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STUDIA MATHEMATICA, T. LXIX (1981)

On the representation of measurable fimetions by
multiple trigonometric sexies

-~

by
JAU-D. CHEN* and IN-L. HWANG (Taipei)**

Abstract. It is proved that for overy almost everywhere finite measurable
function f defined on & k-torus Ty ean be represented by a k-fold trigonometric series
that is convergent to f almost everywhers by aquare summation. For k = 2, we show
that there exists o function F, continnous on T, ond such that the result of term-by-torm
mixed differentiation of its double Fourier series is a double trigonometrie series
eonvergent to f almost everywhere by square summation. For higher dimensions we
have a similar result. .

L. Iatroduction. Answering a question posed by Lusin, Men’shov
[2], [4] proved that, for any measurable almost everywhere finite 2rn-perio-
dicfunction, there i3 a trigonometric series convergent to the given funetion
almost everywhere. Bary [2] strengthened Men’shov's result, by showing
that for any f(w), measurable and finite almost everywherg on T, = [0, 2=x],
there exists a function F(%) continuous on T, and such that F'(z) — f(x)
almost everywhere and the result of term-by-term differentiation of the
Fourier series of F'(2) is & frigonometric series convergent to f(z) almost
everywhere., This result iz very deep, since even for integrable functions
the Fourier series cannot in general be taken as the apparatus for represen-
ting summable functions [3]. i

In connection with the above question for functions of several wvari-
ables, it i3 natural to aslt whether every measurable almogt everywhere
finite function f defined on the k-torus I, can be represented by a k-fold
trigonometrie series convorgent to f almost everywhere and summed
cither by squuares or by rectangles [5].

In the present paper, wo give a confirmation of Men’shov’s theorem.
on the existence of such a representation by a multiple trigonometric
series summed by squares. For notationas! simplicity, we treat the question
explicitly for the case of dimension 2.

** We are grateful to Professor Casper Go ffman for suggesting this problem.
Alse, ve are thankiul to Professors E, T. Y. Lee and I, C. Lin for helpful discussions.
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2. Preliminaries and notatien. Consider the 2-torus T,= [0, 2x] x
% [0, 2n] of points (», ). For F € I*(T,), let 8,,.F (@, ¥} be the rectangular
partial sum of the double Fourier series SF(z, y) of T at (%, y), where
n, mzz 0. We shall make use of the standard equality

1 X
Sand'(0:9) = =5 [ F(w, 0) Dy u—0) Dy (0 —y) dudo,
)

where

Sln {n-+4) (

D,() = 2811’1—

It is easy to see the mixed differentiation

aD (u— m) D, (v —1y)

——fF B'u

Ag is known (gee [2], pp. 406-410), there exists continuous mon-
otonic function g(z), ¢g(0) =0, g{2=) = 1, constant in all the intervals
contigrons to some perfect et of meagure zero in [0, 2=] for which

B (2, 9)

2.1
21 03y

dudv.

2w

lim f e"mbdg(£) = 0

T Il
hence, as shown in the proof of a theorem in [2], pp. 366-367, the Fourier-
Stieltjes series of g converges to zero almost everywbere. We ghall fix
such a function in this paper.

To any eontinuous function h on T, we can asgsign a function I,

ag follows:

(2.2) Fp(u,v) = fujfh s)dids — g zfnfh (¢, ) dids —
(O] .00
2 L7

wan
u)” {t, 9) dids 4 g (u fh(t 8)ditds,
9
where (u, ») € T, and g iz the function gtated a:bove.
Also, for conwvenienee, in the following seetions we use the same
letter ¢ for an absolute constant, which may be different from caso
to case.;

3. Some esgential lemmas Some basic tooly are neeegsary for our
main result. First we rewrife a modification lemma due to Men’shov;
Lemma 1. Suppose [e,d] = [0,2x], y&R, s> 0 and let v>8 be
an integer. Then there exmists a function w(x) and o olosed set D such that
(8.1) w(w) is o continuous piecewise linsar function on [0, 2] and p(w) = 0

icm

-

The representation of measurable funclions 291
outside [e, d];
(8.2) @)l < Wl w0 < o< 2m;
¢
(3.3) 1f1p(w)dm|< gy 0 £ 2
0
(3.4) y@ =y dn D,
where D <= [e,d] and (D) > (d—e)(1~Bjv) (u, the Lebesgue measure
in R); :
27
l f P() D, (u—a)iu| < Oly|  (n>0),
(3.5)

(n=1)

Jf p{u).D,

for each & € [0, 2w, where O is an absolule constant.

