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EVEN NUMBER OF SQUARES*

BY
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1. Introduction. Let GF(pn) denote a fixed Galois field of order p*, p

being any odd prime, and n an arbitrary positive integer; let £)(#, />") denote

the totality of polynomials in an indeterminate, x, with coefficients in GF(pn).

In this paper we seek simple expressions for the number of representations of

a polynomial in 2) as a sum of squares of polynomials in £) that satisfy certain

restrictions.

More precisely, suppose that £ is a primary polynomial, that is, the co-

efficient of the highest power of x occurring in £ is the 1 element of the Galois

field. Let s be a positive integer; en, • • • , a„ ßi, • • • , ß., 2s elements of the

Galois field such that
7< = ai + ßi^O (*«1, ••-,*).

Then

(A) If £ is of even degree, 2k, and

y = Ti + 72 + • * • + 7. ^ 0,

we seek the number of solutions of

(1) 7^ = otiXi2 + ßiYi2 + ■■■ + a.X.2 + ß.Y.2

in primary polynomials Xt, Y{, each of degree k.

(B) If £ is of arbitrary degree/, 2k is any even integer >/, a any non-zero

element of the Galois field, and

7i + 72 + • • • + 7» = 0,

we seek the number of solutions of

(2) aF = aiXi2 + ßiYi2 + ■■■ + a.X2 + ß.Y2

in primary polynomials Xi} F,-, each of degree k.

The solution of (A) is expressed in terms of one of the functions p<(£),

cü,(£), defined thus:

* Presented to the Society, August 30, 1932; received by the editors June 23, 1932.

f This paper was written when the author was an International Research Fellow at Cambridge

University.
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(1  \     m>k m=k

i—) Elm\<+EI^K \m\ = p™,
P    I     M\F M\F

where m denotes the degree of M: the first summation is over all primary

M dividing F, and of degree >k, the second is over all primary M dividing

F and of degree = k ;

(J\     m>k m=k

1 + -) H(-i)~\m\* + Z(-i)~\m\*,
P    I     M\F M\F

the summations having the same meaning as in (3). If now

(5) (- l)«c*i • • • aaßi ■ ■ ■ ß3

is a square in GF(pn), then the number of solutions of (1) is pt~i(F); if the

expression (5) is a non-square of GF(pn), then the number of solutions is

«_i(F).
Case (B) involves a modification of the p and co functions: if (5) is a square,

the number of solutions of (2) is

i»(-l)(2W)p*_1(i?),

where

/ 1  \      m>/-i m=f-,

= (i--)   E   1*1« +    E
\ Pnt/       M\F M\F

m>f— k tn=f— k

(6) p*(F)=(l--)     £     | Af |* +      E     1^1';
M\F

if (5) is a non-square, the number of solutions is

where

/ 1 \     m>f~k m—S~k

(7)    (-1)W(F)=    1+ —)     2    (~Dm\M\t+    E    (-Dm|M|'.
\ Pnt/        M\F M\F

If k >/, the second sum in (6) and (7) is vacuous and denotes zero.

We first treat case (A) ; then, making use of the results for this case, it is

easy to deduce the results (6) and (7) for case (B). The method used is quite

elementary, and presupposes only some well known general theorems con-

cerning Galois fields.*

It should be emphasized that the results of this paper hold for all positive

s. This is rather surprising when comparison is made with the known results

concerning the number of representations of an ordinary integer as the sum

of 2s squares: in the latter problem, while the cases 2s = 2, 4, 6, 8 admit of

* These theorems will be found in Dickson's Linear Groups, 1901, pp. 3-54.
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1933] REPRESENTATIONS OF POLYNOMIALS 399

simple expressions in terms of divisor functions, this is no longer true for

2s > 8. While comparison of the problem of this paper with the ordinary

problem is of some interest, actually, since we are considering representations

in terms of primary polynomials, the analogy is closer with the question of

the number of representations of an integer as the sum of squares of positive

integers.

Finally, we remark that it is possible, by methods similar to those used

here, to determine the number of representations of a polynomial by means

of any odd number of squares (that satisfy certain conditions). As we shall

show in another paper, the final formulas are of quite a different type ; they

are no longer functions of divisors but involve sums of quadratic characters.

2. Notation; preliminary lemmas.* We shall employ the following nota-

tion. Polynomials will be denoted by large italic letters; unless the con-

trary be explicitly stated, a polynomial will always be assumed primary.

