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ABSTRACT 

ON THE R.~~PRESENTATION OF PARTIAL SPATIAL INFORMATION IN 

KNOWLEDGE BASES 

PhD, 1997 
Theodoroç Topaloglou 

Graduate Department of Cornputer Science 
University of Toronto 

A fundamental requirement of advanced spatial applications is the capacity to deal 

with partial spatial information and multiple levels of granularity- This thesis studies the 

problem of reprwenting and reasoning with partial spatial information in the context of 

knowledge bases. The thesis proposes a representation which views space as a totality of 

objects surrounded by a haze area and interrelated in terms of qualitative spatid relations. 

The most elementary object type in this representation, is the haze point. This is a non-zero 

sized object that is associated with an area of haze such that the point in question may 

be located anjwhere inside it. Haze points are related in ternis of an indistinguishability 

(called haze) or an order relation. The notion of haze can help us mode1 situations where 

information is ùnprecise; the size of the haze area accounts for the degree of precision. 

Zn the course of our study we present a formal axiornatization of the fht-order the- 

ory of one-dimensional haze point space and develop several extensions of the theory for 

high dimensionai space. We then define a set of topologicai and directional binary spatial 

relations in terms of the h u e  and order primitive relations and formalize spatial inferenc- 

ing in a setting of varying degree of precision, as  a constra.int reasoning problem. Our 

reasoning algorithms make use of a data structure d e d  haze-order graph which allows 

trading space for efficiency. Experimental results iilustrate the efficiency of the proposed 

algorithms. Findy, we use these results in the development of a spatial data mode1 which 

facilitates the representation of and reasoning with various forms of qualitatively and quan- 

titatively incomplete spatial information, including indeterminate ob jects, multiple scales 

and granularity. 
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Chapter 1 

Introduction 

1.1 Motivation 

The need to represent and manipulate spatial information arises in many areas of computer 

science, including ArtXciaI Intelligence and Databases. 

In Arti£icial Intelligence, problem solving systems tequire sophist icated world models 

that can capture the notion of space. Likewise, hi&-level Machine Vision is interested in 

interpreting visual data on the basis of knowledge about shapes, positions and motions of 

objects. In a similar vein, cornmonsense reasoning about physical systems requires a rich 

geometric vocabulary and a p o w e f i  spatial reasoner since the behavior of many physicd 

systems strongly depends on t heir spatid layout. 

In Databases, the modeling, storage and retrieval of geometric data is becoming an 

important issue, particularly under the light of growing application areas such as  Computer 

Aided Design/Manufacturing (C AD/C AM), Geographical Informat ion S yst ems (GIS), and 

Md timedia applications. 

Because the requirements for spatial information processing have arisen fiom many di- 

verse domains, the models and techniques proposed for spatial representation and reasoning 

vary signüicantly depending on specialized concepts and solutions which apply to specific 

domains. There is much to be gained by integrating aspects of these various solutions into 

a coherent frarnework. 

In this dissertation we propose an approach to the problem of spatial representation and 

reasoning support for advanced information pmcessing tasks. The approach consists of a 

systematic integration of one or more abstractions of space, their underlying representational 
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structures and reasoning algorithms, and an extensible data mode1 which can represent 

information about spatial and non-spatial entities. In the rest of this chapter we identQ 

the forms of spatial knowledge and spatial reasoning that we study in the dissertation, we 

state the research questions that we address, and stmmarize the coutribut ions and out line 

the structure and contents of the dissertation. 

1.2 The Challenges of Spatial Information 

What are the forms of spatial information, and what kinds of problems arise when we try 

to represent it? Consider as an example a computerized system intended to coordinate 

k t - a i d  vehicles that cover a geographic region (say, Metropolitan Toronto or Metro, for 

short). The region is divided into sections, which are fiu-ther subdivided into subsections. 

For the coordinator and the vehicle drivers, landmarks serve as "constants" whose Iocations 

are precisely known by all concerned- Other spatial information is represented relative to 

landmarks. Each vehicle, V, has a spatial range of activity, denoted by swpe(V),  which 

is the area that the vehicle can reach withixi, Say, 2 minutes from its current position. 

Each vehicle reports its position to the coordinating station in hprecise terms (for exam- 

ple,''moving east","at High Parkn, etc.). Hence, the vehicle position is represented by an 

indeteminate point. The scope of a vehicle is &O partly known and is therefore repre- 

sented by a rect-ar region with an indeterminate boundary. FinalIy, the location of 

the trouble spot is reported by the coordinating station in Mprecise terms, often through a 

reference to the neareat street intersection, and is represented by yet another indeterminate 

point. The reader should notice that indeterminate spatial abjects in the example (vehicle 

positions, vehicle scopes and trouble spots) can be thought of as spatial variables which c m  

take as values spatial positions within some spatial region. Moreover, indeterminate spatial 

objects are specified in varying degrees of precision, and for some of them only qualitative 

relationships rnay be known. 

Figure l.l(a) depicts the Metro region divided into sections. This information can be 

extracted from a city map and can be as precise as desired. To keep the example simple, 

we focus on the downtown section which is further subdivided into subsections ( s e  figures 

l.i(bc)). The dividing lines are major streeta of downtown Toronto. The dinerent drawing 

styles distinguish between landmark objects and indeterminate objects. Figure l.l(d) shows 
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(a) Metro-Toronp ' / 
/ 

/ (b) ~owntown Toronio 

(c )  Downtown Section (d) indetemiinares and Landmarks 

Figure 1.1: An example map at different scales 

three vehicles and their scopes, dong with a trouble spot (denoted by X). 

Semai forms of partial spatial information are revealed through this example. 

Incornpiete knowledge - Knowledge about spatial individuals and spatial relationships 

is partially specXed, e.g., "vehicle & is either south or south-east of the University 

campus". 

0 Irnpnzcision - Information about measurable entities is approximate, e.g., "the dis- 

tance between places E (CN-Tower) and F (Union Station) is about two blocks" . 

Grunulan'ty - Domain descriptions are specified in variable degrees of detail (precision- 

related g m ~ u l a d y ) ,  or at Merent scales (swle-relatai granulady) .  In figures 1.1 (a), 

(b) and (c) the scale changes from coarser to finer grain and so does our ability to 

ta& about the details of the configuration. 

The distinction between precision-related and scale-related grandarity is fundamental. 

The former notion of granularity interferes with the resolution of the domain, e.g., highway 

distance is expressed in kilometers, any distance s d e r  than a kilometer is appraximated by 

either O or 1 kilometers. The later notion refers to the multiple values that a spatial property 



might have depending on the system of reference, e-g., the highway distance between cities 

A and B is either 5WKm or the distance of three counties, whatever that means. 

Repmenting and reasoning with partial spatial information of the kind suggested by 

this example is one of the major goals of this study. 

Spatial Representations 

In general, spatial information in the context of spatial reaoning systems is represented in 

t e m  of either knowledge-leuel (aiao referred as implicit) or syrnbol-leuel (also referred as 

eqdicit) representations. Implicit representation models, such as generai first-order logic, 

Horn-logic and constraint languages, are common in cornmonsense reasoning and in reason- 

ing about physical systems because they allow for partialiy specified spatial codgurations. 

In addition, implicit representations capture relevant facts about the world. The explicit 

models of space are representations such as digitized maps and image arrays. Explicit 

representations are cornmon in computer vision and image understanding, and in spatial 

databases. Their characteristic is that they assume compIete information about space, 

which nevertheless is not always precise. 

Another cornmon distinction between representations of space is quaiitative versus quan- 

titative models. Qualitative representat ions focus on spatial features t hat are essentiai and 

have to be explicitly expressed. Quantitative representations express d u e s  of spatial prop- 

erties, such as location, with respect to a predefhed numerical scale. 

These two classifications of spatial representations are orthogonal. An implicit repre- 

sentation cm be expressed in terms of a qualitative laquage, e.g., topological relations, 

thus resulting in an implicit-qualitative representation- Altemtively, an implicit descrip 

tion might be relating an implicit spatial object to a spatial landmark, heme de%g an 

implicit-quantitative representation. Similarly, the deduct ive closure of all qualitative rela- 

'We have adopteci Allen Newell's knowledge-level / symbol-level distinction in representational systerns 
[New821 as the most generai terminology that subsumes Sloman's [SI0851 distinction between pmpositiond 
(or fi.egeon) and anCrlogid representations [SIo85], F l d ' s  synbolic / wncrete distinction of spatial represen- 
tations [FM71 and Chandrasekaran aad Narayanan's implicit / eql ic i t  distinction of vivud representations 
[NC91]. The key to understanding this less than dearcut  dichotomy is the way the structure of the repre- 
~ t e d  world is mapped to the represented world. Knowledgdevel representations need to d e h e  a mapping 
(interpretation) between the representation symbols and the objects in the represented world where in 
symbol-Ievel representations the represented world is diuectly depicted by the representation. 

an "implicit spatial abjectn we mean an object whose spatial extension is subject of an interpretation 
process, Le., a rnapping to concrete spatial location. 



Implicit -t Qualitative 

Table 1.1: A taxonomy of spatial representations 

Explicit + Qualitative 

Implicit + Quantitative 

tionships between spatial objects in a certain chunk of space may be regarded ôs an explzcit- 

qualitatave representation (sometimes referred to as a cognitive rnap), aiid a numeric map or 

digitked image is regarded as an ezplicit-quantitative representation. A detailed review and 

a compIete taxonomy of spatial representations is presented in Chapter 2. In this section, 

we simply use the composition of these two taxonomies to classi.& spatial representations 

that facilitate the for= of partiai spatial information mined out of the example in Figure 

1.1, Table 1.1 shows t h  composition. 

Each entry in Table 1.1 stands for a representation that accommodates some form of 

the spatial information that is reveaIed in example of Figure 1.1: 

Explicit + Quantitative 

Indeterminate objects as wefl as topologicd or directional relationships between thern 

are expressed using qualitative spatial constraints, i.e., an implicit-qualitatiue repre- 

sentat ion. 

Relationships between indeterminates and landscapes are expressed using spatial con- 

straints with more quantitative flavor, i.e., an implicit-quan titative representation. 

m A state of the system where all the irnplicit relationships between objects in a scene 

are computed forms an ezplicit-qualitative representation. 

Maintainhg a computerized map of the entire area, or map fragments at various 

scales, conforms to a ezplicit-quantitative representation. 

Existing database systems offer good support only for explicit-quantitat ive representations, 

such as maps and images. Recently, the integration of declarative constraint languages with 

databases opened new avenues for representing forms of t h e  and space in databases. This 

dissertation will follow the same general direction in order to study rigorous and efficient 

representations of partial spatial information in databases. 
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1.4 The Problem Staternent 

This dissertation studies the represent ation of, and reasoning wit h spatial know ledge in 

databases (hereafter spatial howledge bases). This study is based on the premke that the 

support of spatial information in knowledge bases is a three-facet problem consisting of a 

representation, a reasoning and a management component . The dissertation at tempts to 

draw an integrated picture of spatial knowledge base systems, as weU as to make contri- 

butions to each one of the three facets. In particular, this work investigates the following 

research topics: 

The representation of imprecise and incomplete information in knowledge bases. 

Forma1 and algorithmic aspects of spatial reasoning about imprecise space. 

rn Database models that materialize the integrated architecture, and d o w  for addressing 

consequent data management questions. 

The dissertation consists of two main parts. In the first part, it sets out a formd presen- 

tation intended to reveal the theoretical underpinning of spatial knowiedge representation 

and reasoning, as weU as to mercise formal tooh that have been successful in other related 

enorts to extend databases, such as temporal databases [TCG+93], and knowledge bases 

[MBJKSO]. The forma1 tools employed in this part are mathematical logic, mode1 theory 

and constraint reasoning. The second part of the dissertation touches upon practical aspects 

of spatial knowledge bases such as experimental performance evaluation of spatial reasoning 

a l g o r i t h ,  support of spatial relations, and the development of an expressive data mode1 

enhanceci wi t h facili ties for dealing wit h granularity and scale. 

1.5 Contributions of the Thesis 

The research contributions of this dissertation span over the three facets of spatial knowledge 

processing that were identifid in the problem stat ement: representation, reasoning and 

management. 

This dissertation develops a representation which views space as a totaiity of objects 

surrounded by a haze area and connecteci in t e m  of qualitative spatial relations. A haze 

point is the most elementary object type in this representation since higher order objecta 
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are composed of haze points. A haze point is a non zerasized object that is associated with 

an area of haze such that the point in question may be located anywhere inside it. Haze 

points are related in t e m  of an indistinguishabiiity (callecl haze) or an order relation. 

A formal treatment of imprecision in one-dimenaiond and twcdimensional space is 

presented. SpecScally, we develop the first-order theory of one-dimensional space based on 

haze and order relations. We analyze the theory from the point of view of mode1 theory 

and we show that its modeIs are homomorphie to partial orders on a discrete domain. We 

propose a conservative tw*dimensional extension of the theory of one-dimensional space, 

called independent combination, in which the evaluation of two-dimensional operators is 

reduced to the evaluation of projected one-dimensiond operators over two coordinate copies 

of the one-dimensionai theory. From the tw+dimensional point theory, and by independent 

combination, we derive the theory of haze rectangles. Finally, we fomalize the notion of 

varying granularity in a spatial representation. 

AIgorithms for reasoning about haze-order relations form the third contribution of this 

dissertation. We develop efficient dgorithms for determinhg the consistency of a set of 

haze-order relations and deducing new relations fiom those that are already known. In ad- 

dition, we define a quantitative index structure that supports constant-time retrieds- Our 

algorithms make use of a data structure cailed a haze-order graph, which trades space for 

efficiency. We implement and experimentally evaluate the performance of t hese algorithms. 

F i d l y ,  a spatial data model is defined that facilitates the representation of and reason- 

ing with various fonns of qualitatively and quantitatively incomplete spatial information, 

including indeterminate objects, multiple scales and granularity. Representation of incom- 

plete spatial information is accomplished through a spatial constraint language based on 

haze-order relations. We identify four reasoning tasks that are ctddressed during query pro- 

cessing in this representation and we offer efficient processing algorithms for ea& one of 

them. Our spatial representation model is integrated with an object-oriented data model by 

exploithg the meta-modeling facilities of the latter. The reaulting spatial data model has 

unique features that make it applicable to a wide range of application involving imprecise 

dimensional data, such as temporal dat abases, genome databases and financial databases. 

3 

3Time events as well as gemone ftagments are onedimensional entities arrangeci over an one-diensional 
h e  and related via spatial an order relationships. Both of these data domains are rich in Mtiow forms of 



1.6 Thesis Outline 

The rest of this dissertation is organized as follows. In Chapter 2, we review research in 

the areas of spatial representations, spatial reasoning and spatial databases. In Chapter 

3, we propose and study a representation for imprecise space. In Chapter 4, we present 

two different algorithm for reasoning about spatial relations in the context of the proposed 

representation. The irnplementation and the experimental evaluation of the algorithms is 

aIso discuased. In Chapter 5, we introduce a data mode1 based an ideas developed in the 

earlier chaptem. In Chapter 6, we show potential applications of the developed techniques 

in geographical information systems and genome databases. Finally, C hap ter 7 concludes 

this dissertation with a summary of its contributions and an outlook to future research. 

uncertainty. Financiai data are a h  presented as two dimensional spatid configurations at multiple scales. 



Chapter 2 

The State of the Art 

A point i s  that which has no parts 

Euclides, "Elements of Gwmetry " 

300 B.C. 

2.1 Introduction 

Probiem solving with spatial data can be decomposed int O three fundamental research com- 

ponents, each one of which forms a field of study on its own right. These three components 

are: 

Representation: We need a formalism which is able to represent spatial objects, their 

local geometry, their position in space, and spatial relatioashïps among objects. 

Reasoning: Given a configuration of objects in space and (some of the) spatial relation- 

sbips between them, we need to be able to infer the spatial relationship among any 

pair of objects. 

Management: We need to organize the spatial and non-spatial information so that it can 

be efficiently atored and searched. 

In this chapter we present a review of the research issues and the solutions given to 

each of t hese components. The interested reader is aIso referred to s m y  works dedicated 

to each specific field of study, such as [MH95] on representation, [Spa951 on reasoning, 

and [Gut94] on management. In our review we give emphasis to the treatment of partial 
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Uoff campus: southemrnost part 

Figure 2.1: University of Toronto campus map 

spatial information. The features of the examined metfiods are studied over the spatial 

configuration shown in Figure 2.1. This is a twedimensional projection of a University 

of Toronto campus map. It depicts the buildings and the streets around the department 

of Computer Science. Buildings are describecl by their boundary (spatial description) and 

their abbreviated name (non-spatial description). Buildings are gmuped into campus blocks 

formhg a containment hierarchy. The rnap contains relative scales of the buildings but not 

exact metric information. In addition, the map contains various forms of partial information 

such as unknown areas, like the space behind the ME building, or unrecorded areas such as  

the top left corner of the map. 

The rest of this chapter is organized as follows. Section 2 touches upon some ontological 

questions which mise in the representations of space. Section 3 reviews representations 

of spatial co~gurations.  Section 4 presents various spatial reasoning met hods. Finally, 

Section 5 reviews work done on spat i d  databases including data rnodeling, query processing 

and data organization issues. 
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2.2 Ontologies of Space 

An ontology underlying a body of formdy represented knowledge is dehed  in terms of two 

basic kinds of elernents: a set of categories, and a set of relations that can hold between 

instances of these categories. In other words, an ontoIogy determines a set of representa- 

tional terrns. In practice, these terms may not necessarily be primitives of the domain but 

rather, convenient abstractions which are built out of primitives. 

An ontology of some discourse m u t  be epistemologicdy and pragmatically adequate. 

An ontology is epistemoIogically adequate ontology if it can express everything we want 

to express in the universe of the discourse- An ontology is pragrnatically adequate if it 

can express commonly-expressecl things in a relatively easy fashion and support commonly- 

accepted inferences in a straightforward way- 

Historidy, the first known ontology of space is the point-based ontology. The first trea- 

tises on the study of space and the estabhbment of geometry date bac .  to Ancient Greece. 

The Euclidean space is still the most favored abstraction of space in spatial databases. The 

most primitive notion in Euclidean geometry is the point and the distance between points. 

Hegel [Heg59], &O accepts the point as the infinitesimal origin of any spatial configuration. 

Lines and more cornplex spatial configurations can be constructed by continuous movements 

of simpler spatial entities. Aside from point ontologies, solid body ontologies have also been 

investigated in this century when Tarski developed his geometry [Szc86]. 

The aelection between points venus extended entities is not the only criterion in choos- 

ing an appropriate ontology for space. Other criteria are boundedness versus infîniteness, 

discreteness versus continuity of space, etc. These dichotomies have been the subject of 

ongoing philosophical debatm. In the context of symbolic representations of space, select- 

h g  among these alternatives depends largely on s p d c  application domain requirements. 

For instance, the point-based ontology is preferable in domains where location informa- 

tion is important, whereas the body ontology is preferred in physical systems rnodeling. 

Boundedness seems to generdy win over infiniteness in spatial representations. Although 

there is always a point in space which is further than the furthest known point, this is not 

extremely useful in mm t applications, For instance, terrains, geornetric configurations and 

land maps are always bounded. The choice between discreteness versus continuity depends 

on the universe within which spatial properties are being interpreted. Discreteness Lmplies 
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isomorphism to the cartesian product of integers and continuity to that of re& or ration&. 

In some philosophical and psychologid studies, the notion of relative distance and the 

notion of contact are treated as primitive concepts that underlie the definition of spatial 

relations. Van Bent hem [vB91] states that the primary spatial operators are comparisons of 

relative distance. Clarke [Cla85] proposes a formal theory of mereology based on the notion 

of connection between individu&. The notion of intersection, as another fom of contact, 

is adopted by Egenhofei [Ege89] as a primitive concept for the definition of topological 

relations. 

Practical ontologies of space have been investigated in the context of knowledge represen- 

tation research. In the CYC project, Lenat and Guha [LG89] consider dinerent ontologies of 

space fiorn a pragmatic adequacy perspective and discuss abstractions of space which would 

better serve the tasks that are performed in a CYC knowledge base environment, su& as  

prediction of the behavior of some given device, diagnosis, manufacturing and design. The 

abstractions t hey consider include: 

Set of points: The basic entities of the domain indude points, set of points (lines), forces, 

masses, velocities, etc. The relations that hold between sets of points may be spatial 

relations, namely, above, below, etc., and spatio-tempoml dations, such as, connect- 

edTo, IooselyConnectedTo, etc. The basic computatiom used in this abstraction are 

related to continuum mechanics. 

Equations and diagrams: A large class of problems in mechanics uses an equation-ievel d e  

scription of systems. Very often, equations are complemented by diagrams. The basic 

entities here are objects, forces, velocities, etc. The relationships between objects 

are geometric constraints between specific points on the objects. This abstraction 

emphasizes the behavioral aspects of a system. 

Solids: This abstraction emphasizes the geometric properties of a system. The primitive 

elements are cubes, cylinders, etc. The relations between instances of these primitives 

are divided into spatial and spatio-temporul. 

Devices: In a device level abstraction entities correspond to functional primitives; for ex- 

ample wheel, lever, etc- Relations at the device level are very specialized. 

FinaIly, Gmber and Olsen [GO941 have designed a library of ontologies for the pwpose 
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of enabling knowledge exchange and reuse. Their work has made available a number of 

prac tical ont ologiea of space including concep tua1 founda tions for physical dimensions and 

units of measure, in the form of Ontoligua [Gru93] classes and first-order logic axioms. In 

this study, we will take a similar axiomatic approach to define the abst ract properties of an 

ontology for imprecise space. 

2.3 Spatial Representations 

Spatial data representations can be stuclied at two levels of abstraction, the physical and 

the logid level. At the physical level of a spatial representation one is interested in spatial 

data structures and access paths. At the logical Ievel one is interested in logical models 

for spatial information and their associated inference mechanhrns. This section focuses on 

logid representat ion issues. 

At the logical level, the goal of a spatial representation is to est ablish a mapping between 

objects in a rnodeling space, M, and their representation in a symboiic structure which is 

callecl representation space, R. The mapping function s kom a subset. nf the modeling space 

to a subset of the representation space 

ia cded a representation scheme peq801. D is the domain of s and contains all the r e p  

resentable objects, and V is the range of s and it contains all the valid representations. 

The inverse function of s, r = s-', relates representations to objects. If r ( v )  is a single 

element set for any v E V, then the representation scheme s is said to be unam biguous. If 

s ( r (v ) )  = ( u )  for any v  E V then the representation scheme is said to be unique. 

The modeling space depends on the application area for which a spatial representation is 

targeted. For instance, the modeling epace for CAD/CAM applications is three-dimensional 

solids. Geographical information systems concentrate on representations of two-dimensional 

regions. Reasoning about physical systems considem representations of three-dimensional 

space. 

The representation space is characterized by the primitives and the abstractions that 

the representation structure uses, as well as its operatioos. In CAD/CAM modeling the 

representation should be able to handle objects' structure. In geographical information 
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systems, it is important to represent points and regions related through topological and 

metric relationships. In reasoning about physicd systems, aspects such as motion, time 

and imprecision are important. 

The mapping function consists of a notation according to which objects are represented 

(syntax) , and a methodology for associating meaning to the representat ions (semant ics) . 

The mapping function sets a forma1 framework for describing and evaluating spatial repre- 

sentation schemes. 

In the rest of this section, we present a comparative review of spatial representation 

schemes based on formal properties such as uniqueness, ambiguity and inferential capabil- 

ities, but also on informal properties such as easiness of implementation, length of repre- 

sentation and understandability, The presentation focuses p r i r n d y  upon schemes that are 

able to accommodate partial spatial information. 

2.3.1 Spatial Representations in Artficial Intelligence 

Spatial representations have been developed in many areas of ArtScial Intelligence, in- 

cluding robot navigation pui78, McDBO, MD841, qualitative mechania [ForBo, FNF871, 

computationai linguistics [Her85], computational imagery [GP92, GlaSS b], image int erpre 

tation [RM89]. 

In route finding and robot navigation problems, the objective is to represent Iarge sa l e  

space, usually d e d  working memory, or cognitive map, or simpIy map [Kui78], WcD801, 

and to capture the ability to upgra.de the map from observations. The latter is calleci the 

assimilation or rnap leaming pro blem (Dav861, [Dut89], [KL88]. Given a map, the navigation 

problem consists of creating and successfully executing a plan to travel £rom one place to 

another. 

The modeling space is a twdimensional floor, called terrain. The terrain is either known 

or partially known (unexplored). The representation considen topological and geometrical 

properties of the objects in the terrain such as shape and position of an object in a room, 

position of the walls, etc. Non-spatial properties such as the color of the walls are not 

considered. Solid objects are represented by a tm-dimensional projection on the terrain. 

In general, objects in a terrain are viewed as obstacles and thua the representation of their 

outline is more useful than th& internal structure. 

Kuipers and Levitt [KL88] defined a four-layer semantic hierarchy of descriptions of large 
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scale space t hat supports map Iearning and navigation. The four Iayers are the sensorimot or, 

the procedural, the topological and the metric layer. The last two layers are relevant to the 

focus of this discussion. The topological description is a description of the environment in 

terma of fixeci entities, such as places, paths, landmarks and regions linked by topological 

and order relations. The metric description is a description of the environment in terms of 

fked entities, such as places, paths, landmarks and regions linked by metric relations such 

as reiative distance or relative angle with respect to a frame of reference. 

The spatial representation models developed for the robot exploration and the map 

learning problems range fiom d y t i c  and quantitative, to qualitative models. The quanti- 

tative models are appropriate if exact metric information about the terrain is known (e.g., 

Configuration Space FP8l1, Voronoi Diagram [Mil85], Polygonal Region Mode1 [Mïl85], 

etc). The advantage of these models is that they are supported by strong mathexnatical 

models, such as computational geometry and linear algebra. Their disadvantage is that are 

limit ed to a very specialized type of supported operations. 

Qualitative modela ([KB88), [KL88]) are better in describingenvironments with metrical 

inaccuracy. The TOUR model [Kui78] is an early, but very influent i d ,  spatial representation 

that is classifiecl as a qualitative model. The TOUR model distinguishes between topological 

and metrical spatial information. Its topological cornponent consists of a cognitive map 

represent ed as a network of places and pat hs linked by containment and boundary relations. 

The metrical component refers to the quantitative information t hat is int egrated into the 

map. The metrical information is expressed either in terms of local geometry a t  places along 

paths, or in terms of local orientation frames with respect to a global h e  of reference. 

Non-geometric knowledge about a particular environment is recorded in at  tribute/value 

pairs format. 

McDermott and Davis pcD80, MD841 take an approach which combines the qualita- 

tive and the quantitative approach in cognitive map representations. According to t his 

approach, a cognitive map mnsists of two components: a propositional component and a 

hizzy map. The first cornponds to the topological level and the second is a repository of 

metric knowledge. This approach is an attempt to handle imprecision in spatial descrip 

tions. Other interesthg features include the support of multiple frames of reference and the 

support of object shape. Shapes are represented by a prototype and a modification. Their 

system, SPAM, implements a data structure along these lines. SPAM has a non-trivial 
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query proceasor which is capable of three retrieval modes. Retrieva! of assertional knowl- 

edge is handled by a special purpose theorem prover. Retrievals fkom the fuzzy map, term 

values and truth tests, are transformeci into numericd optimization problems. The retrieval 

of ob jects wit h specified properties is handled by a structure which is called a discrimination 

tree which uses both qualitative and quantitative information. Performance and represen- 

tational problem, observed in SPAM, are studied further by Davis [Dav85, Dav86] in the 

MERCATOR program. 

Glasgow proposed a representation of cognitive maps based on symbolic arrays [Gla93a]- 

Symbolic arrays are nested structures where elements of the array denote meaningful com- 

ponents of a visual scene. In symbolic arrays, space is partitioned relative to the landmarks 

that it contains. Symbolic arrays provide an implicit representation of spatial and direc- 

tional relations. An advantage of t h  approach is its ability to capture multiple levels of 

abstraction. 

Rom the above classes of spatial representations, the quaiita tive and qualitative / quan- 

titative cognitive maps are distinguished as more interesting fkom the viewpoint of this 

study. 

2.3.2 Representation of Objects 

In applications such as mechanical C AD /CAM, architectural design, and computer graph- 

ics, spatial representations focus on the representat ion of objects [RV82], u s u d y  t hree- 

dimensional soli&. The representation of an object must be invariant of shape, location 

and orientation, occupy a h i t e  portion of space, be finitely describable, have unambigu- 

owly defined boundaries, and f i d y  mus t produce other objects when motion and boolean 

operations are applied to it. 

Representation schemes for aolid objec ts are distinguished into element ary and hierar- 

chical [Gue88]. In a hierarchical representation scheme, the objects are represented by some 

combination of simpler objects of the same dimension. Elementary representation schemes 

cannot represent objects as compositions of simpler objects. 

Boundary representations are the m a t  noticeable elementary representation schemes 

because they find a@cations in the database modeling field [KW87], [AOG+88]. An ob- 

ject is represented by segrnenting its boundary into a finite number of bounded subsets 

usually calied faces. Eaeh face is d~a- ibed  by its bounding edges and vertices ( s e  Fig- 
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Figure 2.2: Representations of solid O bjects 

ure 2.2(a-b)). Other boundary representations are vertex lists for general polygons and 

wireframe representations for 3-dimensional objecta [Gue88]. Boundary representations are 

unambiguous if their faces are represented wiambiguously. In general, they are not unique 

and cannot be used to represent objects with holes. They are not good for representing 

objects with concave faces. However, they are simple and easy to undentand. 

The most comrnon hierarchical representation schemes are the spatial occupancy scheme, 

the ce11 decomposition and the constructive solid gwmetry (CSG) [Gue88]. 

In the spatial occupancy scheme an object is represented by a list of al1 spatial cells 

(voxelu) that it occupies. Cells (voxels) may be cubes of fixed size and lie in a fixed spatial 

grid called spatial array. This scheme is unambiguous, unique, but quite verbose. 

In the ce11 decomposition scheme an object ia decomposed into celh which must be 

either disjoint or meet precisely at  a m o n  face. Quadtrees and octrees [Sam841 are 

examples of representation schemes which follow the hierarchical decomposition principle. 