Proof. The proof of thig lerama is edsentially the same as in 17,
pp. 488-504.

The fellowing lemma is an generalization of the above on T,.

Lrmora 2. Suppose [¢,d1x{a,b]lc Ty, yel, 6>0 and Iot v> 8
be an integer. Then there ewists a continuous fmwtzon @(w, y) and o closed
set A suoh that

(3.1%)

(2 — mdu|<0ns

ez, y) = p(e)i(y),

where w(w) 16 o function constructed as in Lemma L and A(y) is a continuwous
piecewise linoar function in [0, 2= vanishing outside [a, b];

(3.2) lpl@, HI<Blyl  in 0<o,y<2m

4
(3.3" |ffqa<m,y)czmdy|<2m, 0< &, n<2n;
(U]

(3.4") ployy) =y in 4,

where A = [¢, &] X [a, b} and py(A) > {d—e) (b—a)(1—B/v) (g the Lobasgue
measure in R*);

(3.8)  the reclangular poriiel sums {8, o(@, y)} converge uniformiy,
und for each (z,9) ey,
B (@, ) <Dy (=0, m=0),
18 (2, Y} < Onls (0 =1, m> 0);

where O 48 an absolute consiant.

Proof. Let w(w») and .D be, respectively, the function and the closed
get construeted by Lemma 1.
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Chooge ¢ such that

p1 (D) — (@~ o) (1.—5 [»)
215 (D)
Define A: [0, 2] — B as.follows:

<< (b —a).

(y—a)/d, a<<yLaitd

1 a-|~o-*:g:hbws
(3.0) My) o= ’ & y o,

(b—g)fd, b—dLysh,

0, Y ¢ [a, bl

Bob @@, ¥y = p@)AW), (@, y) Ty and A = Dx{a 8,538 Note
that, as in [2], pp. 488-489, for cach m and ¢ we have

Ul fy)dv s .

Bo it is easy to see that ¢(x, ) and A have the desived properties

—(3.8").

The mext lemma ig-a fundamental tool for our mmin result, wud it
seems interegting in itself. .

Limyvs, 8. Let b be a cowtinuous function on Ty, and let &, be dofimed
as in (2.2). Then we have

(8.6") Fy(,y) =0 on the boundary of T, and B, is continuous on T,
&7
and P, < 4sup| ]ffh {t, 8)dids|: 0 &, 1< 3n}, and also

(8.7") q,f the rectangular partial sums {S,,,hiz, 1)} (resp. the square partial
38, (2
sums {8,,h(z, 1)} converge wniformly, then {—-k?'ﬂ'k—h—(glqi)
. oy
&8 (

(resp, {%w jl converges to h(m, y) almost everywhere.

Proof. The conclugion (3.6") follows immediately from the definition
of F,. It remaing to prove (3.77).

From (2.1), integrating by parts and using the faet that 1, (@, y) —~ 0
on the boundary of T,, we obtain

asanh *Y) (U — ) ab, (zawg/)
G0y ooy th w-r—— e dudw

o5 4

=——[ffh(u ©) D, (1~ ) Dy, (0 — y) duacl —
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ar 3m
—j D, (1 — z) dg( nffhu ).D,, (v —y) dudv —
27 A

ij(aJ—«y)dq(v fj b, v) D, (w— @) dudy -
o
i 2r 27

_}-t! D,,,(rmmm)dg(u)bf D, (0—9)dg (v) uf vf b, v) dud].

Note that

A g

Sn Ow
j J (w, ). Dy (v —y)dude  and f f A, 2) D (1 — ») dudo
(L] [

converge uniformly.
8o the conclugions follow from the fact that the Fourier—Stieltjes series
of ¢ converges to 0 almost everywhere.