Ordinary integers will be denoted by small italic letters, elements of the

Galois field by small Greek letters. The degree of a polynomial will be denoted

by the corresponding small letter, and we shall write

/ = degf,   |F| = p»'.

(A, B) is the "greatest" common divisor of A and B.

Using this notation, we have the following lemmas.

Lemma 1. The number of sets of polynomials [A, B] such that

degA = a, deg B = b, (A, B) = 1,
is

t    pa+b _ pa+b-1   jor   ab  ^ 0,

\p(a, b) = <
I p°+b for ab - 0.

This lemma is a special case of a more general theorem to be proved else-

where. For completeness we give the following simple proof. Let us classify

the pn(-a+» sets of polynomials [A, B ], deg A = a, deg B = b, according to their

g.c.d. Then, if 1 g a g b,

(8) ¿«en-« =  X I M | 4>(a - m, b - m),

the sum being extended over all M of degree g a. The right member of (8) is

a

\J/(a, b) +  ^lpnmp(a — m,b — m)
m=l

= yp(a, b) + ¿-(•+*-»,

whence the lemma.

* The results of §§2, 3 hold for all p.
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Lemma 2. Let F, A, B be of degree f, a, b, respectively; (A, B) = 1.

(I) If a+b^f, and a and ß are two non-zero elements of GF(pn) such that

a+ß^O, then the number of solutions of

(9) (a + ß)F = aAU + ßBV, \AU\ = | BV\ ,

in polynomials U, V, is \F/(AB)\ =/>»(/-<■-»).

(II) If k is an integer >f,a+b^k, and a is any non-zero element ofGF(pn),

then the number of solutions of

(10) aF = AU-BV, \AU\ =\BV\ = pnk,

is

pnlk-a-b)  = pnlh-t). | p |   . | J^ß | -1.

It will suffice to prove (II) alone. From (10), we have

U m A' (mod B), a' < b,
(11)

V = B' (mod A), V < a,

where A ' and B' are not necessarily primary. Since

u = deg U = k — a ^ b, and v = a,

the congruences (11) may be written in the form

U = A' + BU', V = B' +AV     («' = v' = k - a - b),

where now U' and V are primary. Then (10) becomes

aF - AA' - BB'
(12) -= V - V.

AB

But since (A, B) = l, there is a unique pair of polynomials A', B', such that

a'<b, b'<a, and the left member of (12) is integral. If then V be any

(primary) polynomial of degree v' = k—a — b, U' is uniquely determined, and,

retracing the steps that led from (10) to (12), U, V are uniquely determined.

Since V can be chosen in

ways, this proves case (II). The proof of case (I) is very much the same.

3. Theorems on the p and w functions. We now prove certain formulas

concerning the functions pt(F) and wt(F) defined in the Introduction. As we

shall see in the next section, these formulas enable us to solve our problem

concerning (1); furthermore, the formulas seem to be of some interest in

themselves.
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1933] REPRESENTATIONS OF POLYNOMIALS 401

Theorem 1. If F is of even degree, 2k; a, ß two elements of GF(pn) such that

aß(a+ß) y±0;s,t two (real or complex) numbers; then

(13) T,P.(A)Pl(B) = p.+t+i(F),

(14) ¿Zp.(A)"t(B) = «,+(+1(£),

(15) 2>.(¿)cot(l?) = p.+t+i(F),

where, in each instance, the summation is extended over all (primary) poly-

nomials A, B of degree 2k, such that

(a + ß)F = oA +ßB.

The three formulas (13), (14), (15) may be proved simultaneously if p

and u) he expressed in terms of the function A,(£, X) now to be defined. We

define the "character" \(B) by

(16) \(B) = (-l)\b = degB,

and the function A,(£, X*) by

(17) A.(£, X«) = (l - -^—!-)   X>(M) \-M\-+ 2>(M) \M\:
\ PH'     /    lt\P M\F

It is obvious from the definitions (3) and (4) that

(18) P.(F) = A.(F, 1), a,.(F) = A,(£, X),

and therefore the several parts of Theorem 1 reduce to

(19) £       A.(A, WAt(B, \f) = A.+(+1(£, X<+0,
(a+ß)F—aA+ßB

i,j integers which may be taken = 0 or 1. We proceed to establish (19).

