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Abstract: We represent a set of passable worlds 

usmg an mcomplete mformatlon database The 

representation techniques that we study form a 

hierarchy, which generahzes relations of constants This 

hierarchy ranges from the very simple Codd-table, (1 e , 

a relation of constants and dlstmct variables called 

nulls, which stand for values present but unknown), to 

much more complex mechamsms mvolvmg views on 

condltloned-tables, (I e , queries on Codd-tables together 

with condltlons) The views we consider are the queries 

that have polynomial data-complexity on complete 

mformatlon databases Our condltlons are ConJunctIons 

of equahtles and mequahtles 

(1) We provide matchmg upper and lower bounds on 

the data-complexity of testmg contaznement, 

membershzp, and unaqueness for sets of possible worlds 

and we fully classify these problems with respect to our 

representation hierarchy The most surprlslng result in 

this clssslficatlon 1s that It IS complete m flzp, 

whether a set of possible worlds represented by a Codd- 

table IS a subset of a set of possible worlds represented 

by a Codd-table with one conJuctlon of mequahtles 

(2) We investigate the data-complexity of querymg 

incomplete mformatlon databases We examine both 

sskmg for certaan facts and for posszble facts Our 

approach IS algebraic but our bounds also apply to 

logical databases We show that askmg for a certam 

fact IS coNP-complete, even for a fixed first order query 

on a Codd-table We thus strengthen a lower bound of 

[lS], who showed that this holds for a Codd-table with 

a conJunction of inequalities For each fixed posltlve 

exlstentlal query we present a polynomial algorithm 

solvmg the bounded possible fact problem of this query 

on condltloned-tables We show that our approach IS, m 

a sense, the best possible, by derlvmg two NP- 

completeness lower bounds for the bounded possible 

fact problem when the fixed query contams either 

negation or recursion 
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1. Introduction 

A fundamental property of common database query 

languages, such as, relatlonal calculus, relatlonal 

algebra, [15], and Horn clause recursive rules or 

DATALOG [3, 21 1s that they can be evaluated efficiently 

on complete mformatlon relational databases This IS 

the result of representmg these databases by relatzons 

of constants and of the Important insight that these 
languages express queries whose data-complexaty 1s 

wlthm PTIME [3, 171, 1 e , they are QPTIME queries 

Data-complexity IS defined to be the complexity of 
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evaluatmg the answer as a function of the database size 

and not of the query program srze, which IS assumed to 

be a fixed parameter It therefore restrrcts the analysis 

by assummg fixed relation arltles, 1 e , fixed tuple 

widths More slgmficantly data-complexrty 1s a 

reasonable measure to study computation on databases, 

given that the number of tuples m a database typically 

dominates (by orders of magnitude) the tuple width 

and the sme of an apphcatlon program 

In order to extend relatronal databases to capture 

more apphcatlons one must use some mechanism for 

representing incomplete mformatlon databases [4] The 

most typical (and notorrous) such mechamsm are null 

value8 Thus 1s prrmarlly an algebraic addition to 

relations but It has very close analogs m logical 

databases, e g , [10, 131 There already IS a large 

volume of interesting work on querying mcomplete 

mformatlon databases, for example, m this paper we 

refer to [4, 11, 18, 9, 10, 16, 13, 7, l] Since we cannot 

reasonably survey so broad an area we refer to [lo] for 

a detarled recent treatment of the topic The focus of 

most of this work has been a search for the “correct” 

semantics for query programs applied to incomplete 

mformatlon databases There has been much leas work 

on the data-complexrty of querying mcomplete 

mformatlon databases The most srgmficant 

contrrbutron there 1s 1161, where the computatronal 

compiexlty of evaluating certam answers to a wade 

range of second-order queries on mcomplete information 

databases IS mvestrgated The representation used there 

1s one of querres on logmal databases 

Another (less reahstrc) extension, which we do not 

pursue here, IS to let the query program srze be part of 

the input srze Then the complexity of evaluation 

mcreases exponentrally [17, 51 This increase 1s due to a 

certain mcompleteness of relatronal algebra wrth respect 

to the algebra of polynomials [5] Such problems were 

first noted m [S, 121 and have some connections to nulls 

and weak universal instances Data-complexity has the 

advantage of avoiding these anomahes, by factoring out 

the query program representatron and mamtaming only 

the combmatorms of the uncertainty m the database 

The subJect of our paper 1s a complete data- 

complexa@ analysts of problems related to representzng 

and gueryzng databases wzth null values Our results 

complement and extend both [10] and [lo] 

Representation 

Incomplete mformatlon databases are representations of 

sets of po88%ble worlds For these representations we 

use relatrons over constants, relatrons with null values 

(Codd-tables) and relations with null values and 

condrtlons (the most general ones are 

condataoned-tables) Sets of possible worlds are also 

represented using QPTIME queries on the worlds 

worlds We restrict our attention to QPTIME querres, 

since we believe they are a natural closure of what 1.r 

expressible via common database query languages Our 

representations form a hrerarchy from complete 

information relations on constants (a smgle possrble 

world), to our simplest case of uncertamty whmh IS a 

Codd-table, 1 e , one relation with null values that are 

drstmct unconstrained varrables, (this relation 

represents a “simple” set of possrble worlds), to 

intermediate cases of uncertainty such as a Codd-table 

with condrtlons, and finally to the most general case of 

uncertainty which IS a QPTIVE query on condltloned- 

tables 

We mvestrgate our representation hierarchy from a 

data-complexity perspective, 1 e , we consider the tuple 

wrdth and the query (when different from the Identity) 

as fixed parameters The central computational 

problem 1s the contaznement problem “IS a given set 

of possrble worlds a subset of another grven set of 

possible worldsr” A specral case of this problem IS the 

membershzp problem “IS a grven complete database 

one of a given set of possible worlds?” In the 

membership problem the complete database 1s 



represented by relations with constants, thus It IS a 

singleton set of possible worlds The (superficially) dual 

questlon about representations IS the unzqveness 

problem “IS a given set of possible worlds a smgleton 

set conslstmg of a given complete database?” 