4. Main theorem. In this section we shall use the tools of Section 3
o prove our main result,

Tumonem 1. Por any function f, measwrable and finite almost every-
where on Ty, there exists an B continuous on T, and such that the result
of term-by-term mized differentiation of the double Fourier sevics S (z, ¥)
of ¥ is a double trigonomeirie series convergeni to f almost everywhere by
square suwmmation, that is, for a.e. (w,y) ey,

lil_n azsmﬂlp (mJ y)
S dndy

Proof. Suppose o, = 1/[5n22*+], v, == [Br2dn2]4-1.

We divide the proof into four steps:

Stoep 1. There exigts a function o, continuous on I, and such that
{4.a) o {w, y) =flw, ) in ¥y,

where ¥ e Ty s closed and py(¥y) > 4n*—3%.
Rinee @, 14 continuons, there oxists » step function

= flw, 9).

@) fyo= Sy, WBimale<ol  and 8 < loalke, °

guul
€1
whero {A,,},,,,1 is u sequenco of non-overlapping reetangles and | ) 4, = _T2
a=1
Set 4, = [, &% 4, 3, (8 = 1,2, ..., ). )
Lot l memy < mg < oo < <o <y < Ry, 1y, PE B BGQUENRCE of natural

numbers which we will (lc'fi11e J'nductively, gee (4.8") and (4.h). Assume
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that
1
& = '_'23,”% (s =1,2,..., ¢).

On the basis of Lemma 2, in which we suppose that
[o, d] % [a; b} = [0y, dy] X [, bs], Y =Y

for each ¢ =1,2,...,6, we can find & continuous funcbion g,{x,y)
and a closed set A, such that

=8y, V=,

(4£.17) @ (2, ¥) == y,(2)A,(y), where w,(v) is a function ag in Lemma 1
corresponding to [e, @] = [6,, d,], & = &, ¥ = ¥, » = »;, and A, (y)
i a function like A(y) in the proof of Lemma 2 with [¢, b] = [a,, b,];

(4.2) @e(@; ) < Iyl 0 O,y < 25

L
(4.3) |/ [oolo n)dody | < 2me,,  0< 5 <23
[N '

{4.4) @52, y) = v, in 4, where

B
Ay = [,y &1% [0,, 0] and o () > (g ) (B — @) (1 e ‘,;")7
1
- (4.5°) the sguare partial sums {8,,.0:

(%, ¥)} converge uniformiy, and for
each (x,y)el,

Bmnde @, ¥)I < Onylygl  (m=0),
18 pmtts (@, )| < Omtlg,| (m 2z 1).

Let ¥, = F, a5 in (2.2). Then'
{4.6") Fy(x, y) = 0 on the boundary of Tp and F,(z, y) is continuous on Ty,
and [|[F,[, < 8me,;

P8yl (2, %)

4.7 M 80
@1y lm s w (@)

Mr 03

for a.0. (@,y)eT,.

By (4.7') and Bgoroff’s theorem, for ¢ =1, 2, ..., ¢, —1, there existy
a closed set H; = Ty, py(H,) > dn?—1/5% and g, > n, such that

, O 88 iy (0
(4.8 Z[_migaaié_iy_)_(pj(m, (y)] { <-— in K, for each m 2 n,,.
J==1
» Set
£
(4.0) Pyp=T;n (4.

f=1 -

icm
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“
Then P, is closed and. uy(Py) > 4n? —1, gince g, ¥;) > dn?—3 and Y pe(4,)
5 5=1
> 4md (1 - —;—) > 4w —%,
1
Note that

!
Jn@y|<a in Py

el

(4.4) | Fl@, ) —

Sinee P, ig cloged, there oxists a § > 0 such that the set

G == {(wa y)el,: d((m: y)vlpz) > 5}
ig open and
1
475°2%)

a(6) > (1 - )m(rz ~P,).

We ean choose finite non-overlapping closed rectangles 4, ., ey A7
in ¢ sueh that
- , 1
2_4 #a(dy) > |1 — Lot ‘#z(TaN—Pﬂ-

amwel-H

{4.¢)

Thercione Ty~ U 4, can be covered by a finite number of non-
LELIE 3! .
overlapping Lccmnglw Bpryooey Ay

Lot fy = foe '5" @y There exists a ¢ > 1 such that

(4.8) ,U-z(J‘T‘E-q,q]nAa)>uz( A)i—ep), e<s<V.