The left hand member of (19) is by (17)

I(1_^i>V1_iri>!)s   +(,-<=»} £
IV />»'     A pnt     /„<„,«„ \ p"     /  a<u.b-v

+ (i-i-^r)   S   +    Z   \*(U)\u\'\kv)\v\;
\ p /     a—u.b<v a—u,&—tJ   /

where each summation is taken over all (primary) A, B, U, V satisfying

(a+ß)F=aAU+ßBV as well as the conditions indicated under each 2-

Call the sums J^i, £2, ^£3, ]C<> respectively; then, since a<u is equivalent

to a<k,
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E.= I F | «+< E K(A)\>(B) \A\-\B\-
(.a+ß)F-aAU+ßBY

a,b<k

m<k

(21) = | F | «+' E*i+W | M | — 'Su,
M\F

where

5a, = E X W(5) | ̂  |- | B \-
ia+ß)FM-1=aA U+ßBV

(A,B)—V,a,b<k-m

=      E    X^)X'(5) \A\- \ B |-< E i
(A ,ß)-l (a+^FAf-WAtf+ßBF

a, 6<fc—m

= Ifm-1!     E   \í(a)\'(b)\a\---1\b\-'-\
W,B)-1

a, 6< k—m

by case (I) of Lemma 2. By the definition of \p(a, b) in Lemma 1, the last

expression is equal to

(22) \FM~l\       E     (- l)i«+'V,(s+1>0_n(,+1)V(a, b).
a   bKk—m

Applying Lemma 1, the sum becomes

k— m— 1 k—m—I k—m—l

E (- iy°p-n'a+   E (-1)'^-*"»+   E (-1)•<■+'<"/>-'• ("^'(î - />--)
a— 0 a-—1 a, 6=1

= [fc — w, t].[* — »i, j], — p-"[k — m, i]¡ [k — m,j]i,

where, for brevity, we put

1 - (- l)ikp~n,k

[k, i], =-—-,*
1 - (- I)**-"'

(23)
,.    .,,        (- iyp— -r (- pnp—»

[k, t\: =-—-——-= [k, »j. -1,
i — (— iyp-n'

so that, Dy (21) and (22),

(24)   Ex=  EX<+,'W I M | «+«+l{ [m - Ä, *].[** - k,f]t

- p-*[m - k, i]:[m- k,j\'t\.

The treatment of E2 is much the same; we have

For s=i—Q, the symbol [k, i],=k.
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REPRESENTATIONS OF POLYNOMIALS 403

L=kl'+t      E      xw(B)M-|*|-'
(a+ß)F=aAU+ßBV

a< A;, &■» k

m<H k

=  | F | '+< 2><+,'W | M | -«-«5jf,
M\F

s     v(^)x'-(£)m-i5i-'
(.A ,B)=l;a< fc—m=&

=  | FM"11       X)    X*(i4)X'(S) | il | -8"11 5 | "'-1
<A ,B)-1

a< fc—m=&

=   | jFitf-1 | X)       (-  l)io+i(*-fflty(a, £ - W)^-"(«+l)a-n(i+l)(t-m)

a<&— m

=  | FM"11 (- 1)/<*-«•>£-»«(*-»>{[£ - », ¿], - p—[k - m, i]i },

[k, i]s having the same meaning as in (23) ; therefore

m>fc

S\i+'(M) I Ml  •+'+!(—  l)/(m-t)A-nl(m-*)

M\F

■ {[m — k, i], — p-"[m — k, i]¡ }.

m>k

y\i+i(M) I  M]   »+'+1(—   iy{m-k)p-nsim-k)

M\F

•{[«- k,j]t- p-»[m- k,j]l\.

The sum X^4 is slightly different in that (A, B) may be of degree k ; thus

Z4 = \P I *+1 2>+,'W I 3f I -'-'SM,
M\F

where

5m = E \HA)\i(B)\A\--\B\-<
(.a+ß)FM l=aAU+ßBV

(A ,B)—1; a=b=k-m

= ¡FM'11   X)   X¿C4)X>(.B) |¿ I—115 I-'-1
(A ,B)-1

o=&=fc—m

= ¡FM-1! (- 1)<»«><»-"V(* -m,k- m)p-»e+'+»<*-»>,

and therefore we have almost immediately

(27)     2 -   X>i+)'W | # | ,+i+1
4 M|J?

m> ft

+    ¿ Xi+Í(lf ) I  Ail   «+'+l(—   l)«+/)("-*)A-»(«+0(m-*)(l   _  £-").
M|F

1933]

where now

5 m =

2,-
(25)

