Conditions may be associated with table T in two ways

respectively encoded as atoms x=x
(1) a global condition & 1s associated with the entire
table T

(1) a local condition H(t) 15 associated with one tuple t
of table T

Note that conditions associated 1n table T and its tuple
t may contain variables not appearing in T or t We
omit explicitly histing the condition true, x=x Also the
set of variables appearing 1n a table and 1ts associated

conditions 1s finite because of the finiteness of the table

and of the conjuncts

40

A valuation o 1s a function from variables and
constants to constants, such that, o(c)=c¢ for each
constant A valuation ¢ naturally extends to a tuple t
of a table T (1€, producing fact o(t)) and to a table T
of arty (a) (1e, producing relation oT) of anty (a))
If &, &(t) are conditions associated with T we say that
o satisfies &, S(t) if 1ts assignment of constants to

variables makes formulas @, &(t) true

A c-table (short for conditioned-table) 1s a table T
together with an associated global condition @ and an
associated local condition #(t) for each tuple t of
T Recall that, by convention, a missing condition 1s
atom true A g-table (short for global table) 1s a c-table
without An -table (short for
inequahity table) 1s a g-table, whose global condition
An e-table (short

for equality table) 1s a g-table, whose local condition

local conditions

consists entirely of inequality atoms
consists entirely of equality atoms

Clearly a table 1s

also an e-table and an t-table without global condition

Definition I A given c-table represents a set of
mstances I Let the given c-table consist of, (1) a table
T of artty (a), and (2) a global condition &, and
(3) local conditions &(t), for each tuple t 1n T, then 1t
represents the following set of instances of arity (a)

I={ R | there 1s a valuation o satisfying &, such that,
relation R consists exactly of those facts a(t) for which
o satisfies &(t) }

For the important special case of a table T all
valuations are satisfying and J={ R | R=0(T) for some
o} Also for a g-table I={ R | R=0(T) for some o
satisfying ¢ } Note that, in a g-table, if the global
condition 1s unsatisfiable, (which can be checked 1n
PTIME because a global condition 1s a conjunction),
then I 1s the empty set
the

If there are satisfying
but these

valuations do not satisfy any local condition, (this can

valuations for global conditions,

also be checked 1n PTIME because all one has to do 1s

check a formula

in  disjunctive normal form for



unsatisfiability [6]), then I consists of a relation with

only the empty fact of arity (a)

The above definitions easily generalize to n-vectors of
c-tables, as opposed to 1-vectors, and I's of arity
(ap s3) For this
generalization the sets of variables appearing 1n each
table T,

between these variables can be established through the

as opposed to anty (a)

,T_are parrwise disjoint, relationships

n
conditions

Definition g(I) Let I be defined using an n-vector
of c-tables of arity (al, ,an) and let q be a QPTIME
query of arity (a, 2, )—(b;, b ), then q() is the
following set of instances of arity (by, ,b )
q(N={ q(I) | I instance in I}

Our most general representation of a set of instances
1s thus a set of news of I through q This i1s the most
general case because of the possibility of using i1dentity
queries of any arity Finally, note that our possible
instances (worlds) are "closed worlds" since they
correspond to valuations of tables all of whose tuples

are specified 1n our representations

The Problems
We now describe some basic computational questions
about 1ncomplete information databases All of these
questions can be answered in PTIME for complete
information databases, because the queries used are in

QPTIME

If q4(,) and q(J) are two sets of instances the first
obvious question 1s whether one set 1s contained 1n the
other This 1s the containement problem CONT We
assume that there are no variables 1n common 1n these
two representations If Io happens to be the singleton
set {I)} represented by a given instance I then wlog we
may assume that q; 1s an 1dentity query, (because qO(IO)
may be computed in PTIME) In this case we have the
membership problem MEMB, 1 ¢, 1s a given instance I

a possible instance of q(J) The dual case 15 where I1s
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represented by instance I For this dual case we have
the uniqueness problem UNIQ, 1e, 1s every possible
instance of qy(J;) an element of {I}

The three questions above deal with entire instances
What about possible or certain occurrences of patterns
10 a set 1n instances? If P 1s a given set of facts of size k
we typically ask
Do the facts in P appear together in some possible
instance, this 1s the possibility problem POSS
Do the facts in P appear 1n all possible worlds, this 1s
the certainty problem CERT
Since our possible worlds descriptions include views, the
POSS and CERT problems involve querying incomplete

databases

Tables and conditions are the parts of the inputs that

contribute to asymptotic growth, 1e, they are
unbounded, for this we use capital letters, (eg, T, &,
P(t)) We also use capital letters for sets of facts, (e g,
R, I, 1, and P), which can be of unbounded size In our
framework queries, and therefore arities, are fizxed
parameters, for this we use small letters, (e g, q,2,b) A
single fact and tuple in this frameowrk has fixed width,
for this we use small letter t We use * mnstead of size k

if k 1s unbounded The formal definitions follow

CONT(qq,q)
parameter q,, q

input c-tables representing I, I

question qq(1,) C q(I)?

