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Abstract

The occurrence of redundant components is a natural phenomenon when computing with constructible
sets. We present different algorithms for computing an irredundant representation of a constructible set
or a family thereof. We provide a complexity analysis and report on an experimental comparison.

1 Introduction

Constructible sets appear naturally when solving systems of equations, in particular in presence of param-
eters. Our Maple implementation of comprehensive triangular decompositions has led us to dedicate a
module of the RegularChains library, ConstructibleSetTools, to computing with constructible sets. In
this paper, we discuss the representation used in our software and the implementation of fundamental oper-
ations, such as the set theoretical operations of difference, union and intersection. The problems faced there
are representative of the usual dilemma of symbolic computation: choosing between canonical representation
and lazy evaluation.

We represent a constructible set C by a list [[T1, h1], . . . , [Te, he]] of so-called regular systems, where a
regular system is a pair [T, h] consisting of a regular chain T and a polynomial h regular w.r.t. the saturated
ideal of T . Then the points of C are formed by the points that belong to at least one quasi-component
W (Ti) without canceling the associated polynomial hi.

Example 1 The constructible set C given by the conjunction of the conditions s−(y+1)x = 0, s−(x+1)y =
0, s− 1 6= 0 can be represented by two regular systems R1 = [T1, h1] and R2 = [T2, h2], where

{

T1 = [(y + 1)x− s, y2 + y − s]
h1 = s− 1

,

{

T2 = [x + 1, y + 1, s]
h2 = 1

and x > y > s; recall that W (T1) is defined by y + 1)x − s = y2 + y − s = 0 and y + 1 6= 0 whereas W (T2)
is defined by x + 1 = y + 1 = s = 0. In the representation of constructible sets, two levels of redundancy
need to be considered. A first one appears in representing a single constructible set with regular systems.
This problem exists when computing the complement of a constructible set, the union, the intersection
or the difference of two constructible sets. For instance, one of the central operations is the union of
two constructible sets C1 and C2. The lazy evaluation point of view suggests to represent C1 ∪ C2 by
concatenating the lists of regular systems representing C1 and C2. Of course, a simplify function is needed,
at least in order to remove duplicated regular systems. A canonical representation could be achieved via a
decomposition into irreducible components as in [10], but this could be very expensive for our usage of the
union of two constructible sets. Alternatively, we remove the redundancy by making the regular systems
pairwise disjoint (MPD). In the ConstructibleSetTools module of the RegularChains library in Maple

12, this operation is implemented in the function MakePairwiseDisjoint. The fundamental algorithm in
support of MPD is the Difference of two regular systems [T, h] and [T ′, h′], i.e. Z([T, h])\Z([T ′, h′]), which
will be described in Section 2.

A second level of redundancy can occur in a family of constructible sets. Our point of view is to provide an
intersection-free representation of these constructible sets at an acceptable cost and to remove the redundancy
as well. More precisely, let C = {C1, . . . , Cm} be a set of constructible sets, each of which is represented
by a series of regular systems. For C, redundancy occurs while some Ci intersects a Cj for i 6= j. Like the
coprime factorization for integers, C can be refined to an intersection-free basis D = {D1, . . . , Dn}, that is,
D is a set of constructible sets such that

(1) Di ∩Dj = ∅ for 1 ≤ i 6= j ≤ n,
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(2) each Ci can be uniquely written as a finite union of some of the Dj’s.

This simplification operation is called Symmetrically Make Pairwise Disjoint (SMPD) and it has been im-
plemented as RefiningPartition in the ConstructibleSetTools module. The input constructible sets of
RefiningPartition are assumed to be represented by regular systems. For any other forms, one should
use triangular decompositions [3] to obtain such a representation. The work in [7] suggests that the tech-
niques from multiple-valued logic minimization could help with simplifying the problems before triangular
decomposition.