Now seleet an inboger i, 4, > %y, and closed sets X,, B, such that

(4.8) 1jﬁ.i>n,<uu-~-m)czg(u>y, fﬂmwuy)dgw)}-of in X
t i

and
€
1 ’ ausm'rll'l".’ﬁ(w? y) 1 . 1'1
(41) [_W_____ —mlo, || << i By
% dmdy &y

5 Mgy pq A fa(Xy) = 4mt =1, pp{H, ) > dn?—1/e3.

¥rom (4.0), (4.1), wo have

L
'“( U jﬂl[ 41QJﬁA)>:“B( gLy} — 5

gmgyhl
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Algo, note that

v
palf L=k, Rl (Tame U 40} 2 palPa).
=gl
Hence, for cach & = ¢;+1,...,1, there is a continuous function o, on 7,
and a closed set ¥, < A such that o(z,y) =0 for each (w,y) ¢ 4;,

4d)  lelle<d, a<s<l; lgl<d, h<s<li,
o (wy y) = fulw, y) in Y,,
where
11 , 1
Mz( U Ys) >4'rr:2——-2-;. -
8=0+1
! 1
Let ¥, = |J Y, and gp= > . Then a i3 continuous on
semgy+E s=gq 41
T, and
!
(4.87) ay=fi =f— Z% b ¥,

§=1

For e, < 8 < 1, there existz a step function

Z
Y
B, = 2_, Veikdy

» =1

such that (18— o)l < o} a0d (Bl < o4, Where {4, is & sequence
I3

of non-overlapping rectangles L_JA]‘M = A, and it Ay = [0,5, thes] % [Bsss bi]
then

(4.3

X {fy; — gy by — g} <

for each ¢, << sV,

We enumerate the réetangles 4, 1 <i<j, (6 <8+ 1) in the fol-
lowing way:

For ¢, < s < I' we arrange them in the ordar /Je e
V<<l in the oxder Ay g ..y 4,

Now we may write the sum of the step functions as f,,

Ac,& ; amul, for

i o
(41") Ba= D Bi= D veta,
LEDRY =yl
and
o taloe < 8, Bl < lall

icm
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Step IT. By the same procedure as in S‘bop X, for the step function g,
we ean define: o seguenee of mtegem Ty K Mgy gz < ve < Mgy B SEQUENCE
of positive 1;umbum {ra S 1/omnE Lkt two sequences of continuous
funo&mm {Pphik PRTREL e 10 A0 Fwo sequencos of cloged sets {Ee ‘,_,;,1,

{/l_,” gt Sueh that for cadh s = o -1y, 0 properties (4.1)-(4.8")
holdt nnly it vy 18 replaced by »,.
Now sol
ty
(46" = Yo [ U Ay
fuwfiy-fl
Mhen A2, 18 clonod sl gy (Py) > 4t~} sinee
g £y
wr o gk N & U L, By, 1
Ma( ].’ﬁ) s et —2‘ aindd ,}.J /lz (A ) Z ‘145,_(/]5) (1__ 1;,_) /4:7:.5_.,2_2_
LR qu i1 =
() [ f@,9)- Zm )| | fules )= )jqoq (@, 9)|<ot o Py
Hﬁmﬂ]ﬂ 1
We now show Ghad for each (#, ») e Xy -
IS AR (4
(du5) g "”’z m;;, ’Jw 0 W whenever ey < § < ¢ and m 2 g
Write
Sl (2 Y}
{L'l ‘ﬂlﬂ'b ¥ [ Wi © ]
8) oty Z @y
where
am 231
Wiz, y) - fj @ (10, 1)y (10— 18) Dy, (0 — ) daeel
LY
am 2w
Wa (i, ay) o j Dy (—aydg () [ [ qales, ) Dyl —) dude,
0.0
m .!':‘w an .
Wie, ) - - J Dy (0 11y g (0 j f (4, 2) Dy (0o ) duad,
[ o 0
and
ﬁ'm un 27T
Who, y) - [ Dyl —n)dglu ) [ Dulo~9) dg(v:)f  uln, o) dudo.
[} Q [