Quadtrees are discussed in d e t d  in section 2.3.3. C d  decompositions are unambiguous 

and non-unique. 

The constructive solid geometry scheme represents solid objects in terrns of a set of 

%dimemiional volumetric primitives (blocks, cylinders, cones and spheres are typical ex- 

amples) and a set of operators (set operaton such as union, intersection, dxerence, and 
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similarity operators such as rotation, translation and scaling). An object is represented by 

a binary tree (the CSGtree) whose interior nodes correspond to operators and whose leaves 

correspond to primitive components or numerid arguments used by the operators. Figure 

2.2(d) shows the CSG tree for the solid of Figure 2.2(c). CSG is an unambiguous but not 

unique object representation scheme. The difficulty of implementing search operaton in 

CSG is its strongest drawback. Neverthelas, CSG is widely used in curent CAD/CAM 

systems [WiI88]. 

2.3.3 Representation of Regions 

Symbolic representations of regions are important in geographic information systems and 

pictorial databases. The following stmmarizes some of the requirements of region represen- 

tations: The modeling domain is two-dimensional. Regions might have arbitrary complex 

shapes, and their dimensions might be known in limited or fidl precision. Usually, regions 

are represented in order to be stored in a database. There are a vast number of spatial 

operators that need to be supporteci: geographic operators, e-g., north-of, east-of, sarne- 

position-as, etc., iocal operators, e.g., ovedap, adjacent, includes, etc., set operators, e.g., 

spatial union, intersection, difference, and similarity operators, e-g., rotation translation and 

sca ling. 

There are two approaches to region representation: those that specifjr the boundaries of 

a region and those t hat focus on the interior of the region. 

In this section we survey four difïerent region representation schemes. These are the 

polygonal representation scheme, the syrnbolic projection scheme, the hierarchical partition- 

ing scheme and the space filling curues scheme. The k t  two are boundary representations 

whereas the last two organize the interior of a region. 

Polygonal Representations 

Poly hedral C hains. Guent her 's polygonal ( poly hedral) chahs [Gue88] and Davis' p olyg- 

onai approximation method [Dav85] are the most interesting general purpose polygonal 

representations. The minimum bounding rectangle (MBR) mode1 is a simplifiecl polygo- 

nal representation t hat approxhates complex shaped objects by their enclosing rectangIe. 

Minimum bounding rectangles are extensively used in the development of access methods 

for spatial objects. 
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Figure 2.3: PolygonaI dain 

The polyhedrai chains model can represent polyhedral objects of arbitrary dimensional- 

ity and arbitrary shape. A general polyhedron ia represented as a convex polyhedral chain, 

that is, the algebraic sum of simple convex polyhedra, calleci cells. For instance, the general 

polygon of the "MB" building (in Figure 2.1) is written as  the s u .  of three convex polygons, 

MB = Pi + P2 + P3 (see Figure 2.3). The reason for this is that convex polyhedra are closed 

under all set operations (intersection, union, difference). Convex chains can be viewed as a 

special case of constructive soiid geometry (CSG). Like CSG, the convex clraius approach is 

a hierarchical representation scheme for polyhedra which is iinambiguous but not necessarily 

unique. 

Convex cells are represented by means of h-vectors. A convex polyhedron in d-dimensional 

space, E ~ ,  is represented by the intersection of haifspaces in E ~ .  Each halfspace is viewed 

as a product h . H where A is an oriented (d-1)-dimensional hyperplane and h is one of 

{O, 1 ,- 1). In part idar ,  - 1 - H defines the haüspace which stands left of H, 1 - H the right 

halfipace and O . H the entire E ~ .  If H = HI Hz.. . HIHI is the List of all (d-1)-dimensional 

hyperplanes such that for each face f of any spatial object t here ia a hyperplane in H 

that embeds f ,  then each polygon p is represented as a ternary vector, caIled h-vector, 

IF1 h, = {O, 1, -l)IHI such that p = &,(hp)&. Likewise, the twedimensional polygon p l  in 

Figure 2.3(b) is represented by the h-vector (1, -1,0,0,1, -1). It must rie noted that this 

approach abandons completely the notion of vertex in representhg polyhedral objects. 

The MERC AT0 R Representation. The representation model developed in the MER- 

CATOR aystem Pav86J deals with twedimensional objects of arbitrary shape. In par- 

ticular, the MERCATOR representation provides facilities for the representation of shape, 

multiple description, meaaurements at varying degree of precision, and approximate reason- 

ing support. 

MERCATOR'S representat ional primitive is the line segment. T wo-dimensional geom- 

etry is represented by straight line segments. Objects are represented by their boundaries 

and the description of their interior. An object's boundary is a set of edges (segments) 
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Figure 2.4: M d  tiple region representa tion 

connecting vertices. An object's interior is a set of convex polygons. There is no notion of 

coordinate system because this presupposes fdl  knowledge about space; instead, relative 

positions are supported- Local dimensions are recorded in temm of lengths and orienta- 

tion of edges. To account for imprecision, MERCATOR uses range d u e s  expressed in a 

measurement scale of some grain size. A given object may have several region descriptions 

(which vary in the grain size) as shown in Figure 2.4. Objects in a map are hierarchicdy 

organized in a containment hierarchy. The non-geographic properties of objects are not part 

of the MERCATOR representation; these are recorded in a dot-Hier pair representation 

scherne. 

Space representations in MERCATOR are called maps. Maps are valid descriptions of 

the world in which an intelligent agent is situated. In such a setting, the MERCATOR 

representation saers  fiom three basic inadequacies. First, it cm express only the presence 

of an object, not its absence. Second, it cannot express naturd combinations of precise 

shape and imprecise dimensions. Third, it is Iimited to two-dimensional representations. 

Fkorn a database point of view, the MEXCATOR model offers "ciream" expressiveness, 

which unfortunately is penalized by an expensive computational model. 

Symbolic Projections 

The symbolic projection scheme was introduced by Chang et al. [CSY87] in the contewt 

of pictorial databases. In the symbolic projection scheme, any two-dimensional shape is 

projected to two strings, called 2D-string, dong the vertical and the horizontal direction. 

It is an appraximate representation scheme because the size of the picture objects is knom 

within a precision threshold that is determined at the creation time. It is also ambiguous 
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Figure 2.5: 2D G-string 

since given a 2D-string many possible p i c t m  can 

representation 

be constructed '. The original 2D-s tring 

supported only two spatial operators u<n (for right/left, bottom/up characterizations) and 

"=" (denoting same-position). Several extension of 2D strings have been proposed over the 

years, including the 2D H-stringa [CL88], a hierarfhical extension of 2D s t r i w ,  and the 2D 

Gstring [Jun88] which adds local operators such as the edgeteedge operator, 1. Figure 2.5 

illustrates a 2D G-string representation of a part of the UofT map. 

2D strings can support geographic inferences. For instance, the geographic relationsEp 

north-of between two objects 01, is f o d a t e d  by the d e :  

ifX:ol =oz andY :oi < e V o i l o z  then (north,oi,@) 

It should be noted that the database representation of space proposed in this dissertation 

is an extension of the hierarchical synibolic projection scherne for multi-sale space. 

Space Filling Curves 

Space filling curves [Lad51 allow a ont+dimensional representation of any kind of à-dimensional 

data. In particular, there exists a bijection between a k-dimensional space ta 1-dimensional 

space by the means of a curve which passes only once through any point in the space. Any 

point on a curve is assigned a number, called order nurnber. Continu~us regions of space 

are mapped into a sequence of curve segments or continuous segments and therefore are 

characterized by a set of order numben. The string length of the order number determines 

the resolution of the represented space. The Peano curve or z-ordenng [OM84] is the most 

common space filling curve. Other known curves are the Gray-code curve Fd88], and the 

Hilbert curve FRLIS]. 

S pace fiIling curves can support proximity searches and point-in-polygon queries. S pace 

f i g  curves have been used extensively in spatial data handling systems. In particular, 

Orenstein and Merrett [OM84], [Ore861 applied them in the development of spatial access 

'This daim is not true for the extendecl 2 0  strings [Jun88] 



CKAPTER 2. TRE STATE OF THE: ART 

Figure 2.6: Region quadtree 

methods, Orenstein and Manola [OM88] used z-orderings for the representation of spatial 

objects. Hilbert and Gray-code curves have &O been used as spatial access methods [Fd88], 

FR891 and [JaggO]. 

Arnong the representations of spatial content (objects in a spatial configuration), space 

filling curves are b a t  for indexing spatial objects and provide fast access to them. 

The hïerarchical partitioning of space ii the ba i s  for a whole class of methods for represent- 

ing and organizing spatial da ta  The quadtree (Sam841 is the most common representative 

of this cIa,ss. Many quadtree variants have b e n  proposed which diger according to the type 

of data they represent and their space partitioning method [Sam89]. 

The quadtree approach to region representation is calleci region quadtree (see Figure 2.6). 

The region quadtree performs successive subdivisions of a bounded (bhary) image array 

into four equd sized quadrants. The quadrants that do not ent irely contain O or 1 are furt her 

partitioned, in the same way. The region quadtree is a variabIe resolution representation 

method. The quadtree can also be extended to represent 3-dimensional binary region data. 

In this case, the resulting representation is callecl an octree. 

The quadtree is a tree structure which admits a straight forward pointer-based imple- 

mentation (Le, non-leaf nodes are represented as records with four pointers to their chil- 
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dren). However, pointer-based representations of quadtrees require a considerable amount 

of space, and thus large images cannot fit into core memory. Consequently, there has been 

a vast interest in pointerlesa representations [Gar82], [AB JN85J. 

Quadtrees are usefui for performing set operations such as union (overlay) and inter- 

section of severai descriptions of the same region. The required time for these algorithm 

is proportional t s  the minimum of the number of nodes at the corresponding levels of the 

two quadtrees. It &O supports operations that are common in computer graphics such 

as scaling by a power of 2 and rotations by multiples of 90 degrees. Area calculations are 

extremely easy, too. Lastly, it can be used as an image approximation device. Although the 

quadtree is ra ther an expressive representation, its dependence to main memory s truc tues  

does not make it a good representation for large s a l e  space. 

We have presented several approaches to the representation of spatial information and a 

fkarnework for characterizhg them. Our presentation is clearly not exhaustive. The wide 

spectrum of uses for spatial information makes the enumeration of all dserent spatial 

representations a very challenging task. This presentation has focused on representations 

that are interesthg fiom the knowledge repreaentation and database perspectives. For 

an additional survey of the representations of spatial imowledge, the interested reader is 

refmed to the work of Muke rjee and Hernandez [MH95]. A survey of spatial representations 

for databases, termed geomatic models, is presented by Paradaens [Par95]. 

Table 2.1 summarizes the results of our presentation. The abbreviated column headers 

UM, UQ, PK and IM stand for unambiguous, unique, partial knowledge and imprecise 

measurementa respectively. The table aho shows the modehg and the representation space 

for each representation schene as weil as the most important operations that each mode1 

supports. 

2.4 Spatial Reasoning 

In this section we review formalisms for spatial knowledge which are suitable for spatial 

reasoning. Spatial reasoning is a field which ha8 defined itself over the last few years as 

researchen fkom a variety of aubject areaa have recognized the importance of autornated 
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Table 2.1: A classiûcation of spatial representations schemes 
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reasoning about spatial relations between physical objects or regions of space. Exanples of 

the Ends of questions for which spatial reaaoning is required, include: 

Cornpute the relative position between two entities in space. 

rn Find whether an arrangement of entities in space is consistent with respect to a set 

of topological and geographic relationships that must hold between them. 

Find the route fiom point A to point B. 

9 Identify the spatial entitiea appearing in a certain range of space. 

The following is a list of desirable requirements that a spatial reasoning fiamework can 

have: 

It must be capable of representing and reasoning about a variety of spatial constraints 

expressed in a qualitative or quantitative language. 

0 It must be capable of inferring spatial consequences given some specification of spath1 

and motional relationships. 

It must be capable of reasoning with partial information. 

It must be capable of reasoning about objects of various shapes and varying granu- 

larity. 

In many cases, reasoning about the spatial relation between physical objects can not be 

done without precise quantitative information about these relations. The ability to reason 

with partial information is the essential requirement in t his study. In the example of Section 

1.2, we have identified several forms of partial spatial information, including incompleteness, 

impwision and gnnularity relsted deficiencies. In the rest of this section we elaborate on 

methoàs that enable spatial reasoning with partid information. 

Dealing with incomplete spatial knowledge is, in rnany respects, similar to the problem 

of incomplet eness in symbolic knowledge representation. Techniques such as completion 

as~umptions and persistence niles can be used for its solution. For instance, if it is s t a t d  

that "object A is either to the left or to the right of object Bn, and there exists a completion 

ansumption saying that %othing exists to the right of the wall and B is the wall" , then 

we can infer that "A is to the left of B". Similady, if it is known that "regions C and D 
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are disjointn, then it can be assumed that "they have equal sizen untg further information 

is leanied (penistence d e ) .  These two examples do not really propose a solution to the 

spatial incompleteness problem. There is a lot more to be said if the properties of the 

spatial ontology are asseased. Nevertheleas, they connect this problem to a mature body of 

work that exists in ArtScia.1 Intelligence [Lev81, Rei801. 

Imprecision of spatial knowledge emanates either fiom limiteci accuracy of the percep- 

tion or the measurement. For example, we can Say: "John's height is about l.80cmn. 

"The measurement of the distance between atoms ai and a;! in some crystallographic 

structure is between 3 and 5 A". "Point A is ciose/far to/from point B" . "Region R is 

east/west/north/south of region 3'. Similarities with these types of examples can be found 

in the field of temporal reasoning [AU831 or qualitative reasoning about physical systems 

pui86]. Formalisms such as quantitative and qualitative constrahts, fuzzy sets, intend 

values, etc., are prime candidates for formalizing spatial imprecision. 

In this section we review formalisms that are capable of representing and reasoning 

about spatial imprecision. Some of them formulate the problem as a constraint satisfaction 

problem over a network of spatial relations in the same way that reasoning with respect 

to time is formulated. O t her approaches involve qualitative reasoning, approximate calcu- 

lations based on fuzzy numbers, and numerical methods. In some cases, spatial reasoning 

can be thought of as a generalization of temporal reasoning in a multi-dimensional space. 

2.4.1 Temporal Reasoning and Constraint Networks 

Time is represented either in a clange-based or a timebased fashion [SG88]. In this section 

we review the the-based approach because of its similarity to the spatial case. In the 

time-based approach, time is explicitly represented in terms of either points or intervals, 

and temporal events are related by the means of temporal relationships. A tirne-based 

representation can be seen as the one dimensional projection of a spatial representation 

that involves location and relative position operators. The most common representation for 

the tirnebased approach is that of binary constraint networks. 

A temporal constraint network is a directed graph where nodes represent temporal 

entities, points or intervals, and the edges are labeled with temporal relationships holding 

between the connected nodes. The language used for the edge labels can be quantitative or 

qualitative, hence the constraint network is characterized as a quantitative or a qualitative 
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network. Temporal reaaoning is formalized as a constraint reasoning problem [DMP89], 

[vBSO] or a label inferencing problem [Dav87]. 

Formdy, a constraint network consists of a set of quantities XI, X2, ..., Xn, where Di is 

the domain of each quantity, and a set of unary, P(Xi ) ,  and binary, C(Xi, Xj) , constraints 

over these quantities [Mon74], pae77]. A solution of the network is a tuple {xL, 12, ..., x. } 

such that the assignment Xi = xi satisfies all the constraints. A network is consistent if 

at least one solution exists. A constraint Cf is tighter than Cl' if every pair of values for 

Cr is allowed by Cl', Cr C Cu. This notion is extended to networka. Ç defines a partial 

order over networks. Two networks are equivalent if they have the same set of solutions. A 

network M is minimal if there is no equivalent network with tighter constraints. 

The basic reasoning problems that are addresseci in a constraint network, are: (a) given 

a network determine whether it is consistent or not, and (b) given a consistent uetwork, 

compute the minimal network that is equivalent to it. 

Allen, in hi9 foundational work on temporal reasoning [All83), introduced a the-based 

representation based on intervals which are related by thirteen mutudly exclusive relations 

and their disjunctions. These relations are: before, meets, overla ps, starts, du ring, finishes, 

equals, finishedhy, over, startedhy, overlapped-by, met-by and after. Two temporal events, 

"Anne has breakfast" and "Anne r a d s  her moraing newspaper", are represented by tem- 

pord intervals Tl and T2, and if we also know that Anne never reads while she is eating, 

then Tl and Tz are related by the following Allen's algebra expression 

Ti before T2 V Tl meets Tz V Tl met-by T2 V Tl after Tz 

Allen [AU831 presented a constraint propagation algorithm for computing the minimum 

network equivalent to a given set of interval relations, or reporting inconsistency if it is 

matisfiable. The basic idea of this algorithm is based on previous a l g o r i t h  for constraint 

satisfaction problems pon74], Pac771, [MF85]. The algorithm runs in t h e  0(n3), where 

n is the number of inte& in the network, however, it is incomplete. The incompleteness 

of th% algorithm is not surprishg since Vilain and Kautz [VK86] showed that computing 

the transitive closure of relations in Allen's interval Algebra is an NP-complete probIem. 

Valdes-P-rez in [VP86] showed also t hat Allen's constraint propagation algorit hm is sound 

but not complete and he developed a dependency-directed backtracking algorithm [VP87] 

with exponential asymptotic complexity which is complete. In practice, Valdez-Pereds 

algonthm terminates early because of quick pnining and clever backtracking. 
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Vilain and Kautz [VK86] dehed  a temporal representation based on t ime points, which 

are related by the three b h r y  qualitative relations {<,>,=), and their disjunctive combi- 

nations. Then, t hey claimed that Allen's algorithm cornputes the minimal network in the 

point representation. VanBeek showed [vB89] that this ia not the case if the network con- 

tains # relationships. By excluding #, the source of incornpleteness, from the point algebra, 

d e e k  d e h e d  a subclass of the point dgebra, called a pointisable class, which is complete. 

He also presented an 0(n4) algorithm which is complete for the point algebra Recently, 

Nebel and Burckert p 9 4 ]  presented the maximum tractable subclass of Allen's interval 

algebra whose satsabi l i ty  can be determined by the 0(n3)  path consistency algorithm. 

A similar result was &O obtained by Schubert and Gerevini [GS95a]. Various practical 

dgorithms for reasoning in interval aigebra [KooBg] and point dgebra were proposed in 

[GA89], pS88], [GS93]. 

AU the above methods deal with abstract time references. Representations of tirne 

may involve absolute references and metric information. For instance, "The next AAAJ 

conference starts on August 4, 1996, and lasts 3 to 5 days" . In a quantitative representation 

of t h e ,  this is information is expressed as 

start(AAAI96) = "4/8/1996" h (3 5 end(AAA196) - start(AAAI96) 5 5) 

Dediter, Meiri and Pearl [DMPBS], [DMPSI] studied quantitative and metric temporal 

networks of the form 

ai < T i - T j  5 bl V . . . V a n  5 T i -T j  5 bn 

where Ti and Tj are t h e  points and ai,. . . ,a,, bi,. . . , b ,  are real numbers. Deciding the 

consistency of quantitative point constraint networks is also an intractable problem- A 

tractable subclaas o c c m  when dl constraints have only one disjunct, i.e., a 5 Ti-Tj 5 6. In 

this case, deciding consistency and computing the minimal network is done in 0(n3). Dean 

[Deaûg], [DM871 presented a linear time solution for a special case of the pMP89] network, 

which is d e d  distance graph. Dean's linear algorithm is based on indexing and caching of 

time intervals. Davis [Dav87] determined that the threshold from polynomid to exponential 

complexi ty in quantitative cons traint networks, is the linear inequality cons traints. 

The combination of qualitative and quantitative constraints was studied by Kautz and 

Ladkin [KI,91], Meiri [Meigl], and several tractable urses were identifid 
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2.4.2 Spatial Reasoning and Constraint Networks 

Extending temporal representations to k dimensions has been a popular approach in spatial 

representation and reasoning [MB83], [VP86], [LigSO], [MJ90], [Gue89]. The main advantage 

of this approach is the reuse of the solid body of work developed for thne. The adoption of 

temporal representations for representing space restricts reasoning to orthogonal domains. 

The key properties that time and space share, and which make methods from temporal 

reasoning valid for spatial reasoning, are order and strictly increasing contirruity (in the 

calculus sense) [VPBG]. Both of these properties are possessed by the orthogonal cartesian 

axes. Nonetheless, space, iinlike thne, is static in our world-view; therefore the provision for 

penistence that is made in many temporal representations, specScally in the change-based 

ones, does not carry for spatial representations, unless a notion of time is explicitly used, 

e-g., motion. 

Allen's framework can directly support spatiai reasoning in one dimension. Relationships 

such as front-of, back-of, and inside correspond directly to after, before and during. Genome 

maps [Re911 and molecular sequences are typical domain examples which require o n e  

dimensional spatial reasoning. 

One-dimensional spatial relations based on Allen's framework were developed by Muker- 

jee and Joe [MJSO] and Guesgen [GueBS]. Mukerjee and Joe used erid-points to express the 

thirteen Allen's relations, and further, they identifid five point-t+intervaI relations: ahead, 

front, interior, back and posterior. Their reaaoning algorithm is based on a composition table 

which determines the relative position between spatial entities A and C given the relative 

positions of (A, B) and (B, C). The spatial relation between two objects not orthogonally 

oriented is described by a pair comprised of relative positions and relative directions. 

Guesgen, proposed a set of spatial relations, namely, left-of, attached-to, overlaps, inside 

and their inverses, based on a simplifieci set of intenml relations and the underlying reasoning 

algorithm. Maiik and Binford [hW831 came up with a set of "ewyday" spatial operators 

{leftaf/right-of, front-of/behind, bellow/above), as counterparts of the before/after temporal 

relations for the x-, y- and z-axes by realizing their isomorphism to the time-axis. A sùnilar 

argument is also made by Sistla et al. [SYH94]. 

AU w 9 0 ,  Gue89, MB83, LJ88] suggated that in k-dimensional orthogonal space. the 

spatial operators can be defined as vectors of length k onedimensional operators. We cal1 
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this approach the decomposition approach. In the decomposition approach, spatiai reasoning 

is reduced to one-dimensional reasoning dong k independent dimensions. The alternative 

to the decomposition approach is called unified- In the d e d  approach, the representation 

and reasoning about spatial relations is based on topological properties of space. Clearly, the 

decomposit ion approaches have limiteci expressiveness when appiied to higher dimensional 

spaces: they are restricted to orthogonal domaina and rectangdar shapes- However, in may 

applications [SYH94], including databases, their limitations are no t restrictive and given 

their lower computationai complexity [GPP95], are realistic choices. 

2.4.3 Qualitative Spatial Reasoning 

The qualitative reasoning approach is well suited to spatial problems because of its represen- 

tational power for stat es of partial knowledge. Quaiitative representations "make relevant 

distinctions" in a given contex t. In physical sys tems, ''relevant dis tinc tionsn mean ordered 

sets of landmark values within quantity spuces of the values of parameten and functions 

wui89]. For instance, the temperature may be measured in the quantity space: {cold, cool, 

warm, hot). In a representation of space based on the representation of objects in space 

and their interrelationships, a qualitative representation typically determines the relevant 

relations allowed by the representation, e.g., disjoint / notdisjoint. In a holistic representa- 

tion of space, qualitativeness rnay be undentood as the way in which space is partitioned 

into zones/areas with some distinct feature, e-g., type of land use. Grid representations are 

not qualitative because they use a metric condition in their partitioning, e.g, resolution. 

In an object-based view of inmdimensional space, a mriety of qualitative representa- 

tions has been proposed. Guesgen's representation uses interval based qualitative relations 

on individud coordinates in order to capture the spatial relationships between higher di- 

mensional objects. Chang et al. [CJLBS] repraented the content of an Mage on the bais  

of qualitative 2D strings Randell et al. WC9 Za], and Egenhofer [Ege89] developed sets of 

qualitative spatial relations baaed on the theory of mereology and topology, respectively. 

Finally, Hernandez per92], Fkeksa Pe92bl and Frank [fiagi] proposed methods for quali- 

tative spatial reasoning baaed on orientation/direction relations. Wit h the exception of the 

2D strings, ail of these representations perform reaaoning based on transitivity axioms. 
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2.4.4 Quantitative Methods 

Quantitative methods in spatial reasoning make use of metrics, ahsolute values, range vai- 

ues and cornparisons. Values are expressed in temu of some absolute unit. Quantitative 

met hods are dis tinguished as pro pmi tiond and analogicd. 

Propositional-quantitative methods are comidered the modela t hat formulate descrip 

tions of space-based metric constraints on the endpoints of the x, y and z coordinates of 

objects. The computational methods that are suitable for spatial reasoning, in the con- 

text of metric information, include metric constraint networks [DM87, Dea89, DMP891 and 

1inea.r programming p 8 3 ,  McD82, Dav861. 

Andogicd-quantitative representations such as  the occupancy arrays and hierarchicd 

partitioning represent space aa a whole, including its objects, using metric information. 

2.4.5 Semi-Qualitative Approaches 

The combination of qualitative and quantitative representation 21 attempted in cognitive 

maps [McDBO, MD84, KB88] and in constraint networks [Lad89]. A cognitive map which 

fo1lows the layered model of [KL88] consists of a quantitative component (metric layer) and 

a qualitative component ( topological layer). Reasoning in cognitive maps (spatial learning, 

path finding) exploits bot h representations. Kuipers p 8 7 ,  KB88) derives distinctive places 

on the map using U-climbing search on the metric Iayer and then applies qualitative 

simulation [Kui89]. McDemott and Davis [McD80, MD84, Dav86) transform the pmblem 

to a network of fuzzy constrainta and apply numerical techniques (Monte Car10 aigorithm). 

The semi-qualitative approach gains support in qualitative kinematics (poverty conjecture) 

FNF871. 

An integration of the qualitative and the quantitative approach in spatial reasoning is 

propmed by Dutta [Dut89]. In this rnethod, the relative position of objects is expressed 

in qualitative terms, e.g., "SF is near LPn. Imprecision is expressed using range data, e.g. 

{'the distance between the SF and the LP is between 4 and 6 meters". The general problem 

is, given a set of objects and a set of constraints (generaily incomplete and sometirnes 

conflicting), to find aIl the induced spatial constraints. Constraints are represented as  

possibilzty assignment equations of the form p + II(,,,.-,,) = F, where p is a natural 

language proposition, II is the possibility assignment and F is a fuzzy subset of the universe 
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of discourse U. For example 

SHORTis a fuzzy subset and psHom(Height(Bo6)) is the membership function of Height(Bo6) 

in the set SHORT. An approximation in the fuzziness expression is to use fuzzy numbers 

(c,l,r) (Le., triangular distribution) insteaC of p(u), e.g., about-five-miIes=(5,1,1), north- 

eas tern-direction=(45,10,10). For metric cons traints the mernbership function is defined: 

pA(u) = 1 if u E A and p ~ ( u )  = O if u # A, therefore the fuzzy set has only one value 

(p(u) = 1) and the fuzzy number is (c, &O), e.g., "Object A is 5 miles NE of object B" 

+ IIroc(a),roc(s)= (amiles, NE), where, 5miles=(5,0,0) and NE=(45,0,0). The mathemat- 

ical basis for the spatial reasoning algorithm is the composition of possibility assignment 

equatiom and the fuzzy set theory. 

2.4.6 Qualitative Spatial Scenes 

The common goal of many qualitative spatial reasoning methods is to relate objects in two, 

three or k-dimensional space, by means of spatial relationships, and to do inferences based 

on a composition operation (usually transitivity) . Such representations are also referred as 

spatial scenes FR931. In this section we discuss the twc~dimensional case of spatial scenes. 

Two factors determine the relative position of objects in tw~drniensional scenes: topo- 

logiml relations and directional relations. Topological relations describe how the objects 

"in-contact'' are related to one another. Directional relations describe how the objects 

('at-a-distancen are related to one another. 

Topological Relations 

Topological relations are dehed  between objects with spatial extension and whidl are in 

contact with one another. There are many sets of topologid relations proposed [Gut88, 

Egeû9, RC891. A representatianal concern in all of them is that the developed set of relations 

must be complete in the sense that it c m  describe all the qualitative distinct poaitioninga 

of two objects in a scene, and, in addition, that these relations are mutually exclusive. 

Guting [Gut88] presented a set of topological operators based on set theory. Egenhofer 

[Ege89, EgeSl], developed a set of binary topologicd relations baaed on the intersection of 
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A equals 6 

Figure 2.7: Egenhofer 's topological relations 

the boundariea and interiors of the two objects to be related (see Figure 2.7). Etandeu and 

Cohn [RC89, RCC92a], presented an alternative formalization of topological relations based 

on a primitive dyadic relation: C(x,  y), meaning region x connects wit h region y. These 

relations are u s d y  referred to as RCC relations (see Figure 2.8). 

Hernandez [Her92], Papadias pap94a, GPP 951 studied transi tivib- based reasoning us- 

ing on Egenhofer's relations. Cui et al. [CCR92] and Bennett [Ben941 investigated the use 

of qualitative simulation and transitivity tables, respectively, as reasoning met hod for the 

RCC relations. 

Directional Relations 

Topological information alone is insacient to express posit iond information, because t opol- 

ogy has no means to distinguish two topologicaily disjoint objects which are the one "on 

the left of' and the other "on the right of" a third disjoint object. We need the concept of 

orientation in order to cliaracterize relative positions in this situation. Orientation is the 

bais for definhg directional relations. 

Orientation is a property of points or extended objects in a scene. Orientation means 

that an object ha3 a "point of view". In some approaches [Her92, Fragl], an object inherits 

its point of view fiom a global reference system; F'reksa and Rohrig [FR931 cal1 it ezternal 

orientation. Other approaehes, e-g., [Fke92b, LR93] assume that orientation ia a local prop 

erty. For instance, the orientation of an object is locally determineci by some property of the 

object such as the %ont of the building", or is determineci by the position of a p a r t i d a r  

external viewer of the object. Figure 2.9 contraqts these two approaches. On the left side 
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Figure 2.8: The RCC reIations 

of the figure the external orientation is Uustrated. Object A induces four sectors around 

object B, each one denoting a directional relation. The rightmost part of the figure, we see 

a qualitative partitioning of the "directions" space by fkmg "fiont" to be the top of the 

page. 