Relying on the traditional Euclidean algorithm for computing GCDs [6] and the augment refinement
method by Bach, Driscoll and Shallit in [1], this paper introduces efficient algorithms for MPD and SMPD by
exploiting the triangular structure of the regular system representation. Then, we give a complexity analysis
of our algorithms under some realistic assumptions. We also report an experimental comparison among the
implementations of three algorithms for SMPD: the one following the approach of Bach et al. (BachSMPD),
one using a divide-and-conquer approach (DCSMPD) and the one of [3] (OldSMPD) where we introduced this
operation. All the tested examples are well known problems on parametric polynomial systems [3].

2 Background

The starting point of our work is an algorithm for computing the set theoretical difference of the zero sets
of two regular systems Z([T, h]) and Z([T ′, h′]). We introduced this algorithm in [3] as a building block for
simplifying the representations of constructible sets by means of MPD and SMPD, defined in the previous
section.

To be brief, we restrict ourselves to the case where h = h′ = 1 and the initials of T and T ′ are all equal
to 1, too. The complete algorithm has a similar structure but with more branches for case discussion. A
sketch of this algorithm is given below and is illustrated by Figure 1.
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Figure 1: Compute Z([T, h]) \ Z([T ′, h′]) with h = h′ = 1 by exploiting the triangular structure level by
level.

Case 1: If T and T ′ generate the same ideal, which can be tested by pseudo-division, then the difference is
empty.

If not, there exists a variable v such that below v the two sets generate the same ideal while at the level of
v they disagree. This leads to the following case discussion.

Case 2: Assume that there is a polynomial in T ′ with main variable v and no such a polynomial in T . We
then have two groups of points:

• those from V (T ) (the zero set of T ) that do not cancel T ′
v.

• those from V (T ) that cancel T ′
v but which are outside of V (T ′), which leads to a recursive call.

Case 3: Assume that there is a polynomial in T with main variable v and no such a polynomial in T ′.
Then, it suffices to exclude from V (T ) the points of V (T ′) that cancel Tv, leading to a recursive call.

Case 4: Now we assume that both Tv and T ′
v exist. By assumption, they are different modulo T<v, which

is the regular chain below the level v. Let g be their GCD modulo T<v. To be simple, we assume that
no splitting is needed and that the initial of g is 1. Three sub-cases arise:
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Case 4.1: If g is a constant then the ideals generated by T and T ′ are relatively prime, hence V (T )
and V (T ′) are disjoint and we just return [T, 1].

Case 4.2: If g is non-constant but its main variable is less than v we have two groups of solution
points:

• those from V (T ) that do not cancel g,

• those from V (T ) that cancel g but are still outside of V (T ′), which leads to a recursive call.

Case 4.3: Finally, if g has main variable v, we just split T following the D5 principle philosophy [5]
and we make two recursive calls.

From the above algorithm, we can see that the main cost comes from GCD computation modulo regu-
lar chains. By means of evaluation/interpolation techniques, these GCDs can be performed modulo zero-
dimensional regular chains [8]. Thus if all the regular chains in the regular systems representing a con-
structible set have the same dimension and the same set of algebraic variables, one can reduce all computa-
tions to dimension zero; see Proposition 1.12 in [2] for a justification of this point. Therefore, in the present
study, we restrict ourselves to regular systems [T, h] such that the saturated ideal of T is zero-dimensional.
We shall relax this restriction in future work. Under this zero-dimensional assumption, the ideal 〈T 〉 is
equal to the ideal generated by T ; moreover h is invertible modulo T and thus can be assumed to be 1, or
equivalently, can be ignored. Finally, we shall assume that the base field K is perfect and that 〈T 〉 is radical.
The latter assumption is easily achieved by squarefree factorization, since 〈T 〉 is zero-dimensional.

