On the representation of de Bruijn Graphs

Rayan Chikhi

joint work with P. Medvedev, A. Limasset, S. Jackman, J. Simpson

Univ. Lille

ALEA 2016

de Bruijn Graph

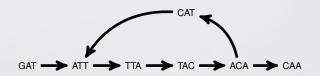
sequence: GATTACATTACAA

k-mers: GAT (k=3) ATT TTA

. . .

Nodes: *k*-mers (words of length *k*)

Edges: exact suffix-prefix overlaps of length k-1



Usages:

- Bioinformatics
 - de novo assembly of sequencing data
- Distributed applications

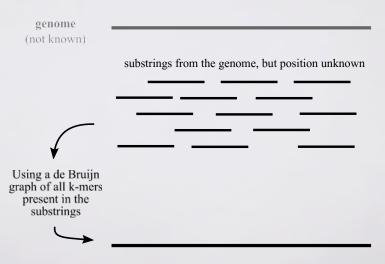
Genome sequencing

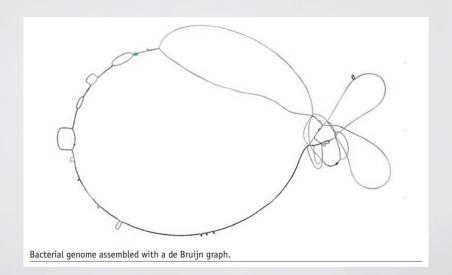
>1 ACTGA.. >2

>2 TGTAG..

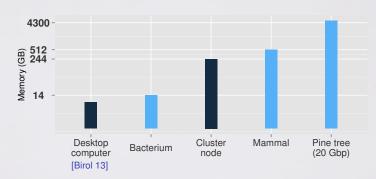
...

Genome assembly

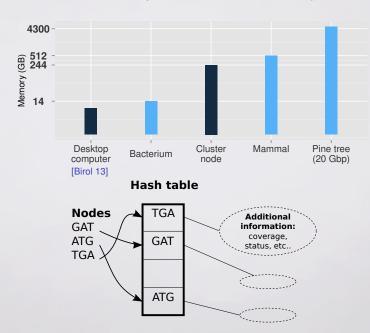




dBGs require a lot of memory



dBGs require a lot of memory



How to encode the de Bruijn graph using as little space as possible?

(human genome:
$$k = 75$$
, $n = 3 \cdot 10^9 \ k$ -mers)

- Explicit list:

 $2k \cdot n$ bits

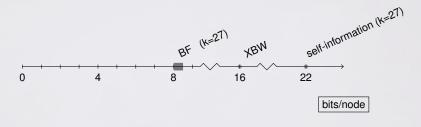
56 GB

 Self-information of *n* nodes: [Conway, Bromage 11]

$$\log_2\left(\binom{4^k}{n}\right)$$
 bits

44 GB

Recent techniques



- Bloom filter of nodes (w/ tricks)
- [Chikhi, Rizk 12],
- [Salikhov et al. 13]

- XBW (Burrows-Wheeler for trees) variant

[Bowe et al. 12]

Why are they doing better?

→ different types of data stru

 \rightarrow different types of data structures

Data structures

A **membership** data structure is a pair of algorithms (*const*, *contains_node*), where:

$$data \leftarrow const(G)$$

contains_node(data, kmer) returns {true, false} whether kmer $\in G$

A **navigational** data structure is (*const*, *neighbors*), where:

$$data \leftarrow const(G)$$

neighbors(data, kmer) returns the neighbors of kmer in G

Navigational data structures

		Membership
	NDS	(e.g. hash table)
Traverse dBG from known nodes	\checkmark	\checkmark
Query membership of arbitrary nodes	X	\checkmark
Enumerate nodes	X	✓

NDS has undefined behavior if query node not present.

Recent techniques are **NDS** but **not Membership** DS

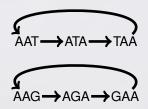
Why a NDS "beats" the self-information

Consider this example NDS when k = 3

"For each node $x = x_1 x_2 x_3$,

out-neighbor: $x_2x_3x_1$ in-neighbor: $x_3x_1x_2$ "

Valid for these two graphs:



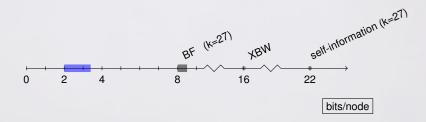
So,

$$1 \ \mathsf{NDS} \longleftrightarrow \mathsf{>} 1 \ \mathsf{dBGs}$$

$$1 \ \mathsf{Membership} \ \mathsf{DS} \longleftrightarrow \mathsf{1} \ \mathsf{dBG}$$

Lower bounds

We seek dBG representation lower bounds in the NDS model.



NDS lower bound for linear graphs

Linear graphs

Theorem

NDS for linear graphs need at least 2 bits/k-mer of space.

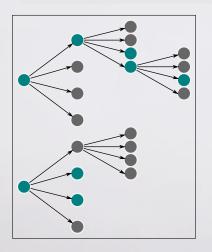
Proof sketch:

- Number of DNA strings that have *n* distinct *k*-mers and start with same k-mer: $\approx 2^{2n}$ [Gagie 12]
- Number of linear dBGs with n nodes and same left-most node: $\approx 2^{2n}$
- Suppose NDS needs < 2n bits,
- Two graphs have the same NDS (pigeonhole principle)

NDS lower bound

Theorem

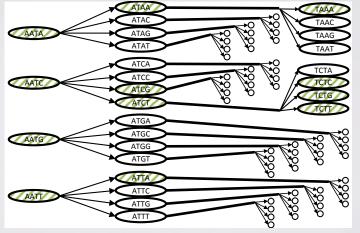
NDS need at least 3.24 bits/k-mer.



Proof sketch:

- Construct a large family of N graphs, such that for any two graphs, ∃ k-mer that appears in both graphs but with different neighbors.
- Suppose NDS needs < log(N) bits
- 3. Two graphs have the same NDS (pigeonhole principle), contradiction

Our construction has $N = 2^{3.24n}$



- Fix an even $k \ge 2$, $\ell = k/2$, $m = 4^{\ell-1}$
- Consider a graph with $\ell+1$ levels of $\{A^{\ell-i}T\alpha, \alpha\in \Sigma^{i+\ell-1}\}$
- Select *m* nodes per level
- $\binom{4m}{m}^{\ell}$ possible graphs
- $\binom{4m}{m}^\ell \geq 2^{(c-\epsilon)\ell m}$ with $c=8-3\log 3 \approx 3.24$

Conclusion / Perspectives

Navigational data structures:

- Model for recent dBG data struct.
- Lower bound: 3.24 bits/k-mer
- Gap with known non-parameterized upper bounds (16)

Open questions:

- Closing the gap above
- Entropy-compressed dBG representations

Contact/references:

- On the Representation of de Bruijn Graphs, 2014
- rayan.chikhi@univ-lille1.fr
- http://rayan.chikhi.name