Directional relations are derived through qualitative partitioning of two dimensional 

space. The degree of partitioning determines the representational granularity of a set of 

directional relations. Severd sets of directional relations have been proposeci. Figure 2-10 

illu trat es Hernadez's rod (relative orientation node) model in three granularities [Her92] ; 

this is ais0 termed the anthmpocenhic system. Figure 2.11 illustrates F'rank's Pa911 orthog- 

onal system extended with levels of granularity: at  granularity level 1, a distinguished fiont 

focus defines a left (or east ) and a right (or west) secton of space (similady, a nort h/south 

partitioning is defined if the axh is rotated by 90 degrees). By superimposing the two, we 

obtain directional relations of level2, etc. 

Inferences of directional relations are based on a composition operation which is fur- 

ther reduced to order transitivity in a lower dimension structure [Roe94]. For example, in 

the case of two-dimensional space, the coordinate cartesian axes are the lower dimension 
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Figure 2-9: Externd versus intemal orientation 

Figure 2.10: Hemdez's directional relations 

Level2 L m 1 3  Lare14 

Figure 2.11: Frank's directional relations 
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structures. heksa o p t W e s  the size of composition tables used in reasoning, by explor- 

ing the structure in the directional relations set and introducing the notion of conceptual 

neighborhood Fe92al. The latter is a key concept that we will revisit in the course of this 

s tudy. 

2.4.7 Axiomat ic Approaches 

Fomal Iogic has also been used as a framework for rnodeling spatial reasoning placing 

emphasis on the axiornatization of space. Some of the most notable axiomatic approaches 

include Kautz's Wau851 and Shoham's [Sho85] work within the "commonsense summer" 

project [Hob85]. Roman's work in fomalizing spatial inference in geographic information 

systems [Romgo], and K a h a n ' s  work on formalizing imprecision in commonsense space 

[Kaus 11. 

Kaufman proposed an ontology for t h e  and space bas& on tolerance spaces. Tolerance 

spaces treat uncertainty as a fundamental principle. Previous models for approximate 

spatial reasoning, such as [MD84, Dav861, represented imprecise spatial information using 

interval values on measurements. In tolerance spacea the concept of uncertainty is deeply 

embedded in their definition. Every tolerance space is characterized by a tolerance relation. 

The selection of a tolerance relation is the same as selecting the granularity [Hob85J in 

which a spatial domain is viewed. A tolerance preserving function (i-e., a function which 

preserves closeness between Merent spaces) is used for mapping fkorn one granularity Ievel 

to another. Informally, a tolerance space is a collection of points with a symmetric and 

reflexive tolerance relation defined over them. At sdiciently small scales, positions or 

quantit ies are indis t inguishable. Tolerance s paces have been proposed as an alternat ive 

reaaoning system to ded with approximation and to complete the qualitative approach in 

reasoning about physical systems. 

It should be noted that an axiomatic appoach sirnilar to that of Kaufman, is taken in 

the development of the proposed theory of space in Chapter 3. 

Table 2.2 summarizes approaches to spatial reasoning discussed in this section. For any 

method, the table shows the mechanism it offers for speci@ng relative position, its repre 

sentational primitives and modeling domain, and the cornputational method it employs for 
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Table 2.2: A classification of spatid reasoning methods 

reasoning. 

2.5 Spatial Databases 

This section reviews research in the field of spatial databases. Spatial databases store k- 

dimensional data representing explicit knowledge about objects, their extent and t heir po- 

sition in space [GBSO]. Spatial databases are widely used in applications such as geographic 

information systems (GIS) w941, environmental protection WGD911, CAD/CAM, robotics, 

medical imaging, etc. Work in th% area is broadly divided into spatial data modeling, data 

stnictures and access methods, and query processing and optirnination. Ln our discussion, 

we focus on data modeling and query processing aspects, and we simply mention references 

to the data structures and access methoda work. 

The requirements for data management techniques to deal with objects in space differ 

widely between applications. When the space of interest is a two-dimensional scene, i.e., 

geographic spaee, or a human-made space (e.g., VLSI layouts, CAD/CAM designs, drafted 

maps, etc), the requiremerit is to handle large collections of relatively simple geometric 

objects. When the space of interes t invoIves digitized images semed by satellites, medicai 

scanners, etc., then a different hctionality is intended by the database system. In partic- 
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ular, the system must be able to extract objects fiom images and treat images as discrete 

entities. Guting [Gut94] aaaessed these merences and proposed the terma spatial datahse 

system for the former and image databuse syslem for the latter. The de£inition that Guting 

gives for spatial databaae system is currently the most accepted by the research co~ll~nunity 

pK+94 ,  Par951. Accarding to this definition, a spatial database system is a database sys- 

tem t h t  offers spatial data types in its data made1 and query language. Its implernentation 

supports spatial indaüng and an efficient spatial j ob  operation. 

2.5.1 Spatial Data Models 

The fundamental question in spatial database modeling is how to ernbed spatial aspects in a 

data model and the underlying database system such t hat acceptable interfaces (op tïmhable 

query languages and pictorial interfaces) can be defined. A spatial data rnodel must support 

modeling of O bjects in space (e.g. points, hes, polygons, solids) and space itself, as weil as 

modeling of the non-spatial aspects of objects in space. Finally, it m u t  support basic spatial 

operaton. Some important issues related to spatial data types and operations support as 

they are realized by Guting [Gut94] and Paradaens [Par95], include: 

Extensibility. Spatial operations are usudly application dependent. Hence, an effec- 

tive spatial data rnodel should ailow the definition of user defined operations. 

Completeness. The data model has to be "closed" for all its operations, Le., the 

operations return representable types as answers. In addition, the operations mus t 

capture al1 the intended functionaliS of space. For instance, the topologicai operations 

in Section 2.4.6 can capture all the topologicdy distinct relative positions between 

two objects in space. 

Genen'city. The operations supported by the spatial data mode1 m u t  be independent 

of the content of data (PVdBVG941. 

Set Operutions. A spatial data rnodel should support operations defined on individual 

objects as well as on sets of objects [GS95b]. 

All of the proposed spatial data models are associated with some dominant data model- 

ing approach, namely, the relational model approach, the extendeci relational approach, the 
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Figure 2.12: A relational implementation of the BR scheme 

object-oriented approach, and lately, with the knowledge representation approach to data 

modeling. 

The relational rnodel has been used in engineering databases [GS82] and in geographic 

information systeniu [CF81, CK81, AS861. This approach has two major drawbacks. First, 

it m o t  support the hierarchical construction of spatial objects. Second, geometric opera- 

tions are very hard to compute and thus are not supported by the data model. For instance, 

the retrieval of the bounding edga of all blocb in Figure 2.1 requires an expensive three-way 

join operation between BLOCKS and EDGES and VERTICES relation. 

Certain drawbacks of the relationai approach are handled by extensions to the relational 

model. Useful re la t iod  extensions include the user defined types and functions (ADT- 

INGRES, "QUEL as a Datatype" [SRG83]), the use of surrogates and long fields in system 

R PP831, the nested relations data mode1 ( N F ~ )  [PSS+87], the eritity relationslip approadi 

adopted by GEM [Zan83], the DAPLEX functional data model [CDF+82] and many others. 

Extended relationai models are able to represent the stmcture and the manipulations 

over geometric entities. Those promoting the notion of abstract data types (ADTs), such as 

"QUEL as a Datatype" and GEM are able to model stmcturally cornplex entities. DAPLEX 

supports structure through the generalization and aggregation abstraction principles. The 

extensions of System R and the NF2 data model provide constructs for modeling complex 

structures. A common drawback of these approaches ia that they lack generality. Some of 

them are able to model CSG easier than BR or the other way around. Some operations are 

very hard to be cornputed and impossible to be extended. These drawbacks have led to a 

third approach to spatial data modeling. Instead of defining extensions it is preferable to 

build on extensibility. This approach is taken in the PROBE [OM88] object-oriented data 

modd and is also featured by "knowIedge models" such as Telos [MBJKSO]. 
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The eztensibdity of object-oriented databases allows the inclusion of specific object 

classes that support the required data types (spatial data) and the required manipula- 

tions. More speciaiized object classes are added as needed md customized optimizers are 

built dong with them. 

In the PROBE data model (PDM) [M086], spatial characteristics of entities are repre 

sented and integrated with non-spatial characteristics described in the I3APLE.X 0rciixm-y 

data model, by means of an entity type cded PTSET (pointset). Entities of type PTSET 

are geometric entities such as lines, a r a  and volumes. Geometric entities serve as values 

of spatial attributes such as boundary or shape of o r d i n q  database entities. The PTSET 

type can be specialized to obtain entity subtypes with more specific spatial features (e-g., 

specific shapes). Complex shapes can be built by combining primitive ones. Specialized 

types can &O have specialized functiom that are applied to them. A PTSET can contain 

other PTSETs and the container is called spuce. The operations that are associated with 

genenc PTSET entities are either point set (e.g., spatial) or structural operations. Point set 

operations include point set intersection, union and difference, spatiaI selection, overlay and 

geometric transformations. The structural operationa are concerned with the hierarchical 

structure of spaces and are defined in terms of non-spatial operators of the PDM algebra 

The following exampIe illustrates the structural facilities of PDM. 

type ROAD is FEATURE create  neu R i n  ROAD ( 
name(R0AD) --> STRING name => "College S t r " ,  
uosses(RûAD) --> set of ROAD crosses ==> {"Univ. Aveft , "St Georgef1), 

length(R0AD) --> REAL length ==> 296 -89 ) 

Point sets are implemented by the Approzirnate Geometry (AG) component of the PROBE 

database system. The AG component consists of a query processor and a storage facility 

for spatiaI objects. The storage stnicture of AG is based on a grid representation of spatial 

objects. Each PTSET entity is decomposed into box-shaped elements. The representatiou 

of PTSET entities by a union of box-shaped elements is approximate because it depends on 

the granularity of the grid decomposition. Each grid element is assigneci a z-ordering number 

[Ore86]. The use of the z-ordering numbers reduce spatial operationa such as precedence 

and containment operations, to simple bit-string operations. Hence, approximate spatial 

operations are computed by very simple algorithm [OM88]. 
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An object-oriented approach in spatial data modeling has been taken by Mohan and 

Kashyap [=88], van Oosterom and van den Bos (vOvdB89], Maier et al. [AOG+88], Scholl 

and Voisard [SVSI] and many others. 

The suitability of knowledge representation languages in spatial data modeiing is ac- 

knowledged by Milias et al. in P T 8 9 1  and Lu [Lu93]. Milios et al. introduce GeoTelas, 

an extension of the language Telos wJK9O],  to deal with spatial domains. GeoTelos 

allows one to organize objects with spatial features (GwConcepts) using aggregation, gen- 

eralization and classification abstraction principles, also to express integrïty constraints 

and deductive rules. Deductive rules are seen as a means for specifj&g user-dehed spatial 

operaton. The early design of GmTelos proposed a set of spatial operators which are a 

generalization of Allen's temporal relations for two dimensions. 

Over the last five years, extended relational spatial models had an impressive comeback 

withsystems such as Paradise [DK+94], GE0 (Vv092j and Montage [Ube94]. These systems 

emphasize implementation technologies rather than data modeling issues. 

2.5.2 Spatial Access Methods 

At the physical level, spatial data are represented in terms of spatial data structures and 

access methods. Aimost al1 known spatial data stmctures are based on the principle of 

partitioning the space into ceUs. A two way mapping relates regions of the space to the 

celis that they fill up. Cells or sets of cells are assigned to disk blocks. Access to spatial 

objects, given a regiou of space, consists of finding the celia that interseet the region (cell 

addmsing) and then hding the objects that occupy those cells (data access) [Nie89]. The 

generd concern during accessing of spatial objects is minimal number of disk accesses; 

therefore good access methods are necessary. 

Spatial data objects in d-dimensional space, d 2 1, are approximated by their mini- 

mum bounding rectangle (MBR) . Methods for s torage and accessing of (hi& dimensional) 

rectangles fail int O t hree cat egories [SRF87]: 

Methods that transfonn the rectangles into pointa in a space of higher rfirnensionality; 

thus referred as point access methoh [NHS84, SK88, Fke87, OSDM891. 

Methods that use spâce filling curves to map a k-dimensional space into a l-dimensional 

space iOM84, FaJ88, JaggO]. 
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Methods that decompose the space into subregions and distribute appropriately the 

data objects [Gut84, SRF87, BKSSSO]. 

Decomposition-based access methods are further classifieci according to the techniques used 

for decomposing the data space. Seeger and Kriegel [SK88] and Sellis et al. [SRF87] 

presented two such classifications. 

The most common spatial queries supporteci by spatial access methods include: (a) point 

search, (b) range search, (c) partial match and partial range queries, (d) nearest neighbour 

queries, (e) spatial join and (f) zoom-in queries. Point search retrieves the data object t hat 

me ts  a search criterion with respect to a certain point. Range search retrieves the data 

objects that fa into a specified region. Partial match refers to the case where one or more 

components of the search key are unspecified. The spatial join between two regions R and 

S retunis all pairs of data objects r and s such that they are in R and S respectively and 

they overlap to one anot her. 

2.5.3 Spatial Query Languages 

The goal of a spatial database Ianguage is to d o w  the easy formulation of queries that 

involve both spatial and non-spatial predicates without loss of spatial semantics. A desired 

requirement is that the queries should be optimixable. 

Existing spatial query languages are roughly divided into (a) extensions of the relational 

languages, (b) object-oriented languages and (c) pictorial languages. 

Chang and hi [CF811 developed the QPE (query by pictorial example) language as 

an extension of the QBE (query by example) and the predicate calculus. PSQL [RFS88], 

GEOQL [OSDM891 and Sgatid SQL [Ege94] are more recent proposais based on SQL. 

[LM88 b] used Peano tuple algebra, an extension of relational algebra, and cornputat ional 

geometry for procesahg an important subclass of spatial queries. Guting [Gut88] extended 

relational algebra in a many-sorted relational algebra with geometric types and geometric 

operators. 

Examples of the object-oriented approach in spatial query languages are object logic 

[AOG+88], the deductive, object-oriented language by Mohan and Kashyap pK88], GeoTe- 

los WTBS], and OpSQL [RSSS]. 

Pictorial query languages emphasize direct manipulations of pictorial information inte- 

grated with ordinary queryixg facilitiea. Some known pictorial languages are the PSQL and 
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the PICQUERY [JC88]. 

Optimization problem in spatial databases are sienificantly different than business 

orienteci-databases. PROBE [OM88, Ore891 and GEOQL [OSDM89, OSD891 are known 

efforts which have progresseci in this direction. In part icular, PROBE offers a way of ex- 

tending the query operations and the optimizer (see section 2-5.1). In GEOQL, Ooi et al. 

defined an optimizer which separates the spatial and the non-spatial predicates of the query, 

which are handled by different processors, and a high level optimization procedure selects 

the query execution plan with the lowest cmt. Optimization of spatial subqueries is based 

on the use of a spatial index. 

This section presented an overview of the research in spatial databases. Work in this area is 

broadly divided into spatial data modeling, data structures and access methods, and query 

processing and optinrization. Object oriectation and knowledge representation offer suitable 

modeling approaches for spatial databases because they can support the structural aspects 

and a wide range of spatial operations in spatial representation schemes. The spatial data 

structures and the access met hods are well studied fields. There is virt ually no work in query 

processing and optimization at the query language level although there is a huge amount 

of work a t  the data access level. The reason for this is that the corresponding problems 

have not yet received aatisfactory answen even for object oriented databases or knowledge 

bases, Perhaps rnost irnportantly, the treatment of uncertainty and part i d  informat ion has 

not received enough attention in spatial databases. 

2.6 Conclusion 

We have reviewed research in the fields of spatial representations, spatial reasoning and 

spatial databases. We have also motivated the importance of spatial knowledge management 

by present ing several applications which demand support for spatial data. 

One first observation is that efforts in spatial representation and reasoning are driven by 

the requirements of specific applications. For i n shce ,  in robotics the emphasis is placed on 

the representation of the fiee space and the path hding problem. In qualitative mechanics, 

the representation and reasoning is mainly based on tangency relations. Geographic appli- 
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cations require relative position cornputations and representation of the extremely arbitrary 

shapes. As a resdt, there is no system that provides adequate functionality for a wide range 

of spatial applications. 

The second observation is that many applications such as  CAD/CAM and geographic in 

formation systerns, have to cope with large amounts of spatial data. For this purpose, the 

functionality of a database system is necessary. At the sanie tirne, the support of spatial 

howledge repmientation and reasoning techniques is generally acknowledged as desirable 

and important. 



Chapter 3 

The Haze-Order Space and its 

Axiomat izat ion 

3.1 Introduction 

In this chapter we present a language for expressing spatial relations on points and regions 

in imprecise space. We start by introducing an appropriate ontology of space and then 

present the first-order theory of one-dimensional imprecise space. The theory of imprecise 

space is axiomatized in t e m  of haze points and the haze and precedence relations. We 

analyze the theory of one-dimensional imprecise space fkom the point of view of the model 

theory and we note useful facts about ita modeis. These facts foreshadow somc of the 

underlying principles of the spatial reasoning algorithms that are developed in Chapter 4. 

This analysis contributes to the theoretical work in spatial representations since it explores 

the limita of the hazobased approach. We also propose several extensions of the theory 

for higher dimensional space. In the twedimensional case, we define a complete set of 

topological and directional relations that are useful for pract id reasoning about space. 

The proposed formalism is strictly qualitative with a built-in concept for imprecision. 

The r a t  of this chapter is organized as follows: Section 3.2 discusses motivation and 

proposes a new ontology of imprecise space. Section 3.3 reviews some definitions fiom 

kt-order  logic and model theory. Sections 3.4, 3.5 and 3.6 present the development of 

the theories of or-e and twc+dirnensional point and region space, respectively, dong with an 

assessrnent of their models. Section 3.7 presents an application of the developed theories to 



CHAPTER 3. TRE HAZEORDER SPACE AND ITS AXIOMATIZATION 46 

the definition of binary spatial relations, and Section 3.8 discusses the problem of varying 

the granularity. Finally, Section 3.9 summarizes the technical results of the chapter. 

3.2 The Ontology of Haze-Order Space 

An ontology of space is a conceptualization of space that includes a formai pattern for space, 

its objects and the defined spatial relations. This work is interested in an ontology of space 

with a buiIt-in notion to account for imprecision. 

The selected ontology of space m u t  be characterized by simplicity and mathematical 

clarity. The most successful computational paradigms base t heir success on t heir mathemat- 

ical clarity. Relational databases are a well known example. The study of formal aspects of 

spatial representation and reasoning, however, is a broad area without comrnody accepted 

formal methods and theoretical tools. A simple and mathematical ontology should be the 

basis for proposing a comprehensive theory for spatial representation and reasoning. Such 

a theory is expected to provide answers to questions such as: Does a set of spatial rela- 

tions allow us to spec* all the qualitative distinct situations in space? Are inferences, in 

some given representation, sound and/or complete? Are certain theories of space complete 

and/or decida ble? 

We propose the ontology of haze space in which space is viewed as a totality of spatial 

objects connectecl by certain relations. The objects of haze space are either haze points or 

haze non-point objects. Haze points refer to points of space which are surrounded by a haze 

ara, the srnaIlest distinguishabIe quantity in the representation. Haze non-point objects 

are constructed by connecting su& areas. A consequence of the haze area around points is 

t hat , at sufüciently small scales, objects are indis tinguishable. Figure 3.1 illus t rates haze 

points in one and two dimensions. 

O t her reaearchers used the terms '(tolerance" or (‘net iceable difierence" P o  b731, [KauS 11 

to describe a similar notion. The former is the ciosest concept to the proposed ontology 

however the formalization of two proposah differs significantly. Tolerance spaces are d e  

scribed in ternis of inductive axioms. Worth rnentioning is also the work on tlrreshold and 

interval rerpesentations P L T 8 9 ,  Fis851 in the context of measurement theory as well as 

the work on logis for approximate reaaoning FH921. .U of the above study the mathe 

'A preliminary version of material presented in Chapter 3 has appeared in ('Ibp94aI. 
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Figure 3.1: The haze-point ontology 

matics of imprecision in quantitative represesentations. The fundamental difference of our 

work is t h t  it is founded on a strictly qualitative basis. The haze-point ontology provides 

for a forma1 treatment of granularity alung the lines of [Hob85] because the definitions of 

spatial relations are parameterized by a degree of detail. Finally, hzzy set theory and fuzzy 

logic [Zad94, fie941 have ben used as formal models to exploit tolerance for imprecision 

and uncertainty leading to probabilistic models of reasoning. These approaches faJl beyond 

the scope of our study. 

We assume two primitive relations, h u e  and predence. The haze relation models 

the indistinguishability of two objects being too close to each other. For instance, in a 

macroscopic view, one cannot determine whether two close points on a liae, precede one 

another or are in the same place. If the two points &art moving to opposite directions t hen 

a precedence relation between the two starts becoming clear. Still the threshold after which 

the two points can be sortecl is not clear cut: it might depend on the distance from which the 

observation k made, or the discriminating power of the particular observen. Finding the 

t hreshold of indis tinguishabîlity is an interesthg problem alone and it very much de pends on 

particular application domains. For the purpose of a theoretical investigation of imprecise 

space, it is sufEcient to assume that such a threshold is available. 

The notion of haze can help us to mode1 situations where input information is not precise 

such as Linguistic descriptions, sonar sensors output, scientific experiment results, etc.; or 

situations where we are simply interestecl in limited degrees of precision. The size of the 

haze area accounts for the degree of precision. 
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3.3 Background 

In this section, we present the definitions of 6nt-order languages, structures and theories 

that are needed for the discussion in the rest of this chapter. The theoretical background 

of this chapter is based on material described in [End72], [Bri77], (CK771 and Fad871. 

A many-sorted first-order language C is a set of countably infinite symbols including 

non-logical symbols auch as a set of sort symbols, the Q, and 3, quantifiers for each sort s, a 

set of predicate, furaction and constant symbols, and logical symbols includhg one countably 

infinite set of uariables, for each sort, the standard sentential wnnectives A ,  v: + , , 
parentheses (, ), and the equality symbol =,, for each sort S. Atomic fornulas, wel2-fonned 

formulas and sentences are dehed  in the usual way [End72]. 

A first-order theory T is a set of sentences expressed in a first-order language L, that 

is closed under Iogical implication- That is, T is a t h e o ~  iE T is a set of sentences such 

that for any sentence a of L, T a a E T. A theory is usually specified by providing 

its ianguage, a sst of sentences called axiorns, and a set of inference d e s  which, in the 

case of fint-order thoeries, are the stardard kt-order inference d e s  of modus ponens and 

generalization. 

A many-sorted structure M is a set of objects dong with relations and functions on 

those objects and disthguished constants that the symbols of a first-order Ianguage take 

their meaning on. M is an L-structure if: for each sort s in LI there is a domain set in 

M, dombf(s) ,  where universally quantifieci variables of sort s take values from; for each 

predicate symbol p in L there is a relation of appropriate arity and sort in M ;  for each 

huiction symbol f, there ia a function f of the appropriate sort restrictions in M; and, 

for each constant c of sort s, there is an element cM of domM(s). 

The truth of a sentence o in C is evaluated with respect to an C-structure M: M C= o 

reads "a is true in M" . The function v fkom the variables of L to their domains in M, is 

called valuation We use the notation M C $[v] to say that M satisjies 4 under valuation u. 

The definitions of truth and satisfaction are the standard ones fou& in [End72]. A mode1 

of a thwry T expressed in language f. ia an Lstructure M, such t hat al1 sentences in T are 

true in M. A theory T is consistent if there is at least one mode1 for 2'. 

For a set of sentences Z, M d @ )  is dehed  to be the delass of aU modeis of C. The theory 

of a class of modela M of C, denoted Th(M) ,  is the set of ail sentences of the language of 
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M that are true in every member of M. Th(Mod(C) is then the set of all sentences in dl 

modela of C. But this ia the set of aU sentences logically implied by C, calIed the set of 

consequences of C, Cn(C). Thus Cn(C) = (o : C + O )  = Th(Mod(Z).  A set of sentences 

T is a theory ifT T = Cn(T). 

A theory T complete if it is consistent and for every sentence P in the language of T, 

either P or not -P ,  but not both, are in the theory. T h ( M )  is complete by definition. 

Two models M and M' are isomorphic if and oniy if there is a one-to-one onto function 

fkom M to M' such that any true statement about elements of Ml in the language of M and 

M', is true &O about their images in Mt,  and vice-versa. The two models are homomorphie 

if the mapping function between M and M' preserves the structure but is not required to 

be onebone.  

A theory T is f i i t e l y  aziomatizable if there is a set of sentences C such that T is the set 

of ail deductive consequences of C ,  that is Cn(C) = TIt(Mod(T)) . A fmitely axiomatizable 

theory is axiornatizable, but not necessarily the reverse. A complete and axiomatizable 

theory is decida ble. 

3.4 One-dimensional Haze Space 

We start the formal development by k t  considering haze space in a single dimension, 

denoted Hl. The axioms of Hl are expressed in a rnany-sorted first-order language L. C 

has two sorts of individuais: P for points and S for scaies. The non-logical symbols of 

C include the predicate symbols and h both of sorts P x P x S, the predicate symbol 

<, relating individu& of sort S x S, and equality for both sorts. Until Section 3.8, we 

will assume that sort S contains a single constant symbol g whicb denotes the size of the 

scope of the h(aze) relation. In the general case, relation h contains an explicit argument 

which quantses its indistinguishability, Le., its value can grow or s h r i i  denoting that the 

imprecision of the representation increases or decrwes, respectively. Although, relations 4 

and h contain a third argument of sort S, for readability purposes, we write them as binary 

reIations, x + g and h[x ,  y). It should be noted that this is an equivalent notation that 

does not impose any technical limitations since g is a constant. In the following the letters 

x, y, z, u are taken as variables ranging over P. 

The first two axioms of Hl state that relation h is reflexive and symmetric. 
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A l .  Vx(h(x, 2)) 

A2- Vxv(h(x,v) * h(y ,4 )  

The next six axioms, with the exception of A6, express properties of the precedence relation. 

Axioms A3, A4 and A5 state that the precedence relation is irreflexive, asymmetric and 

transitive. A6 states that relation h is in the symmetric complement of i- Axiom A7 states 

that space extends in both directions. Finally, axiom A8 ensures that there is a "stepwise 

succession" with respect to the precedence relation which adds a discretenes property to 

the haze point space. 

A3. Vx(-x 4 x) 

A4. Vxy(x + y + -y + x )  

A5. Vxyz(x i y A y + z + x 4 z )  

A6. Vxy(h(x, y) + -z 4 y A -y 4 a) 

A7.1 Vx3y(y 4 x) 

A7.2 Vx3y(x 4 y) 

A8.1 Vx3y(z 4 y A -dz(z 4 2 A z 4 y)) 

A8.2 Vx3y(y 4 x A 73z(y 4 z A z -i 2))) 

In addition, the equality axioms for each sort and linear order axioms for <, in SI are 

The symbois of L: are interpreted with respect to a fixeci structure P 1 which captures 

our assumptions, i.e., space is discrete, unbounded, with precedence and haze relations 

defined as above. The domain that underlies Pl is 8. The constant symbol g is assigned a 

non-negative integer constant g under Pl. The domain of P in Pl is the set of ail intervals 

of size 2g based on integers and it is denoted by I (Z) .  To each of the predicate syrnbols 4, 

h and <,, Pl assigns the relations p, r and < (the "less than" relation in Z)), respectively. 

Relations p and r are defined as follows: 

p = { ( i ,  j,g)li, j E I ( Z )  and for every x E i it 21 the case that x + g E j V x - g E j) 

r = ((i, j ,g) l i ,  j E I ( Z )  and for every integer z such that z E i it is either 

( z € j  A x f g E j  A z - g e j ) o r ( r @ j  A r < t f o r e v e r y t € j ) )  

Note that an interpreted haze point over the integers line is an interval of length 2g. Two 

points that are in haze relation have their interpretation intervals overlapping by at least 
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Figure 3.2: A model of T (Example 3.4.1) 

haLf of their length. It is easy to show that for a given g, P 1 defines a class of models for 

Hl. It suffices to show that all axioms are tme in Pl. We can easiIy verify this for each 

one of them. For instance, the meanhg of A6 is that for every two intervals i ,  j ,  of size 2g, 

if there is an overlapping between them such that their overlapping part is equal or longer 

than g, Le., for every x E i it is the case that x + g E j V x - g E j ,  then it cannot be the 

case that i 4 j because we can h d  one z f i and z f j such that z + g E j A z - g E j 

contrary to what r states. SimiIarly, it cannot be the case that j i .  In the same way we 

can verify the trut h of all O ther axiorns under P 1. 

Example 3.4.1 Let Pl2 = ( I ( Z ) ,  pl r, 2) * be an Cstnicture and T = {x 4 z, h(x7 y, 9)) 

be a set of C terms. Also, let i be an assignment of L: variables to the domain of Pl2 such 

that i (x )  = [3,7],i(y) = [4,8],i(z) = [8,12] where [I,u] denotes a closed integer interval. 

Then, the pair (P12,i) is a model of T (see Figure 3.2). 

3.4.1 On the Models of H l  

While in the previous section our objective was an explicit axiornatic view of the structure 

of haze space, in this section we take a view that combines representation and inference. 

This involvefi, k t ,  the further analysis of the qualitative properties of 4 and h and the 

definition of a quantitative representation (Le., build the models of Hl) which facilitates the 

problem of inference, Le., it leads from recorded assertions to inferred ones. In addition, we 

note usehl facts about the models of H l .  These facts foresbdow some of the underlying 

principles of the dgorithms presented in Chapter 4. 