Our contrlbutlon m this area IS a complete 

classlficatlon of contamement (and thus membership 

and uniqueness) with respect to our hierarchy For this 

classlficatlon we use homomorphism techmques from 

database theory and logspace-reductions from 

computatlonal complexity We use the standard 

complexity classes PTIME (polynomial-time), and 

NP=C,P, coNP=IIIP, .E2P, KfzP of the polynomial-time 

hierarchy [14], [S] The most surprlsmg result here IS 

that It IS complete In $P, whether a set of possible 

worlds represented by a Codd-table IS a subset of a set 

of possible worlds represented by a Codd-table with 

only one conJuctlon of mequahtles, (Theorem 4 2) 

What 1s surprlsmg IS that contamement m our 

framework IS always m L$p and the highest complexity 

IS reached with a mmlmal amount of expresslblhty As 

~111 be noted below the simplest form of uncertainty 

(Codd-tables) are fairly well behaved computatlonally 

Theorem 4 2 mdlcates that the addition of a 

conJunction of mequahtites (not even equalities) 1s 

sufficient for ZIpP-hardness, and its proof has some 

combmatorlal difficulty Our other results for 

contamement (Theorems 3 1, 3 3, 4 1, 4 3) are 

combmatorlally simpler than Theorem 4 2 However, 

our lower bounds are syntactlcally tight In the 

reductions we use positive exlstentlal queries (the 

proJect, natural Join, umon, rename, and posltlve select 

queries) and Codd-tables There IS the followmg 

exception 

An mterestmg observation 1s the breakdown of 

duahty between the membershlp and uniqueness 

problems due to the partlcularltles ot our 

representation, (Theorem 3 1 vs Theorem 3 3) In fact 

the query required for showmg coNP-hardness 1s 

posltlve exlstentlal with # For posltlve exlstentlal 

queries the umqueness problem IS m polynomial-time 

This IS an dlustratlon of the power of # 

We would like to make some remarks on our simplest 

algebraic mechamsm, namely Codd-tables From a 

reduction to bzpartzte matchzng [s] It follows that 

membershlp 1s m polynomial-time for sets of worlds 

represented by Codd-tables, (Theorem 3 1) This 

dlstmgulshes Codd-tables from Codd-tables with global 

conJunctlve condltlons and makes our clssslficatlon 

much more meaningful Codd-tables with one global 

conJunctlon of equahtles and mequahtles are our g- 

tables These g-tables are slmllar constructs (modulo 

lsomorphlsms) with the logical databases of [X3] In fact 

Codd-tables lmphcltly assume that all constants are 

dlstmct, but It 1s the addItIona equahtles and 

mequahtles that give the loglcal databases of [lS] their 

expressive power Thus Codd-tables are isomorphic to 

a syntactlcally restricted form of loglcal database 

We use the term e-table for a g-table with only 

squallties and the term r-table for a g-table with only 

mequahtles Our e-tables have also been described as 

“V-tables” and “naive-tables” [lo, l] We use the term 

condltloned-table for the most general tabular 

representation that we employ These are g-tables with 

local condltlons, I e , condltlons attached to the tuples 

They are hke the “C-tables” of [lO]augmented by one 

conJuctlon of equahtltes and mequahtles, that 1s the 

global condltlon Wlog, the local condltlons of both *‘C- 

tables” and our condltloned-tables are conJunctlons of 

equalities and mequahtles CondItIoned-tables are less 

general than the constructs used m [7, 11, where global 

condltlons are dlsjuncts of conJuncts 

Our representation hierarchy and classlficatlon are 

Illustrated m Figures 1 and 2 respectively 

First let us explam Figure 1 A Codd-table (table for 

short) 1s a relation with constants and variables, where 
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no variable occurs twice An l-table IS a table with a 

conJunctIon of mequahtles, these are hsted on the right 

of the table An e-table 1s a table with a conJunctIon of 

equahtles, we do not hst these on the right but 

mcorporate them directly 1x1 the table (this IS standard 

practice) Thus a g-table IS an e-table together with a 

conJunctIon of mequahtles, these are listed on the right 

of the e-table Fmally a condltloned-table (c-table for 

short) 1s an extension of a g-table with one more 

column This column contams the local condltlons, 

where a local condltlon IS a conJunctIon of mequahtles 

and equahtles The sets of poaslble worlds represented 

m this fashion naturally result from mstantlatmg the 

variables with constants and satlsfymg the condltlons 

We also allow views of such sets of possible worlds 

NOW let us explam Figure 2 For the contamement 

problem we have five cases dependmg on whether x- 

tables are used x=c,g,e,l,(ml), these are the five cases of 

Figure 2 For each one of these cases there are rune 

subcsses depending on the two given sets of possible 

worlds, each one could be of three kinds 

(I) a complete database (marked instance on Figure 2), 

(II) an ldentlty view of x-tables (marked x-table on 

Figure 2), 

(111) a view of x-tables (marked view on Figure 2) 