Similarly

(26)
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Substituting from (24), • • • , (27) into (20), we find that the left member

of (19) is

(28) EX<+,'M I M | »+<+! + EX'+'W I m I •+'+1Xm,
M\F M\F

where

Xm= {l-(- lYp-n'\ {1 - (- D'r»'} {[m-k, i].[m - k,j]t

- p-"[m - k, »•]:[» - k,j]l}

+ {l - (- 1)^-"} {[m-k, i], - p~n[m - k, i]!\(- l)/(«-*)^-».(—M

+ {l - (- 1)'>-"'} {[m - *,./], - p~n[m - k,j]¡}(- l)««-»¿-».c«—*>

_|_   (_   l)i+;A-n(»+«)(m-t)Q   _   A-n)

=   1   _   (_   l)<+,^-n(.-H+l))

as may be verified without any calculation by applying (23) and then group-

ing the terms in an obvious way. This evidently completes the proof of (19)

and therefore of Theorem 1.

We next prove a group of formulas that will be needed in §5 in deriving

the expression sought for the number of solutions of (2).

Theorem 2. If F is of arbitrary degree, f; 2k is an even integer >/; a is any

non-zero element ofGF(pn); s, t two (real or complex) numbers; then

(29) Ep.G4 )/>«(*) = r(2i-'H'+1+1>pí+<+,(í'),

(30) Ep.G4)o>.CB) - />n(2*-/)(-H+1)a>í+í+i(F),

(31) E".-G4M¿0 = p»l2k-'"'+t+»pt+t+i(F),

where, in each instance, the summation is extended over all polynomials A, B of

degree 2k, such that aF=A—B; pk(F), a, (F) are defined by (6) and (7),

respectively.

Exactly as in Theorem 1, the formulas (29), (30), (31) may be combined

in a single relation involving the function Af (F, X) defined by

(( _  \)i\      •*>/-* m-f-k

1----)   E  \{(m)\m\-+ E \í(m)\m\;
P"'     I       M\F M\F

\(F) being defined by (16). The equations (18) may then be replaced by

Pk (F) = Ak(F, 1), co* (F) = A.* (F, X),

and the formulas (29), (30), (31) by
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1933] REPRESENTATIONS OF POLYNOMIALS 405

(33) £   A.(A, V)At(B, X') = p»<*W*»»Af+t+i<F, X'+O,
aF—A-B

the summation being over all A, B of degree 2k for which aF=A — B.

The proof of (33) is very similar to that of (19), except that wherever

Lemma 2 is necessary, we now use case (II). It is scarcely necessary to give

the proof in detail. We begin exactly as in (20), and we shall consider only

the first sum, X)i5 evidently

E= Z      V(£0X'(7)|ffH7|«
aF-AU-BV

o,K*

= pinH,+t)       £      V(A)\'(B) | A | -« | B | -'
aF-AU-BV

= ¿2n *<•+» 5>*w(jo | m | — tSlit
M\F

where, exactly as in (21),

SM =       ¿Z    X«04)X'-C»)U|-|-Bh 2        1
U,B)-1 aFM'i-AU-BV

a,b<k—m a+u— b+v—ik— m

= p2nk\m\-1    X)   X^M-B)I^I — >|-51-'-1
(A ,B)-1

o,6<A:—m

by case (II) of Lemma 2. Therefore

SM = ¿>2»* | M | -i      X)     (- l)io+/V(a, J)^-»irt-i)«-»(H.i)»|
a,b<fc—m

which may be evaluated by following the method applied to (22). Thus we

find that

m<*

23 - p2nki'+t+l) X) X!+''(M) | M | — «-»
1 M|y

.    . • {|> - w, ¿].[£ - »,/], - ¿-»[¿ - w, *],' [k - m,j]l}

^ m>f-k

= x'+iXF)/»"«2*-«^^1' £ X*+'(Jf) I M | •+'+!
M|F

• {[m+ k -f,i].[m + k -f,j], - p-»[m + k -/, i]i [m + k -f,j]i }.