We atart by looking into the haze relation. h(x, y) is a symmetnc but not transitive 

relation representing the indiatinguishability of two points x and y. We can also define 

another inclifference binary relation on P which is based on 4 and is transitive. The new 

relation is called neighbors, written n(x, y), and we say that x nezghbors y if both x and y 

'AS was mentioned earlier, sort S contains a single constant and thus, for brevity, its interpretation domain 
Z and the interpretation function < for <,, are omitted from Plz. Thus, Plz is written as ( I ( Z ) , p ,  r, 2) 
instead of (I(Z), z,p, r, cz 2) 
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are preceded and followed by exactly the same haze points. More formally, x neighbors y if 

for all z such that x 4 a it is the case that y t, and for alI u such that u 4 x it is the case 

that u 4 y, as welI as, for ail z such that y 4 z it is the case that x 4 z,  and for all u such 

that u 4 y it is the case that u 4 x. That is, x, y are inferrecl not to satisQ n(z, y) if some 

z can be found that stands in relation h to one of them but not the other. Once again, h is 

an abstraction of indistinguishability while n is a relation that denotes the indifference of 

two points which perhaps are not too close to each other but they are perceived indifferent 

when related to third points. n, as shown below, is proven very usefiil in drawing inférences 

in haze space. 

Some ordering information embodied in h relation can &O be recovered by ex;imining 

how two hazy points are related to third points. We refer to the recovered ordering infor- 

mation using the relation symbol Ü and we write xqy  to denote t b t  x precedes everything 

that y does. The details of 3 definition have as follows: First, if x + y, then by the tran- 

sitivity of 4, y 4 z implies x + z, and therefore xQy. Next, if h(x, y) suppose we find a z 

such that x 4 z and h(y, 2).  This is interpreted as evidence that y lies after x; and we assert 

that if opposite evidence is never found, then we can treat x as before or equal to p, which 

means xQy, One important point that we need to emphasize is the assymetric nature of the 

4 relation. This involves Iooking a t  both its decreasing and increasing direction in order to 

specify the delicate distinctions having to do with what exactly goes on the threshold that 

determines whether x + y or h(x, y). Therefore, denotes the ordering relation which is 

induced by examining how x, y are related to hazy points that lie before them: zgg if there 

is no z that provides contrary evidence, lying after x but before y (Le., whenever z 4 x, 

then a + y). By putting together 3 and g we get the twesided ordering relation a which 

we WU cal1 an interval order. By symmetrizing 3 we obtain an inMerence relation: 5(x, y) 

when both xëÏy and yax hold. Similady, we can define 11 and n, the neighbors relation. We 

embody these ideas in the following formal definition. 

Definition 3.4.1 Let + be an assymetric binary relation on P .  The following relations are 

defined in t e m  of 4: 
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(a) 
y is foiiowcd by the same 2's IU x 

z Y t 

(cl c 
y is foUowcd by the s m e  t's as x a d  
y ïs prscded by rtic s m t  2's as x. 

x Y 
(d) ).-*.--(--- 

Y x 
x md y arc indifirent 

Figure 3.3: (a) x precedes&omabove y, (b) x precedeshm-below y, (c) x precedes y, (d) 
x neighbon y 

x precedea,frorn,above y : xüy =Va(% i z + y 4 a)  

x precedes-bom-below y : x o y  r Vz(z 4 x + z 4 y )  

x precedes y : ~ a y = x ? i y A z ~  

x neighbors y .- n(x,y) ~ V x a y  A y ~ x  

The dehed  relations are illustrated in Figure 3.3. 

We now build the quantitative representation for Hl. Due to the assymetry of 4 we 

need to take into account both the decreasing and increasing direction of +. We are basically 

investigating numeric functions from P to Z with the following property: $(x) + c5 < &y)  

for every x y and &O - d(x )  < - $(y) - 6 for every x < y. Note that it is possible that 8 
and # - can induce different orden on Z, A quantitative representation can capture the two 

diaerent induced orders by considering 3 = 4 - = 4 and two dinerent threshold values 6 and 

6. In suc. case, h(x, y) implies that $ (x )  lies in the interval [$(y) - &,4(y) + 61. But the 

symmetry of h implies that 6 = 4 = 6. Ail these concepts are. fomaliy summarized in the 

nex t defini t ion. 

Definition 3.4.2 Let 4 be an aasyrnetr+c bincrry relation on P .  An integer valued function 

4 and an integer constant 6 f o m  a quantitative rep~senta t ion if for al1 x, y,z f P ,  the 

following hold: 

To sumrnarize the discussion until this point, we assurned a set of hazy points P and two 

primitive relations 4 and h dehed on it. 4 is an assymetric and transitive relation, while 
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h is symmetric and non-transitive. Then, based on the primitive relations, we created two 

new relations n and a which both together embody the same information as i and h, and 

h d l y  we built a quantitative representation for them over the integers. Now, we can prove 

the following propositions: 

Proposition 3.4.1 Let $ be any integer valued junction and 6 any integer constant. If the 

pair (+,ci) respects the Definition 3.4.2, then (+,ci) defines a mode1 for H l .  

Pmof. In Section 3.4, we defined a class of rnodek H l  based on the integers by mapping 

each eiement x of P to an interval, Say i (x )  = [ I , ,  u,], in I ( Z )  sueh that u, - 1, = 2g (1). 

Let us take 6 = g, 4(x) = u, - b and $(y) = ly  + 6.  Note that u, - 6 = 1, + 6 because of 

(1)- 

x 4 y means that either i ( x )  precedes i(y) or i(x) overlaps i(y) by less than half length i.e., 

u,-II < g. This is written: u,-1, = O(x) +6-$(y) +6 < 6 or equivalently $(x) + b  < $(y) 

which by definition is the interpretation of + under (4: 6). 
h(x, y) means that -g < 1, - 1, < g. This is written: -d 5 $(x) + 6 - $(y) - 6 5 6, Le., 

$(x) 2 (4(y) -6 and $(x) 5 $(y) +6 meaning that $(x) lies in the interval [$(y) -6,4(y)+6] 

which is also an implication of Definition 3.4.2 and axiom A6. O. 

Proposition 3.4.2 Relation n (neighbars) is an equivalence relation. 

Pmof. We need to show that n is reflexive, symmetric and transitive. Fkflexivity and 

symmetry of n is trivially verified by Definition 3.4.1. Reflexivity: n(x, x )  r Vz(x 4 z e 

x 4 a) A (z 4 z @ z 4 x )  is a tautology. Symmetry: n(x,y) = Vz(x 4 z @ y 4 

z) h (z 4 x e z y) I n(y,x). As for transitivity, suppose that n(x, y) and n(y,z). We 

must show that Vw(x 4 w e~ z 4 w )  h (w 4 x w 4 z). But, from the hypothesis, for 

every w it is x w H y 4 w H z 4 w, and w 4 x # w i y H w 4 z; hence n(x,z) 

and thus n is transitive. O 

Given that n is an equivalence relation on P, n partitions P into equivalent classes the 

set of which is denoted by P/n. As the following proposition a f h m ,  the equhlent classes 

of n partiaily ordered by 4 aa well. 

Proposition 3.4.3 + partially orders the equivalent dusses of n. 
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Proof. The equivalent classes defined by n on P are disjoined and by the definition of n 

and axioms A4 and A5 we can verify that 4 is irrdexive and transitive on the equivalence 

cIasses and therefore it is a partial order. O 

The following example illustrates the practical implications of the until now discussion 

and also giws hints for an algorithm thst cornputes the models of ~ 1 ~ .  

Example 3.4.1.1 Let P = {a, b, c, d ) ,  += {(a, d) ,  (b, d ) )  and h(a, b). 3 does not discrimi- 

nate between a and 6. I f  we add a W h  element e such that e 4 a and e 4 6, then does 

not distinguish a and b either. Then, it is the case that n(a.b). If we use capital letters to 

denote the equivdence classes, we get P* = A, Cl Dl E and 9 = { ( A ,  D), (E, A)), where A 

is {a, 6). 

We cm also assign ranks 1 to 4 from low to high relatively to a and 9. These values 

will help us to come up with a q5 function when we build a model. Q ties the ranks for a, b 

white suggests that c lies above a, b and below d. Thus we assign a = 1, b = 1, c = 2, d = 3. 

a ties a,b and c since nothing is before them. So, we assign a = 1 ,b  = l , c  = 1,d = 2. - 

Note that the ranking is not a model. We algo need to come up with an appropriate 6 

value that satisfies the conditions stated in the proof of Proposition 3.4.1. For 6 = 1, 

i(a) = [O, 21, i(b) = [O, 21, i (c )  = [2,4] and i(d) = [4,6] is such a mode]. O 

Let us now investigate conditions under which the partial order structure that underües 

H l  is extended to a linear order. A linear extension of 4 is possible when h becomes 

the identity relation. Then, A6 axiom of Section 3.4 tunu to a weak linearity axiom- An 

additional axiom stating that k y ( - z  4 y A -y 4 x h(x, y)) is needed to convert the 

weak-order to a linear order by adding antisymmetry. 

To siimrnarize this section, we have shown (Proposition 3.4.1) that there is a mapping 

between the class of models defineci in Section 3.4 and the quantitative representation of 

structure (P, a, n). In addition, we showed that P/n  is partiaLly ordered by 4. This 

establishes state that the modeIs of H l  consist of partially ordered neighborhoods. We 

have &O outlined through Example 3.4.1.1 an algorithm to build models of H 1. 

' ~ e e  Section 4.3.3. 
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3.5 The Theory of Two-dimensional Haze Points 

In this section we extend the theory of haze space by adding a second dimension, thus 

deriving the theory of two-dimensional haze space. There are two distinct criteria definhg 

a theory of two dimensional space. First, the alphabet of its language needs to be extended 

so that it contains two non-empty sets of operators. Second, the domain within which 

the symbols of the Ianguage are interpreted needs to be twedimensional. Ln providing 

a method to define the twdimemional theory of haze space, we have to pay attention 

in the foilowing three points: extending the language, its axiom system and the method 

for deking its modeia. Our solution is based on the combination of two one-dimensional 

structures of space and it is termed independent combination- 

We extend the language L with an addit iod sort of individuah, namely, the sort of 

two-dimensional points. The set of sorts in L now becomes (Pl, f i ,  Q, S), where Pl,  Pz 

are two disjoint copies of P, and Q ia the newly introduced sort. For clarity, hereafter we 

require quantifiers to range over particular sorts. Let sorts(C) be the set of aU sorts in L: 

and 3 ( x )  be a sentence. For e z d  s E smts(C): 

Vx/s F(x) stands for Vx(s(x) + 3(x)),  and 

3x/s T ( x )  stands for &(s(x) A 3(x) )  

Symbols of each one copy of P are related by relation symbols 4 and h appropriately 

subscript ed with 1 or 2. A pairing function from sorts Pl x P2 to Q, relates two-dimensional 

points with th& one-dimensional coordinates. 

(xi, x2) it is a pairing function which returns the two-dimensiod point formed by its 

one-dimensional coordinates 

Having augmented our theory vocabuiary with new symbojs we have to extend the ax- 

ioms appropriately. The new theory is denoted by H2. Axiom B1 States that each two- 

dimensional point consists of two coordinate one-dimensional points. In addition, axiom 

B2 postdates that the pairiig function u(,)" is injective (i.e., Pl ,  PZ and Q have the sanie 

cardinality. 

B1. Vz/Q 3xl/Pl 3xz/Rl (X = (xi, x2)) 

B2. Vx1 yl/Pi M y 2 / 9  ( ( a ,  22) = (yi, a) * xi = y1 A x2 = m) 

The next axiom extends the notion of haze to two-dimensional points, hh: 
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By convention, the two coordinate axes are subscnpted by h (horizontal) and , (vertical). 

8 5 .  Vxt/Pt Vx2/P2 (hm((x~, ~ 2 ) )  = X I )  

B6. V X ~ / P ~  Vx2/P2 (uer t ( (x~ ,x~) )  = x2) 

The point decomposition property is expressed by the following sentence (B7); B7 is a valid 

sentence that follows from Bl,B5,B6. 

Order (precedence) in the two-dimensional space is dehed in terms of the 4 ~ , 4 2  relations 

East, west, nortfz and south are irrdexive, asyrnmetric and transitive, and, in addition, 

east is the inverse of west and south is the inverse of north. The following axiom s tates the 

totality property in the twcdimensional space, Le., any two points are related with one of 

the nine disjunctive relationships. Figure 3.4(a) illustrates the nine distinct placements of 

two points in two dimensions. 
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Figure 3.4: A graphieal illustration of axiom C5 and C6 

VXY/Q (WG Y) V 

( w ~ o l i n e a r ~ ( x ,  y )  A east(x, y)) V 

(w,colinearh(x, y )  A west(x, y)) V 

(wxolinear, (z, y) A nort h(x, y)) V 

(w-wlinear, (s, y )  A south(%, g ) )  V 

(north(x, y) A east(x, y)) v 

(south(x, g )  A east(x, y)) V 

(narth(x, y) A west(x, y)) V 

(3outh(x, Y )  A west(x, Y))) 

Axiom C6 is to ensure the orthogonaiity property in H2 (see Figure 3.4(b)). 

C6.1 Vxyx/Q (w~coZinearh(x, y) A wrdineor, (x ,  r )  + 3u/Q(w-wlinearh (z ,  u) A 

w_colinear, ( y ,  u))) 

C6.2 VxyzlQ (w-cdinear,(x, y) A wmlinearh(x, z )  + 3u/Q(w-colinear,(z, u) A 

w mlinearh (y, u))) 

It can be easily seen that theory H2 has a ckss of models, Le., is consistent, which are 

based on the carteaian plane Z x Z. Next section precisely characterizes these models. 

3.5.1 Models of H2 

We developed a two-dimensional t heory for space, H2, based on a combinat ion of two t h e  

ries t hat correspond to (independent) ondimemional coordinat es. This combination views 
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each dimension independently. We require that the t w d i m e n s i o d  individuais are pairs 

of onedirnensiond individuals for which a separate structure is assumeci. Cross-domain o p  

eraton d&ed between twedimensional individuals are decomposable to primitive single 

domain operators. 

We w u  now examine the modela of H2 and in particular tbeir stmcture and the se- 

mantics of evaluating two dimensional operators in t hem. First, we introduce the notation 

used in the rest of this section Op(Lc) denotes the set of non-logid symbols of a first- 

order language Lc which is used to express statements about a theory C. Let (A,  op,) 

and (B, upb) are two 13-structures of some first order language L the cartesian product of 

(A, op,J @ (4 wb) WU be ( A  @ B, op, 0 opb) such that for each {a I h ), (a2,h)  E A@ B, 

(al, bi) opaoopb (a21 bz)  is w v a l e n t  to aLoPaa2 A b l ~ b b z -  

The idea is to define a combination of two logic systems. For that we assurne that the 

language of a system is given by set of symbols and a set of formula building d e s  such as 

the ones described in Section 3.3. Let Cl, & be two copies of the theory of one-dimensional 

space referring to different coordinate lines. Statements about Cil C2 are expressed in using 

the same language, i.e., the formula building d e s  are the same, but on different sets of 

symbols. In general, we do not want any non-boolean operator t be shares between the two 

copies of the language; this may cause problems when we combine their axiomatizations. 

To avoid such a behavior, independent combination imposes the restriction Op(Lc,) n 

Op(Lq) = 0. The combined theory is H2. As far as its axiomatization is concerned, let 

CL, C2 be axiom systems of CL , CZ1 respectively, then Cl U C2 U {BI ,  8 2 ,  . . . , B6) is the 

axiom system of H2. 

The models of the independently combined theory of tw*dimensional haze space are 

composed out of connecting the modeh of the two coordinate one-dimensional theories in the 

following way. Let the structures P l  = (dom(Pi), hl, <l, gi) and P2 = (dom(P2), h2. <2, g2) 

be modeh of Ci, Cs (as defined in Section 3.4), then the models of the combined t heory have 

the form (dom(Pl), dom(P~), dom(P1) @dom(P2), <i ,  <2, <t 0 <2, hi, h2, hioh2, gi, g2g10g2)- 

Domaina dom(Pl),dom(P2) are the domains that sorts PI, P2 are interpreted at, where 

domain dom(P1) @dom(PÎ) serves as an interpretation for sort Q. Due to axioms 81 and 

B2, dom(Pi)@dom(P2) is nothing but the cartesian product of dom(P1) and dom(P2). 

' ~ o t e  that hl ,  in this font, is the relation of Pt that is used for the interpretation of the relation symbol 
ht of Ci. 
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Analogously, relation CI 0 <2 stands as the interpretation of the vector operator (-c~, <2), 

and so on. 

Given an independent combination, every sentence of the combined language is decom- 

poseci into a Cl formula, a C2 formula and a P(airs)-part. TWO projection operators H and 

V separate the parts of the sentence that correspond to Cl and Cz respectively. In specific, 

any H2 sentence of the fom HV(Vxl..xi/Q a) is written as 

where H ( 4 )  (resp. V(4)) involves only Cl (resp. C2) symbols, and Ai xi = (xi,? xi2) is the 

P-part and Q = P1@P2. Subscripts 1, 2 denote synibols from CI and C2, respectively. 

The H and V projections are obtained as follows: 

1. atomic formulas 

where op is one of the {hh, w m h e a r h ,  w,olinear-v, east, west, riorth, south). 

2. non-atomic formulas 

3, V , f o n d a s  are derived in the usual way. 

Proposition 3.5.1 Let H2 be an independent combination of Cl and C2, and M = M l W 2  

the combined structure of ML and M2 where Mi and M2 are rnoàeb of Ci and C2, mpec- 

tively. A n  H2 sentence q5 i s  true in M under a ualuation v ,  i f  and only i f  H ( 4 )  and V($) 
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a= true in Ml, M2 with valuations v~ and u2 and v = vl  ov2, i. e., 

Pmof: By induction on the structure of a. 
Base case: 4 is atomic. All five possibilities need to be conaidered. In fact , due to t heir 

similarity, we group the first four into one case, which, without any loss of generality, we 

assume to be the following: H ( 4 )  = xl 4 1  y1 and V($) = T. Then 

The remaining base case is if 9 is atomic of the particular type op(x, y) with H($) and V($) 

to be opl(x1, Y i )  and opz(x2, B), respectively. Then 

Inductive step: The inductive step is straightforward. To simplify the presentation, we 

will use the z notation as short tom of xi, xl, . . . , x,, and (5, y) a equivalent of Ai xi = 

( x  , x i )  Then an 112 sentence is written as VZ/Q3sl/PlE2/P2(2 = ( E L ,  52) A <P(Z)). 



Q(z) xnight be one of al@) A @2(9), G1(2) V Q2(5) and +(z). We perform the inductive 

step for first case ody, since the rest of them are sirnilar. 

A s i d a r  method for combining two one-dimensional logic systems into a twdimensional 

system in the context of temporal logics, has been proposed by Finger [Fin93]. Finger 

showed that the independent combination of two sound, complete and decidable logic sys- 

tems carries the aforementioned properties. 

3.6 The Theory of Two-dimensional Rectangles 

We will now extend C with an additional sort, R, for rectangles. A haze rectangle is 

constmcted by a pair of two-dimensional haze points. The new symbols in the Ianguage 

include two predicate symbols for inclusion, and a pairing function symbol: 

ino(p, a) point p is inside rectangle a 

inl (a, b) rectangle a is inside rectangle b 

b191 is the pairing function which ret unis the convex rectangle which is formed 

by the two-dimensional points p, q. 

The necessary axioms for the augmenteci theory are stated in the sequel. The new theory 

is called HR. For notational convenience, the let ters x, y, z, u will be taken as individual 

variables ranging over Q, and the letteni a, 4 c, d will be taken as individual variables ranging 

over R. 

SUnilvly to the point pairing function, rectangle pairing p o s s e ~ ~ ~  the axioms: 

Dl. Va/R 3xy/Q (a = [x, y] A east(x, y) A south(x, y)) 

D2. Vxyzu/Q ( [x ,  y] = [z, U]  + x = z A g = U) 

D3. Vzy/Q ( l d [ x , d )  = 4 
D4. VXY/Q (high([x, YI) = Y) 
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Axiom DI states that each rectangular region is composed of two twedimensional points: 

a bottom-left x point and a topright y point, i.e., x is in east-south relation to y. Due to 

axiom C5, x and y cannot be in the haze of each O ther (hh relation). To avoid inconsistencies 

we restrict the domain of R to consist of those pain of x, y E Q for which hh(x, y) does not 

hold. Axiom B2 postdates that there is a unique way to constnict each distinct rectangle 

in R. Axioms D3 and D4 name the fimt and the second component point of a rectangle 

pair to by low and high, respectively. Then, the rectangle decomposition property follows 

fkom Dl,D3,D4. 

We abbreviate f o d a  east(x, y) A south(x, y), by x <D y, meaning that x "diagonally" 

precedes y. Then, we can state that ail points ïncluded in a rectangle must be diagonally 

included by its low and hi& point. Also, any two rectangles are in inclusion relation, Le., 

inl, if and only if the h e r  rectangle's points are diagonally enclosed by the outer's extreme 

points* 

D5. Vx/QVu/R (ina(x,a) o loru(a) < D  x <D high(a)) 

D6. Va6/R(ini(a, b) H low(6) CD lau(o) <D high(a) <o high(b)) 

In fact, D4,D5 define the two inclusion relations in terms of our ontological primitives, 

namely, points, haze and precedence. inl is a partial order relation (transitive, reflexive 

and antisymrnetric) and ino is transitive over ini. 

The following topological relations are dehed  in terms of in 1 .  Their definitions are self 

explana t ory. 

El. merlaps (a, b) = 3c( in1 (cl a) A in1 (cl 6)) 

E2. dis joint(a, b) = Vc( - in i  (c, a )  V i n 1  (c, 6)) 

The smallest, non-decomposable area in our representation is the haze area that surrounds 

a point and is calleci atomic. Any other (non-atomic) regiün is called properRegion. 

The precedence relations between rectangles are &O dehed  in t e m  of the corre 

sponding relations in Q. As each rectangle is seen as a pair of two haze point objects, t hen 

precedence is defined as: 
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where op E (east, south, as dehed for twdimemional haze points. Tramitivity, 

irreflexivity and asymmetry of these operators in R is easily derived. 

The following axioms combine the notions of inclusion and precedence. 

D7. Vab/R(aopb =+ wmrlaps(a,b)) 

D8. Vab/R(aupb + Vc/R(inl(c,a) + copb)) 

Dg. Vab/R(aopb Vc/R(ini(c,b) + aupc))  

D10. Vabc/R ( a u p b o p c  =+ Vd/R (s'n&,d) A inl(c,d) + inl(b,d))) 

3.6.1 Models of HR 

Inclusion is the base primitive for axiomatizing the theory of rectangles. In our ontology, 

inclusion, a purely topoIogical concept, is expressed in terma of the primitives of the ontology 

(axioms D5,D6), thus showing that HR is an extension of H2. In consequeme, only the 

pairing function, "[ , ln, and the axioms D5-DI0 are needed to define HR as an extension 

of H2, and they follow the syntactic rules of the independent combination. All the other 

sentences presented under HR are theorems in it. 

3.7 Binary Spatial Relations 

In this section we use the developed karnework for the definition of toplogz'cal and directional 

relations. In particulai., we defme Egenhofer's topological [EF9 11, [EgeS 11 and Hernandez's 

direc tional relations [HerSP] wi thin the same framework. 

Topologicai relations are defined between pairs of rectangles. IR the cartesiau plane, a 

rectangle is defined by two points, the left-bottom and the right-top point. When points 

are assumed to be haze points the extension of the rectangle may grow by size g at each 

side. This means t h t  there is wicertainty about the exact position of the rectangle and 

the size of its area. In our sirnpiïfied domain we can visualize a rectangle having a stripe of 

width 29 as boundary. The real shape can be placed anywhere in this area. 
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cont ain, (a, b) = inside;'(a, b) 

containi(a,b) m insidecl(a, b) 

equal(a,b) = in~(a ,b )  A inl(b,a) 

The notion of tangency as  defined here is Yoose" tangency in the seriae that two the rect- 

angles share a point of their haze- If the size of the haze decreases tangent relationship 

changes to disjointness. 

Directional relations are d e h e d  between pairs of points. The first point is the reference 

and the second is the referencing point. The characterization of direction is done by means 

of the precedence and haze relations. Thus, granularity plays a role here, as well. Axiom 

C5 defines nine disjoint positionings of a haze point y with respect to a haze point x. 

The eight of them are directional: east (2), ue s t  (3), north(4), south(5), north-east (a), 
southsast(7), northuest (8) and southwest (9) 

In this section we study the implications of supporting multiple grandarity. There are two 

ways to support multiple granularities. The first is to change the constant g in the original 

theory Hl to a variable of sort S. Then, haze points are interpreted by integer intervals of 

arbitrary lengt h. 

The second way to incorporate granularity change is to increase or decreaae the value of 

the constant g. This means that the haze area of ali points in the representation increases or 

decreases respectively and therefore the truth/f&ehood of its statements changes as well. 

The following axiom st ate t hese changes. 

Gia(+) Vgdgig2/S(gi <92 * VXY/P ( h ( z , ~ ~ g i )  * h(z1~,g2)) )  coarsening 

G2-(+) vgrh/S (92 < gi * VXP~Y/P (h(z ,  Y, gi) A -h(z ,  Y, 92))) dinement 

The idea is that when the granularity changes then the original theory, say To, has to 

change. In particular, G1 states that two points that are indistinguishable at gl, they 

continue to be so at g2 > gi (+). G2 states that the transition from h e r ,  91, to coarser 

grdarity,  92 < gl, does not preserve indistinguishability (t). Our future research goal is 

to investigate syntactic methods for computing the theories T+ and T,. 

'The number enclosed in parentheses identifies the corresponding disjunct of axiom C3 
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An early work towards a formal treatment of granuiarity in reasoning systems was 

presented by Hobbs [Hob85], where the use of a transitive indistinguishability relation was 

proposed to select a local theory out of a global one. One of Hobbs conclusions was that 

grain size should be an expïicit argument of many predications. In our case, we chose the 

h relation to be the grain-dependent predicate and we developed a theory using it as a 

primitive. One advantage of our solution is that local, and possibly minor, changes of the 

theory can reflect major modifications, because h influences the definition of many bjn;yy 

spatial relations. Our goal is to explore rewriting techniques for carrying out this task and 

provide sounciness and completeness guarantees for theories of a certain sptactic type. 

Our work is &O compared to tempoml modules and time units proposed by Wang et 

al [WJS93]. This work, deals with the problem of mismatches in temporal databases with 

different units of time. Their solution is to superimpose various units of tirne, Einer or 

coarser, over the predefined unit that appean in the database. That method has a global 

effect in the sense that when the time unit changes the change affects the truth of ail 

the domain facts. Our approach adds a granularity argument to spatial relations; therefore, 

changes of the grain size affect ody  the truth of neighbouring relations - assuming a notion 

of neighbouring relations similar to the one presented in [Fke92a]. 

Finally, the rationale for supporting granularity in Our mode1 ïa not only to allow for 

imprecise descriptions but also to support indeterminate retrievals. In the latter case, an 

indeterminate query, underconstrained in the AI terminology, is initidy directed to the 

coarser theory and its answer is refined a3 the logical theory is refined. 

3.9 Conclusion 

In this chapter we presented a concise and formal treatment of imprecision in onedimensional 

and tw~d imens iod  space which appears usefui as an underlying fkamework for addressing 

the spatial reasoning and management questions of the subsequent çhap ters. Our discussion 

extends to k dimensional spaces provided tbat the conditions of independent composition 

are preserved when addùig dimensions. The chapter also developeà a mathematical bais 

for the definition of spatial relations and the formal handlixtg of concepts such as scale and 

granularity in apace. 

The technical results presented in this chapter are surnmarized as follows: Initially we 
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developed a bt-order theory of ondimensional space, HL, with haze and precedence rda- 

tions, and we showed that its models are partial orders on a discrete domain. We proposed 

a conservative two-dimensional extension of Hl, called independent combination, in which 

the evaluation of two-diniensional operators is reduced to the evaluation of pro ject ed one- 

dimensional operaton over two coordinate copies of Hl- From the two-dimensional point 

theory, H2, and by independent combination, we derived the theory of haze rectangles, 

HR. FinaUy, we outhed the effects of haze in reasoning with v i n g  grandarity. 



Chapter 4 

Reasoning wit h Qualitative 

Constraints 

4.1 Introduction 

This chapter presents scient algorithms for qualitative spatial reasoning based on the 

haze-point ontology int roduced in the previoua chapter. 

As established in Chapter 3, space in haze-point ontology is viewed as a totaiity of 

spatial objects connected in terms of spatial relations. A k e  point is the rnost primitive 

object type which h.as non-zero size. A haze point can be thought in terms of an area of 

haze such that the point in question may be located anywhere inside it. Haze points are 

related in terms of haze or precedence relations. The former means that two objects are 

"closen to each other and therefore indistinguishabIe. The latter meam that one object 

(one-dimensionally) precedes the other. Rmoning with spatial objects and t heir relation- 

ships in hazespace essentially amounts to reasoning with one-dimensional haze points and 

the haze and precedence relations (or the mode1 of haze-orden, for short). Answers to 

the reasoning problem drawn in this context are then combined to create answers to the 

reasoning q u a  tions using higher-or der constructa 

Reasoning about haze-orders involves, f h t ,  determining the consistency (satidiability) 

of a set of haze-order assertions, and, second, deducing new relations from thme that are 

dready known (i.e., computing the closure of the input hazeorder assertions). In this 

chapter we etudy both reasoning questions in the context of one-dimensional hazeorder 



space. 

The rest of this chapter is organized as follows. Section 4.2 introduces the structure 

of the qualitative graphs which underlie the reasoning algorithms developed in Section 

4.3. Section 4.4 presents an alternative formulation of the haze-order reasoning prob1em 

thtough constraint relational algebras. Section 4.5 presents an experirnental evahation of 

the proposed algorithms. Finally, Section 4.6 siimmarizes the contributions and concludes 

the chapter. ' 

4.2 Ham-Order Graphs 

In this section we surnmarize the definitions and the theorems on which reasoning about 

haze-orders is based. We also introduce a graph-based data structure, called haze-order 

gmph, that is based on the haze space ontology presented in the previous chapter and used 

for the representation of a set of haze-order constraints. 

Definition 4.2.1 A hue-order wnstraint i s  a wnjunction O/ haze-order tenns. A haze- 

order t e m  is an atornic t e m  of one of the following types: h(x, y )  and x 4 y, where h and 

4 are the haze and pmedence ~ l a t i o n s  defined in  Section 3.4. 