In every one of the five cases of Figure 2 we provide the 

upper bounds, these are the lines enclosing subcases m 

PTIh4E (shaded), NP (sohd), coNP (dashed), and nZp 

(each whole case) All the subcases “strictly” m NP, 

cow, q are shown complete m their respective 

classes For this It suffices to show hardness for the 

ones on Figure 2 that Include references to the relevant 

theorems 

Querying 

The view mechamsm for speclfymg sets of possible 

worlds IS a natural step towards querymg our 

incomplete mformatlon database A first questlon IS the 

possabalaty problem “given a set of tuples and given a 

set of possible worlds, IS there a possible world where 

these tuples are all true?” The second question IS the 

-certuznty problem “given a set of tuples and a set of 

possible worlds, 1s there a possible world where these 

tuples are not all true?” Its negation IS the certaanty 

problem “given a set of tuples and given a set of 

possible worlds are these tuples all true In every 

possible world?” Note that certamty lmphes posslblhty 

Also certamty and -(certainty) are different from 

posslblhty and l(posslblhty) 

There are slmllarltles between the posslblhty and the 

membership problems, because the size of the given set 

of tuples for posslblhty can be of the same order of 

magnitude as a possible world The difference of course 

1s that membership reqmres the exact equality with a 

possible world If we do not restrict the size of the given 

set of tuples we have the unbounded posslblhty 

problem, (Theorem 3 2), which IS clearly 

computatlonaly related to membership, (Theorem 3 1) 

If we restrict the size of the set of given tuples we have 

the bounded posslblhty problem This problem seems 

more meanmgful than unbounded posslblhty, because 

mtultlvely it corresponds to the practical questlon ” 1s 

this (small) hst of facts even possible?” For certainty 

the unbounded and bounded versions of the problem 

are polynomial-time equivalent (Proposition 2 1) 

Bounded certainty corresponds to the practical 

question “IS this (small) hst of facts certainly true?” 

We examme the bounded posslblhty problem m some 

detail, (Theorem 5 2) This complements the hterature, 

where much more attention (perhaps UnJustlfiably) has 

been given to the certamty problem Our algorithm for 

bounded posslblhty uses the algebraic completeness of 

condltloned-tables demonstarted m [lo] We show that 

the data-complexity of bounded posslblhty, given a 

query on condltloned-tables, IS polynomial, provided 

that the query IS posltlve exlstentlal Our lower bounds 

on posslblhty are also new and Illustrate the effect both 

of “negation” and of “recurslonH on data complexity 

Namely we extend positive exlstentlal queries m two 
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ways, always remannng wrthm QPTIME One extension 

IS the first order querres (relattonal calculus, relatronal 

algebra) and the other IS the DATALOG querres (Horn 

clause recursrve rules) Both extensions lead to NP- 

completeness even If the condrtroned-tables are Codd- 

tables The proofs are of some Interest, because of the 

syntactm slmphclty of Codd-tables and the querres 

used 

There are two man-r observations m the literature on 

certainty The first IS an algorlthmlc observation In 

Its varrous forms thus observation follows from central 

results of [lo] (based on “C-tables”) and [M, 131 (based 

on logmal databases) Namely, under partmular 

syntactm restrmtlons on condltroned-tables and using 

posltlve queries the certamty question can be handled 

exactly as if one had a complete mformatton database 

In our framework the syntactic restrmtlons are g-tables, 

the positive querres are the DATALOG queries This leads 

to Theorem 5 1 1, which we only hst for completeness 

of presentatron, smce it 1s due to [lo, 1131 There are 

some differences between certam answers from logical 

databases, whmh mrght involve variables, and certain 

answers from condltroned-tables, whmh have only 

constants These drfferences do not affect our analysm 

The second observation deals wrth the negative effects 

of the many posstble mstantratrons of the null values 

In [16] the certainty questron for a fixed first order 

query on a l-table IS shown coNP-complete, both 

negatron and the mequahtles are used We stengthen 

thus result to a first order query on a Codd-table 

(Theorem 5 1 2) 

Let us briefly describe what 1s not covered by our 

framework The null values used here are values 

present but unknown, sometimes constramed through 

exphclt condrtrons Thus we do not cover null values, 

whose presence IS also unknown 1181 Our approach IS 

a “closed world” approach and consistent wrth 

116, 13, 11, 10, 9, 7, l] An alternative approach to 

mcomplete mformatlon IS an “open world” approach, 

such as, weak universal instances The complexity 

results of [8] are motivated by this latter “open world” 

approach Our queries are QPTIME, and not hrgher 

order [M] Thus our bounds are all m the class $p of 

the polynomial-time hrerarchy [14, 61, (see ProposItron 

2 1) We do not have exphclt operators m the query 

language for “certarnty” and “posstbihty”, [ll] 