Binwe d(Xy, 4,)> 6 88 8 = o4l 0, i 4, = [0y, d;1% [ay, by, wo

have the following two cuses:
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Case 1. o ¢[e,—6/V2, d,+6/V2]. Then

ds
W@, 91 < 0| f plw) Dy(u—2)an|

< Onaly] —6,) [see (3.2)]

1
—_— =" d
sln(6/21/2)( ?
1 otsin(3/27'2)
n(8/2¥2) q

< Ovaly,! » [gee (4.j}]
¢
'5[77

< sinee |yl <q [seo (4d)],

(i =2,8) [see (4.2)]

4

o 4
Wo@, 9| < 0=l < 55

2
Wiz, 9)] < ({«) e, < o

Hence in this cage we have

az'gmmlﬂs (w ? y)
Jwoy

¢
\52‘-

Case 2. y¢[a,—06/V2 ,b,+0/V2]. Heve we can treat |Wi(z,y)l

(¢ =2, 3, 4) in the same way ag above, and for Wi{z,y) we have

27 by
Wi, )l = | [ ww Dptu—o)au|| [ 40050

amnd.

y)dv

1 ¢
€ Onaly,| (B, — ty) i e

a7l (e = sin(8/2v2) &
For ¢1<C 8

< 6, we have
(Wi (o, 1)) < Ovyly,| < Ompad < O20 (3

=1,%,8) [sce (4.i)]
[Wh(e, 9)] <

Hence (4.k) is proved.
Step IIL. Inductively, we can obfain:
(iy & sequence of positive numbers {s},

oione, X O30,

(ii) strictly increaging sequences of natural numbers {n,}, {&}

[see (8.8) and (3.1)].

icm
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(iii) & sequonee of roctangles {4},

{iv) three sequences of continuous funetions {g}, {#,}, {e,}, and
a goquence of gtep funclions {4},

(v) & sequence of real numbers {y,},

{vi) tive Hoquonces of closed sets { ¥}, (A, {Per, {X;} and {8}, such
that for o,.; < 8% ¢, we have the following:

{437 g, lee, ) == 1, (m) A,(y) whero 4, (2) is & function as in Lemma 1 cor-
rosponding to [6, 4] = [o,, d,], & = s, = 1)2%, y =y, v.=;
and A, () is a function like A(y) in the proof of“%emma 2 with.

. k
[y DY == [y by, Ay o= [0n, d,] % [a, b, s0 that (U 4, = Ty;
ELLIRE O
(4'0”) !’7)@(7‘7 "/) 2”}:‘7}3 in 0 < ”5 :’/ 27':1
&y
(4.3 Uf% ( y)dm/| < 2me,y O < £, < O
0
(4.4 s (2, Y) ==y, in. A,, where

B
Acd, i m(d) > md) (=)

g4

(4.5") the square partial sums {8,.m.(z,y)} converge uniformly, and for
cach (w,9) ey

|Smm% ((J.’}, ?/)l = OT'klyel
S ums (@5 )| << OmBsy]

(4.6") T(w,y) =T (w,y) =0 on the boundary of T, and is continnous '
on T (md (1 loa < 870845

&S F'e (@ ).

{m = 0},
(m = 1);

.(4;.7”) iﬁ{;— et = @y, y)  for ae. (@,%) € Ty;
(4.8") \‘[ azﬁmgibr(m’ v s y)]1< %— a8 MmNy and (z,y) € H,
Vi“?llcaro B, e !I.’/,6 and ug(H,) > ll»vv“-:l/S”;
{4.2'") ,
ay, v o kz, p, o ¥, where (¥)> dn?—1[2%, and 6y = 1;
awal
o
(4.b") Py = Z VeXdys 18— tplloe < 0'?=+17 1B1lle <5 Nletzelluo 3
Sty .
(4.0™) Py == IY,‘h( Llj /1,,), 2(Pp) >4~7c”-—1[2”“";