Haze-order constraints are a special case of the language of haze point space introduced in 

Section 3.4. The selected special case of the initial t heory is motivated, k t :  by the starting 

requirement of this research wtuch is to study efficient reasoning dgorithms, and second, 

by the practical considerations that are discussed in Sections 5.4.2 and 5.4.3. 

Haze-order constaints are represented in terms of haze-order graphs. 

Definition 4.2.2 A haze-order gmph i s  a labeled gmph whose vertices represent one-dirne- 

nsional haze points and its edges represent binary haze-order relations that hold between 

points. Edges are denoted by triples (x, 1, g)  and are either directed (Z is <) standing for i 

relations or undirected (1 is g) standing for h relations. 

Figure 4.1 illustrates several hazeorder graphs. For instance, graph (e) represents the set of 

hazeorder coruitraints {x 4 z, h(x, y), h(y, z) ). Every vertex of a haze-order graph is named 

' ~ h e  contents of Sections 4.2 and 4.3 have been published in vop96al. An preliminary version of the 
contents of Chapter 4 have also appeared in ['Ibp94b]. 



by a distinct variable name. It m u t  be noted that in the language of haze-order constraints 

we do not include constants to name specific haze pointa; instead, we use unbound variables 

to name points with the understanding that any particuiar model provides an interpretation 

for free variables. 

Definition 4.2.3 In a hue-order gmph hG, a sequence of n successive edges (xi, li, X ~ + L )  

de f i e s  a puth of length n. If all the Iubels dong a path are <, then the path is a <-path. A 

p t h  ( x ~ ,  Il, x2) . - . (xi- 1, li-L, xi), (xi, li, x ~ )  zs a cyclic path. A cyclic path with 60th < and 

g edges is d l e d  < g-cycle. An <', gJ -cycle is a <, g-cycle with i occurrences of < edges und 

j occumnces of g edges. 

The vertices of a haze-order graph are interpreted with respect to a totaily ordered 

set, i.e., the integers with the "less than" order relation. According to Proposition 3.4.1 

of Section 3.4.1, there is a duality in the way that the models of Hl are represented, Le., 

either as same length intervais or points over the integers line which have to be in certain 

distance to each other. In this section we follow the second approach. Hence, a model of 

a haze-order comtra.int set is a mapping £rom vertices to the integers, such th& the values 

assigned to ;rnv two vertices satisfy the relation represented by the edge connecting them. 

A model also assigns a value g to the parameter that stands for the size of the haze. All 

these are siimmarized formdy in the following definition: 

Definition 4.2.4 Giuen a haze-order gmph, hG = (V, E), a rnoàei is a quintuple (u, P, R<, 

Rp,g) where P is a totdly ordered set, v is a mupping fmm its vertices V to P,  g is a 

constant denoting the hate size, R< is a binary relation whose elements U R  pairs of P 

elements such that for every (2, <,y) E E, (v (x ) ,  v(y)) E R< and Rg is a binary relation 

whose elements are the pairs of P such thut for e u e y  (x,g, y) E E, (u(x),v(y)} E Rg . 

The set of integers, Z, along with the relations Z< and Zg establish the interpretation 

structure for haze-order grapha in this chapter. For some g, relations L x  and Lg are d e h e d  

as follows: 

Z < = { ( a , b ) l a , b ~ Z a n d b - a > g }  

Zg = { (a,  b)lo, b E Z and la - b( 5 g} 

Note that there is more than one ordering that can satisfy a set of haze-order comtraints. 

For example, the constraints in C = {x 4 y, h(y, 2)) are satisfied by the orderings u(x) < 



Figure 4.1: lnconsistent (bd)  and consistent (e-f) <', #-cycles. 

u(y)  < v ( z )  and v ( x )  < v ( z )  < v(y), where v ( x )  denotes the integer value assignecl to x. 

Both orderings are models of C. A haze-order graph is consistent if it h a  at least one model. 

Theorem 4-1 establishes a graph-theoretic condition which parantees the consistency of a 

haze-order graph. This condition is enforced by the consistency checking algorithm of 

Section 4.3.1. 

Theorem 4.1 A hue-order gmph i s  consistent if and only if it does not wntain any <', #- 
cydes with i 2 j .  

Pmof. (Only if) If j = O we end up with an <-cycle which is inconsistent due to the 

irreflexivity of 4. If j # O and i > j ,  then we can cancel any g-edge on the path and 

its preceding <-edge and still obtain a <-cycle which induces inconsistency- If i = j an 

extreme case is encountered in which all the g-edges, (x, g, y), need to be interpreted by 

an ordering where y precedes x (Le., the g-edges materialize to the counter direction of 

the <-edges), and ail the <-edges, (2, <, x), are tight (i.e., the distance between z and x 

is just above the g threshold). As a resdt, for any pair of successive < and g-edges, e.g., 

(2, <, x) h (x, g, y), z will precede y. Applying this inductive argument f c ~  the <', gi-cycle 

starting fkom a vertex v, we will e v e n t d y  find that v precedes itseIf, since the cycle closes 

at v ,  leading to a contradiction and therefore to inconsistency. The i > j condition is 

illustrateci in Figure 4.1, Graphs (a)-(d) satise the condition and therefore are inconsistent 

whereaa graphs (e)-(g) are consistent. In particda, graph (f) is a c2, g3-cycle with the 

ordering { v ( x ) ,  v(y), v(v), v(z ) ,  u (w)  ) being a consistent model for it. 

(If) We need to show that any consistent graph does not contain a <',d-cycle with i 2 j .  



TO show this, we use inductive on the number of edgea. For the cases of 1 (trivial graph), 

2 and 3 vertices, the base cases, this is veri6ied by inspection of graphs (a), (b) and (e) in 

Figure 4.1. In the induction step, we assume a consistent graph without an <', #-cycle, 

i 3 j, and insert an edge. Adding an <-edge will leave the graph consistent as Iong as it 

doesn't close a <-cyde or become the ith <-edge in a <',#-cycle and i = j. In any other 

case a consistent mode1 exist. The constraint imposed by the new edge refines the allowable 

existing orderings of the graph vertices by eliminAting those that violate it. Addhg a g- 

edge, as long as it is not the j th  g-edge that closes a ci, $-cycle and i = j ,  leaves the 

consis tency of the graph unchanged. O 

Rom the remarka made in the proof of theorem 4.1 we conjecture additional con- 

ditions that a consistent haze-order graph with <', $-cycles m u t  satisfy. Observe the 

graph in Figure 4.2(a). It contains a <2, 93-cycle, and thus it is consistent. The orderhg 

{v(x)? v(w) ,  v(y), v(v), v(u) ,  v (s ) ,  v(z), v ( t ) )  i~ a potentid model for it. The condition that 

m u t  be satisfied in order for the above ordering to become a model is that al1 the order and 

the haze relations are satisfied. This requires that there exists an assignment £rom vertices 

to integer values and an integer value g that satisfies aIl the constraints. The selection of 

dowable g values involves resolving some additional metric constraints. The expression 

i t (g + 1) - j * g = O determines the lower bound for the g value. The meaning of the 

expression is that in the boundary case, that is, i = j - 1, al1 the g-edges are ordered 

in the counter direction of the <-&es, and <-edges are ail tight (i-e., just above the g 

threshold). In this case a g exists such that it guarantees that the length cycle remains 

zero and therefore is consistent. If i < j - 1 (non-boundary case), this condition changes 

to c,,~(~ + a,) - ( j  - k) * g + bk = O where ai is an integer increment (2 1) by which 

each <-constraint exceeds the g theshold, C > j - i is the nwnber of g-edges, (x, g, y),  

that are interpreted by a (v(z),v(y)) ordering, and bk = ~ f [ v ( ~ ) ~  - c ( x ) ~ ] .  The cycle in 

Figure 4.2(a) requires that g is at least 2 due to the above condition. Hence, a model can 

be (g = 2, v ( x )  = O, v(w) = 2, v(y) = 3, v(v) = 4, v(u) = 5, v (s )  = 5 ,  v ( z )  = 6 ,  v ( t )  = 8). 

Figure 4.2 (b) shows the sorted cycle. 

The minimum g value for each ci, &cycle, determineci by the above expression, defines 

the maximum degree of detail for which a consistent assignment for an <',y-cycle exists. 

Therefore, a maximum g value that makes ali <', @-cycles of a haze-order graph consistent 

will characterize the minimal mode1 among the potentially many possible models of the 



Figure 4.2: Ordering c', $-cycles. 

Definition 4.2.5 Two hue-order graphs are logically equiualent if they have the same set 

of models. 

Definition 4.2.6 Gàven a haze-onler gmph, an edge (x ,g ,  y) is disambiguated to the left 

(resp. right) if the ordering (v(y) ,u(z) )  (riesp. ( v ( x ) , v ( y ) ) )  cannot occur in any of its 

gmp h 's mod eh. 

Notation: Label a denotes a "clme-order" relationship; (x, a, y) says that although x, y 

are close to each other, x ia slightly preceding y. Disambiguation of g-edges introduces 

a new edge label and therefore a new type of edges. Q-paths andis <, a, 9-paths are &O 

defined in a similar fashion as the <, g-paths. 

Proposition 4.2.1 In a haze-order graph, a g-edge between vertices x, y is disambiguated, 

if 

1. (g-edges ouer triangles) vertices z,x and y are mnnected by a g2-prth and z ,  y by an 

<-edge, then the g-edges disambiguate to (2, U,X) and (x, a, y) (Figure 4.3); 

2. (g3, <-cycles) the huo out of three uertices in a g3, <-cycle o r d e d  as the last g-edges 

are disambiguated in the wun te r  direction of the <-edge; 

3. (g', <'-'-cycles) al1 the i in the number g-edges of a gi ,  <i-L-cycle are disarnbiguated 

in the wunter direction of the <-edges (Figure 4.2). 

Pmof The proof is based on the same argument as the proof of Theorem 4.1 since al l  the 

above are speeial cases of <',+cycles. 1 and 2 are trivial cases as illustrated in Figure 4.3. 

An informal proof justification for 3 is given in the post-Theorem 4.1 discussion. O 



Figure 4.3: Disambiguating g-edges 

Long g-paths represent many possible orderings. The consequence of this proposition is 

that in certain cases we can prune some impossible orderings by just using the structure of 

the haze-order graph. This is beneficial in the design of an order inferencing algorithm. 

Proposition 4.2.2 The vertices of any g-cycle with 2n + 1 edges can be interpreted inside 

an interual with maximum length ng. 

Pmof In the extreme case that half of the g-edges are disambiguated as Q-edges and the 

other half as D-edges (opposite a-edges) and the maximum haze size is considered, their 

2n + 1 vertices span over an intervai with length ng. The same also holds for 272 edges. 

Definition 4.2.7 A disambiguated haze-orùer gmph ts a haze order gmph with al1 the g- 

edges possible to disam biguate, disam biguated. 

The corresponding disambiguated graph, dG, of some haze-order graph, hG, hm the same 

set of vertices and edges as hG and a richer set of labeis. 

In the following, we wish to entail the relations that hold between any two haze points 

x and y given a hazeorder graph representation. Most importantly, we want to encail 

the strongest relations between any two points. For ;snv two points, we want to decide 

whether the one precedes the other (i.e., z 4 y) or are in haze relation (i.e., h(x,  y)) or 

if either relation can hold (i.e., x 4 y v h(x, y ) )  or, finally, if the universal relation holds 

(i.e, x 4 y  V h(x, y )  V y 4 x). The meaning of the universal relation is that any relative 

positionhg of the two points is possible. 

Notation: If the expression ri (x, y) V ... V r,(s, y) is entaiied by a hazeorder graph, then 

we say that relation R = ( r l ,  .., r,) holds between the two points x, y. 

The two lemmata bdow present a graph-theoretic dekition for the notion of entailment. 

Lemma 4.2.1 Let hG be a consistent haze-order gmph and let x ,  y be two vertices of hG; 

hG entaih 

1. x 4 y, if fhem às an <-edge or an < -pa l  or a ci, 9-path wàth i > j between x and y; 



2. x 4 y V h(x, y), i f  there is a #-path W t h  j = i ii j = i - 1 ,  between x and y; 

3. h(x, y), if  there is a g-edge between x and y; 

4- the universal relation in al1 other cases. 

Pmof. Since the h-order graph is consistent, there are no forbidden <i ,  gJ-cycles. How- 

ever, there might be multiple paths connecting any two of its nodes. First, we consider single 

paths. The entsilinent of 4 relationshîps is justifiecl by the transitivity of 4 if the two uodes 

are connected either by a <-edge or an <-path, and by the quantitative constraint stated 

in the proot of Theorem 1. If there is a <',gJ-path between x and y, Le., if all the g-edges 

disambiguate to the opposite direction of the <-edges, then still due to the the definition 

of 23, and Z, and even if the <-edges are defined just above the g threshold, the 4 relation 

is the only possibility between x and y. The {h, 4) relation is derived if the i relation can 

not wi. over a <',gJ-path. This happens if the number of g-edges is equal to or ewceeds by 

one the number of < edges as suggested by the quantitative formula given earlier. {hl 4 } 

carmot be derived if j > i + 1 since the <', g3-path, {x 4 y, h(y, z ) ,  h(z, t), h(t, s)), can have 

a mode1 which satisfies s 4 x. Thus, <i,d-paths with j > i + 1 should entail the {+, h +} 

relation. The entailment of h is a trivial case. If two nodes are connected by multiple paths 

then the entailed relation will be the intersection of the relations entaileci for each path. O 

Lemma 4.2.2 Let dG be the diaambiguated graph of a haze-order gruph hG and let x, y be 

two vertices of dG; dG entails 

1. x 4 y, if there is an <-edge or a <-path or a <, a-path or a <', ak, gJ-path with 

i + k > j,k 2 1 ,  between x  and y; 

2. x +  y Vh(x,y),  i f t h e ~ i s a < ~ , ~ ~ , # - p u t h w i t h z + k = j V i + k - 1  = j o n d  

i # O V k # O, between z and y; 

3. h(x, y), il there i s  9-edge or a 4-edge between x and y; 

4 .  the universal relation in al1 other cases. 

Pmof. The proof of Lemma 4.2.2 is an extension of the proof of Lemma 4.2.1. In particular, 

a-edges appear as resdt of disambiguating g-edges. These edges allow us to r d n e  some 



of the x 4 y V h(2,y) inferences to x 4 y inferences since they provide evidence that 

certain haze relations are one-sided. Edges Iabeled by a entail h(x, y) relations because of 

Definit ion 4.2.6. 0 

Proposition 4.2.3 Let hG be a hue-order gmph and dG its corresponding disambiguated 

haze-order graph. If dG entails xRy and hG entails xR'y then R implies R' (but not 

necessarily the converse). 

Pmof. By applying Lemmata 4.2.1 and 4.2.2. 17 

In the rest of this section, we show that the entailment notion based on haze-order 

graphs computea stronger relations between haz~points, than the relations computed by 

the path consistency algorithm. 

Qualitative constraint networks are common tools in the study of constraint satisfaction 

problems and strongest relations entailment in the context of temporal and spatial reason- 

hg. A qualitative constraint network for haze-order constraints is a hazeorder graph with 

a complete set of edges, Le., each vertex is connected to al1 other vertices. The intersection 

and composition operations are key concepts for the consistency theory developed in the 

context of qualitative constraint networks. 

Definition 4.2.8 If R1 and R2 are two relations holding between a pair of points x, y ,  then 

the combined relation between z,y is defined by their intersection, R = R1 il R2. 

Deflnition 4.2.9 The composition of two relations R1 and R2 holding between two pairs 

of points x,y and y,z, respectiuely, is defined as R = fi1 @ R2 = U r i ~ R l , r 2 ~ ~  T(rL,r2) ,  

where T ts the composition operution between atomic relations (defined by a composition 

table). 

Figure 4.4 shows the tables that define the composition operations in the relation set 

represented in a hazeorder graph (Ti) and a disarnbiguated haze-order graph (Tz). Notice 

that table Tz is more detailed around the haxe relation (labels a, g, D). 

The followbg definitions are "classics" in cons traint networks references [Mac77], pe82], 

[vB92], [GS95a], etc. 

A constraint network ia arc-consistent if for each pair of vertices the entailed relation 

is not empty, and it is path-consistent if for any triple of vertices, x, y and z, the condition 



Figure 4.4: Composition tables 

R3 Ç R I @  R2 holds, where RI, R2, R3 are the relationships between (x, y), (y, 2) and 

( x , z ) ,  respectively. Path consistency can be checked in 0(n3) time, where n ia the number 

of vertices in the constraint graph, using the Mackwort h's path consistency (PC) algorithm 

prac77]. 

A constraint network is minimal if the relations holding between each pairs of its vertices 

are the strongest possible. Relation R1 is stronger than 122 if R1 implies R2 but not 

the reverse. An equivalent definition for a constraint network to be minimal is if every 

subnetwork relative to the overall network is strongly consistent (the relations between 

its vertic- are minimal). The size of the subnetwork depends on the deployed comtra.int 

language. 

In the following we investigate conditions that detennine minimality in haze-order 

graphs. A haze-order graph is minimal if the relation entailed for each pair of its vertices 

is the strongest possible. Unfortunately path consistency can not guarantee minimality in 

haze-order graphs. Figure 4.5 shows counter examples. Path-consis tency using the compo- 

sition table Ti, will determine that relation {<, g} holds between vertices x, y in the first 

graph, where, by Lemma 4.2.1, the relation < is entailed. Path-consisteucy using the corn- 

position table T2, however, yields the correct result for the first graph but it fails to ensure 

minimality for a graph with a 93-patk such as the the lower graph in Figure 4.5. Path 

consistency wit h T2 guarantees 5-consistency (any sub-network wit h 5 vert ices is rninimal) 

 or instance, in the (exact) point algebra (PA) the condition of minimality is that each Cnode subgraph 
has to be consistent. In the PA without # relations the size of the consistent subgraph is 3, etc. [vB92]. 



Figure 4.5: Minimal graphs 

but not 6-consistency for this graph. An interesting observation that is reveaIed by this 

example is that the consistency condition in the presence of a haze relations, depends on the 

length of the g-paths in the constraint set. Another point is that by enriching the relation 

set with relations refining the qualitative scope of the original haze relation such as a and 

P, we can increase the degree of consistency that the PC algorithm achieves. Naturally, t h  

process has a limit which is the refinement of the approximate haze up to the exact equal 

and therefore the recovery of the (<, =, >) relation set for which PC guarantees niinimality 

(excluding the # relations). 

Proposition 4.2.4 The path consistency propertg mn not guarantee stmngest relations in 

a haze-order graph. 

Proof. By the counter example of Figure 4.5. 

Theorem 4.2 Any disambiguated haze-order graph entails minimal relations. 

Pmof. We follow the same argument line as in [GS95a]. A minimal relation is the strongest 

possible relation entailed. We need to show that any stronger relation than the entailed by 

a hazeorder graph is not feasible. We take the case of the haze-order graph with labels 

(<, g, >}, for which Lenima 4.2.1 establishes entailment. This entailrnent is strong. The 

iattice {ALL -+ {h, <}, {h, <} + h, {h, <} +<} represents aU the ''weaker to stronger" 

relation pairs. Let r be the relation on vertices x, y, as entailed by this Iemma Any solution 

for x, y that replaces r with a stronger relation, r', according to the above lattice will not be 

logically equivalent, Le., will not satisfy all the models that a solution coatahhg r satisfies. 

This is supported by a case analysis of the transitions and the checking of the quantitative 

expression that corresponds to each entxilment as described in Lemma 4.2.1. A similar 

argument applies to labels {<, a, g, D, >} and Lemma 4.2.2. O 



The implication of Theorem 4.2 is that the minimal network representation for a haze- 

order graph can be constructeci by simply computing the strongest entailed relation for each 

pair of nodes. 

4.3 Efficient Algorithms for Qualitative Reasoning about Ham- 

Orders 

4.3.1 Consistency 

Theorem 4.1 suggests that a hazeorder graph is consistent if and only if it does no t contain 

any <', gj-cycles with i 2 j. We now present an algorithm (referred to as HOC hereafter) 

which enforces this consistency detection criterion. The main idea is to reduce the haze- 

order graph to a graph that contains <-edges only and whose nodes are collections of nodes 

related by g-edges (hereafter we wilI refer to these nodes as hyper-nodes). Then, in a second 

phase, we detect cycles t hat satisfy the inconsis tency criterion. 

The algorithm operates on an adjacency list representation of the haze-order graph. Let 

Alist (v )  be the adjacency lis t that corresponds to node v. For every (v ,  g, u) edge, u appears 

in Alist(v) and v appears in Alist(u). For every (v, <, u) edge, u appears in Alist(v) but 

not the reverse. 

A hyper-node is a node created as a result of collapshg nodes connected by 9-edges. 

Each hyper nodr has a single "entry" point (node) and possibly many Uexit'' points. Each 

enclosed node, v ,  in hyper-node, hl has a value d(v)  denoting the distance of u fiom the 

entry point of h according to a breadth-first traversal. If v ia an exit point then d(u)  is 

assigned as a label to the hyper-edge emanating fiom W .  The set of nodes enclosed by a 

hyper-node h is denoted by nodes(h). 

The following notation is uaed in the eonsistency algorithm: status(v) denotes the status 

of node u during the course of the consistency algorithm. Initially al1 nodes are marked as 

closed. If a node is reached by the algorithm, it is marked open, and when its processing is 

completed it is marked done. Function inqoint(v) returns true if node v has an incoming 

<-edge, otherwise it returns false. Function outpoint(v) returns true if there exists an 

outgoing <-edge fiom node u, otherwise returm false. HyQueue ia a queue of potential 

hyper-nodes. HzdgeQueue U a queue for gathering boundary h-edges and <-edges that 

are to be be inserted in the hyper-graph. queue(h) is a queue which stores the nodes that 



potentially become part of hyper-node h. 

We can now outline the steps of the algorithm. A detailed description of the algorithm 

is given in Figure 4.6. 

Step 1 (reduction) : 

This step builds a graph. It starts fkom some initid node, uo: and creates a hyper- 

node h with queue(h) = Alist(uo). Queued nodes are inserted in h if they are not 

out-points and connected to an enclosed node with a g-edge. outquin ts  are queued 

in HyQueue since they are potential nuclei for subsequent hyper-nodes- Edges that 

lead to artpoints are &O queued for further processing. Ln particular, queued <- 

edges become edges of the hyper-graph. Queued g-edges are used to correct the d 

values. This step continues until all nodes of the he-order graph are marked done, 

i.e., placed in some hyper-node. 

Step 2 (detection) : 

Let R be the reduced hyper-graph of hG. R is a directed graph. We m n  the strongly 

connected components (SCC) algorithrn on R to detect cycles. For each cycIe found, 

we test whether #edges 2 ~ $ ~ ~ ~ w e i ~ h t ( e d ~ ~ )  ( 1 ) .  I f  ( 1 )  holds the graph hG is 

inconsistent . 

Theorem 4.3 The HOC algorithm comctly detects inccinsistency for any haze-order graph 

in O(n + e )  time, where n and e are the numbers of nodes and edges, respectively, in the 

haze-order gmph. 

Proof. The correctness criterion for algorithm HOC is established in Theorem 4.1. The 

algorithm described in Figure 4.6 enforces exactly this criterion- First, it cornputes the 

maximum length of a g-paths that occur uninterrupted and encloses them in hyper-nodes. 

Hyper-nodes are linked by directed edges, thus forming a directed graph R. The HOC 

algorithm detects <-cycles on graph R by calling a procedure which finds the strongly 

connected components of R. At this step the algorithm may exit with a recommendation 

that the hG is consistent, if no cycles are found, or it enforces the consistency condition, 

otherwise. The ninning time of the algonthm is dominated by the graph building phase 

which is O ( n  + e )  . The consistency detection phase takea O ( n l  + el) time, where n1 and et 



Algorithm: HOC 
Input: A hazeorder graph hG = (V, E) 
Output: Success, if hG is consistent, fdure otherwise. 

Let R = (V', Et)  be the reduced graph, initially empty, i.e., Y' := {); E' := {) 
for aU nodes v E V do d(v)  := O ; status(v) :=closed end for 
HyQueue := {) ; h-edgeQueue := {) 
Let v := vo be the starting node, status(v) :=open //hw to be either an in- or out- point 
HyQveue := HyQueue U { v )  
while HyQueue # 0 do 

h := pop(HyQueue) 
Create hyper-node h with d e s ( h )  := v;  queue(h) := Alist(v); 
Y' := V' U {h}; 
status(v) :=open; d(v) := 0; 
while queue@) # 0 do 

u := pqp(quare(h)) 
i f  ingoin t (u)  then 

HyQueue := XyQueue U {u) 
h-edgeQueue := h-edgeQueue U {(h,  1,  u ) )  

else if status(u) # done then 
nodes(h) := n&s(h) U {u); status(u) := done 
for each w E Alist(u) d o  

i f  status(w) = closed then 
status(w) :=open; d(w)  := d(u) + 1; end if 

queue(h) := queue(h) U { w )  
end for 

end i f  
end w hile 

end while 

while hxdgeQueue # 0 do 
(v,  2, u )  := pop(h-edgeQueue) 
h,, h, are the hyper-nodes of v and u, respectively 
case 1 is 

g: i f h ,  = n e z t ( b )  then 
*correct* label for (h ,  , h,) hyper-edge 

else if h, # next (h,) t hen 
Et = E' U { (p rev (b ) ,  -d(v) - 1, h,)} 

else if lhvl = ILI then rnerge(&, h,) end i f  
<: E' = E' U {(h,, -d(v), h,)) 

end case 
end while 
consistency := True 
C = {c(c is cycle found while running S C C ( R ) )  
while not (C = 0 and msis tency)  do 

let c = (e', v ' )  E C;  C := C - {c) 

if (leIl 2 $ ' ~ e i ~ h t ( ~ ) )  then msi s t ency  := False end i f  
end while 
ret urn consistency 

Figure 4.6: The haze-order consistency algorithm 
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are the number of nodea and edges of A. In effect, the overali t h e  complexity of HOC is 

O(n + e). O 

4.3.2 Computing the "Tight" Graph 

Having computed a consistent hazaorder graph, the next step is to compute the tight 

graph, i.e., a haze-order graph with the m a t  tight order relations 3. The tight graph, T, 

underlying a hazeorder graph, hG, has the following properties: 

al1 the disambiguations that are possible in hG, are made explicit in T; 

any order relation implied by hG, is derivable in T by a path travend. 

A key concern in the development of the algorithm for computing a tight-order graph, is 

to resolve ambiguities pertaining to ci, #-cycles. An interest h g  situation arises when the 

<', #-cycles overlap. 

The "tightening" algorithm operates on the directed graph R that is constructed during 

the reduction step of the consistency algorithm. A topological sort of R gives an initial 

ordering of the nodes which is then refined. The refinement step uses information about each 

node's connections. For each node v we maintain the following parameters: next-gtr(v), 

prevlss(v), nezLgeq(w) and prevleq(v), ali with the obvious meaning. For each hyper- 

node we classify its enclosed nodes to those that are connected only with interna1 nodes, 

calIed the inside set, and those connected with nodes outside the hyper-node, the frontier 

set. F'rom the comectivity of the frontier nodes to the outside ones we can deduce order 

information about them. For instance, if two nodes v and u of the same hyper-node hi are 

connected to the same node w of an adjacent hyper-node hz, and it is (v, <, w )  and (u, g, w )  

then v precedes u; if it happens to be ( v ,  g, u) thia haze relationship disambiguates to a 

close-precedes (a) relations hip. 

The refinement phase of the algorithm traverses the nodes of the hazeorder graph 

twice. First, it walks the nodes s w i n g  fiom the nodes of the topologically last hyper-node 

going backwards. At each node, it determines the nodes pointing to it via a next-gtr Mc. 

AU the 9-neighbours of these nodes are examined and updated. In effect, al1 the implicit 

triangles of nodes involving at least one explicit 9-edge, that is, the currently traversed, one 

- 

3 ~ o r  each vertex the irnmediate next and previous vertices are identifiecl 



of its predecessors and a g-neighbor of the later, are examined. The examination stage, 

determines whether the third node is p m d e r e d  A node is pmdered if either its next-gtr 

link points to one of its original g-neighbom (i.e., a disambiguation has happened) or its 

next-geq link points beyond its ne&-gtr link. If the third node is not p-urdered then its 

ne&-geq Link is directed to the lirst node. A s i d a  traversal is done starting from the 

nodes of the topologically fimt hyper-node and going forward. This t h e  the "previous" 

links are updated. At the end of t h i ~  process we have information about the closest next 

and closest previous node for each each node v ,  as well as information about the possible 

next and possible previous node of u. To facilitate the presentation, we have presented 

a very hi&-level description of the algorithm. A detailed description of the ''tightening" 

algorithm (THO) is presented in Appendix A. 1. The next step is to create a representation 

of the tight-order graph wbich is suitable for query processing. 

4.3.3 Computing the Query Graph 

A query graph is used for answering queries. The query graph, Q, that corresponds to a 

tight-order graph, T, is a logically equivalent representation to T that supports constant- 

time retrievals. The query graph is computed using a ranking process similar to that of 

[GA891 and [GS93] which assigns a rank to each node, thus making query processing a 

lookupand-compare operat ion. 

In a hazeorder graph the assignment of a single ranking d u e  to each node will not 

produce the desirable result. For instance, due to the haze relations, there are cases where 

two points can be either before or after each other. The assignment of a single ranking 

value will not reflect this relationship. Although the disambiguation of haze relations was 

a major concern in the design of the "tightening" algorithm, such scenarios may still arise 

since it is always possible that some haze relationships have still remained. To handle such 

cases, the ranking process is designed to assign a low and a high value to each node. 

The Haze lndez algorithm computes a query graphe The algorithm receives as input 

a tight-order graph, Le., a hazeorder graph with previous (prevleq, p r e v h )  and next 

(nezt-geq, n e z t g t r )  links computed for each node. The objective of the algorithm is to 

create a quantitative index of the tight-order graph, i.e., assign an i n t d  value to each 

node of the graph such that the order relationship between any two nodes can be retrieved by 

comparing their respective index values. The algorithm trades space for time. In particular, 



it transfomu the edges-based representation of the graph to an adjacency Iist representation, 

The n x n array option is rejected since the graph ia expected to be sparse in most of the 

cases. Note that the tight-order graph ia a multi-graph, i.e., two nodes may be cornecteci 

by more than one edge. During the course of the transformation of the multi-graph to an 

adjacency list of a directed graph, we collapse all the edges from v to u in a single edge 

whose label is the composition of all single labels. The total cost of these preprocessing 

steps is Q(n + e). 