Outline 

The detailed defimtlons are m Section 2, and an effort 

has been made to mlmmlze notation We now describe 

our results and Justrfy why they are ttght from a 

syntactm perspective 

In Section 3 we study the problem of memhdnp, 

(Theorem 3 l), the problem of umqueness, (Theorem 

3 3), and the problem of unbounbed possrblllty 

(Theorem 3 2) There 1s an apparent relatlonshrp 

between Theorems 3 1 and 3 2, and an apparent 

drfference between Theorems 3 1 and 3 3 The upper 

bounds 3 1 1, 3 2 1, 3 3 1, 3 3 3, mdmate the “mce” 

computatlonal character of Codd-tables and the 

partmularltres of the umqueness problem Let us now 

argue why our results are syntactmally tight For the 

lower bounds 3 1 2, 3 2 2, we necessarily use an e-table, 

(see 3 1 1, 3 2 1) For 3 1 3, 3 2 3, we necessarrly use an 

l-table for the same reasons For 3 3 2 we necessarrly 

use a c-table, (see 3 3 1) For the lower bounds with 

views 3 1 4, 3 2 4, we use posltlve exmtentlal queries on 

Codd-tables, our most restricted class of querres The 

exceptron IS the query for 3 3 4, whmh necessarily 1s 

posrtrve exlstentral wrth #, (see 3 3 3 ) 

In Sectron 4 we complete the study of the 

contamement problem Thus generahzes membershlp 

and umqueness Our bounds again are matchmg upper 

(Theorem 4 1) and lower bounds (Theorems 4 2 and 

4 3) Using the prevrous section together with this 

section, we exhaustrvely examme all possrbrhtres for the 

contamement problem It 1s easy to see that our 

theorems completely cover all the cases of Figure 2 
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our upper bounds 4 1 1, 4 1 2, 4 1 3, use 

homomorphism arguments and are further mdlcatlons 

of the computational properties of Codd-tables Let us 

now argue why our results are syntactlcally tight Our 

lower bounds for views 4 3 2, 4 ? 3 use only positive 

existential queries and Codd-tables Our lower bound 

for views 4 3 1 necessarily uses one e-table a+~ superset, 

(see 411) Fmally Theorem 4 2 IS the hardest 

techmcally and necessarily uses one I-table a~ a 

superset, (see 4 1 3, 4 1 2) Theorem 4 2 1s that 

“contamement IS $P-complete, even if the subset 

possible worlds are represented by a Codd-table and the 

superset possible worlds are represented by an l-table” 

In Section 5 we address the certainty problem 

(Theorem 5 1) and the bounded posslblllty problem 

(Theorem 5 2) The upper bound 5 1 1 IS old, the lower 

bound 5 12 1s new The upper bound 5 2 1 matches 

the lower bounds 5 2.2, 52 3 Section 6 has our 

conclusions and open questions (In the theorems the 

shorthand rep stands for represented) 

2. Definitions and Notation 

Complete Information Databases 

Let the domaan be the countably mfimte set of 

constants {0,1,2, ,c, } A relatzon R of arzty (a) IS 

some fan&e subset of the (domam)B, where O<a 

integer A member of a relation IS therefore a tuple t of 

constants (or fact) A complete anformatzon database 

(or anstance) I of anty (al, ,a,) is a n-vector of 

relations (RI, ,RJ, such that, relation Rn has arlty (a,) 

1=1, ,n The relation R above IS thus an instance of 

arlty (4 A wry q of amty (aI, ,an)-+(bl, &,I 1s a 

function from instances to Instances of appropriate 

aritles A query q and an mstance I define another 

instance q(1) called the q 2nezu of I 

One example of a query of arlty (aI, ,a,)+(al, ,aJ 1s 

the zdentzty function of this anty, when Its arrty IS 

clear from the context we ~111 also use the symbol - to 

denote an Identity query Another example of queries 

are boolean queries, where m=l and b,=O The 

output of boolean queries 1s either the empty set (with 

which we encode fake) or the nonempty relation of 

arlty (0) conslstmg of the empty fact (with which we 

encode true) We assume a fixed encodmg for facts and 

Instances With some abuse of notation, when we say 

that fact t 1s m instance I we presume that the relation 

of I, where t belongs, 1s also specified Given a query q 

we say that the data-complexaty of q IS the complexity 

of the formal language 

{ (t,I) 1 fact t is In mstance q(1) } 

The family of queries QPTME characterizes all 

efficient computations on Instances, it consists of those 

queries whose data complexity 1s m PTIME [3] All the 

queries examined m this paper are m QPTIMJX This 

family contains many subfamilies of independent 

interest In particular, we refer to three of these 

subfamlhes 

(1) The posatawe ezutentaal queries These are the 

simplest, most practical, and most investigated queries 

[15] They can be expressed exactly using relatlonal 

expresslons with operators prgect, natural Joan, unaon, 

renamang, poeatave select We will express them here 

using first order formulas with equality, but without 

universal quantification or negation In the 

conventional fashion, the relation symbols R, WI11 

denote relations R, , which are the finite 

mterpretatlons of these symbols Because negation 1s 

not allowed # cannot be used The positive existential 

queries are further extended by the followmg two 

incomparable subfamlhes through “negation” and 

“recursion” 

