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ABSTRACT

ON THE REPRESENTATION OF PARTIAL SPATIAL INFORMATION IN
KNOWLEDGE BASES

PhD, 1997
Theodoros Topaloglou
Graduate Department of Computer Science
University of Toronto

A fundamental requirement of advanced spatial applications is the capacity to deal
with partial spatial information and multiple levels of granularity. This thesis studies the
problem of representing and reasoning with partial spatial information in the context of
knowledge bases. The thesis proposes a representation which views space as a totality of
objects surrounded by a haze area and interrelated in terms of qualitative spatial relations.
The most elementary object type in this representation, is the haze point. This is a non-zero
sized object that is associated with an area of haze such that the point in question may
be located anywhere inside it. Haze points are related in terms of an indistinguishability
(called haze) or an order relation. The notion of haze can help us model situations where
information is imprecise; the size of the haze area accounts for the degree of precision.

In the course of our study we present a formal axiomatization of the first-order the-
ory of one-dimensional haze point space and develop several extensions of the theory for
high dimensional space. We then define a set of topological and directional binary spatial
relations in terms of the haze and order primitive relations and formalize spatial inferenc-
ing in a setting of varying degree of precision, as a constraint reasoning problem. Our
reasoning algorithms make use of a data structure called haze-order graph which allows
trading space for efficiency. Experimental results illustrate the efficiency of the proposed
algorithms. Finally, we use these results in the development of a spatial data model which
facilitates the representation of and reasoning with various forms of qualitatively and quan-
titatively incomplete spatial information, including indeterminate objects, multiple scales

and granularity.
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Chapter 1

Introduction

1.1 Motivation

The need to represent and manipulate spatial information arises in many areas of computer
science, including Artificial Intelligence and Databases.

In Artificial Intelligence, problem solving systems require sophisticated world models
that can capture the notion of space. Likewise, high-level Machine Vision is interested in
interpreting visual data on the basis of knowledge about shapes, positions and motions of
objects. In a similar vein, commonsense reasoning about physical systems requires a rich
geometric vocabulary and a powerful spatial reasoner since the behavior of many physical
systems strongly depends on their spatial layout.

In Databases, the modeling, storage and retrieval of geometric data is becoming an
important issue, particularly under the light of growing application areas such as Computer
Aided Design/Manufacturing (CAD/CAM), Geographical Information Systems (GIS), and
Multimedia applications.

Because the requirements for spatial information processing have arisen from many di-
verse domains, the models and techniques proposed for spatial representation and reasoning
vary significantly depending on specialized concepts and solutions which apply to specific
domains. There is much to be gained by integrating aspects of these various solutions into
a coherent framework.

In this dissertation we propose an approach to the problem of spatial representation and
reasoning support for advanced information processing tasks. The approach consists of a

systematic integration of one or more abstractions of space, their underlying representational

1



CHAPTER 1. INTRODUCTION 2

structures and reasoning algorithms, and an extensible data model which can represent
information about spatial and non-spatial entities. In the rest of this chapter we identify
the forms of spatial knowledge and spatial reasoning that we study in the dissertation, we
state the research questions that we address, and summarize the contributions and outline

the structure and contents of the dissertation.

1.2 The Challenges of Spatial Information

What are the forms of spatial information, and what kinds of problems arise when we try
to represent it? Consider as an example a computerized system intended to coordinate
first-aid vehicles that cover a geographic region (say, Metropolitan Toronto or Metro, for
short). The region is divided into sections, which are further subdivided into subsections.
For the coordinator and the vehicle drivers, landmarks serve as “constants” whose locations
are precisely known by all concerned. Other spatial information is represented relative to
landmarks. Each vehicle, V', has a spatial range of activity, denoted by scope(V), which
is the area that the vehicle can reach within, say, 2 minutes from its current position.
Each vehicle reports its position to the coordinating station in imprecise terms (for exam-
ple,“moving east”’,“at High Park™, etc.). Hence, the vehicle position is represented by an
indeterminate point. The scope of a vehicle is also partly known and is therefore repre-
sented by a rectangular region with an indeterminate boundary. Finally, the location of
the trouble spot is reported by the coordinating station in imprecise terms, often through a
reference to the nearest street intersection, and is represented by yet another indeterminate
point. The reader should notice that indeterminate spatial objects in the example (vehicle
positions, vehicle scopes and trouble spots) can be thought of as spatial variables which can
take as values spatial positions within some spatial region. Moreover, indeterminate spatial
objects are specified in varying degrees of precision, and for some of them only qualitative
relationships may be known.