The main step of the algorithm assigns ranking information to the nodes. This step is 

essentidy a depth fint traversd algorithm starting from a special node called start. During 

the traversal each node is assigneci a rank (the d u e  of an incrementing counter) any tirne it 

is travened. In effect, a node may have more than one rank. The minimum and maximum 

rank of the node d e h e  its index range. The value(s) assigned as rank of a uode, depend@) 

on the predecessor node rank and the type of the traversed edge. This step is also realized 

in O(n + e) time. A detailed description of the HI algorithm is presented in appendix A.2. 

4.4 Constraint Relation Algebras 

In this section we introduce constraint relational algebras as an alternative formulation of 

the haze-order reasoning problem. The purpose of this formulation is twofold. Fint, it 

sets a fiamework that can accommodate and help in ciassifying various qualitative con- 

straint languages based on haze relations. Second, it provides the background material for 

incorporating into our discussion a class of matrix-based sequential and parallel algorithms 

developed in the context of qualitative binary temporal constraint reasoning [LM94]. 

The f operator is used in the defhition of the hue-order algebnr. Let B be a set of 

basic binary haze-order relations and D = 2B be the set of all their disjunctions. Members 

of D reiated by the subsumes, 3, relation form a lattice with the universal relation as the 

top node. Given a member, a, of this lattice, the t operator returns the relatiou of the next 

higher lattice level that subsumes a, i.e., a ?= b su& that b 3 a. 

Example. Let B = {<,g,>) ,  then D = {<, < g, g, g >, >, <>, < g >, 0). For 

notational convenience, we mite < g to denote the relation {<,g) which corresponds to 

the disjunction of < and g basic relations. The subsumes lattice is 



Definition 4.4.1 A haze-onier algebm, HOs, over a set of basic haze-order relations, B, 

wnsists of an underlying set of al2 possible relations, D B ,  that uan hold between two haze 

points (usually De = 2*), a unary inverse operator, -, and two binary operators for 

intersection, $, and wrnposition, @, satisfying the following properties: 

1. D is closed under the openations inverse, intersection and composition, i.e., a' E D, 

a $ b € D ,  a n d a @ b ~ D , f o r a l l a , b ~ D ;  

2. intersection is associative, commutatiue, idempotent and has an identity element 1, 

i.e., a @ ( b @ c )  = ( a @ b ) @ c ,  a@b= b@a, a @ a  = a ,  a n d a @ I  = a, for alla,b,c E D; 

3. composition i s  associative, commutative and has a quasi identity, Q, and an annihi- 

lator J, ie.,  a @ ( b @ c )  = ( a @ b ) @ c ) ,  a @ b =  b@a,  a @ Q  = a ? ,  a n d a @  J =  J ,  for 

al1 a,  6, c E D; 

4. composition distributes ouer intersection prouided that the intersection does not eual- 

uate to the empty set, ie . ,  a @ ( b $ c )  = a @ b @ a @ c ,  and ( a @ b ) @ c = a @ c @ b @ c ,  

for al1 u,b, c E D. 

The elernents of HOB are constraints that hold between two haze points. Note that in a 

hazeorder algebra, the composition operator has a quasi-identity, cont rary to the compo- 

sition identity of a regular relational algebra [vB90]. 

In the following we present specific haze-order algebras defined in the context of quali- 

tative haze-order reasonïng. 
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Note that Db is the set of all subsets of B (D = 2*). The intersection and composition are 

defined as: 

a @ b = a n b  

a 8 6 = u C.~G Z ( i , j )  

where a, b E Db and TL is the topmost composition table in Figure 4.4. The inverse operation 

3atisfies al1 the conditions of Definition 4.4.1. 

op 

op- 

Algebra with disambiguation , HOd: 

Dd c o n t h  all the subsets of B. However, many of the relations in Dd are synonyms of 

the same relation (e.g., ab and Q ~ P  are the same as g; < g >, < dg >, < g ~  >, < a[> > 
are the same as < Q ~ D  > that we simply cal1 ALL, etc.) By removing the symonyms in 

LId1 we obtain a subset DL which contains all the usefd and qualitative distinct relations, 

The intersection and composition operations for HQd are dehed  d o g o u s l y  to those of 

HOb. Composition for HOd uses the composition table T2 (see Figure 4.4). 

< 

g >  

Haze-Order Algebra with multiple haze sizes , HON: 

BN = (<, 9, >, IV), where N is a natural number, 

c g  

> 

g 

<> 

g >  

< 

> 

< g  

0 

< g >  

<> 

g 

r 
< g >  

0 



The meaning of N is that it allows the representation of many haze relations whose size 

is a multiple of the size of g, e.g., 2g, 39,. . .. Accordingly, < N is the order relation 

corresponding to Ng, Le., for some N the triple {< N ,  Ng, N >) completely covera the one 

dimensional space. Some relations in DN do not make seme in the physical space, e.g., N 

and < N >. By deleting these relations, we obtain 

Haze-Order Algebra with divisible haze , HON- t : 

BN-i = {<,g, >, N - l } ,  where N is a natural number 

D N - ~  = { < r  93 >, < 91 3,  <>, 19, g >, 51 9 9  < g >i a} 
I = < g >  

Q = 9  

J = @  

H O N - ,  allows the representation of haze relations with size smaller than g. In this case, 

N- ' actudy causes rehement of granularity g, where in HON,  N causes coarsening of the 

granularity. In addition, f is taken to be same as ci, 3 a haze relation with hall the size of 

g, and 9 i, taken as the disjuoction of the < and the $ relations. 

4.4.1 HazeOrder Reasoning and Relation Algebras 

In the context of relation algebras, haze-order reasoning is expressed as a qualitative binary 

constraint reasoning problem represented by a binary constraint network. 

A haze-order constraint network of size n (number of vertices) can be represented by an 

n x n matrix M over elements of a haze-order algebra HOB.  An n x n matrix M is path 

consistent if Mi ,j C MiL @ Mk ,j for al1 i ,  k, j. Path consistency is a necessary condition for 

consistency in a constraint problem, but, in general, it does not imply consistency [LM94]. 

Instead, path consistency can be used as a pruning technique to narrow down the search 

for a solution to the constraint problem represented by M. 

40nly the realizable relations are considered. 



In the following we present a moddied path consistency algorithm for haze-order con- 

strahts. As shown in Section 4.2, path consistency cannot compute a rninimd haze-order 

graph (proposition 4.2.4). 

The practical importance of this algorithm is that it can detect inconsistency of random 

hsaeorder networks. Ladkin and Reinefeld [LR92] use a path consistency algorithm as a 

pnining technique while searching for consistency of i n t e d  problems. Two remarkable 

results of their work are first that every random interval problem can be solved in reaaon- 

able time, given that the general problem is NP-complete, and second, path-consistency 

computation time dominates the overd  computation t h e  since inconsistency is almost 

guaranteed for large random networks. hi our work, we are interested in studying the av- 

erage t h e  performance of inconsistency detection of the pat h consistency based algorithm, 

as well as studying the relative quality of the dgorithm's output as we move dong the 

hierarchy of the haze-order reIation algebras defined in Section 4.4. The final objective is 

to establish an experimental test-bed (Le., experiment parameten and criteria) that we can 

use for the experimental eduat ion of the haze-order graph techniques described in Section 

4.3. 

Figure 4.7 presents the algorithmic scheme for path consjstency of haze orders. Various 

versions of the same algorithmic scheme also appear in Pac771, [MeiSl], [vBgO], etc. PC2 - 

HOb and PC2 - HON are two derivatives of this scheme after substituting the @ and 

8 operations with the addition and the multiplication operation defineci by the tables 

presented in Figures 4.8 and 4.9, respectimly. 

4.5 Experimentd Evaluation 

The algorithms presented in Sections 4.3 and 4.4 have been implemented and their perfor- 

mance has been experimentally evaluated. In t h  section we present an overview of their 

implementation and our expecimental results. 

4.5.1 Implementation of the Algorithrns 

The implementation of PCZHO ia based on a typical binary constraint networks irnple- 

mentation [All83], [VKvB89], PCC92bl. The constraint network of size n is represented by 

an n x n array, each entry (i, j) of which represents a constraint relation between entities 



Algorit hm: P CZHaze-Orders 
Input: A matrix representation of a hazeorder network, M 
Output: "inconsistency" if M is inconsistent, or Mt C M. 

1. Q := {(z,k, j)li < j , k  # zy j )  
2. wMeQ#@do 
3. select and delete any triplet (2, k, j) from Q 
4. if REVISE(i, k, j) t  hen 
5. Q := Q u RELATED_PATHS(i, k, j) 
6 .  end while 

REVISE(2, k, j )  

1- Z : = M i j @ M i , k @ M k , k @ C k , j  
2. if Z =  Mi$ thenreturn true 
3. else return f a ise  
4. end 

Figure 4-7: The pat h-consist ency algorithm 

i, j. The implemented algorithm foliows the algorithmic scheme of Figure 4.7. The dg* 

rithm comults an addition and a multiplication table such as those presented in Figures 

4.8 and 4.9. In fact, we have implemented two instances of this algorithm correspondhg to 

hazeorder algebras HOb and H ON, respectively. 

The implementation of HOC algorithm is based on the algorithmic description of Figure 

4.6. This part of our implementation uses heavily algorithmic techniques of graph theory 

[CLRSl]. The implementation language for both algorithm is C. 

4.5.2 Experimental Data 

We ran the implemented algorithrns using three classes of experimental data: randomly 

generat ed "consistent" haze-order graphs, randomly generated graphs, and, kally, test 

data fkom a real appIication. 

The first category of test data refers to data t hat were created randomly and then filterd 

by the consistency algorithm so that only consistent sets were finally selected. According 

to the result of Ladkin and Reinefeld FR%!], randomly generated cons traint satisfaction 
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Figure 4.8: The addition and multiplication tables for HOb 
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Figure 4.9: The addition and multiplication tables for HON 
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Figure 4.10: h g m e n t  of a genetic sequence (contig-369) 

problenis beyond a certain size are almost guaranteed to be inconsistent. This data set has 

been preprocessed in order to eIimin;ite inconsistencies, since our purpose is to use the data 

for measuring the relative performance of the two different algorithm. 

The second category of data is used for comparing the two aigorithms with respect to 

their ninning time until they detect inconsistency. This dataset is program generated and 

consists of hamorder graph with randomly generated connectivity. Each graph node has 

a fanuut degree k in the range of 3 to 6 and each edge is labeled by either a haze or order 

relation with probabilities q and 1 - q, respectively. 

The third set of data is taken from the human genome project Fe911 and in particular 

they have been retrieved using the AceDB system [TMD92]. This dataset originally con- 

tained ordering information which we have fuzzed thus creating haze-order relations. Figure 

4.10 iliustrates a fragment of the sequence of genetic intervals that has been used to create 

this dataset The genetic intervals shown in Figure 4.10 have been identined by biological 

experiments of limited precision. Particular problem of ixnprecision in genome data and 

pmsible solutions using our formahm are discwsed in Chapter 6. Here, we only use genome 

data as suitable one-dimensional haze-order data for test@ the variants of PC2-HO al- 

gorithms. A preproceasing transformation has been applied to these data which turned 

genetic i n t e h  to haze points related by h a z ~  (overlapping intervals) and order relations. 

4.5.3 Results 

The graphs of Figure 4.11 illustrate the nuining t h e  of the HOC algorithm as a h c t i o n  

of the input size for program generated haze-order graphs. The graph on the left in Figure 

4.11 displays HOC'S running tirne in contrast to the nlogn line while the graph on the 

' ~ h e  genetic intervais (caiied YACs) depicted in Figure 4.10 bdong to the contig-369 [DOE92]. 
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HOC pcrformion 

ninniag cime tinsecs) x id 

Figure 4.11: Performance of the Haze-Order Consistency algorit hm 

right in ligure 4.11 djsplays HOCys cost contrasted with the n2 line. n2 is the worst case 

complexity bound of HOC's for the case in which the input is a complete haze-order graph. 

The input haze-order graphs u s 4  in this experiment where sparse graphs. Each graph of 

Figure 4.11 sununarizes a 400 runs of the HOC algorithm. 

The graphs of Figure 4.12 show the dependence of HOC's performance on the type input 

relations, i.e., the labels of haze-graph edges. Two experiments were conducted to study 

this dependence. In the k t  experiment we varied the nwnber of order relations/labels 

from 10% to 90% of the total number of edges for 6xed size haze-order graphs. The results 

are Uustrated by the graph on the left of Figure 4.12 and show a peak in the cost of HOC 

when the number of order relations (#onfers) is equd to the number of haze relations 

(#hazes). When #order3 > #hases, the cost of HOC is a little higher. The explanation 

of this is that #orders controls the number of hyper-nodes that the algorithm creates, and 

that the detection part depends on this number. The second experiment plots the cost 

of HOC for various #urders/#hazes ratios as a function of the size of the graph. The 

hding in this experiment is t hat the cost increaae with respect to N is sharper for bigger 

#or&rs/#hazes, exactly for the same reasons as in the previous experiment. The results 

are shown on the graph on the right in Figure 4.12. 

The third series of experimenta compares the cost of HOC and PGHO-b algorithms. 

This part uses test data of the firat and the second category. The graph on the left in 
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Figure 4.12: Dependence of HOC's performance on the relations' type 

Figure 4.13 displays the relative cos t of HOC and PGHO-b for large and "consistent" data 

sets. As the data set is relatively sparse, the obtained ninning times for both algorithms 

are far from their upper complexity bound. HOC outperforms PGHbb, since it takes 

advantage of the stnicture of the input data. However, when the test data are random, 

then by a high probabïlity they contain an inconsistency. In t his case PGHO-b is expected 

to detect it earlier than HOC. This is becauge HOC undergoes a preprocessing phase before 

its consiatency detection phase. In our experiments we have modified PC-HO- b in two ways: 

(a) stop after the first inconsistency found, and (b) avoid updating the constraint network 

with relations that cause inconsistency so that it c m  finally process the entire input data 

set. These two variants are displayed on the graph on the right in 4.13 as PC-inconsistency 

and PGall. The same modifications have also been made for HOC (denoted by HOC- 

inconsis tency and HOC-all). In addition, we have rneasured the HOC's preprocessing cos t. 

The results show that the preprocessing phase dominates the cmt of HOC and also verified 

our intuition that if random input is used, then PC-inconsistency ceases very early. 

The fourth series of experiments studies the differences between the variants of PC-HO 

algorithms. These experiments use the third dataset. The input for these experiments is 

a number of order (#onfers) and haze (#hazes) relations on fixed sized haze-order graph 

(fragment of contig-369). The goal is to inspect the relations sitting on the edges of the con- 

straint network when PC-HO-* stabilize. These relations are classified in the following types: 
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Figure 4.13: Cornparison between HOC and PGHO dgorithms 

ORD={<, <N,  >, >N), HAZ={g, Ng),  HU?={< g,g >, < gN,gN >) and NOR={A.LL). 

The top two tables in Figure 4.14 show the results. Figures 4.15 and 4.15 (left) show the 

plots and a bar chart derived &om these tabIes. Finally, the table at the bottom of Figure 

4.14 presents the resulting output relations before and after the application of a preprocess- 

ing phase which enforces the rule described in Figure 4.3. This step attempts to incrme 

the order information that is used as input by the PC-HO algorithms. The success of the 

preprocessing step is shown on the Gain column of the same table. The bar chart on the 

right of Figure 4.15 dispIays the results. As the results show, PGHO-N succeeda in tram- 

forming many NOR constraints to either HAZ of HLF constraints. PC-HO-N becomes more 

successful when the number of input order relations increases. 

4.6 Conclusions 

We have studied the problem of qualitative spatial reasoning in one-dimensionai haze space. 

Haze-space is a qualitative representation of space where entities are related in terms of an 

indist inguishability and a precedence relation. 

The main contribution of this work is the definition of a computational mode1 for reason- 

ing about hazeorders. We have dehed a data structure, called a hazeorder graph, which 

is used to represent constraints on haze-space entities. We have addressed two reasoning 

questions, namely, the consistency of a set of haze-order constraints, and the strongest re- 



PGHO-b (No preprocessing) 
Input I Output 

# haze # order [ ORD HAZ HLF NOR 

PGHO-N (No me 
Input 

# haze # order 

?rocessing) 

Output 
ORD HAZ HLF NOR 

378 3041 7041 1204 
1146 4460 5916 142 
1765 2599 6590 710 
2308 1016 7049 1291 

2902 1692 6492 654 
3732 3109 4693 130 

1 Experiment 1 Output 1 
Algorithm Prepr. Gain (%) ' ORD HAZ - HLF NOR 

Figure 4.14: Experimental results fkom the PGHO-b and PGHO-N algorithms 

PC-HO-b NO 
PGHO-b Yes 8% 
PC-HO-N NO 
PC-HO-N Yes 8% 

lation computation between any two entities. We have developed polynomial algorithms 

for both problems, and in addition we have defhed a quantitative index structure that 

can support constant time retrievals. Another interesthg finding of our study is the proof 

that the classical path consistency algorithm cm not be used for computing the strongest 

relation between any two entities. 

1454 540 4432 5238 

1524 502 4154 5484 
1200 3597 6361 506 
1324 1723 7467 1150 
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Figure 4-15: Relations distribution in the PC-HO-* output 

Figure 4.16: Relations ''qualit$' in the PGHO-* algorithms output 



Chapter 5 

Modeling Spatial Imprecision in 

Databases 

5.1 Introduction 

This chapter proposes a novel spatial data model which facilitates representation and rea- 

soning with various forms of qualitativdy and quant itatively incomplete spatial information. 

1 

As mentioned in Chapters 1 and 2, existing spatial representations for databases can 

generdy be c1assified into two broad categories. The first category indudes models that 

focus on explicit representations of space usually in terms of a quantitative fomalism such 

as a map or a digitized array. We cal1 these models complete since they represent the 

entire modeling space ( s e  for example, [OM88], WS881, [GSSJb]). The second category 

includea models that focus on the representation of spatial featurea that are essential and 

are expressecl in temu of a qualitative formalism such as symbolic arrays [GP92] or spatial 

relations [Her92]. The models are capable of reasoning about partial spatial information 

but, by-and-large, ignore quantitative spatial information and performance concem. 

The proposecl spatial data model accommodates both qualitatively and quantitatively 

partial spatial information. The expressiveness of the mode1 is further enhanced by the 

provision of facilities for dealing with granrrIarity and scale within a single framework. 

The formal tools employed in the development of the data mode1 include a conceptual 

' ~ h e  contents of Chapter 3 have appeared in bTbp96bJ. 



CHAPTER 5. MODELING SPATIAL W R E C I S I O N  IN DATABASES 99 

modeling Ionguage, where the features of the proposed spatial data model are embedded, 

and a constraint- based language that is sui table for representing partially speciûed spatial 

informat ion. 

The rest of this chapter is organized as follows. Section 5.2, includes an informal pre- 

sentation of the features of the propmed spatial data model using the running example 

of Section 1.2. Section 5.3, integrata the proposed features with a conceptual modeling 

language, while Section 5.4 presents a formaibation of the data model. Finally, Section 5.5, 

presents a siunmary of the work describeci in the chapter. 

5.2 Granularity and Haze in Spatial Representations 

This section fint introduces the notions of s a l e  and grain as basic concepts emerging fiom 

the example of Section 1.2 and then presents two fundamental constnicts of the proposed 

spatial data model: the spatial envelope and the map structure. 

5.2.1 Basic Concepts 

A spatial object is a symbol structure representing a point or region of space. 

Spatial Object Qpes .  As suggested by the exampie of Sectim 1.2, spatial objects cau be 

either Zandmarks, in which case there is complete information about the point or region of 

space being represented, or i nde temina te  objects (or indeterminates, for short), for which 

there is o d y  partial information about the point or region being represented. Indeterminates 

are relat ed t O landmarks t hrough cons trainta expressed in a qualitative cons traint language. 

Sa le .  In a representation space, a s d e  is a system of ordered marks used as a reference 

standard in determining the relationships between representat ions. For metric dornains, a 

scale is defined as an ascending set of point values which mer by a fixed interval, called 

gman (or unit), denoting distance from a fked constant of the system. In qualitative domains 

a scale ia defined as a fixed order between landmarks which may cliffer by a variable size 

qualitative i n t e d .  

Scule Hiemrrhy. A scale hierarchy is an ocdered set of scales, S = {si, 92, . . . , s,)  , such t hat 

for each spatial object a at s d e  Si there exists a container object mntainer(a) a t  scale 

si-1 that contains a ,  i.e., inside(a, mtainer(a)) ,  for i = 2. .  . n. The existence of a unique 

container requires that the scales are not overlapping and that scale si, 1 is L'coarse?' than 
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(d) abject-dependent representation (e) 

Figure 5.1: Representation of landmark and indeterminate spatial ob jects 

si. The coarser relation is a total order. The ordered set (city, section, division) of the 

above example, defines such a s a l e  hierarchy. 

Haze. Haze is z region which c o n t h  an indeterminate spatial object (point or region) and 

specifies the degree of indeterminacy associated with the object. Zn the example, assume 

that the position of V2 is specified as "at University Ave. and Queen St." where VI is said 

to be "near Coilege and St. George St.". In effect, Vz's position is given more preciseIy 

than that of Vi. Consequently, the hzue size for VI is greater than the haze size for V2. 

5.2.2 Spatial Constraints 

Constraints have been shown to be very useful in representing qualitative and quantitative 

temporal information [vB90], WSl], [Kou94bJ. This section develops a particular class of 

spatial cons train ts, which provide a convenient s yntact ic f;rcility for expressing part i d  and 

relative information about spatial objects. 

Spatial constraints are conjunctions of atomic formulas express4 in a constraint lan- 

guage L. Section 5.4 presents such a language, namely, the language of qualitative and 
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quantitative const raints on indet errninates and landmarks in one or twedimensional space. 

In section 5.4, we akio define a set of higher level topological and directional spatial relations 

which can serve as basic vocabulary for the constraint language. Here are some examples: 

close(V2, "University Ave. and Queen S t.") 

The discussion in the rest of this section is restricted to constraints on a single dimension, 

that are conjunctions of the foUowing two types of atomic constraints: x R c, and x - y  R c; 

where x, y are variables representing indeterminates, c is a constant representing a Iaridmark, 

and R is one of {=, c, 5). 

5.2.3 Spatial Envelopes 

Spatial constraints can be used to define arbitrary types of spatial indeterminacy. Spatial 

envelopes provide a convenient rnechanism for defining a usefiil and often-occurring type of 

spatial indetenninacy. In particular, spatial envelopes constrain an indeterminate spatial 

object to fa11 within a region. If x is an indeterminate spatial object, its spatial envelope 

is denoted by env(x). The spatial enveIope of a two-dimensional object is a rectangle 

characterized by two one-dimensional envelopes. A one-dimensional envelope constrains 

the exact position of an indeterminate spatial interval. 

Indeterminacy in onedimension is formulated as follows. Let 1 be an indeterminate 

interval whose (partly known) start and end points are denoted respectively by Is and 

IE. The length of I is derioted by some constant c, defined with respect to the scale of 

the metric domain of I. The envelope i n t e d  of 1, env(T), is a pair of point envelopes, 

env(Is), env(IE) (see Figure 5.2 for a graphical illustration). In a discrete domain, each 

point envelope, env(P), is represented by two points, PL and PU which impose lower and 

upper bounds on the position of point P. Assiirning that the size of the haze is g, then 

points PL and Pu are related by the constraint O 5 Pu - PL 5 29, and the envelope definition 

PL 5 P 5 Po for some point P.  For i n t e d  envelopes, the length of the interval poses an 

additional metric constraint, Le., IE = IS + C. AS a result, the one-dimensional interual 

enveZope, env(I), can be characterized by four variables, I s ,  Is,,, IG, and Ib, related by 

the following constraints: 
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one-dimensional envelope two-dimensional envclope 

Figure 5.2: Spatial envelopes 

An envelope provides a convenient way b r  representing indeterminates after cornpilingin 

their indeterminacy: a spatial object whose location is partidy known is encloseci inside 

envelo pe paramet ers, 

5.2.4 The Map Structure 

The map structure is a Iogical data structure used to define a collection of spatial objects 

and their inter-relationships. Formally, a map structure m is a quintuple 

where L is a h i t e  set of Iandmarks, I is a M t e  set of indeterminate spatial objects, C is 

a set of spatial constraints and s and g are its scale and grain, respectively. As is often the 

m e ,  the same block of space may be represented by multiple maps of variable granularity. 

For example, Figure 5.1 shows several maps at various grains of scale division representing 

the same block of space. Specifically: L = {A, B, C, D, E, F), I = {VI, V2, V3, X} and m 1 = 

(L, 1, C, division, gml), ma = (L, 1, C, division, gm2), rns = (L, 1, C, divzsim, gm3) are maps 

correspondhg to Figures 5.1(b), (c) and (e), respectively. The set of coustraints, C, is 

explained below. 

Every rnap definition must be such that its grain size can accommodate the haze size 
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of its indeterminates. More f o d y ,  if haze is a function returning the haze size of an 

indetermixtate and gm is the grain size of rnap ml then this condition is written as g, 5 

min(haze(i) (i E 1). The rnap conesponding to Figure 5.l(c) satisfies this condition since 

haze(Vi) = hi, hate(V2) = haze(Vs) = hz, haze(X) = h,, g,, < hz < hl = h,. The rnap 

shown on Figure 5.l(b) is an example of a rnap which violates this condition. 

The construction of a map involves two phases: First, the set of landmarks of the rnap 

are represented, followed by a definition of the rnap indeterminates. For the first phase, we 

assume that the input is a %egmented imagen , e.g., an n x m occupancy array, containhg a 

set of Iandmarks, L. The grain, g, for the map is capturecl by the size of the array cells. A set 

of X and Y constraints can then be defined so that each one contains all the known order 

and distance relationshïps between landmarks dong the X and the Y axes, respectively. 

Inde t erminacy can now be circumscribed for map inde terminates t hrough spatial envelope 

corn traints. 

Example 5.2.2.1 This example shows a constraint representation created for the static 

part of Figure l.l(d). As indicated earlier, landmarks are apprmùmated by their mini- 

mum bounding rectangle; we therefore need four parameters for representing them, namely, 

Asx, AE,, Asy and AEy . Let gm be the grain of the map. Then, with the help of an 

appropriate "cutting" function, we construct the array representation, say this is the ar- 

ray of Figure 5.l(c). The following two sets of equality constraints define X and Y axis 

projections of this array: 

O 

Indeterminates are introduced next. Accordhg to the earlier discussion, a tw~dimens iod  

indeterminate is represented by a spatial envelope which consista of two coordinate one- 

dimensional envelopes. Each one-dimensional interval (resp. point) envelope is specified by 

four (resp. two) parameters, whkh are related by a k e d  set of constraints as presented 

in section 5.2.3. The notion of envelope parameters used here (in courier font) is similar 

to Koubarakis' e(iistential)-variables pou94a], intended to represent values which are not 
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completely known but for which a global constraint exists. The indeterminate parameters 

(in italics style) are aIso e-variables since they name a specific indeterminate and their 

pmsible values are bounded by envelope cons t raint S. 

Example 5.2.2.2 The insertion of a rectangular indeterminate into the map of Figure 5.1 (b) 

(see Figure 6.1 for a magnifieci view) is demonstrated next: Let V1 = (VIXs, VIXE, VIYs, VIYE), 

grain(V1) = gi , size(V1) = ci; cl is a constant that denotes the size of Vl's scope. As for 

the discussion of section 5.2.3, the following constraints are introduced: 

In addition, the position of V1 in the representation space is specSed by constraints 11-14 

(on the envelope parameters): 

Constraints 1, 2, 11, and 13 are integrated into the X m  constraint set of the earlier 

map and s idarly,  constraints 6, 7, 12 and 14 are integrated into its Ycon c0nstra.int set. 

Constraints 3, 4, 5 and 8, 9, 10 are local to object VI. 0 

5.3 Modeling Space in Telos 

This section describes the integration of the proposed features for representing spatial infor- 

mation with the conceptual rnodeling language Telos [ME JKSO] . This integration endows 

the resulting spatial data mode1 with abstraction mechanisms such as generalization, classifi- 

cation and attribution, inherited from Telos, as welf as facilities for expressing meta-concepts 

and for assert ing constraints and rules. 

Integration of spatial modeling facilities into Telos is accomplished through a iibrary of 

meta-classes and meta-at tribut es that cap t u e  the semantics of the fea t ues  presented in 

the previous section. The central clam of the mode1 is the Map class. Spatial information 
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is attached to physical objects through a spatial object which participates in one or more 

maps. 

It is assumed that the world being rnodeled indudes, among other things, physicai ob- 

jects, which might have a temporal and aspatial aspect [Hay85]. The class PhysicalObjectClass 

is a metaclass whose instances include physical object classes such as the class of ve- 

hicles, and the class of buildings or parka. Ail these classes are aho speciahations of 

PhysicalObject, which is &O an instance of PhysicalObjectClass. In addition, we in- 

troduce the metaclass Spat ialOb j ect Class, whose instances are spatial object classes such 

as Street, Lot, Parcel etc. These classes are also specializations of SpatialOb ject, which 

is an instance of SpatialObjectClass. Figure 5.3 illustrates this class hierarchy. Physical 

objects can have an associsted spatial object, about which information is represented in 

terma of one or more maps. 

CLASS PhysicaiObjectClass I N  Hl-CLASS 

WITH 
necessaxy , single 

when:TemporalClass 

uhere:SpatialClass 
uhat : OrdinaryClass 

a t tr ibute  
f e ature : AttributeClas s 

the-feature:TemporalAttrClass 

space-feature:SpatialAttrCléwa 

END PhysicalObjectClasa 

CLASS PhysicaîObject I N  PhysicalObjectClass 

WITH 
vhere 

place : SpatialOb j e c t  
END PhysicalObject 

CLASS SpatiaiObject I N  SpatiaiObjectClass 

WITH 
at tr ibute  

in-space : SpatiaiOb ject  
in-map : Hap 

END Spat iaïOb j e c t  

CLASS UofT-Lot IN SpatialObject 
WITtf 

in-apace 
s1:division-City-Toronto-Parcel 

in-map 

m1:mapl; 

m2 :map2 ; 
m3 : map3 
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According to these definitions, the place attribute of PhysîcalObject is declared to 

be an instance of the where mebattribute of PhysîcalObjectClass. A spatial object has 

an in-space attribute, which provides a spatial context, and zero or more associated maps 

that give information about the object. The next two definitions introducë different classes 

of spatial relationships. 