Based on the above approach, we employ the augment refinement method in [1] in order to implement
MPD for a list of regular systems or SMPD for a list of constructible sets. According to this method, given
a set Cr and a list of pairwise disjoint sets [C1, . . . , Cr−1], an intersection-free basis of C1, . . . , Cr−1, Cr is
computed by the following natural principle. First, we consider the pair of Cr and C1; let GCrC1

be their
intersection. Second, we put GCrC1

and C1 \ GCrC1
in the result list. Third, we need to consider the pair of

Cr\GCrC1
and C2 and continue similarly. In broad terms and in summary, only the “remaining part” of Cr

from the first “pair refinement” needs to be considered for the rest of the “original refinement”.

3 A complexity analysis

Our objective is to analyze the complexity of algorithms implementing MPD and SMPD operations. We rely
on classical, thus quadratic, algorithms for computing GCDs modulo zero-dimensional regular chains [9].
Our motivation is practical: we aim at handling problem sizes to which the asymptotically fast GCDs of [4]
are not likely to apply. Even if they would, we do not have yet implementations for these fast GCDs.

Let T = [T1, . . . , Tn] be a zero-dimensional regular chain in K[X1 < · · · < Xn]. We assume that T
generates a radical ideal. The residue class ring K(T ) := K[X1, . . . , Xn]/〈T 〉 is thus a direct product of
fields (DPF). We denote by degi T the degree of Ti in Xi for 1 ≤ i ≤ n. The degree of T is defined to be
∏n

i=1
degi(T ).

We first adapt the extended Euclidean algorithm with coefficients in a field [6] to coefficients in a DPF
defined by a regular chain. Then we use the augment refinement method of [1] to compute a polynomial
GCD-free basis over a DPF. Following the inductive process applied in [4], we achieve the complexity result
of Theorem 1. Recall that an arithmetic time T 7→ An(deg

1
T, . . . , degn T ) is an asymptotic upper bound

for the cost of basic polynomial arithmetic operations in K(T ), counting operations in K; see [4] for details.

Theorem 1 There exists a constant C such that, writing

An(d1, . . . , dn) = Cn(d1 × · · · × dn)2,

the function T 7→ An(deg
1
T, . . . , degn T ) is an arithmetic time for regular chains T in n variables, for all n.

Therefore, an extended GCD of f1 and f2 in K(T )[y] with degrees d1 ≥ d2, can be computed in
O(d1d2)An(T ) operations in K. Moreover, for a family of monic squarefree polynomials F = {f1, . . . , fm} in
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K(T )[y] with degrees d1, . . . , dm, we extend the augment refinement method in [1] to compute a GCD-free
basis of F modulo T in O(

∑

1≤i<j≤m(didj))An(T ) operations in K.
To estimate the time complexity of MPD and SMPD in zero-dimensional case where a regular system can

be regarded as a regular chain, we start from the base operation RCPairRefine, presented in Algorithm 1.
Given two zero-dimensional, monic and squarefree regular chains T and T ′ in K[X1, . . . , Xn], RCPairRefine

produces three constructible sets D, I and D′ such that Z(D) = V (T ) \ V (T ′), Z(I) = V (T ) ∩ V (T ′) and
Z(D′) = V (T ′) \ V (T ). In other words, {D, I, D′} is an intersection-free basis of the zero sets defined by T
and T ′. In the worst case, for each v in X1, . . . , Xn, a GCD of Tv and T ′

v modulo T<v and two divisions are
performed. The GCD operation used in Algorithm 1 is specified in [9]. If the degrees of regular chains T
and T ′ are d and d′ respectively, then RCPairRefine costs O(Cn−1dd′) operations in K.