(2) The farst order queries These are the domaan 

relataonal calculus queries of [15] We ~111 express them 

here usmg formulas of a first order formulas with 

equality, In the conventional fashion Since these queries 

have negation # may be used 

(3) The DATALOG queries These are the queries most 

common m deductawe databases and can be thought of 

as Horn clause recursive rules [Z] For umformity they 
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~111 be expressed here as fixpomts of posltlve existential 

queries We sssume they do not contain # 

Incomplete Information Databases 

An ancomplete anjormataon database IS a set of 

instances A central issue for such sets of instances IS 

their representation A number of algebraic 

representations have been developed, so that, sets of 

instances can be queried m a fashion similar to 

complete mformatlon databases, 1 e , single instances 

We will use the term table (short for Codd-table [4]) for 

the simplest algebraic structure used for such a 

representation Based on tables we define tables with 

condltlons (1 e , c-,g-,e-,I- tables), as well as, views of 

sets of instances We assume that {x,y,z,u,v,w, } 1s a 

countably mfimte set of vanables, disJomt from the set 

of constants 

A table T of anty (a) 1s the result of replacing some 

occurrences of constants m a relation of arlty (a) by 

dzstznct variables, 1 e , each variable occurs at most 

once A tuple t of a table 1s a tup1e of constants and 

variables appearing as a row of T 

A condataon 1s a conlunct of equalaty atoms (of the 

form x=y, x=c) and anequalaty atoms (of the form 

x#y, x#c), where the x’s and y’s are variables and the 

c’s are constants Note that we only use conJuncts of 

atoms and that the boolean true and false can be 

respectively encoded as atoms x=x and xfx 

Conditions may be associated with table T rn two ways 

(1) a global condltlon @ IS associated with the entlre 

table T 

(11) a local condition @p(t) 1s associated with one tuple t 

of table T 

Note that condltlons sssoclated m table T and Its tuple 

t may contam variables not appearing in T or t We 

omit exphcltly hstmg the condltlon true, x=x Also the 

set of variables appearmg In a table and Its associated 

condltlons IS finite because of the finiteness of the table 

and of the conJuncts 

A valuation u IS a function from variables and 

constants to constants, such that, a(c)=c for each 

constant A valuation o naturally extends to a tuple t 

of a table T (1 e , producing fact a(t)) and to a table T 

of arlty (a) (I e , producmg relation u(T) of arlty (a)) 

If @, 6(t) are condltlons associated with T we say that 

u satasfaes 0, Q(t) if its assignment of constants to 

variables makes formulas @, @(t) true 

A c-table (short for condltloned-table) 1s a table T 

together with an associated global condition @ and an 

associated local condltlon @(t) for each tuple t of 

T Recall that, by conventlon, a mlsslng condltlon IS 

atom he A g-table (short for global table) IS a c-table 

without local condltlons An a-table (short for 

inequality table) IS a g-table, whose global condltlon 

consists entirely of inequality atoms An e-table (short 

for equahty table) IS a g-table, whose local condltlon 

consists entirely of equality atoms Clearly a table IS 

also an e-table and an i-table without global condltlon 

Definition I A given c-table represents a set of 

instances I Let the given c-table consist of, (1) a table 

T of arlty (a), and (2) a global condltlon @, and 

(3) local conditions e(t), for each tuple t m T, then it 

represents the followmg set of instances of arlty (a) 

I={ R 1 there IS a valuation u satlsfymg @, such that, 

relation R consists exactly of those facts u(t) for which 

u satisfies @(t) } 

For the important special case of a table T all 

valuations are satlsfymg and I={ R 1 R=u(T) for some 

u } Also for a g-table I={ R 1 R=u(T) for some u 

satlsfymg Q, } Note that, m a g-table, if the global 

condltlon 1s unsatisfiable, (which can be checked in 

PTIME because a global condltlon IS a conJunctlon), 

then I IS the empty set If there are satisfying 

valuations for the global condltlons, but these 

valuations do not satisfy any local condltlon, (this can 

also be checked m PTIh4E because all one has to do IS 

check a formula In disJunctive normal form for 
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unsatlsfiablhty [0]), then I consists of a relation with 

only the empty fact of arlty (a) 

The above defimtlons easily generalize to n-vectors of 

c-tables, as opposed to l-vectors, and 7s of arlty 

(aI7 ,a,), a.54 opposed to arlty (a) For this 

generahzatlon the sets of variables appearmg In each 

table T,, ,Tn are pauwse disJomt, relatlonshlps 

between these variables can be estabhshed through the 

condltlons 

Definition q(a Let I be defined usmg an n-vector 

of c-tables of arlty (aI, ,a,) and let q be a QPTIME 

query of arlty (aI, ,a,,)+(bl, ,b,), then q(l) IS the 

followmg set of instances of arlty (b,, ,b,) 

q(r)={ q(1) 1 I Instance In I} 

Our most general representation of a set of instances 

1s thus a set of v2ew8 of I through q This IS the most 

general case because of the posslblhty of using IdentIty 

queries of any arlty Finally, note that our possible 

instances (worlds) are “closed worlds” smce they 

correspond to valuations of tables all of whose tuples 

are specified in our representations 

The Problems 

We now describe some basic computatlonal questlons 

about incomplete mformatlon databases All of these 

questlons can be answered m PTIME for complete 

mformatlon databases, because the queries used are m 

QPTIME 

If q&&J and q(l) are two sets of Instances the first 

obvious question IS whether one set IS contamed m the 

other This 1s the contaznement problem CONT We 

assume that there are no variables m common In these 

two representations If I,, happens to be the slngleton 

set {I,,} represented by a given mstance I, then wlog we 

may sssume that s, 1s an ldentlty query, (because q&IO) 