CLASS In-Map IN SpatialAttributeClass 

UITH 
component s 

from: SpatialObj ect 
1abel:in-map 

t o  : Map 
attr ibute  

rtype:RepresentationTgpe 

EM) In-Map 

CLASS In-Space I N  SpatialAttributeClasa 

WITH 
component s 

from: SpatialOb j ect 
l a b e l  : in-space 
t o  :SpatialObjecz 

a t tr ibute  

stype : SpatialType 
EPCD In-Space 

According to these definitions, in-map attributes have an associated attribute which 

specines the representation type (landmark or indeterminate) of an object in a map. 

Note that the same spatial object may have difTerent types in different maps, i-e., be a 

landmark in one map and an indeterminate in another. Likewise, in-space associates a 

spatial type (region, point, ...) to every spatial object / spatial context association. Again, 

the dehition implies that a spatial object may have Merent types in different contexts. 

A spatial object that serves as context for another object is itself described in terms of 

one or more maps. For example, the spatial token UofT-Lot is part of a division of the city 

of Toronto parcel, another spatial ubject, and participates in maps mapl , map2 and map3 

through relationships m l ,  m2 and m3. The two types of spatial object types supported in 

 elos os does not have a built-in distinction between attributes and relationships. 
in Telos, al relationships are reptesented by a threetuple, (f rom, label, to ) ,  which is calleci p ruposition 

Intuitively, a proposition can be thought of as a link. 



CHAPTER 5. MODELING SPATIAL IMPREClSION IN DATABASES 107 

our model are declared as instances of liepressnt at ionType. Analogously, the geometric 

types of objects (i-e., point vs- region) are defined as imtances of Spat ia'ïype. 

CUSS Hap IN SpatialObjectClass 
WITH 

single,necessary 

grain: Grain 
scale: Scale 

attribute 

X-constraint : ConstraintSet 
Y-constraint: ConstraintSet 

deduct iveRiiIe 

R1 : indet enninate (Thi &las shs  tance, X) : - 
instance (X, SpatialOb j ect) , instance (Y, In-map) , 
proposition(X, Y ,ThisClassInstance), rtype (Y, Indetemate) . 

R2:landmark(ThisClaasInstance,X):- 

instance (X, SpatialOb ject) , instance (Y, In-map) , 
proposition(X, Y ,ThisClassInstance) , rtype (Y, landmark) . 

integrityconstraint 

:indeteminate(TbisClassInstance,X) and X.haze > ThisClassZnst~ce.grain 
END Hap 

The Map class models the principal data structure of our spatial data model. A rnap is 

characterizeà by its grain and scale attributes and the set of objects it inter-relates. X- 

and Y-constraint attributes take as values object inter-relatiomhips, where the objects 

included in a map are retrieved by deductive d e s .  Additional integrity constrahts 

specify propert ies that any Map instance needs to satisfy. 

Granularity and scale is modeled in a similar fashion. Figure 5.4 ilIustrates graphically 

the Telos formalization. 

CLASS HetricScale I S A  Scale WITH 
attribute 

grain : Domain 

base :Domain 

unit :Domain 

integrityConstra.int 

: in(X, MetricScale)=> (X. unit=X. grain .value) 
END HetricScale 

CLASS Heasurement IN S-CLASS WITEI 
attribute, single 

value: Domain 

inscale: HetricScale 

END Measmement 

'For simplicity, deductive rules R1 and R2 are specified in Prolog notation. 
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Figure 5.3: ModeLing spatial information in TeIos 

Figure 5.4: Modeling scale in TeIos 
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5.4 Quantitative and QuaIit ative Spatial Const raints 

This section extends the qualitative constraint Ianguage presented in Chapter 3 with a 

quantitative component. The section also presents an enmeration of four spatial reasoning 

tasks encountered in query processing and a di3cussion of algorithms for solving each one 

of them. 

5.4.1 A Formal Laquage for Spatial Constraints 

Lx is intended as a language for speci&ing qualitative and quantitative constraints in one 

dimensional space. Lx ia not a new language- CR extends the language of qualitative haze- 

order constraints of Section 4.2 (Definition 4.2.1) and it is also based on the axiomatization 

of hazeorder space of Section 3.4. CR has two sorts, a sort for haze points, H, and a sort 

for exact points, E; x, y, a, .. are variables of sort H,  cl, c2, c3, .. are constants (uninterpreted 

integen) of sort E, and g is a designated constant also of sort E. The non-logical symbols 

of Lx include the predicate symbois N, 4 relating objects of sorts H x K and H x E, 

respectively, the predicate symbols =, < relating objects of sorts E x E, and the function 

symbol - of sort H x H -+ E. 
An atomic formula of Lx has one of the foilowing forms: x = y, x + y, ci = c2, 

CI < c2, x x Q, x 4 q, y - x = q, and y - x < q. The definition of terms and well-formed 

forrnulae in LN is the same as in Section 3.3. 

The terrns of .CH are interpreted over the domain of integers. g is interpreted as the 

integer constant g. Each constant of the sort E is interpreted as the integer i. Symbols < 

, = and - receive the standard interpretation of order, equality and subtraction over integers. 

Each variable x of sort H is interpreted as an integer x in the that ranges in the i n t e d  

[x* - g, x' + g], where x* is sorne integer. Predicate symbols = and 4 are interpreted by the 

relations R(x, y) = {(x, y) : lx - y1 5 2g) and S(x, y) = {(x, y) : y - x > g), respectively. 

It should be noted that Lx does not use constants to name a specSc element of sort E; 

instead, it uses unbound variables which receive as interpretation the specific element of E 

' ~ h e  historical edution of languages of haze-order spaice presented in this study, has as follows: in 
Section 3.4, we defined the firstsrder language of haze space and axiomatized the theory of one-dimensional 
qualitative haze space. In Section 4.2, we limited the language to conjunctive formulae and we calleci them 
qualitative haeorder cons'taints. In this section, we add a new sort for ewct points to the language to 
provide for quditative and quantitative haze-order constraints. 

'~he d e r  should notice that relation symbob - and 4 correspond to relation symbols h and 4 of 
Section 3.4, respectively. 
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Figure 5.5: Graphical interpretation of Lx terms 

in any particular model of its theory. 

Moreover, if g is assigned O in an interpretation, then zz and 4 have 'Lexactn meaning 

(i.e., same as = and <), and Lx becornes the language of discrete point order constraints. 

In fact, t h  is the language used for the spatial envelope constraints, since the envelopes 

have aIready "compiled awayn spatial indeterminacy. 

Example 5.4.1.1 Figure 5.5 illustrates graphically the meaning of the terms of .CH. Assume 

that g=2 throughout this example. If an interpretation v ,  assigns y to f=6, then y can 

be one of {4,5,6,7,8). If x z y, then the image of x has to be within at most 2 points from 

a y, Le., x can be one of {2,3,4,5,6) if y = 4 and so on. The x*, y* notation is used in the 

Figure 5.5 to show this relationship. 

In the same model, x 4 y means that x' < 4 if y'=6. The rneaning of the terms cl = c~ 

and cz < ci is the obvious one. The (hazy) equality betwen a haze point and an exact 

constant, x q, means that i -g 5 x 5 i+g,  i-e., if i=8 then x can be one of {6,7,8,9,10). 

Adogously, in the same model, x for x 4 cs is interpreted as an integer which is l a s  than 

6. 

The subtraction operator "-fl is useful in defining a notion of distance between haze 

points; '-" retunis an exact quantity. Let, for instance, x be interpreted in {1,2,3,4,5) 

and y in (7,8,9,10,11), the term y - x = q means that x and y are now restricted to be 

exactly 6 uuits apart, Le., the following five pairs {(1,7),(2,8),(3,9),(4,10),(5,11)) are the 

only allowable interpretations for the pair z, y. O 

The Ianguage of one-dimensional hazy-point space is extended to a Ianguage where one 

can state relationships between two-dimensional hazy points and rectangles. This is accom- 

'The language is also extendible with a subtraction operator ".Y" which returns a hazy quantity. In the 
content of this example, the Uhazy" subtraction, z - y a, asserts th& the distance between x  and y has 
to be in the range [4,8] (i.e., 6 f g) and therefore the following 25 pairs are possible modeis for the x ,  y pair: 

{(1,71Y ( l a ,  ( W h  (2971, (2,819 (2,9), (2,101, (3Y71, . . * Y  (3YWY (4,819 - * Y  ( 4 J n  (5,911 ( 5 m I  (5,1111- 
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plished by using the technique of independent combination described in Section 3.5. By 

independent combination and Lemma 3.5.1, we can generate a calculus on two-dimensional 

spatial ob jects which has the computational properties of its one-dimensional coordinat e 

calculi. Moreover, we can compose a solution for a txmdirnensional comtraint satisfaction 

problem by combhhg solutions of its coordinate problems. Of course, such a restncted 

form of combination imposes limitations to the expressiveness of the corutraint Ianguage 

for the two-dimensional space. As already rnentioned, one limitation of this method is that 

it limits two-dimensional spatial objects to either points or rectangles. In Section 6.3, we 

show how the language can be extendeci to mode1 objects of arbitrary shape. The resdting 

language is expressive enough to cover an interesting set of spatial relationships encountered 

in geographic information systems Pap94al and picture retrieval systems [SYHSI]. In the 

next section, we explore sets of spatial relations t h t  are expressible in our fornalism. 

5.4.2 Spatial Relations 

Egenhofer's proposa1 [EgeSl] of eight fundamental topological relations for two planar re- 

gions is the most popular set of topological spatial relations. One advantage of his proposal 

is its clean topoIogical semantica. Our work defines an alternative semantics for these rela- 

tions based on the ontology of hazy points. The novelty in our approach is that it considers 

spatial relationships between objects with vague boundaries. In addition, a masure of 

precision appean as a parameter in the relations' definition, thus making reasoning about 

imprecise spatial information possible. 

Figure 5.6 shows a graphical presentation of topological relations. Their forma1 definition 

requires the definitions of the helping relations ino, ini and dose. ' 

P, P l  and P 2  are points and RI, R2 rectangles. 

B n ~ l o ~ e s s "  in the this definition is expresseà in terms of the properties of the representation, e.g., the 
size of the haze relation. Other approaches define "closeness" in tmns of the c o n t e  of the representaticn 

[Ro'w- 
'~otation: zi si yi r zi +i yi V xi ai yi. Subscript i denotes the projection iu8s. i is either x or Y .  
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disjoint overlaps 

inside-i 

dis j oint (RI, R2) 

tangent (RI,  R2) 

overlap(R1, R2) 

insidei(R1, R2) 

inside,(Rl, R2) 

cont aint(Rl, R2) 

cont aiq(R1, R2) 

equal(R1, R2) 

Figure 5.6: Hazy topologicd relations 

The notion of tangency as defineci here is "1oosen tangency in the sense that two rectangles 

share a point of their haze. If the size of the haze decreases, a tangent relationship will 

change to disjointness. The above set of relations characterize al1 the qualitative distinct 

relative positionings of two object using the proposed ontology of space [Top94a]. 

Many mearchers developed sets of directional relations exploring either characteristic 

points of the participant objects [PS94, Her921 or the order relation of the underlying domah 

[SYH94]. Our directional relations definition is closely related to the approach of [SYHSI]; 

this model cornes with a deductive reasoner that ia shown to be sound and complete for the 

three-dimensions and sound only for the two dimensions. We show t hat the axioms of t his 

deductive reasoner (except one) are thwrems of PR2. Its incompleteness result does not 

affect our case since we do not use this d e  system for inferencing. 

The following non directional spatial relations complete Sistla's model: inside (same 

as the =lier insidei), outside (same as d i s  joint) and overlaps (with the obvious 
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1 le f taf (A, B) le f t a  f (B, C) 
II l e f t _ o f ( A , B ) ~ o v e r l a p s ( B , C ) h l e f t - o f ( C , D )  
IIIa inside(A, B) A le f t_o  f (B, C )  
11b l e f ta f  (A, B)  A inside(C, B) 
IV werlaps(B, A) 
V uutside(A, B) 
VI inside(A, B) 
VI1 inside(C, A) A werlaps(C, B) 
WII inside(A, A) 
t The same d e  acheme is repeated for relationship symbois abuve, and inside 
$ sameforabove 
t same for above and outside 
** same for outsi& 
* * * not express in our formalisrri 

Table 5.1: Rules for deducing spatial relationships 

meaning). The axioms of [SYH94] deductive system are summarized in table 5.1. The d e s  

of table 5.1 (except VI) are theorem of DR2. 

Finally, and as a result of the independent combination property, our mode1 can handle 

relationships between one-dimensional and tw~dimensional point or region objects. 

Entry RB' of table 5.2 could be completed in the same way as the preceding entries i.e., 

by taking all possible conjunctions of the 4 and N over the eight parameters defined by 

two regions; that would resdt in 64 difTerent relative positions, many of them meaningless 

and therefore unsuitable to be used in a query language. Instead, we use a more succinct 

way to express the twelve aforement ioned two-dimensional relations. T heir formirla tion 

uses a language with existentidy quantified variables and therefore are suited better for 

queryiug the database using a quantifier-elimination query processiug strategy Fou94bl. 

For insertions, we favor a subset, R6, of 38 meaningfd relations out of the 64, wLch are 

shown on Table C.l of appendix B. Al1 relations in R6 are translated in a conjunctive 

expression over hazy points. 

A rnap structure is represented now in terms of t m  conatraint sets, X w n  and Ywn,  

each of which is a conjunction of x R c and x - y R d atomic comtraints, where x: y 

are variables representing the parameters of a spatial envelope, R is one of {=, <, 51, d 

is a grain parameter, and c is a constant correspondhg to a landmark parameter. Any 

map with an envelope representation for its indeterminate objects can be placed in thia 
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RI: one-dimensional, point-tepoint t 

overlaps~ Iil Ji) Isi +i Js; A Js; +i IEi A IE; +i  JE^ 
Rb: two-dimensional, point- to-point 

dose(P, Q )  = Px N X  Qx A P/ xy Qy 
m h ( P ,  Q) E QY +Y & east(P, Q)  G Px *,y Qx 
south(P, Q) = f i  +Y QY west(P, Q)  = Qx +x Px 
northzast(P,Q) = Qy +y & A Px +x Qx south-east(P,Q) = & +y Qu Px +x Qx 
northwest(P, Q )  a Qy +y A/ A Qx +,y Px southwest(P, Q )  a & Qv A Qx +x Px 
x-colinear(P, Q )  = l+ xy Qy ymlinear(P, Q )  = Px z x  Qx 

R5: two-dimensional, point-teregion 

inside(P, A) r As, +x Px A Px +x AEx h As, +y A/ h P/ +y Asy 
narth(P, A) = AG +y 

east(Pl A) = Px +x As, 
sath(P, A) f i  +y As, 
west(P, A) z AEy +x  Px 
north_east(P, A) r AEx +y Py A PX + X  ASx 
sath-east(P, A) = Py +y As, A Px +x As, 
northwest(P,A) e AE, +y P y  A AEx +X Px 
south-west(P, -4) = 4. +y As, A AEx + X  PX 
unJeftside(P, A) G Px s x  As, A As, +y P y  A ft +y AEY 
on_topside(P, A) = ft. -y A E ~  A Asx +x Px A Px +x A E ~  
on_right-szde(P, A) i Px irx AEx A AS,, +y & A f i  +y A E ~  
a_bottom_side(P, A) P/ =y Asy A Asx +x Px A Px +x A E ~  

R6' : twedimensional, region-teregion ** 
dis joint (A, B) tangenti (A, B )  
overlap(A, B) insidei (A, B) 
insidet (A, B )  containt (A, B) 
mtainJA, B)  equal (Al B) 

lef  t a f  (A, B) right-O f (A,  B) 
above(A, B)  below(A, B )  

t subscript i is either x or y 

with their inverses, except same+, they make the Allen's thirteen. 
** thesameas the topological and directional relations d h e d  eadier. 

Table 5.2: Spatial Relations 
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simple normal form. Note that the set of variables in the two sets is disjoint (except for 

6s). The reader should also recognize that the deployed language in the map constraints 

is the language of linear order mnstraints on integen as resdted fkom the compilation of 

indeterniinat es into envelope cons traints. 

The fundamental reasoning problema addressed in a constraint representation of a map 

stnicture are as follows: 

P 1. Giuen the Xcon and Ycon constnzint sets, decide if the constrcrint sets are satisfiable, 

Le., there is an assignment for variables that satisfies every atomic formula in the 

Xum and Yum set. 

P2.  Giuen the X m  and Ywn wnstmint sets, compute an assignment for all vanables 

that satisfies every atornic formula in the X w n  and Ycon set- 

The type of the d parameten plays a pivota1 role in the determination of the complexity 

of the above problems. If d's are integer constants (fixed grains) then bath problem are 

solveable in polynomial time. For instance, problem Pl could be soIved using one of several 

path mnsistency algorithms proposed in [Mac77, DMP89, KL91, Kou94bJ. The complexity 

of path consistency a l g o r i t h  for the type of constrainta considered is 0(n3)  where n is 

the number of variables in the constraint set. In the database literature, the classic results 

of w80] offer ano ther alternative with the same complexity. Our guess is that even better 

performance a n  be achieved if one explores the structure and especially the sparsity of 

constraint sets. The second reaaoning problem, ia closeIy related to the fint one. In fact, 

a solution for P2 implies a solution for Pl. A plethora of solutions is available for P2, 

including the above-mentioned path consistency algorithms as well as the dual method 

involving variable elimination algonthms (see pM88a, Kou92j). 

The two problems change complexity if the <Is are taken to be integer variables. Then, 

for a single d value, efficient algorithms are still possible since computing a solution involves 

solving a system of linear inequaIities (a known polynomial complexity problem). For more 

than one d value, on the other hand, the problem of computing a minimai solution becomea 

intractable since it is equivalent to integer prograrnming [Pap94b]. In our future work we 

plan to investigate efficient apecid cases for the last problem. 

In addition to  Pl and P2, there are two derivative spatial reasoning problems which 

require attention: 
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P3. Given a consistent and minimal constraint set, Xcon U Ywn, of a map structure nt, 

and i ,  an indetemainate ofm, find the strongest possible bounds for the parameters of 

à. 'O 

Algorithxnically, P3 involves, h t ,  projecting a solution of P2 to the variables of i's 

envelope and, second, applying a path consistency dgorithm on the selected set of con- 

straints conjoined with i 's  local constraints. Both steps are realized in polynomial time. 

Note that in order to determine the consistency of a map, m, we need to test P3 for all of 

its indeterminates. 

P4. Given a consistent and minimal canstmànt set, Xcon U Ywn, of a map structure na, 

and g', a new grain value (resolution) for rn, recompute problem P2 with grain value 

9'- 

Problem P4 involves recomputing the constants for the landmark parameters in the Xcm 

and Ycon constraint sets and then computing P2. For the first step, the foilowing linear 

time procedure applies. There are two directions to which the representation's gain can 

change 

refiement (g' < g): Let r be the rehement factor, r = 8 (assume g' divides g). 

Then each P = v conjunct in the Xcon and Ycan constraint set is replaced by the 

constraint (r * (v - 1) 5 P) A (P 5 r * v ) .  

coarsening (g' > 9): Let s be the coarseness factor, s = 5 (assume g divides g'). 

Replace each term P = v with P = :. 

There are various semantic issues th& o u  quick coverage of the transition operations has 

overlooked. Ciapessoni et al. [CCMSP93] present an eIaborate framework for scale-relat ed 

granularity which is relevant to the above problem. ClBord and Rao [CR871 have studied 

the problem of scaie transitions in discrete temporal domains. 

'O~ecall that parameters of an indeterminate are constrained by its endope and the size constraints. 
Problem PS calk for the determination of tight bûunds, Le., the smallest interval that a parameter can take 
d u e s  hm, for the parametas of a specific indeterminate. 
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5.5 Conclusions 

We have presented a spatial data model which facilitates the representation of and reason- 

ing with various forms of qualitatively and quantitatively iacomplete spatial information, 

including indet enninate ob jects, mu1 tiple scales and granularity. Representation of incom- 

plete spatial information is accomplished through a spatial constraint language with built-in 

notions for representing partial spatial information. Reasonhg with such representations 

is addresseci by identeing four classes of reasoning tasks and offering efficient procesahg 

algorithm for each chas. Our proposal accommodates object-orientation by embedding the 

proposcd mode1 within Telos and exploiting the metamodehg facilities of the latter. 

The proposed spatial data model is unique in the combination of features that it ac- 

commodates. In particular, it integrates ideas from object-oriented knowledge representa- 

tion [MSJKSO], cons traint-based data models [KKRSO], spatial knowledge representation 

[PS 941, quantitative and qualitative temporal reasoning [KLS  11, and grandarity modeling 

[CCMSP93]. 

Our spatial data model rnay be atypical of 0th- propusah, however it complies with 

general structure of spatial data models. For example, the model matches features from 

three out of four abstractions of space that need to exist in spatial data model according 

to Guting's recent dennition [Gut94]. In particular, it org&es the underlying space on a 

geometric basis (represented by constraints), offers a spatial relation-based language, and, 

integrata geometric types into the data model. Our model has limited spatial data types 

support, points and rectilinear regions, but as we show in Chapter 6, the integration of lines 

and poIygons is straight forward. 

We believe that the model could be of use in non-spatial applications as weU, part icu- 

lady ones involving dimensional data, such as temporal databases, genome databases and 

financial dat abases. 



Chapter 6 

Applications 

Ln th& chapter we present example applicatio~u of the proposed spatial data rnodel and haze- 

order reasoning techniques in the fields of Geographic Information System and Geuome 

informatics. The presentation of each example application focuses on a specific feature of 

the developed methods and in addition it points to directions in which the methods can be 

ext ended. 

The rest of this chapter is organized as follows: Section 6.1 presents a solution to 

probiem of multiple representations of space. Section 6.2 applies the machinery developed 

in Chapter 5 in order to process queries with a granuiarity argument. Section 6.3 presents 

a solution to the problem of modeling objects with indeterminate boundaries in spatial 

databases. Section 6.4 discusses applications of the haze-order space in the context of the 

Human Genome Project. Finally, section 6.5 concludes the chapter with a discussion on the 

implementation of spatial knowledge bases within a knowledge base management system. 

6.1 Multiple Representations of Space 

In cartographic representations, an object's representation changes according to the Ievel of 

abstraction at which data is represented. The process of converthg spatial data kom one 

sealedependent to another is called generalkation [SM89]. Recent geographic information 

systerns aim to support cartographic generalization by maintainhg multiple representations 

WgSl* 

The spatial data model introduced in Chapter 5 supports multiple spatial represen- 

tations. According to this model, every spatial object has an in-space attribute which 



sp&a the object's spatial context, and one or more in-map attributes which specify the 

object's spatial type and location in dif€erent maps. A map is the data structure used to 

represent a chunk of space dong with the objects that it contains. A map haa a scaie 

attribute. Hence, multiple scales repreaentation support is quivalent to creating multiple 

instances of a rnap for ciiffereut scôles. 

In Chapter 5, we have shown a constraint-based implementation of rnaps as well as 

operations for conversing scalea in a constraint-based representation. Other data types 

are also candidates for implementing maps. For instance a map can be implemented as a 

binary array (see Figure 5.L(a)). Zn this case, the embedded objects are represented by an 

enumeration of the ce& they occupy or represented by their boundary. Scale conversions 

are weU s tudied in grid-like representations [Sam89]. 

6.2 Querying Spatial Data 

Storing a granularity parameter together with the data forms an alternative solution to the 

similarity-based retrieval problem. In simiiarity- based retrieval, a query is associated wit h 

a similarity measure that specXes the degree of sirnilarity between the retrieved times and 

the matchhg criteria [Jur95]. 

Our mode1 associates a (spatial) grandarity and a (spatial) sale parameter to the data 

being stored. Hence, the data "know" about their imprecise placement in space. A query 

can either be an exact query agaiast imprecise data or it can specZy the degree of precision 

at which an answer is sought. The following examples illustrate cases of granularity-based 

retrieval based on the map mode1 developed in Chapter 5 and the example of Figure 6.1, 

A more comprehensive form of this example is presented in appendix D. 

Example 6.2.1 Querying Spatial Mations with Granularity. 

Assume the query: Find if the Computer Science Department is inside the scope of VI. 

This query may be initially evaluated with the highest possible precision (lowest grain), 

i.e., g, = O. Then the query is whether the Computer Science Department, an exact point 

with coordinates, Say, (5,161, is inside the scope of VI. ' 

QIo = {truel P = (5,16) 1\ g, = O h (inside(P, VI, gq) V mmay-side(inside(P, Vl,  gp))} 



Figure 6.1: A map example 

This query is an instance of problem P3 for VI (see Section 5.4) followed by the evaluation 

of the query predicates. As t here is more than one database mode1 describing a consistent 

set of parameters for VI, this query ig arnbiguous and can be answered with respect to 

one or all possible worlds. In constraint-based query processing there are two possible 

semantics that can be used for answering such a query: (a) tmth in a t  least one possible 

world, and (b) tmth in ail possible worlds. Koubarakis [Kou94a] cab  them the possibtlity 

and certaintg problems, respectively. The existence of a grain notion in our representation 

makes the answen to these two problems Dependent on the grain size of the query or the 

representation. Below, we ask the same query assilming indeterminate position for the 

Cornputer Science Department 

The implication of using an imprecise search point is to extend the selectivity of the query 

predicates. This a done by compiling their ewpressions for g, = 1. One can obtain another 



variant of the query by changing the precision of VI. T b  meam that its envelope con- 

straints have to be recompiled, leading to new instances of problems Pl and P2, Le., the 

consistency and minimality of the map must be verified for the new envelope constraints. 

Then the query is evaluated following the steps described above. Other spatial relation- 

based queries can be expressed, and evaluated, dong the same lines. O 

In spatial databases, operations that relate sets of spatial objects are very important, 

e.g., overlay of two rnaps, merging of adjacent areas, etc. These operations are easily handled 

by constraint-based representation if no scale parameter is involved, In the case of multiple 

scale representations, a scale adjustment operation needs to be preceded. 

Example 6.2.2 Map Overlay as Constraint Merging Operation. 

Assume that we are given a map of Toronto hospitals and wish to find which hospital is 

closer to a trouble spot. This involves adjusting the scales, recomputing the constants 

(problern P4), merging the constraint sets of the two, and proceeding with problems Pl  

and P2 (i.e., ver% the consistency of the rnerged map) and evaluating of the predicate 

close(X, a). A number of optimizations are possible in this case, especially if we exploit the 

inclusion/nes ting property of the acale hierarchy. 0 

Changing the scale of a map to a coarser one is known as the map simplification operat ion 

[PD951 in geography. The P4 reasoning operation, mentioned in Chapter 5, cornputes a 

solution of the map simplification operation in the context of minimum boundary rectangle 

representations of spatial databases such as  the one studied in [PTSE94]. 

6.3 Regions wit h Indet erminate Boundaries 

Objects with indeterminate boundaries are not handled by today's Geographic Information 

Systems. Modeling of indeterminate boundaries is desired in many applications such as 

modeling habitats (the area that wheat grows may not be crisp) , coast lines (the coast line 

changes with t h e  or seasons), etc. A dEculty with habitats, for example, is that some of 

their boundary points are not connected, hence regions are not convex and not connected. 

The boundary of a habitat is intrinsically probabilistic. This property is nicely captured by 

the ontology of haze space. 

Typical queries that can be asked a-t a habitat include topological queries such as 

"is place X part of the habitat?", and geometric queries such as "what is the area of the 



Table 6.1: Conjoining certainty values of boundary points in Figure 6.2(b) 

habitat?". The 6rst query is expected to yield a yes/no/maybe answer whiIe the second 

query is expected to retum a range value for the habitat area consisting of a niinimiim and 

maximum value. Current GISs should give a yes/no (binary) answer and a r d  number 

result for the former and latter queries, respectively. 

Hadzilacos [Had96] has suggested two alternative solutions towards the modeling of 

habitats in GISs: In the ht solution, a habitat is seen as a sequence of regions with 

crisp boundary [Coh95], FD95]. This is referred to as the matrioska (Russian doll) model. 

This solution operates under the binary query model. The second solution is based on 

the hme-order ontology of space and utilima a query proceasing strategy which is capable 

of yes/no/maybe answers. The following two examples illustrate t be application of the 

haze-order space in habitats modeling. 

Example 6.3.1 (Rect angular Itegions) 

Figure 6.2(a) and (b) illustrate rectangular regions with crisp and multiple haze boundaries 

respectively. Figure 6.2(c) shows the steps needed to transform a crisp rectangle to a 

h z e  rectangle with haze size g 1. The point-in-rectangle query at grandarity gq = O, Qlo, 

specified in Example 6.2.1 yields a yes or maybe answer if and only if its expression e d u a t e s  

to true in all possible models or in some models, respectively. In ail other cases, it returns a 

no answer. Finally, Figure 6.2(d) depicts the case of a rectangular region with a wider haze 

boundary, 92 > gl. Overlaying the two haze bouadaries, we obtain a region with multiple 

haze boundarïes that resembles the matrioskas model but with fewer represented rectangles. 

In a region with a single boundary, we have d&ed three qualitative distinct areas: the 

certain interior (1), the haze boundary (O), and the certain exterior (-1). Points of the haze 

boundary may be thought as of being part of the habitat with certainty 0.5. In a realistic 

habitat, however, the distant points of the haze boundaxy should have lower certainty of 

being part of the habitat. Overlaying two or more haze boundaries enforces this property. 