MEMB(q)
parameter q
wnput c-tables representing I, instance I,

question 1s Iy n set g(7) ?

UNIQ(q,)
parameler q
snpul c-tables representing IO’ instance I

question 1s qy(1;) singleton set {I} ?



POSS(k,q}
parameter k,q
snput c-tables representing I, set of facts P of size k
questzon 311 q(I), st, all facts of P are facts of 1 ?
POSS(*, q) 1s the same question where k 1s no longer a

parameter

CERT(k,q)
parameter k,q
wnput c-tables representing I, set of facts P of size k

question VI 1n q(I), all facts of P are facts of I ?

CERT(*, q) 1s the same question where k 1s no longer a

parameter

m

1
lne

cructal difference between complete and
incomplete information 1s the large number of possible
valuations for the latter case Because of the fimite
number of variables in a set of c-tables only a finite
number of valuations are nomsomorphic, however, the
number of such valuations grows exponentially in the
input size By simple reasoning about all valuations and
guessing particular valuations we have some easy upper

bounds

Proposition 2.1 For any queries 9y q I QPTIME
we have the following (1) CONT(qO,q) 1S 10 H2p,
(2) MEMB(q) 1s 1n NP, (3) UNIQ(q,) 1s 1n coNP,
(4) POSS(*,q) 1s in NP, (5) CERT(*,q) 1s in coNP,
(6) CERT(*,q) 1s polynomially equivalent to CERT(1,q)

For (1) we reason that every valuation for I
corresponds to a valuation for I, V3 quantification For
(2) and (4) we the

For (3) and (5) we reason about all

guess right valuation, 3
quantification
valuations, V quantification In order to answer
CERT(k,q) all we have to do 1s repeat CERT(1,q) k
times, this gives us (6) Note that this last argument
does not hold for POSS(k,q), because POSS(1,k) might
return "yes", but each "yes" might refer to a different

possible instance
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3. Membership, Uniqueness and
Unbounded Possibility

Woe ctart unt a eclagaificatioan far the memharghin
¥YU oOvai v ¥Wivili & Vviaoolilivavivii 1ul vl luvlilivclt DLIIP
problem  Note that tables have a polynomial-time

membership problem This 1s like instances and unlike
e-tables, 1-tables, and views of tables The reduction
for Theorem 3 1 4 1s complicated by the requirement for

a positive existential query on a single table

Theorem 3.1 Let I be as i the defimtion of
MEMB, then
(1) MEMB(-) 1s in PTIME if I 1s represented by a
vector of tables
(2) MEMB(-) 1s NP-complete even if I 1s represented by
a single e-table
(3) MEMB(-) 1s NP-complete even 1f I 1s represented by
a single 1-table
(4) 3q positive existential query, st, MEMB(q) 1s NP-

complete even if I1s represented by a single table

Proof Sketch (1) This upper bound 1s derived by a
reduction to the problem of bipartite graph matching
[6] Critical use 1s made of the fact that all occurrences
of wvariables are distinct symbols Given that the
membership problem in general 1s in NP (Proposition
2 1) the rest of the proof consists of reductions of NP-
hard problems to MEMB
(2) Reduction of graph 8-colorability [6] using an arity
two e-table and a size six 1nstance

(3) Reduction of graph 3-colorability using an arity one

1-table and a size three instance

(4) Reduction of graph 3-colorability using an arity (6)
table, an unbounded size instance of arity (3), and the
query q of arity (6)—(3) described by the following
formula

q = { xvz | ¢(xyz)Vi(xyz) }, where d(xyz) 18
x=0Ay=0A3x, ¥, [R(1%;X,X,%,2)AR(0000x,x,)]

P(xyz) 1s

Ix, x5 [R{Ixx;x,Xg¥)AR(Ixx, X xc2)] V
[R(1xx,%,%,¥)AR(1x X xx,2)] V



[R(1xxqxx,y)AR(1xx X x,2)| V
[R(1xyxgxx, y)AR(1x X XX, 2)]
(QED)

