On the representation of de Bruijn Graphs

Rayan Chikhi

joint work with P. Medvedev, A. Limasset, S. Jackman, J. Simpson

Univ. Lille

ALEA 2016

de Bruijn Graph

```
sequence: GATTACATTACAA
    k-mers: GAT
        (k=3) ATT
        TTA
```

Nodes: k-mers (words of length k)
Edges: exact suffix-prefix overlaps of length $k-1$

Usages:

- Bioinformatics
- de novo assembly of sequencing data
- Distributed applications

Genome sequencing

Genome assembly

genome
 (not known)

substrings from the genome, but position unknown

Using a de Bruijn graph of all k-mers present in the substrings

Bacterial genome assembled with a de Bruijn graph.

dBGs require a lot of memory

dBGs require a lot of memory

How to encode the de Bruijn graph using as little space as possible?

$$
\text { nodes only: }\{G A T, A T T, \ldots\}
$$

(human genome: $k=75, n=3 \cdot 10^{9} k$-mers)

- Explicit list:

$$
2 k \cdot n \text { bits }
$$

56 GB

- Self-information of n nodes:
[Conway, Bromage 11]

$$
\log _{2}\left(\binom{4^{k}}{n}\right) \text { bits }
$$

44 GB

Recent techniques

- Bloom filter of nodes (w/ tricks) [Chikhi, Rizk 12], [Salikhov et al. 13]
- XBW (Burrows-Wheeler for trees) variant [Bowe et al. 12]

Why are they doing better?
\rightarrow different types of data structures

Data structures

A membership data structure is a pair of algorithms (const, contains_node), where:

$$
\text { data } \leftarrow \operatorname{const}(G)
$$

contains_node(data, $k m e r)$ returns $\{$ true, false $\}$ whether $k m e r \in G$

A navigational data structure is (const, neighbors), where:

$$
\text { data } \leftarrow \operatorname{const}(G)
$$

neighbors(data, kmer) returns the neighbors of kmer in G

Navigational data structures

Membership
Traverse dBG from known nodes Query membership of arbitrary nodes Enumerate nodes

NDS
\checkmark X X
(e.g. hash table)
\checkmark
\checkmark
\checkmark

NDS has undefined behavior if query node not present.

Recent techniques are NDS but not Membership DS

Why a NDS "beats" the self-information

Consider this example NDS when $k=3$

"For each node $x=x_{1} x_{2} x_{3}$,
out-neighbor: $x_{2} x_{3} x_{1}$ in-neighbor: $x_{3} x_{1} x_{2}$ "

Valid for these two graphs:

So,

$$
\begin{aligned}
1 \text { NDS } & \longleftrightarrow>1 \mathrm{dBGs} \\
1 \text { Membership DS } & \longleftrightarrow 1 \mathrm{dBG}
\end{aligned}
$$

Lower bounds

We seek dBG representation lower bounds in the NDS model.

NDS lower bound for linear graphs

Linear graphs

Theorem

NDS for linear graphs need at least 2 bits/k-mer of space.
Proof sketch:

- Number of DNA strings that have n distinct k-mers and start with same k-mer: $\approx 2^{2 n}$
- Number of linear dBGs with n nodes and same left-most node: $\approx 2^{2 n}$
- Suppose NDS needs $<2 n$ bits,
- Two graphs have the same NDS (pigeonhole principle)

NDS lower bound

Theorem

NDS need at least 3.24 bits/k-mer.

Proof sketch:

1. Construct a large family of N graphs, such that for any two graphs, \exists k-mer that appears in both graphs but with different neighbors.
2. Suppose NDS needs $<\log (N)$ bits
3. Two graphs have the same NDS (pigeonhole principle), contradiction
Our construction has $N=2^{3.24 n}$

- Fix an even $k \geq 2, \ell=k / 2, m=4^{\ell-1}$
- Consider a graph with $\ell+1$ levels of $\left\{\mathrm{A}^{\ell-i} \mathrm{~T} \alpha, \alpha \in \Sigma^{i+\ell-1}\right\}$
- Select m nodes per level
- $\binom{4 m}{m}^{\ell}$ possible graphs
- $\binom{4 m}{m}^{\ell} \geq 2^{(c-\epsilon) \ell m}$ with $c=8-3 \log 3 \approx 3.24$

Conclusion / Perspectives

Navigational data structures:

- Model for recent dBG data struct.
- Lower bound: 3.24 bits/k-mer
- Gap with known non-parameterized upper bounds (16)

Open questions:

- Closing the gap above
- Entropy-compressed dBG representations

Contact/references:

- On the Representation of de Bruijn Graphs, 2014
- rayan.chikhi@univ-lille1.fr
- http://rayan.chikhi.name