Similarly, we find that

m>f-k

(35)   XI = K+i(F)pni2k-n (s+,+1) X><+I'W I Af| *+,+1
2 M|P

. (_   D^+Wl^-n^+W) { [m +  k  _ /f f ]§ _  p-n[m +k_ fj], } .
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m>l— k

(36) E = X<+'W<2t-/)<'+'+l> E X*+'(Jf) I m I *+-+1
8 M\F

.(_ i)i(m+W)^-n.(m+w){ [w + k - f,j], - p—[m + k - /,/]/ } ;

Í   m=}-k

E = Xi+''(F)i»<2*-'><'+<+1> \    E X«+'(Jf) | M | *+'+1
(37) l   *"

+ (1 - p~n)    E X<+'(iW) | M | •+'+1

M\F

•(-D «+;) (.m+k-f) j,-n(«+() (m+lfc--}■

Combining (34), • • • , (37) exactly as in (28) (the corresponding point in the

proof of Theorem 1) we complete the proof of (33) and therefore of Theorem

2.
4. Number of solutions of (1). We begin with the case 5 = 1 and then

proceed by induction to the formulas (3) and (4) for general s.

Theorem 3. If a is an element of GF(pn),^0 or 1; F is of even degree, 2k;

then the number of solutions of

(38) (1 - a)F = X2 - aY2

in (primary) X, Y of degree k, is

m=k

(I) E^ for a a square in GF(p"),
M\F

(II) E(— l)m for a a non-square in GF(pn).

M\F

The case (I) is almost trivial. Let a=ß2, ß in GF(pn) and 5^ + 1, so that

(38) becomes

X + ßY X-ßY
F =-— = UV,

1+ß     1-ß

say. Evidently U and V are primary of degree k. But the number of solu-

tions of F = UV, U and V of equal degree, is of course the number of divisors

of F that are of degree k. Since U, V uniquely determines X, Y, this estab-

lishes the formula (I).

(II)* a is now not the square of any element of GF(pn) ; however it is a

square in the Galois field of order p2n, GF(p2n), which contains the original

* This case can be deduced from the general theory of quadratic fields over!©, worked out in

detail by Artin, Mathematische Zeitschrift, vol. 19 (1924), pp. 153-246. However we shall make no

use of this theory here.
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GF(pn). Put a = 02, so that 0 is in GF(j>2n) but not in GF(pn); in particular

05= ± 1. Then as above
X + BY   X-6Y

F-= UV,
1+0      1-0

U and V now being over GF(p2n) and of equal degree. Put

U = A + OB,;V = A' + OB',

where A, B, A ', B' axe all over GF(j>n); A and A' are primary and of degree

k; B and B' are of degree less than k and not necessarily primary. Then

X + 07 = (1 + 0)(A + 05),

X -6Y = (1 -0)04' + 05'),

whence A=A', B= —B'. Therefore we seek the number of solutions of

(39) F = (A + 6B)(A - 6B),

where A is primary of degree k, and B is of lesser degree and need not be pri-

mary. This can be determined readily if we make use of two well known

properties of polynomials over a Gälois field: first, an irreducible polynomial

over GF(p") factors in GF(p2n) if and only if its degree is even; second, a

polynomial over GF(pn) can be expressed as a product of irreducible polynomials

over GF(pn) in essentially one way.

Suppose now £ = Ql, Q irreducible of degree q. Clearly if / and q axe both

odd, there are no factorizations (39) ; if q is odd but I is even, there is one such

factorization. However if q is even, there are /+1 factorizations. In other

words the number of solutions of (39) in this case is

i + (- iy + ••• + (- 1)".

Similarly if £ = IIQ', Q irreducible, the number of solutions of (39) is

nil + (-1)? + • • • + (-1)«1} = Z(- Dm.
QIF M\F

This completes the proof of formula (II).

We are now able to prove our first principal result.

Theorem 4. If a\, • • • , ct„ ßu ■ ■ ■ , ß, are non-zero elements of GF(pn),

such that
y i = ai + ßi * 0,

7  = 7i + • • • + 7. ^ 0;

£ is of even degree, 2k ; then the number of solutions of (1) is p,-i(F) if

(40) (- l)'«i • • • atßi ■ ■ ■ ß.

is a square in GF(pn) ; and is co„_i(£) if (40) is a non-square in GF(p").
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The case 5 = 1 of this theorem is clearly true by virtue of Theorem 3 and

the definition of Po(F) and côo(F). Assume the theorem true for all values up

to and including s. In order to effect the induction it is necessary to consider

two cases: (I) for some/^i+1,

.+i

(41) 7(s+1) = Et< * yr,
t-i

(II) for no/ is (41) satisfied.