The next theorem indicates how similar unbounded
possibility is to membership, from a computational
point of view The two problems are by defimtion

different problems

Theorem 3.2 Let I be as 1n the defimition of POSS,
then
(1) POSS(*,-) 1s 1n PTIME if I 15 represented by a
vector of tables
(2) POSS(*,-} 1s NP-complete even 1f I 1s represented by
a single e-table
(3) POSS(*,-) 1s NP-complete even if I 1s represented by
a single 1-table
(4) 3q positive existential query, st, POSS(*,q) 1s NP-

complete even if I 1s represented by a single table

Proof Sketch (1) The argument 1s a variation on

that of Theorem 311
(2) Reduction of 3CNF satisfiablity [6] using an arity

three e-table and an unbounded set of facts

(3) Reduction of 3CNF satisfiability using an arty two
-table and an unbounded set of facts

(4) Reduction and query are identical with those of
Theorem 314 (QED)

The last theorem of this section deals with uniqueness,
which although dual to membership from a definition
point of view, 1s quite different from membership Note

the role of 7%

Theorem 33 Let I, be as in the defimtion of
UNIQ, then
(1) UNIQ(-) 15 mn PTIME if I, 1s represented by a
vector of g-tables
(2) UNIQ(-) 1s coNP-complete even 1f I, 1s represented
by a single c-table
(3) UNIQ(q) 18 1n PTIME if q 1s positive existential and

l'o 13 represented by a vector of e-tables
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(4) 3q positive existential with #, st, UNIQ(q) 1s
coNP-complete even if I, 1s represented by a single
table

Proof Sketch (1) For this part the proof i1s by
inspection of the matrix representation of the g-tables
(2) Reduction of 3DNF tautology [6] using an arity one
table and an instance of size two

(3) For this we use [10] to get a representation of all
This

representation can be constructed and because of lack

possible worlds resulting from the query q

of negation can be tested trivially for uniqueness

(4) Reduction of graph non 8-colorability using an arity
three table, the arity one instance {0,1}, and the query
q of arity (3)—(1) described by the following formula

q = {v | wv=0 Vv (v=1 A
[R(1xy)AR(0xz)AR(0yz)])

V (v==1 A Jyz [R(Oyz)Az5£1Az5#£2A25#438])
(QED)

Ixyz

4. Containement
For our upper bounds we use homomorphisms to

refine Proposition 2 1

Theorem 4.1 Let the imnputs I, be as i the
defimtion of problem CONT, then
(1) CONT(qy-) 1s 1n coNP if I 18 represented by a
vector of tables
(2) CONT(-,-) 15 1n NP if I 1s represented by a vector
of g-tables and I by a vector of e-tables
(3) CONT(-,-) 1s in PTIME 1f I 1s represented by a

vector of g-tables and I by a vector of tables

Proof Sketch (1) Consider the negation of this
problem This negation 1s in NP because all one has to
do 1s guess a valuation disproving the containement and
do a PTIME computation to produce an instance
disproving the containement  Finally use Theorem
311 since I 1s represented by a vector of tables and
membership then 1s in PTIME

(2) First incorporate the equalities of the conditions 1n



the representation of I, Now think of the variables 1n
this representation as distinct constants, this gives rise

to instance I, Using a homomorphism argument
reduce the problem to MEMB(-), where the input
instance 1s Io, and employ Theorem 312

(3) Use the same argument as the previous case, but
now employ Theorem 311 since I 1s represented by a
vector of tables and membership then 1s in PTIME
(QED)

Our lower bounds together with the other results of
Section 3 and this section, exhaustively cover all cases
of Figure 2 In the outline (Section 1) we argued why
these are syntactically tight lower bounds Theorem 4 2

18 quite interesting given 412 and 41 3

Theorem 4.2 Let the mnputs I, I be as in the
defimtion of problem CONT then  CONT(--) 1s
Hzp-complete even if J1s represented by a single 1-table

and I0 by a single table

Proof Sketch  Reduction from the appropriate
version of the quants fied boolean formula [14] problem
V33CNF Unbounded size tables of arty (4) are used

Encoding 3CNF satisfiability in the i-table (for I) 1s
straightforward What 1s more interesting 1s using the
table (for I;) to force the assignments to variables The
following example captures the mtwtion for this
mechanism

Let us examine a table of anty (3) consisting of tuples
{001, 122, 133, 1xx,} and

an 1-table of arity (3) consisting of tuples {001, 122,
133, vzz,, uyy,} where uFAVAZFESAYFAY,

The relations described by the first table are a subset of
relations described by the second table, moreover, @) of
X=X, then u==0 and v==1 1n the equal instance of the 1-
table, (1) 1f x=374x, then u=1 and v=0 in the equal
instance of the 1-table, (1) x#3, x7#x, then u=1,v=0
and u==0,v=1 are both possible 1n equal instances of
the -table This construction provides the necessary

encoding for V quantification (QED)