Algorithm 1 RCPairRefine

Input: two monic squarefree zero-dimensional regular chains T and T ′

Output: three constructible sets D, I and D′, such that

V (T ) \ V (T ′) = Z(D), V (T ) ∩ V (T ′) = Z(I) and V (T ′) \ V (T ) = Z(D′)

1: if T = T ′ then

2: return ∅, [T ], ∅
3: else

4: D ← ∅; I ← ∅; D′ ← ∅
5: Let v be the largest variable s.t. T<v = T ′

<v

6: for (g, G) ∈ GCD(Tv, T ′
v, T<v) do

7: if g ∈ K or mvar(g) < v then

8: Tq ← G ∪ {Tv} ∪ T>v; T ′
q ← G ∪ {T ′

v} ∪ T ′
>v; D ← D ∪ Tq; D′ ← D′ ∪ T ′

q

9: else

10: q ← pquo(Tv, g, G); q′ ← pquo(T ′
v, g, G); E ← G ∪ {g} ∪ T>v; E′ ← G ∪ {g} ∪ T ′

>v

11: if mvar(q) = v then

12: Tq ← G ∪ {q} ∪ T>v; D ← D ∪ Tq

13: end if

14: if mvar(q′) = v then

15: T ′
q ← G ∪ {q′} ∪ T ′

>v; D′ ← D′ ∪ T ′
q

16: end if

17: W, J, W ′ ← RCPairRefine(E, E′); D ← D ∪W ; I ← I ∪ J ; D′ ← D′ ∪W ′

18: end if

19: end for

20: return D, I, D′

21: end if

Note that Algorithm 1 suffices to compute solely Difference(T, T ′), i.e. V (T ) \ V (T ′) when removing
the lines for computing I and D′. Thus, the cost of Difference(T, T ′) is also bounded by O(Cn−1dd′).

Using RCPairRefine and adapting the augment refinement method in [1] to a list of regular systems
or constructible sets, the operation CSPairRefine for computing an intersection-free basis of a pair of
constructible sets can be deduced naturally. Based on these operations, we build Algorithms 2 and 3 to
implement MPD and SMPD respectively. Their complexity results are stated in the theorems below.

Theorem 2 Let L = {U1, . . . , Um} be a set of monic and square free regular chains in dimension zero
and the degree of Ui be di for 1 ≤ i ≤ m. Then a pairwise disjoint representation of L (that is, regular
chains S1, . . . , Sq such that {V (S1), . . . , V (Sq)} forms a partition of the union of V (U1), . . . , V (Um)) can be
computed in O(Cn−1

∑

1≤i<j≤m didj) operations in K.

Theorem 3 Given a set L = {C1, . . . , Cm} of constructible sets, each of which is given by some monic
squarefree and pairwise disjoint regular chains in dimension zero. Let Di be the number of points in Ci for
1 ≤ i ≤ m. An intersection-free basis of L can be computed in O(Cn−1

∑

1≤i<j≤m DiDj) operations in K.

4



Algorithm 2 MPD

Input: a list L of monic squarefree zero-dimensional
regular chains

Output: a pairwise disjoint representation of L

1: n← |L|
2: if n < 2 then

3: return L
4: else

5: d← L[n]
6: L∗ ←MPD(L[1, . . . , n− 1])
7: for l′ ∈ L∗ do

8: d← Difference(d, l′)
9: end for

10: return d ∪ L∗

11: end if

Algorithm 3 BachSMPD

Input: a list L of constructible sets with each
consisting of a family of monic squarefree
zero-dimensional regular chains

Output: an intersection-free basis of L

1: n← |L|
2: if n < 2 then

3: return L
4: else

5: I ← ∅; D′ ← ∅; d← L[n]
6: L∗ ← BachSMPD(L[1, . . . , n− 1])
7: for l′ ∈ L∗ do

8: d, i, d′ ← CSPairRefine(d, l′)
9: I ← I ∪ i; D′ ← D′ ∪ d′

10: end for

11: return d ∪ I ∪D′

12: end if

We have also combined a divide-and-conquer approach with the augment refinement method, leading
to another algorithm, called DCSMPD, for the operation SMPD. Our analysis shows that its worst case
complexity is the same as that BachSMPD; however it performs better for some tested examples.