may be computed In PTIME) In this case we have the 

membershap problem MEMB, 1 e , 1s a given instance I, 

a possible Instance of q(l) The dual case 1s where 1 IS 

represented by instance I For this dual case we have 

the unzgveness problem UNIQ, 1 e , IS every possible 

instance of so(&) an element of {I} 

The three questions above deal with entlre Instances 

What about possible or certain occurrences of patterns 

m a set m instances? If P 1s a given set of facts of size k 

we typlcally ask 

Do the facts m P appear together tn some possible 

Instance, this 1s the possabzlaty problem POSS 

Do the facts m P appear m all possible worlds, this IS 

the certaznty problem CERT 

Since our possible worlds descrlptlons Include views, the 

POSS and CERT problems mvolve querymg mcomplete 

databases 

Tables and condltlons are the parts of the inputs that 

contribute to asymptotic growth, I e , they are 

unbounded, for this we use capital letters, (e g , T, @, 

e(t)) We also use capital letters for sets of facts, (e g , 

R, I, 1, and P), which can be of unbounded size In our 

framework queries, and therefore arltles, are fazed 

parameters, for this we use small letters, (e g , q,a,b) A 

single fact and tuple m this frameowrk has fixed width, 

for this we use small letter t We use * Instead of size k 

d k IS unbounded The formal defimtlons follow 

CON%& 

parameter s, q 

znput c-tables representing I,,, .Z 

westzon q&J C cl(r) 7 

MEWq) 

parameter q 

znput c-tables representmg 1, instance I, 

questzon is I, m set q(q 7 

UNQh,) 
parameter Q 

znput c-tables representmg I,, Instance I 

questzon IS qo(&) slngleton set {I} 7 
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POSS(k,q) 

parameter k,q 

anput c-tables representmg 1, set of facts P of size k 

questzon 31 in q(l), s t , all facts of P are facts of I 7 

POSS(*, q) 1s the same question where k 1s no longer a 

parameter 

CERT(k,q) 

parameter k,q 

znput c-tables representing 1, set of facts P of size k 

questzon VI in q(r), all facts of P are facts of I 7 

CERT(*, q) IS the same question where k IS no longer a 

parameter 

The crucial difference between complete and 

incomplete mformatlon IS the large number of possible 

valuations for the latter case Because of the finite 

number of variables m a set of c-tables only a finite 

number of valuations are nomsomorphlc, however, the 

number of such valuations grows exponentially m the 

input size By simple reasoning about all valuations and 

guessing particular valuations we have some easy upper 

bounds 

Proposition 2.1 For any queries 40, q m QPTIME 

we have the followmg (1) CONT(q,,,q) 1s m flZp, 

(2) MEMB(q) 1s m NP, (3) UNIQ(qJ IS m coNP, 

(4) POSS(*,q) IS m NP, (5) CERT(*,q) 1s m coNP, 

(6) CERT(*,q) 1s polynomlally equivalent to CERT(l,q) 

For (1) we reason that every valuation for I, 

corresponds to a valuation for 1, t/3 quantlficatlon For 

(2) and (4) we guess the right valuation, 3 

quantlficatlon For (3) and (5) we reason about all 

valuations, V quantification In order to answer 

CERT(k,q) all we have to do 1s repeat CERT(l,q) k 

times, this gives us (6) Note that this last argument 

does not hold for POSS(k,q), because POSS(l,k) might 

return “yes”, but each “yes” might refer to a different 

possible instance 

3. Membership, Uniqueness and 

Unbounded Possibility 

We start with a class$icatlon for the membership 

problem Note that tables have a polynomial-time 

membership problem This IS like instances and unlike 

e-tables, I-tables, and views of tables The reduction 

for Theorem 3 1 4 1s complicated by the requirement for 

a positive existential query on a single table 

Theorem 3.1 Let I be sz m the defimtlon of 

MEMB, then 

(1) MEMB(-) IS m PTIME rf I 1s represented by a 

vector of tables 

(2) MEMB(-) IS NP-complete even if I IS represented by 

a single e-table 

(3) MEMEJ(-) 1s NP-complete even if I IS represented by 

a single l-table 

(4) 3q positive existential query, s t , h4EMB(q) is Np- 

complete even if I IS represented by a single table 

Proof Sketch (1) This upper bound IS derived by a 

reduction to the problem of bzpartzte graph matchzng 

[6] Critical use IS made of the fact that all occurrences 

of variables are distinct symbols Given that the 

membership problem m general IS m NP (Proposltlon 

2 1) the rest of the proof consists of reductions of NP- 

hard problems to MFMB 

(2) Reduction of graph Scolorabalzty [S] using an arlty 

two e-table and a size six instance 

(3) Reduction of graph 3-colorablhty using an arlty one 

I-table and a size three instance 

(4) Reductron of graph 3-colorab&,y using an arlty (6) 

table, an unbounded size instance of arlty (3), and the 

query q of arlty (6)+(3) described by the following 

formula 

q = { XYZ I ~(XYZ)V$(XYZ) 1, where ~(XYZ) 1s 

x=OAy=OA3x1 x4 lR(1x1x2x3x4z)~R(~000x2xq)l 

NXYZ) 1s 

3x, x5 [R(lxxlx2x3y)AR(lxxlx4x~z)] V 

[R( lxxlx2x3y)AR( 1x4xxBxx1z)] V 
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[R(~x~x~xx~Y)AR(~xx~x~x~z)J v 

lR(lxzx3~~r~)AR(lx4x5xxlr)J 

(QED) 