The remaining cases are covered by Theorem 4 3 Its
proof involves reduction technmiques, which are simpler
than those used for Theorem 4 2, and we therefore omit

them 1n this abstract

Theorem 4.3 Let the mputs I,J be as in the
defimtion of problem CONT and let I, be represented
by a single table, then
(1) dq, positive existentia' query, st, CONT(qy-) 18
H2p-complete even if J1s rep by a single e-table
(2) 3q, positive existential query, st, CONT(qy,-) 18
coNP-complete even if Jis rep by a single table
(3) 3q positive existential query, st, CONT(-,q) 1s
Hzp-complete even if I1s rep by a single table

5. Certainty vs Bounded Possibility

Much work has already been done in the area of
searching for certain answers In particular, when the
query 18 positive and the incomplete database 1s
represented as a g-table [13, 16, 10] The upper bound
of Theorem 511 follows directly from the central
results of {16, 10, 13] and 1s only included here for
completeness of presentation The efficient algorithm
corresponds to manipulating the matrix representation
of the g-tables (1 e, with equalities incorporated) as if
they were complete information databases The lower
bound of Theorem 512 15 a refinement of the lower
bound n (16} (also, Theorem 5, IBM Res Rep RJ

4874) from an e-table to a table representation

The problem of searching for possitble answers of
bounded size has received less attention The upper
bound of Theorem 521 1s a consequence of the fact
that c-tables are representation systems in the sense of
[10] and positive existential queries can be incorporated
expheitly 1in the c-table representation, without any
exponential growth This growth may be unavoidable
for first order and DATALOG queries as indicated by the
lower bounds 1n Theorems 522 and 523 Once again
the interest of the lower bounds lies 1n the syntactic

constraints, eg, the query of 523 uses monadic



fixpoints on (unconditioned) tables

Theorem 51 Let I be as in the defimtion of
CERT(*,q), then
(1) [18, 10] If q a DATALOG query and I 1s represented
by a vector of g-tables then CERT(*,q) 1s in PTIME
(2) 3q first order query, st, CERT(*,q) 1s coNP-

complete even if I1s represented by a table

Proof Sketch (2) Reduction of 3DNF tautology
Let {C } be the given set of clauses and {X]} the given

set of variables, then construct a table T with variables
{vl’k} and tuples the set {1vl’k31 | X, appears 1n
position k of C} U {wv, 10 | —-XJ appears 11 position k
of C} The query asked 1s a boolean query q = {c]|¢
} We want the fact ¢ to be certain 1ff the original

3DNF formula 1s a tautology, for this ¢ 1s as follows

[Fxyzvx,y,2,v,
\
VxyzvIx,y,z,v, Rxyzv) = {R(x;y,2,v|) A x=x; A
((yl=1/\v1=1) v (yl%l/\v1=o))}]

(QED)

R(xyzv)AR(x,y,2,v;)Az=2,AY#Y,]|

Our final theorem 1s about bounded possibility

Theorem 5.2 Let I be as i the defimtion of
POSS(k,q), then
(1) If q 15 a positive existential query and I 1s
represented by a vector of c-tables then POSS(k,q) 1s in
PTIME
(2) 3q first order query, st, POSS(1,q) 18 NP-complete
even if Iis represented by tables
(3) 3q DATALOG query, st , POSS(1,q) 1s NP-complete

even 1f Iis represented by tables

Proof Sketch

existential view of c-tables into other equivalent c-

(1) Transform the given positive

tables, that are not bigger than a polynomial of the size
of the input This can be done because of the positivity

of the queries and because of their fixed length It 1s
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then simple to find whether a bounded pattern 1s
possthle

(2) Sumular to the reduction of Theorem 51 2

(3) We can show that POSS(1,transitive-closure) 1s NP-
complete for a g-table representation, but 1t 1s 1n
PTIME for a table representation So instead, we use a
query of anty (2,2,1)—(1)

0,(R) = {x | R(V3yz [ROIAR@AR, (xy)ARy(x2)]}
q with input instance (Ro’Rl’Rz) 1s the least fixpoint of
q;, which contains R, (QED)

8. Conclusions and Open Questions

We have investigated the data complexity of
incomplete information databases We have focused on
views of tabular representations, from the very simple
tables to the more complex c-tables In this setting we
analysed membership,

containement, uniqueness,

possibility, and certainty problems

Many of our lower bounds are 1n terms of particular
hard queries, are there syntactic characterizations for
easy queries in each case? In particular good
characterizations for the MEMB lower bound Theorem
314 would be interesting These would be positive
existential views of Codd-tables whose membership

questions are 1n PTIME
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