Figure 1.1(a) depicts the Metro region divided into sections. This information can be
extracted from a city map and can be as precise as desired. To keep the example simple,
we focus on the downtown section which is further subdivided into subsections (see figures
1.1(b-c)). The dividing lines are major streets of downtown Toronto. The different drawing
styles distinguish between landmark objects and indeterminate objects. Figure 1.1(d) shows
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Northern Suburbs

North York

High | Down East
Park :Town| York

Etobicoke

Scarborough

(a} Metro~Toronto -

(c) Downtown Section (d) Indeterminates and Landmarks

Figure 1.1: An example map at different scales

three vehicles and their scopes, along with a trouble spot (denoted by X).
Several forms of partial spatial information are revealed through this example.

o Incomplete knowledge — Knowledge about spatial individuals and spatial relationships
is partially specified, e.g., “vehicle V; is either south or south-east of the University

campus”.

e Imprecision — Information about measurable entities is approximate, e.g., “the dis-

tance between places E (CN-Tower) and F (Union Station) is about two blocks”.

e Granularity — Domain descriptions are specified in variable degrees of detail (precision-
related granularity), or at different scales (scale-related granularity). In figures 1.1(a),
(b) and (c) the scale changes from coarser to finer grain and so does our ability to
talk about the details of the configuration.

The distinction between precision-related and scale-related granularity is fundamental.
The former notion of granularity interferes with the resolution of the domain, e.g., highway
distance is expressed in kilometers, any distance smaller than a kilometer is approximated by
either 0 or 1 kilometers. The later notion refers to the multiple values that a spatial property
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might have depending on the system of reference, e.g., the highway distance between cities
A and B is either 500Km or the distance of three counties, whatever that means.

Representing and reasoning with partial spatial information of the kind suggested by
this example is one of the major goals of this study.

1.3 Spatial Representations

In general, spatial information in the context of spatial reasoning systems is represented in
terms of either knowledge-level (also referred as implicit) or symbol-level (also referred as
ezplicit) representations.! Implicit representation models, such as general first-order logic,
Horn-logic and constraint languages, are common in commonsense reasoning and in reason-
ing about physical systems because they allow for partially specified spatial configurations.
In addition, implicit representations capture relevant facts about the world. The explicit
models of space are representations such as digitized maps and image arrays. Explicit
representations are common in computer vision and image understanding, and in spatial
databases. Their characteristic is that they assume complete information about space,
which nevertheless is not always precise.

Another common distinction between representations of space is qualitative versus quan-
titative models. Qualitative representations focus on spatial features that are essential and
have to be explicitly expressed. Quantitative representations express values of spatial prop-
erties, such as location, with respect to a predefined numerical scale.

These two classifications of spatial representations are orthogonal. An implicit repre-
sentation can be expressed in terms of a qualitative language, e.g., topological relations,
thus resulting in an implicit-qualitative representation. Alternatively, an implicit descrip-
tion might be relating an implicit spatial object ? to a spatial landmark, hence defining an

implicit-quantitative representation. Similarly, the deductive closure of all qualitative rela-

'We have adopted Allen Newell’s knowledge-level / symbol-level distinction in representatiornal systems
[New82] as the most general terminology that subsumes Sloman’s [Slo85] distinction between propositional
(or fregean) and analogical representations [Slo85], Fleck’s symbolic / concrete distinction of spatial represen-
tations [Fle87] and Chandrasekaran and Narayanan's implicit / ezplicit distinction of visual representations
[NC91]. The key to understanding this less than clear-cut dichotomy is the way the structure of the repre-
seanted world is mapped to the represented world. Knowledge-level representations need to define a mapping
(interpretation) between the representation symbols and the objects in the represented world where in
symbol-level representations the represented world is directly depicted by the representation.