The next theorem mdrcates how similar unbounded 

posslbrhty IS to membershrp, from a computatronal 

pomt of view The two problems are by defimtlon 

drfferent problems 

Theorem 3.2 Let I be as m the defimtlon of POSS, 

then 

(1) POSS(*,-) IS m PTIME if I IS represented by a 

vector of tables 

(2) POSS(*,-) IS NP-complete even If 11s represented by 

a single e-table 

(3) POSS(*,-) IS NP-complete even if 11s represented by 

a single l-table 

(4) 3q posltlve existential query, s t , POSS(*,q) is NP- 

complete even If 11s represented by a smgle table 

Proof Sketch (1) The argument 1s a variation on 

that of Theorem 3 1 1 

(2) Reduction of 3CNF satasfzablaty [6] usmg an arrty 

three e-table and an unbounded set of facts 

(3) Reductron of 3CNF sat&iablhty usmg an arlty two 

r-table and an unbounded set of facts 

(4) Reductron and query are ldentlcal wrth those of 

Theorem 3 1 4 (Q E D ) 

The last theorem of thus section deals with uniqueness, 

which although dual to membershrp from a defimtlon 

pomt of view, IS quite different from membership Note 

the role of # 

Theorem 3 3 Let I,, be as m the defimtlon of 

UNIQ, then 

(1) UNIQ(-) IS m PTIME If 1, IS represented by a 

vector of g-tables 

(2) UNIQ(-) IS coNP-complete even If I, IS represented 

by a single c-table 

(3) UNIQ(q) IS m PTIME if q IS posrtlve exrstentral and 

I, IS represented by a vector of e-tables 

(4) 3q posltlve exlstentral with f, s t , UNIQ(q) IS 

coNP-complete even if I, IS represented by a single 

table 

Proof Sketch (1) For this part the proof 1s by 

mspectron of the matrix representation of the g-tables 

(2) Reduction of 3DNF tautology [6] using an arlty one 

table and an Instance of srze two 

(3) For thus we use [lo] to get a representation of all 

possrble worlds resulting from the query q This 

representation can be constructed and because of lack 

of negation can be tested trlvrally for uniqueness 

(4) Reduction of graph non Scolorabzlzty using an arrty 

three table, the arlty one instance {O,l}, and the query 

q of arity (3)+(l) described by the followmg formula 

9 {v ] v=o 

FW~~AR~/\R(~~.)~) 

v (v=l A 3xyz 

V (v=l A 3yz [R(Oyz)Az#lAz+2Az#3]) 

(QED) 

4. Containement 

For our upper bounds we use homomorphrsms to 

refine Propositron 2 1 

Theorem 4.1 Let the inputs 1,,1 be as m the 

defimtlon of problem CONT, then 

(1) CONT(q,,,-) IS m coNP If I 1s represented by a 

vector of tables 

(2) CONT(-,-) IS m NF’ If I,, IS represented by a vector 

of g-tables and I by a vector of e-tables 

(3) CONT(-,-) IS m PTIME if I,, 1s represented by a 

vector of g-tables and I by a vector of tables 

Proof Sketch (1) Consrder the negation of thus 

problem This negation 1s m NP because all one has to 

do 1s guess a valuation drsprovmg the contamement and 

do a PTIME computation to produce an Instance 

dlsprovmg the contamement Fmally use Theorem 

3 1 1 since I 1s represented by a vector of tables and 

membershrp then IS m PTIME 

(2) Fu-st mcorporate the equahtres of the condltlons m 
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the representation of I, Now think of the variables In 

this representation as dtstmct constants, this gives rise 

to instance I, Using a homomorphasm argument 

reduce the problem to MEMR(-), where the input 

instance IS I,, and employ Theorem 3 1 2 

(3) Use the same argument as the previous case, but 

now employ Theorem 3 1 1 since 1 1s represented by a 

vector of tables and membership then IS m PTIME 

(QED) 

Our lower bounds together with the other results of 

Section 3 and this section, exhaustrvely cover all cases 

of Figure 2 In the outlme (Sectron 1) we argued why 

these are syntactmally tight lower bounds Theorem 4 2 

1s quite interesting given 4 1 2 and 4 1 3 

Theorem 4.2 Let the inputs I,,, I be as m the 

defimtlon of problem CONT then CONT(-,-) IS 

&p-complete even If I IS represented by a single r-table 

and I,, by a single table 

Proof Sketch Reduction from the appropriate 

version of the quantzfzed boolean formula (141 problem 

M3CNF Unbounded size tables of arlty (4) are used 

Encoding 3CNF satn&iablhty m the r-table (for r) 1s 

straightforward What IS more mterestmg IS using the 

table (for I,) to force the assrgnments to varrables The 

followmg example captures the mturtron for thus 

mechamsm 

Let us examme a table of arlty (3) consrstmg of tuples 

(001, 122, 133, lxxI} and 

an r-table of arlty (3) conslstmg of tuples (001, 122, 

133, vzzl, uyyl} where u#v~z#3Ay#yr 

The relations described by the first table are a subset of 

relations described by the second table, moreover, (i) If 

x=x1 then u=O and v=l m the equal instance of the I- 

table, (11) if x=3#xl then u=l and v=O n-r the equal 

instance of the l-table, (111) xf3, x#xl then u=l,v=O 

and u=O,v=l are both possible in equal mstances of 

the l-table This construction provides the necessary 

encoding for V quanttficatlon (Q E D ) 