The main operation in our divide-and-conquer algorithm merges two lists of pairwise disjoint con-
structible sets [A1, . . . , As] and [B1, . . . , Bt]. We first consider A1 and [B1, . . . , Bt] following the principle
of the augment refinement method described in Section 2. This will result in three parts: [GA1B1

, . . . , GA1Bt
],

[B1\GA1B1
, . . . , Bt\GA1Bt

] and A1\GA1B1
\ · · · \GA1Bt

, where GA1B1
, . . . , GA1Bt

are the respective intersections
of A1 and Bi for 1 ≤ i ≤ t. Next we only need to consider A2 with respect to [B1\GA1B1

, . . . , Bt\GA1Bt
] since

A2 is disjoint from GA1Bi
for 1 ≤ i ≤ t. The same rule applies to each of A3, . . . , As.

4 An experimental comparison

In this section we provide benchmarks on the implementation of three different algorithms for realizing the
SMPD operation, respectively OldSMPD, BachSMPD and DCSMPD.

Given a list C of constructible sets, the algorithm OldSMPD first collects all their defining regular systems
into a list, then computes its intersection-free basis G which consists of regular systems, and finally one
can easily group G into an intersection-free basis of C. In this manner the defining regular systems of each
constructible set are made (symmetrically) pairwise disjoint, though sometimes this is unnecessary. As
reported in [3], OldSMPD is expensive and sometimes can be a bottleneck. After replacing OldSMPD in
the comprehensive triangular decomposition (CTD) algorithm respectively by BachSMPD and DCSMPD, we
rerun the CTD algorithm for twenty examples selected from [3] (all examples are in positive dimension).

The second column named OldSMPD in Table 1 is the timing from [3] where SMPD was first implemented.
The third column OldSMPD (improved) extends the RCPairRefine algorithm to positive dimension and
manages to compute the difference and the intersection in one pass, whereas in OldSMPD the set theoretical
differences and the intersections are computed separately. The fourth column and the sixth column present
the timings of computing an SMPD with BachSMPD and DCSMPD respectively. The fifth column and the
seventh column show the timings for cleaning each constructible set with an MPD operation on each of the
constructible set in the output. In this way, we remove the redundancy both among a series of constructible
sets and in their defining regular systems.

Table 1 shows that BachSMPD and DCSMPD are more efficient than OldSMPD. We know from the previous
section that Algorithms BachSMPD and DCSMPD have the same complexity in the worst case. However,
experimentation shows that DCSMPD performs more than 3 times faster than BachSMPD for some examples,
which need to be investigated in the future.
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Sys OldSMPD OldSMPD BachSMPD BachSMPD DCSMPD DCSMPD
(improved) (+MPD) (+MPD)

9 3.817 0.871 0.818 0.877 1.112 1.435
10 1.138 0.154 0.223 0.223 0.281 0.344
11 12.302 3.949 3.494 3.766 0.786 0.914
12 10.114 0.551 0.383 0.383 0.318 0.318
13 1.268 0.348 0.318 0.318 0.362 0.363
14 0.303 0.118 0.103 0.103 0.062 0.062
15 1.123 0.271 0.259 0.259 0.271 0.271
16 2.407 1.442 1.184 1.449 0.703 0.927
17 0.574 0.116 0.091 0.100 0.159 0.173
18 0.548 0.257 0.293 0.300 0.283 0.290
19 0.733 0.460 0.444 0.444 0.211 0.211
20 0.020 0.013 0.013 0.013 0.013 0.013
21 3.430 0.607 0.584 0.584 0.633 0.633
22 25.413 9.291 8.292 8.347 9.530 9.592
23 1097.291 95.690 82.468 82.795 122.575 125.286
24 11.828 0.912 0.930 0.930 0.985 1.784
25 54.197 12.330 1.934 1.934 1.778 2.900
26 0.530 0.065 0.047 0.047 0.064 0.065
27 27.180 16.792 13.705 16.280 4.626 6.323
28 – 2272.550 1838.927 1876.061 592.554 624.679

Table 1 Timing(s) of 20 examples computed by 3 algorithms
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