Byl
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in Py

€
(4.07) [f@y )= Dmlo, v)| <

AX) X, <Py, ua(X,) > 4nt—1/25 and for each (z,y) e X,
: Y )

aszqug' (m ? y)
aq,.ay = Qft-l1

whenever e, < 8’ < é,,, and m > = Mg

Step IV, Tet P = 21’ Then, by (4.6") ZF converges uniformly

Sl
on T,, and so ‘F is continnows on T,. ’J‘huotorc, for each m, we have

F B, y) 2’:\ Pyl (@5 9)
dwdy ey ’

Suppose £ = lim E,thmX,, Then

11#'?00 ’H.»mo

4g (4) == 4xt,

since pa(,) > dn?— 1fa? and p,(X,) > 4n*—1/27"1,
We show that for each (2, y) = £,

Lo
4.9 i eI
(4.9) L 2 = £ 9).
Firgh, (@, y) € 2 implies (#, y) € X, for » large enough, and so (2, y)
e P,. Observe that (4, d”’) holds and that at most one term of the sum
‘%
¥ g (®,y) is non-zero. We conc]ude that
ooyl

f@,y) = Z%(w,y)-
g=1

Next, for (z, y) € 2 there exists a j, such that (&, y) e #,n X, whenever
W2 jg.
Given s > 0, there exists a &, such that (1) 1/(k, —1) < &, (i) ky—1 3 j,,

(iil) it § > e, , then 12% (@, 9)| < =
Y=

Now .
P8, (%, ¥) B2, ) 1
—‘W ~f[@,y)| = s ""aan “““““ “;}J (e, 9)
ol L
g1
E s (2, y) 88 (2, ¥)
|y el R AR
SO Y I L= L
=l gl
) 6‘8mmI‘ @, ¥)
* 24 Tway lZ"” @) l
g=j41 =]
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It m > Ney s then there exists a j, 6, < f< e, (B> k) such that
Py << M Ny

P8, e, ) 1 I}
—_— & s

A ,y)l
&=l

(see (4.8") and (4.k’)).
‘Write

a ’Smmﬁ (w’ J)

wdy [?W’ :J)] as in (4.1).

. i

1 ¢ '
Wile, 9)| < Onte, S Omt g < 55 (6=1,9),

. 2m
W@, ) <O [ wy(w)du| < 0e, < 02,
[

. 2m 2w

Wa@ < | [ [ ootw, 0)dude | < 0f2".
0
So
&8y Fo (@, 9)

o 0
< =<
dwdy {\“5:12” Ce.

>

amg4l

Therefore we obtain the proof of (4.9), and the proof of our theorem
iy complete,

5. Some remarks. The basic ideas for proving the theorem in the
last section are the lemmas stated in Section 3. So if we genexalize these
lemmas to higher dimensions, the only difficulty being that the notation
becomes slightly eomplicated, we have the following theorem. :

TomoreM 2. For any funetion f defined on the k-torus T, = [0, 2m] X
%[0, 2n] X ... X[0,2%], measurable and finite a.e., there cwvists a oonti-
nuous function ¥ on T, sueh that

lim &Sy, By Bayeees B)
M aiﬂ:‘ Oy et ﬁw,d

= (1) Dayerey )

for a.e. (e, By, ...y By) 6 Ty wheve By o F (@, &ay. 0., @) 48 the square
partial sum for the multiple Fourier series of F at (Ty, Bay .. vy T)

‘We still do not know whether every almost everywhere finite mea-
surable f defined on 7 can be represented by a k-fold (k> 2) frigono-
metric series eonvergent to f a.e., summed by rectangles or gspheres. Buf
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as & parallel to the proof of our theorems, we can prove the Jicnllow'nuT
theorems:

TemorREM 3. For any function f defined on the k-torus Ty, measurable
amd finile a.c., there emisis a continuowns funelion T on T, such thet
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Jor ae. (s, @oy..ny @) & Typy where Sy, o B (@15 Bay ooy @) is the rectangu-
lar partial sum of the mulliple Fourier sories of B ai (v, wy,..., ).

Toponrum 4. Let  be a function as in Theorem 3. Then there ewists
a continwous function F on T, such thet
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Jor ae. (wy, wo,..., %) €Ty, where 1 is o fined positive constant not less
than 1.

Therciere, any finite a.c. moasurable function defined on 7', can be
ropresented by a multiple trigonometric series w.e. in the sense of restrieted
summability ([6], p. 68; [7], p. 308).
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