The point- terectangle query is now posed agaim t bo th granularities, and the certainty of 

the boundary points is scaled after conjoining the two answers as the table 6.1 dictates. Ci 
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(d) hareregion,g2>g1 tza 

Figure 6.2: Rectangular region with multiple haze boundaries 

An extension of our data model ia to provide for the representation of arbitrary cornplex- 

ity (shape) convex objects. How ia this done and what are the implications for the validity 

of the earlier discussion? The support of non-rectilinear spatial objects in two-dimensional 

haze space is a straightforward ta&. We firs t define a line to be a pair of two points, called 

endpoints. Then we define a clmin to be a sequence of CO~tXted lines, and a polygon to 

be a closed polygon. A polygon in a plane defines two regions: the interior and the exte- 

rior. As the points used in these definitions have a haze, the defined types are inherently 

"hhaze". The representational model is now extended with construction operators such as 

line(Pl, Pz) which constmcts a line out of two points, e t c  Each type now has a compIexity 

identifier, for instance a twmdimensional point has complexity O, a line has complexity 1, 

and a region has a complexity 2. Thus many interesthg type constraints may be associated 

with types such as the boundary of an object O has to be an object with complexity one 

l a s  than 0's complexity etc. 

Relations b e t w e ~  convex objects of arbitrary shape are d e h e d  either in terms of 

Egenhofer's %intersection model [EgeSl] or by relating characteristic points of objects 

Fap94aJ. A necessary extension to the mder1yi.g computational model is that the primitive 

point-to-polygon operation becornes a 3-valued operation. This change only affects reasoning 



Figure 6.3: Region with multiple haze boundaries 

with topological relations using the %intersection rnodel. The proposed, constraint-based 

reasoning mode1 based on two onôdimensionai projections and minimum bounding rectan- 

gle (mbr) approximations is stU valid. In addition, further non-mbr based computations 

using the one-dimensional projections are possible, provided that a new mapping between 

two-dimensional relations and their one-dimensional projections is defined. 

Example 6.3.2 (Arbitrary Shapes) 

Figure 6.3 outlines the same process for regions with arbitrary shape. A region with ar- 

bitrary shape is described by its boundary which is a cluseci sequence of connected line 

segments. The merence with previous example is the way that the point-in-polygon query 

ia computed. O 

6.4 Genome Mapping 

A major goal of the Human Genome Project is to constmct detailed physical maps of the 

human genome. A physical map ia an assignment of DNA fragments to their locations 

on the genome. Complete maps of large genomes require the integration of many kinds 

of experimental data, each with its own forma of noise and experimental error [HB94]. 

In addition, the Human Genome Project has caused an incredible data explosion in the 
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Figure 6.4: Physical mapping strategiea (based on [DOE92]) 

biological sciences. New laboratory procedures and laboratory automation systematicdy 

produce large data sets that need to be stored in databases and processed by data-analysis 

programs [GRS94]. 

Our work is related both to the physical mapping problem and to the laboratory 

database support of the Human Genome. In the rest of this section we siimmarize the 

data requirements and outline the applicabiiity of our methods for both problem. A de- 

tailed treatment of the proposed solutions constitutes future work of this dissertation. 

Genome maps are constructecl either in topdown or bottom-up fashion (see Figure 6.4, 

(DOE921). In topdown mapping, a single chromosome is cut into large pieces which are 

ordered and subdivided; the smaller pieces are then mapped further. This approach yields 

maps without gaps but with low resolution. The bottom-up approach involves cutting the 

chromosome into small pieces each of which is cloned and ordered. The ordered fragments 

form DNA blocks, called contigs. Contig maps consist of a W e d  library of small overlapping 

clones representing a chromosome segment. Although this technique is useful for creating 

good local maps, contig maps are dXEcult to extend over large stretches of the chromcisome. 

In this case, sophisticated order reasoning that utilizes biological laws and experimental 

data is sought [Cui94]. 

The problem of physical map assembly is illustrated in Figure 6.5. The same abstract 

scenario is encountered at dzerent levels of resolution. Overlapping intervals of various 

resolutiona (e.g. YACs, cosmids, plasmida) need to be ordered and put together in order 

to create longer fkagnients of sequenced genome. At the highest resolution, the bottom 

line, we see landmarks of the genetic sequence, called probes, whme position in the genetic 

sequence has b e n  identifid by experimental means. The linkage (intersection) of known 
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Figure 6.5: Types of p o m e  maps (based on [DOE92]) 

probes with the overiapping interval is the input for the physical mapping problem. 

The challenging part of the problem and its relevance to the techniques developed in 

this thesis, ia that these genetic intervals are incornplete (orientation information might 

be rnissing, metric information is not always available), irnprecise (their endpoints are not 

precise), ambiguou9 (hi& rate of fake negatives), and often contradictory (due to the 

previous reaaons). The input information for the physical mapping problem is a set of 

statements of the type: "probe p hits interval 2".  Since probes are ordered, th& information 

c m  be used to order and assemble the intervais. Unfortunately, the data rnay contain up 

to 40% false negatives and false positives. In a false negative, probe pi appears not to hit 

interval i j  although it should, and the oppasite for false positives. Earlier map assembling 

techniques [WJ86] operate under the assmption on non-ambiguous data. Rixent research 

addressed the problem by considering the ambiguity of data [GR93], [HB94], [Cui94]. This 

problems sounds as a very promising application for hazeorder constraints. 

Haze-order constraints ia logic-based constraint language with a buiit-in concept for 

imprecision merging qualitative and quantitative terms. As a first step, we can use haze- 

order constraints as a succinct mode1 to describe experimental genome map data that 

accounts for falae negatives and measurement errors. 

Genetic intervals rnay be represented as ordered pairs of haze points related to other 

points via haze and order relationships. We assume that genetic intervals are haze points. 

If any two of them are %t" by the sanie probe, we say that they are in a haze relationship, 

else they are ordered. m e  positives are represented by "illegal" haze relations where false 

negatives rnay exists in the place of "absent" haze relations. The questions are which of the 

haze relations are "illegal" and where should there be "absentn haze relations. Biological 

knowledge can give hints for answering these questions. Such knowledge can be used in 
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order to add/remove haze relations. The consistency checking algorithm will either accept 

or reject such updates. This type of analysis may &O localke inconaistencies and insist on 

further laboratory experiments for this part of the genome. 

A representation of incomplete and imprecise data h a  more than one mode1 (orderings) 

that satisfies the specification. Existing databases for laboratory support use exact nu- 

merical representations and therefore maintain a single and perhaps fauity model for each 

set of experiments. O u  proposal suggests storing uninterpreted data, such as hazeorder 

constraints. Hence the data are represented together with ail of their models. The "tight" 

graph algorithni defineci in Section 4.3, can be used to mhimize the number of possible 

models. 

6.5 Implementing Multi-resolution Space in Telos 

An implementation of the proposed data model is prototyped by k t  defining the non- 

spatial concepts using an existing data mode1 (e.g., the one presented in section 5.3 or as 

relations in an object-based or relational system) and then implementing a constraint-based 

inference engine for spatial constraints. 

To date, there is no generally accepted way for implementing large constraint databases. 

Logic programming and comtraint logic programming are two obvious alternatives with re- 

spective limitations regarding their scalability for large workloads. Constraint-based reason- 

ers are another option. We are currently exploring the last option. Our proposed solution 

to the scalability problem ia to explore the scale and grain features in order to partition 

large chunka of space into many and small maps. 

This section describes an implementation of the proposed features for representing spa- 

tial information using the conceptual modeluig language Tdos [MBJKSO]. The integration 

of the spatial representation features with Telos endows the resulting spatial data mode1 

with abstraction mechanisms such as generaiization, classification and attribution, inherited 

from Telos, as well as facilit ies for expressing me ta-concepts and for asser t ing const raints 

and rules. The integrated system ia then put together using the framework developed in 

the Telos knowledge base management project [Top93], (MCP+95], [ST95]. 

Integration of spatial modeling facilities into Telos is accomplished through a library 

of metcirclassea and met&attributes that capture the seniantics of the features presented 



CHAPTER 6. APPLICATIONS 

in- 
In - 

Figure 6.6: Representing spatial information in Telos 

in Section 5.3. The central class of the mode1 is the Hap class (introduced in Section 

5.2.4). Spatial information is attached to physical objects through a spatial object which 

participates in one or more maps. Figure 6.6 displays part of the knowledge base that 

implements the spatial data model using the the Telos Repository system [Sta95]. 

The second part of our implementation involves implementation of constraint reasoning 

in the context of haze orders and integrating it with the object model. Our achievements to 

date include the irnplementation of algorithmg presented in Section 4.3. These algorithrns 

include a qualitative cons traint consistency checking algorithm based on the da ta structure 

of haze-order graphs [Top96a], and a r8nking procedure which converts qualitative hue- 

order graphs to a quantitative form that is suitable for query processing [Top94b]. 

The implementation will be completed wit h the development of a t hird component which 

will be responsible for answering queries wit h spatial and non-spatiaI qudifications. To date, 

this component is not available. However, we envision this cornponent as being a hybrid 

query processor in the spirit of [SPT87], [TE921 which extends the Telos query processor 

[ST95] with a spatial reasoning capabilities. 
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6.6 Conclusions 

We have presented applications of the proposed spatial data model and bazeorder reaoning 

techniques in the fields of Geographic Information systems and the Human Genome Project . 
In addition, we have outlined a prototype implementation of the proposed data model based 

on the Tdos knowledge base management framework. 

Our main interest in this chapter h a  been to discuss the potentials for applications of 

the methods proposed in this dissertation rather than work out the technical details in each 

individual application. Consequently, t his chapter contribut es tu the thesis by generating a 

plet hora of open research questions relat ed ta several pract ical applications. 



Chapter 7 

Conclusions 

In this final chapter we give a summary of the dissertation, highiight its main contributions 

and identify open problems. 

Summary 

This dissertation studies the problem of representing and reasoning with imprecise spa- 

tiaI information in knowledge bases. We have given examples of spatial information for 

which existing representations are unable to provide weil-founded support. Generality and 

efficiency have b e n  the main objectives in this work- Generality in information manage- 

ment issues is achieved through an extensible data model. Efficiency, on the other hand, is 

achieved throiigh the selection of an appropriate ontology for space. This dissertation ar- 

gues that the combination of artificial intelligence methods and databases offers a powerful 

fiamework for addressing the problems in question. 

Initially, we have introduced a new ontology of imprecise space in which space is viewed 

as a totality of objects surrouadeci by a haze area and connecteci in terms of qualitative 

spatial re1ation.s. A haze point is the most dom~entary object type in this representation 

since higher order objecta are cornposed of haze points. A haze point is a non zero-sized 

object that is associated with an area of haze such that the point in question may be located 

anywhere inside it. Haze points are related in t e m  of an indistinguishability (cailed haze) 

or an order relation. 

We have developed a kt-order  theory of one-dimenaional haze-order space and we 

have studied its models from the point of view of modei theory. We have shown that its 
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rnodels are homomorphic to partial orden on a discrete domain. We have also proposed 

a consenative tw*dimensionaI extension of the theory of onedimensional space, called 

independent combination, in which the evaluation of twcdimexsional operators is reduced 

to the evaluation of pro jected one-dimensional operat ors over two coordinate copies of the 

one-dimensional theory T b  result is generalizable for k dimensional spaces provided that 

the conditions of independent composition are preserved when adding dimensions. The 

developed forxnalism is strictly qualitative with a built-in concept for imprecision. The 

account of imprecision within the representation language has allowed us to formalize the 

notion of granularity in spatial representation. 

Next, we have developed algorithma for reasoning about relations in haze-order space. 

In particdar we have developed efficient a i g o r i t h  for deterinining the consistency of a 

set of haze-order relations, and deducing new relations from those that are already known. 

IR addition we have defined a quantitative index structure that can support constant-time 

retrievals. Our algorithms make use of a data structure called hazeorder graph which 

trades space for efficiency. We have also investigated adaptations of the path consistency 

algorithm for haze-order constraint networks and we have demonstrated that path consis- 

tency cannot compute minimal relations. Although incomplete, the developrnent of path 

consistency based algorithms was motivated by pragmat ic reasons since path consistency 

is proven to be an effixtive inconsistency detection technique for certain datasets. The 

deveioped a l g o r i t h  have been implemented and their performance has been experimen- 

tally eduated. The contribution in thia part of the dissertation has been the developrnent 

of a computational model for haze-order reasoning and the development of a testbed for 

evalua ting alternat ive algori t hms . 
Another contribution is the development of a spatial data model whictt facilitates the 

representation of and reaaoning wi th various forms of qualitatively and quantitatively in- 

complete spatial information, including indeterminate objects, multiple scales and granu- 

larity. Represent ation of incomplete spatial information is accomplished t hrough a spat i d  

constraint language based on haze-order relations. For pragmat ic adequacy purposes, we 

have extended the qualitative constraint langiiage of space with a quantitative component 

which ailows us to relate indeterminate objects to landmarks. Finally, we have identifieci 

four reasoning tasks that are addressed during query processing in this representation and 

we have offered efficient processing algorithms for eôch one of them. We have integrated our 
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spatial representation rnodei with an object-oriented data model by exploithg the meta- 

modeling facilities of the latter. The resulting spatial data model has unique features t hat 

make it applicable to a wide range of applications involving imprecise dimensional data such 

as temporal databases, genome databases and financial databases. 

FinaUy, we have presented four applications of the proposed spatial data model and 

haze-order reasoning technique3 in the fields of geographic information systems and genome 

informatics. Specifically, we have outhed a solution to map generalization based on our 

rnodel's ability to support multiple scales. We have illustrated the role of granularity in 

querying imprecise data Haze-order semantics have been applied to model regions with 

indeterminate boundaries in geographic information sys terns. We have also demons trated 

the use of the haze-order language in specifying experhental data in the Human Genome 

Project in the context of order inferencing and map assembly operations. 

Future Work 

The results of this work can be extended in different directions. We have shown a general 

and extensible framework that puts into a perspective all the relevant issues, (i.e., represen- 

tation, reasoning and management) t owards spatial data support in advanceci information 

processing tasks. This work bas touched upon imprecise, propositional spatial information. 

The same fkamework can be used for addressing images and image content information, or 

other types of dimensional non-spatial data, such as temporal or scientSc data. 

A starting point in this work was the selection of an appropriate ontology of space. The 

particular choice has inûuenced the solutions in the Iater steps. Extending the basis of the 

developed kamework with more ontologies of space will have double impact. F*m t, thh will 

increase the scope of potential application of the fiamework. Second and more important, 

it will advance the knowledge level specification of the spatial domain. A new ontology 

of a subject matter, iocreases the terminology about the subject, but does not necessarily 

add any knowledge about it. The specification of an ontology needs to state axioms ùr 

order to constrain the interpretation of the defined t e m .  Gouig into the "inteliigence 

agentsn era, extended ontological bases increaae the potentials of knowledge sharing and 

knowledgebased systems interoperation. As candidate ontologies of space to be studied 

under this light, we consider the topological, metric and linguistic space. 



As far as spatial reasoning in databases ia concerned, we believe that constraint databases 

is a prominent direction to follow. Earlier work in constraint databases [KKRSO] and tem- 

poral constraint databases [Kou94bj have produced interesting query processing complexity 

results. The same stream of work may be extended for the case of spatial conatraint ob- 

ject bases, Le., spatial knowledge bases. Practical reasonùig using haze order constraints 

requires the merging of qualitative and quantitative methods (the "poverty of qualitative 

rwoning"). As we pointed out in Chapter 5, query processing under such requirenients is 

heavily based on a variable ehnination algorithm. The development of one such algorithm 

is in our m e n t  research agenda Another extension of the haze-order language that we 

are interested in exploiting is the accommodation of Datalog [BCW93] type des. 

The application of haze-orders and the integrated data model in multi-scale and gram- 

larity supporthg geographic information systems, opens a number of issues whi& need to 

be looked into further. In particdar, we intend to extend the curent results to model ob- 

jects with arbitrary shapes. Moreover, we plan to define a library of methods for geometric 

and sale-related operations. The latter is related to the irnpIernentation plans that were 

briefly discussed in Section 6.5. An alternative direction in our Mplementation plan is to 

use extended relational technology to replace Telos for production oriented applications. 

Hazeorder constraints are shown to be a representation model that can deal with im- 

preciaion and uncertainty of dimensional (geographic, temporal, genomic, financial) data. 

In its applications to a specific data domain, one early decision to be made is the selection 

of a "good" degree of precision, or in other words the scope of the haze relation. There is 

topdown and a bottom-up approach to give an answer to this question. In the topdown 

method, a continuous data domain such as the geographic space is discretized and hence 

the distinguisability of objects will be depenedent to the discritization operation. In the 

bot tom-up approach, the data coutain the irnprecision as created (e.g., a pho to-intensity 

map). The pmblem then ia to find and apply an appropriate threshold value. Finding the 

discretization method or de- a threahold d u e  for specific application domains is an 

interesting problem that is left for applied folIow-up work. 

User interface and visuaibation issues have not been considerd in this dissertation. 

Visualization of the spatial information has always been an important issue. Thriving 

multimedia technologies and world wide web applications, make these issues even more 

important. For a long while, a logic-based interaction Iangwge with a spatial knowledge 
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base was our preferred alternative. Not any longer. Its usabiiity insufüciencies and the 

visualiIation requirements suggest a graphical alternative [CM93]. 

7.3 Conclusions 

The guiding principle throughout this dissertation has been that spatial information man- 

agement depends on the assurned ontology of space rather than the application domain. 

Consequently, we have proposed a three-layered framework for addressing spatial knowl- 

edge management in which the selection of a spatid ontology constitutes the first (bottom) 

Iayer. The second layer which is tightly comected to the selected ontology, consists of effi- 

cient algorithrns that support the most cornmon operations in this context. The third layer 

provides the glue for sticking together the parts of the architecture. This is an extensible 

data mode1 which combines classic data mode1 facilities with meta modeling features so 

that the ontology's primitiva are expresseci in it. 

The approach just proposed is horiuintally extensible at  all layers. This proposal dram 

kom our work in knowledge base management systems mCP+95], [Top93], where a sirnilar 

Iayered architecture has been proposed for the implementation of "any" knowledge base. 

An interesting part of our work is the synthesis of many research areas. Most of our 

work is motivated by and focused on imprecise, propositional spatial information. Art ificial 

Intelligence and constraint reasoning t ethniques were employed in the technical chap t ers of 

the work, while advanced data modeling techniques were used to interconnect the compo- 

nents. In addition to sound theoretical resdts and the methodological contribution, this 

study haa attempted to address potential applications and implernentation issues. 

The final conclusion of this dissertation is that management issues for types of informa- 

tion found in advanced applications, imprecise spatial knowledge in this case, need to place 

emphasis on the integration of modeiing features with rich, weli-founded semantics as well 

as efficient implementations techniques with established good performance. 



Appendix A 

Algorit hms 

In th% appendut, we present the algorithmic language descriptiou of the Tight Haze-Order 

(THO) and Haze-Index (HI) algorithm introduced in Chapter 4. 



A. l  The Tight Ham-Order (THO) Algorithm 

Input: A consistent haze-order graph hG = (V, E) 
Output: A tight haze-order graph. 

Let R = (VI, El) be the graph constructed during the consistency algorithm. 
TopologicalIy sort R 
Let start and d be two peudepoints enciosing hG form both ends. 
for each u E V do 

prevJss(v) := prevJeq(v) := start 
nezt-gtr(u) := next-geq(v) := end 

end for 
for each h E V' d o  

recover order relationships ({<, Q)) by relating fiontier nodes with the adjacent 
hypernodes propagate effects inside h by ninning a local CSP problem 
for each node v E nodes(h) do 

i f  (v ,  {c, O), u) E edges(h) then 
next,gtr(u) := u 

eise if ( L  := {ul(v, <, u) E E )  and ILI 2 1)  then 
next_gdr(v) := toporloser(L) 

else if ( (v ,  g, u) E E and u E nodes(topo-next(h))) then 
next-geq(v) := s such that Vt E nodes(h)[(t, <, s) E E and s E nodes(hf) 

where h' = min{h, is topologidy after toponezt(h))] 

else 
nexiLgeq(u) := u such that u E topoxext(h) and 3s E nodes(h) [(s, <, u )  E E] 
ne&-gtr(v) := u such that Vs E nodes(h)[(s, <, u)  E E and u E nodes(hr), 

where h' = rninih, is topologically after topo-nezt(h))] 

end if 
end for 
for each node u E nodes(h) do 

i f  (u, (<, a) ,  v )  E edges(h) then 
prevlss(v) := u 

else if (L := {ul(u, <,u) E E )  and ILI 2 1) then 
prevlss(v) := topo_closer(L) 

else if ((u, g, v )  E E and u E nodes(tupopev(h))) then 
prevlss(v) := s such tbat Vt E nodes(h)[(s, <, t )  E E and s f nodes(h') 

where hl = min{h, is topologically before topo-prev(h)}] 

else 
preuleq(u) := ec su& that u E topo-prev(h) and 3s E nodes(h) [(u, <, s)  E El 
prevhs(v)  := u such that Vs 's E e s ( h ) [ ( s ,  <, u) E E and u E nodes(h'), 

where h' = rnin{h, is topologically before topoqrev(h))] 

end if 
end for 

end for 
*finement phase ( s e  procedure TRef') 



Procedure: TRef 
Input: Algonthm THO continued - the =finement phase. 
Output: A tight haze-order graph- 

% Refine the %eztn links starting from the last topologrogrcaily o r d e d  hyper-node going backwardP 

hynode := topolast (R)  
while all hyper-node are traversed do 

for each node v E h y d e  do 
W ia the set of nodes pointing to v via next-gtr links 
for each node n E W do 

if not nmdered(n) then 
for each g-neighbor of n, u do 

if not n-ordered(u) then 

u-next-geq := n-next-gtr 
end if 

end for 
end if 

end for 
end for 
hynode := topopeu(hy node) 

end while 
% Refine the apreviow" links ~tarting frpm the first topologically o r d d  hpper-node going fornard 

hgnode := topo-f irst (R)  
while all hyper-nodes are travened do 

for each node v f h y d e  do 
W is the set of nodes pointing to v via p r e v h s  links 
for each node n E W do 

if no t p-ordered(n) then 
for each g-neighbor of n, u do 

if not pmdmed(u) then 
u.prevleq := n.preulss 

end if 
end for 

end if 
end for 

end for 
hyxode := topo-next(hynode) 

end while 



A.2 The Haze-Index (HI) Algorithm 

Input: A tight haze-order graph and a remfution parameter- 
Output: A q13ctit~tive representation of a qualitative haze-order graph. 

E' := E U Next U Prev; 
for each node v f V do 

arist(v) := () 
end for 
for each edge e = (u, 2 ,  u) E E' do 

if u E adjacents(v) then 
la&el(v, u) := label(v, u) o l 

else 
add u in adjacents(v) with label(v, u) := 1 

end if 
end for 
k is the resolution parameter 
for each node u E V do 

status (v) := closed 
hi(u) = {) 

end for 
v := start ; status(v):=open 
while P # 0 do 

for each edge (v, 1, u) do 
if status(u)=closed then 

status(v):=open; 
pushin-queue( Q,u) 

end if 
hi(u) := hi(u) U {hi(v) tri weight(1)) 

end for 

v:=PoP(Q) 
status(v) := dune 

end while 



Appendix B 

Transit ivity Tables 

Figure B.l displays the derivations of part of the multiplication table for HON dehed in 

Figure 4.9. Index ( i ,  j )  r e f e ~  to row i and column j of the table at the bottom of Fig. 4.9. 

11.1) c - 4  11.2) &- 11.3  &- 

Figure B.1: Entries of the HON transitivity table 



Appendix C 

Canonical Relations 

In this appendix, we present a set of binary spatial relations defined between twedimensiond 

rectangular regions, called cunonical relations. A canonical relation can be translated into 

a conjuctive epxression involving haze and order relations on point arguments. 

Some topological relations definecl in 5.4.2, such as cont ain , inside and equal, are 

already in the canonical form. The rest of the topological relations are transformed to 

canonicd relations by conjoining them with a directional constraint, called directional in- 

clina t i o n  The following cases identify the type of directional inclination associated to eaçh 

non-canonid topological relation. Table C.1 iist the derived canonical relations. 

case 1: The two regions are far apart. Then the directional relation between them is derived 

by the directiond relation between designateci points (the closes t ) which depends on 

the relation. 

case 2: The two regions are clo~e, i.e., in a contact relation (either tangenti or overlap). 

Then the above principle is variated as follows: the directional relation between the 

regions is baaed on th& most diametrical points. 

case 3: The two regions are in a containment relation, then the one is bigger than the 

other. The characterization of the direction makes sense only if there is tangency 

form inside. The two regions agree in at least one side so their directiond inclination 

is desided by the side of disagreement. 



APPENDIX C. CANONICAL RELATIONS 

topological relation 

d i s  joint(a,b) 

overlap (a, b) 

i n s i d e ~ a n g a n t  (a, b) 

1 expression 

[ ~ S X  -  EX > 29 
bsx - GEX L 2g 
bsy - aEy 1 29 

inclination 

W-O(as,bE) 
E-O(aE, bs) 
N-O(as, bE) 

bsy > as, 
-9 <asx  -bs, < g A  

canonical relation 

d i s jo in t s e s t ( a , b )  
d i s  j o i n t ~ a s t ( a , b )  
d i s  jo in tnor th(a ,b)  

E-O a ~ ,  bE inside,-east - 
S-O(aE, bs) dia jointsouth(a,b)  
W-O(aE, bs) t agent l -uea t  (a, b) 
ELO(asl bE) tangent -cas t (a, b) 
N-O(agl bS) tangentisorth(a,b) 
S-O(as, bE) tangenttsouth(a,b) 
W-O(aE, bs) o v e r i a p s e s t  (a,b) 
E-O(as, bE) overlap_east(a,b) 
N-O(~E, bs) overlapsorth(a,b) 

N-O as, bs ins ide,north 3 
-g <asy  - b s v  
U E y  > b ~ v  

andogous to ins ide-tangent 

Table C.1: Canonical spatial relations 



Appendix D 

Map Example 

The tables below represent the map rn5 of Figure 6.1 using a cons traint database in the spitit 

of [KKRgO]. This is a more convenient form for displayhg instance data than the represen- 

tation proposeci in Section 5.3. Following the definition os Section 5.2.4, the representation 

makes use of universal and existentid variables as in [KouS3]. Universal variables appear 

only in an object's local constraint and they are enclosed in a U() function term. Existensial 

variables represent values which are not completely known but for which a global constraint 

holds- Existensial variables are shown in courier font (e-g-, VIXI, XY, . .). Subscripts L 

and u the lower and upper envelope value for indeterminates. 



IJD MAP TYPE PARAMETERS 

V1 m5 rect {VlXl.VU(2 

x 1 ms 1 pnt 1 {XXJY} 

G RAlN XCONSTR Y-CONSTR 

91 = 4  {U(vl=) - U ( V l X 1 )  = 6. { U ( V l P 2 )  - U ( V l Y 1 )  = 6. 

V U l r  5 U ( V L 1 t l )  5 V l X l u ,  V I Y I L  5 U ( V l Y 1 )  < V l Y l o .  

n n L  5 u(vm) < VI=!,) V ~ Y ~ L  5 u(vIY2) 5 V l Y a )  

92 = 1 tu(-) - U ( m 1 )  = 4. ( ~ ( Y ~ Y z )  - U ( m 1 )  = 4. 

V v t l l  5 U(vut1) 5 V2Xlu. r n l r  5 U(V2YI) VZYlu,  

v = a  5 U ( V 2 X 2 )  5 02XZlr) WY2r 5 U ( V 2 Y 2 )  5 V2Y2iJ) 

CX1 = ( al = 1,  a3 = 20, bt = 20, b3 = 26, cl = IO, c3 = 13, 
di = 26,d3 = 30,el = O,e3 = 6,  fi = 25, f3 = 30, hl = 20, 
V I X l u  - V I X i L  5 2g1, V1XSU - VIX2L < - 2g1,  

V ~ X ~ L  - ai > gi C I  - V i X I u  > gi , V I X 2 1  - ci 5 291 V ci  - v 1 X 2 ~  < 2g1,  as - > gi , 
V 2 X l u  - V 2 X i L  2g2, V Z â U  - V2XSL 5 2g2, 
V 2 X l t  - c3 > B, hi - V2Xlu > go, V2X2L - hi > go, dl  - V2X2U > gl , 
V 3 X l U  - V 3 X L  5 2g2, V3X2u - V3X2L 5 2g2, 
V ~ X I L  - es > 92, V 3 X l v  - cl 5 2g2 V cl - V 3 X l U  5 2g2, 
V ~ X ~ L  - c3 < 2g2 V ~3 - v 3 X 2 ~  5 2g2, hl - V3X2u > 92 
XXu -  AL 1 2g3, 
XXL - b i  > g3, b3 -nu 5 2g3 V XXu - 4 5 2g3 ) 

MAPS 

CYI = ( a 2  =30,aa  = 4 0 , b = 3 0 , b 4 = 3 4 , c 2  = 1 4 , ~  = 2 0 ,  
& = I O , &  = 1 4 , e 2 = 0 , e 4 = 4 , f 2 = 0 ,  f4 =4 ,hs  = 2 0 ,  
V l Y l u  - V i Y  ll5 2g1, VlY2U - VIYSL 5 2g1,  
V l Y i t  - q > g i ,  a2 - V i Y l u  > gi,  VlY2r. - b4 < 2gl V b4 - VIY2L 5 2gi, ad - V I Y ~ ~  > g l ,  

V 2 Y l o  - V 2 Y l L  5 29% V2Y2,, - V2Y2L 2g2, 
V Z Y ~ L  - fa > 92, d2 - V 2 Y l u  > go, 
V2YZL - dz > go, da - V2Y ïu > gl , 
V 3 Y l u  - V3Ylr.  5 2g2, V3Y211 - v 3 Y 2 ~  5 2g2, 
V ~ Y ~ L  - e2 5 292 V e2 - V 3 Y l L  5 2g2, e4 - V 3 Y l U  > g2, 
V ~ X ~ L  - e4 5 292 V e4 - V ~ X ~ L  5 292,  d2 - v 3 X 2 1 ~  > gz XYu - XYL 5 2g3, 
XYL -c4 > 93. bz -XXu -b4 > 93 ) 

X-CONSTR 

CXl 

SCALE 

si 

MJD 

rns 

GRAIN 

g 0 = 1  

Y-CONSTR 

ml 

% 
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