(I) Assume the notation is such that 7(,) =yi+ • • • +7,^0. By hy-

pothesis y.+i^O, 7(,+1)7¿0. If we put

T (•+!>(/?) = y^A + ys+iB,

(42) i i     i      i    i
\a\=\b\-\f\,

then, since our theorem is assumed true for s, it is obvious that the number

of solutions in question for 5+1 is

(i)     Zp-M)po(B), (ii)     Ep_i(¿)«o(B),
(43)

(iii)     E«.-i04)poCB), (iv)     E«^x(^)«o(5),

according as

(i) (5) and — aa+ißa+i are both squares,

(ii) (5) is a square, — aa+ißa+i a non-square,

(iii)  (5) a non-square, —aa+ißa+i a square,

(iv)  (5) and —a,+ij38+i both non-squares;

the sums (43) being taken over all A, B satisfying (42). If now we apply

Theorem 1, it is clear that the induction is complete for case (I).

(II) Since (41) is satisfied for no/, it is clear that 71=72= • • • =7.+i,

and therefore s is a multiple of p. As a consequence of this,

7(.-d = 7l + . . . _|_ 78_t jí 0, 7, + Ts+i 5¿ 0.

Let us now put, in place of (42),

(44) y<*»F = 7<«-iM + (7i + 7*+i)5*, \a\=\b\=\f\;

in place of (43) we now have

Ep.-2G4)pi(-B),   Ep*-*(4)«i(£). etc.,

summed over all A, B satisfying (42). The induction is completed as in case

(I).

*OrF=-^+2B.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1933] REPRESENTATIONS OF POLYNOMIALS 409

Corollary. Let F be of degree 2k over GF(pn), s not a multiple of p. Then

the number of solutions of

2sF = Xi2 + X22 + • • • + Xi2

in (primary) X¡ of degree k is p,-i(F) if

(i) s is even,

(ii) s is odd, n is even,

(iii) 5 and n are odd, p=l (mod 4);

the number of solutions is co,_i(£) otherwise, that is, if

(iv) s and n are odd, p = 3 (mod 4).

5. Number of solutions of (2). Our second principal result is contained

in the following theorem.

Theorem 5. If a, en, • • - , a„ ßu ■ ■ ■ , ß, are non-zero elements ofGF(p"),

such that

7i = olí + ßi ?¿ 0, y = 7i + • ■ • + 7, = 0;

£ is of arbitrary degree, f; 2k is an even integer >/; then the number of solutions

of (2) is

in(.-i)(2W)p*_1(f) or ^«(«-i)(2*-/)£0*_1(i?)

according as (40) is or is not a square in GF(pn).

Take first s = 1 ; we may write (2) in the form

(45) aF = X2 - Y2, deg X = deg Y = k

(so that (40) is necessarily a square). But (45) is equivalent to

F = UV, deg U = k, deg V = / - k;*

therefore the number of solutions of (45) is the number of divisors of £ of

degree f—k, i.e.

m-J-k

E 1 =Po*(F).
M\F

Since (40) is necessarily a square, our theorem holds for s = 1.

For j>1, we make use of Theorem 4. Sincey = 0,71 ?¿0, plainly 7—71^0.

Let us put

(46) aF = yiA + (7 - yi)B, deg A = deg B = 2k.

* U and V are of course primary.
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By Theorem 4 we may express the number of solutions of

yiA = aiXi2 + ßiYi2, (y - yx)B = a2X22 + ■■■+ ß.Y2,

in terms of pa(A), u0(A); p,-2(A), o:a-2(A), respectively. Thus, if — ctißi and

(—l)*_1a2 ■ ■ ■ ßa are both squares, the number of solutions of (2) is

EpoC4)p.-2(5)

summed over all A, B satisfying (46). Applying Theorem 2, this sum is

f(-'»'sH)pL(f))

which proves the theorem in this case. The proof is exactly the same in each

of the remaining three cases and need not be repeated. This completes the

proof of Theorem 5.

Corollary 1. // all the hypotheses of Theorem 5 are true, and in addition

k >/, then the number of solutions of (2) is

( 1-)f(ri,(!H) E I M I »-1

or

according as (40) is or is not a square in GF(p"), the summations now being

taken over all M dividing F.

Corollary 2.* Let F be of degree f over GF(p"), 2k an even integer >/, s a

multiple of p, a^O. Then the number of solutions of

aF = Xi2 + ■ • • + X2„2

in (primary) Xi of degree k is

ín(.-l)(2*-/)píl1(F)

if ns(p — l)/2 is even; the number of solutions is

^n(3-l)(2W)co*_,(/.')

if ns(f —1)/2 is odd.

* Cf. the corollary to Theorem 4.
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