The remammg cases are covered by Theorem 4 3 Its 

proof mvolves reduction techniques, which are simpler 

than those used for Theorem 4 2, and we therefore omit 

them m this abstract 

Theorem 4.3 Let the inputs &,I be as m the 

defimtron of problem CONT and let I,, be represented 

by a single table, then 

(I) 3qe posrtlve exrstentlar query, s t , CONT(qc,-) IS 

$P-complete even rf I IS rep by a single e-table 

(2) 3s, posltlve exrstentral query, s t , CONT(qu,-) IS 

coNP-complete even If 11s rep by a smgle table 

(3) 3q posrtrve exrstentlal query, s t , CONT(-,q) 1s 

$p-complete even If I IS rep by a single table 

5. Certainty vs Bounded Possibility 

Much work has already been done m the area of 

searching for certam answers In partmular, when the 

query IS posltlve and the mcomplete database IS 

represented as a g-table [13, 16, lo] The upper bound 

of Theorem 5 1 1 follows directly from the central 

results of [16, 10, 131 and IS only included here for 

completeness of presentation The efficrent algorithm 

corresponds to mampulatmg the matrix representation 

of the g-tables (I e , with equahtles incorporated) as d 

they were complete mformatron databases The lower 

bound of Theorem 5 12 IS a refinement of the lower 

bound m [16] (also, Theorem 5, IBM Res Rep RJ 

4874) from an e-table to a table representation 

The problem of searchmg for possible answers of 

bounded size has recerved less attentron The upper 

bound of Theorem 5 2 1 IS a consequence of the fact 

that c-tables are represent&ton systems m the sense of 

[lo] and posrtrve exrstentlal queries can be incorporated 

exphcltly m the c-table representation, without any 

exponentral growth Thus growth may be unavoidable 

for first order and DATALOG queries as mdlcated by the 

lower bounds m Theorems 5 2 2 and 5 2 3 Once again 

the interest of the lower bounds lies m the syntactic 

constraints, e g , the query of 5 2 3 uses monadic 
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fixpomts on (uncondltloned) tables 

Theorem 5 1 Let I be as m the definition of 

CERT(*,q), then 

(1) [10, lo] If q a DATALOG query and 1 IS represented 

by a vector of g-tables then CERT(*,q) 1s m PTIME 

(2) 3q first order query, s t , CERT(*,q) IS coNP- 

complete even If I IS represented by a table 

Proof Sketch (2) Reduction of 3DNF tautology 

Let {Cl} be the given set of clauses and {X,} the given 

set of variables, then construct a table T with variables 

{vlk} and tuples the set {IVY k~l 1 X, appears in 

poiltlon k of Cl} U {lv,,k~O 1 -X, ‘appears m position k 

of C1} The query asked IS a boolean query q = { c 1 4 

} We want the fact c to be certam lff the orlgmal 

3DNF formula IS a tautology, for this 4 1s as follows 

PxYz~lYpp1 R(xyzv)~R(x~~~z~v~)Az=z~A~#~~] 

V 

p~Yzv3xlY1z1v~ R(xyzv) + {R(xlylzlvl) A x=x1 A 

((yl=lAvl=l) V (~~#lAv~=O)))l 

(QED) 

Our final theorem IS about bounded poaslblhty 

Theorem 5.2 Let I be as m the defimtlon of 

POSS(k,q), then 

(1) If q IS a positive exlstentlal query and I IS 

represented by a vector of c-tables then POSS(k,q) 1s m 

PTIME 

(2) 3q first order query, s t , POSS(l,q) 1s NP-complete 

even if 11s represented by tables 

(3) 3q DATALOG query, s t , POSS(l,q) IS m-complete 

even If 11s represented by tables 

then simple to find whether a bounded pattern 1s 

posslhl~ 

(2) Similar to the reduction of Theorem 5 1 2 

(3) We can show that POSS(l,transztzwe-closure) IS NP- 

complete for a g-table representation, but it 1s m 

PTIME for a table representation So Instead, we use a 

query of arity (2,2,1)+(l) 

ql(R) = 1 x I R(X)V~YZ [R(Y)AR(z)AR,(xY)AR~(xz)I} 

q with Input mstance (R,,R,,R2) IS the least fixpomt of 

ql, which contams R, (Q E D ) 

6. Conclusions and Open Questions 

We have mvestlgated the data complexity of 

Incomplete mformatlon databases We have focused on 

views of tabular representations, from the very simple 

tables to the more complex c-tables In this setting we 

analysed contamement, membershlp, umqueness, 

posslblhty, and certamty problems 

Many of our lower bounds are In terms of particular 

hard queries, are there syntactic characterlzatlons for 

easy queries m each case? In particular good 

characterlzatlons for the MEMB lower bound Theorem 

3 1 4 would be mterestmg These would be posltlve 

existential views of Codd-tables whose membershlp 

questions are In PTIME 

Proof Sketch (1) Transform the given posltlve 

exlstentlal view of c-tables Into other equivalent c- 

tables, that are not bigger than a polynomial of the size 

of the Input This can be done because of the posltlvlty 

of the queries and because of their fixed length It IS 
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