2By an “implicit spatial object” we mean an object whose spatial extension is subject of an interpretation
process, i.e., a mapping to concrete spatial location.
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Implicit + Qualitative | Explicit + Qualitative

Implicit + Quantitative | Explicit + Quantitative

Table 1.1: A taxonomy of spatial representations

tionships between spatial objects in a certain chunk of space may be regarded as an ezplicit-
qualitative representation (sometimes referred to as a cognitive map), and a numeric map or
digitized image is regarded as an ezplicit-quantitative representation. A detailed review and
a complete taxonomy of spatial representations is presented in Chapter 2. In this section,
we simply use the composition of these two taxonomies to classify spatial representations
that facilitate the forms of partial spatial information mined out of the example in Figure
1.1. Table 1.1 shows this composition.

Each entry in Table 1.1 stands for a representation that accommodates some form of

the spatial information that is revealed in example of Figure 1.1:

o Indeterminate objects as well as topological or directional relationships between them
are expressed using qualitative spatial constraints, i.e., an implicit-qualitative repre-

sentation.

® Relationships between indeterminates and landscapes are expressed using spatial con-

straints with more quantitative flavor, i.e., an tmplicit-quantitative representation.

® A state of the system where all the implicit relationships between objects in a scene

are computed forms an ezplicit-qualitative representation.

® Maintaining a computerized map of the entire area, or map fragments at various

scales, conforms to a erplicit-quantitative representation.

Existing database systems offer good support only for explicit-quantitative representations,
such as maps and images. Recently, the integration of declarative constraint languages with
databases opened new avenues for representing forms of time and space in databases. This
dissertation will follow the same general direction in order to study rigorous and efficient

representations of partial spatial information in databases.



CHAPTER 1. INTRODUCTION 6

1.4 The Problem Statement

This dissertation studies the representation of, and reasoning with spatial knowledge in
databases (hereafter spatial knowledge bases). This study is based on the premise that the
support of spatial information in knowledge bases is a three-facet problem consisting of a
representation, a reasoning and a management component. The dissertation attempts to
draw an integrated picture of spatial knowledge base systems, as well as to make contri-
butions to each one of the three facets. In particular, this work investigates the following

research topics:

e The representation of imprecise and incomplete information in knowledge bases.
e Formal and algorithmic aspects of spatial reasoning about imprecise space.

e Database models that materialize the integrated architecture, and allow for addressing

consequent data management questions.

The dissertation consists of two main parts. In the first part, it sets out a formal presen-
tation intended to reveal the theoretical underpinning of spatial knowledge representation
and reasoning, as well as to exercise formal tools that have been successful in other related
efforts to extend databases, such as temporal databases [TCG*93], and knowledge bases
[MBJK90]. The formal tools employed in this part are mathematical logic, model theory
and constraint reasoning. The second part of the dissertation touches upon practical aspects
of spatial knowledge bases such as experimental perforrnance evaluation of spatial reasoning
algorithms, support of spatial relations, and the development of an expressive data model

enhanced with facilities for dealing with granularity and scale.

1.5 Contributions of the Thesis

The research contributions of this dissertation span over the three facets of spatial knowledge
processing that were identified in the problem statement: representation, reasoning and
management.

This dissertation develops a representation which views space as a totality of objects
surrounded by a haze area and connected in terms of qualitative spatial relations. A haze

point is the most elementary object type in this representation since higher order objects
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are composed of haze points. A haze point is a non zero-sized object that is associated with
an area of haze such that the point in question may be located anywhere inside it. Haze
points are related in terms of an indistinguishability (called haze) or an order relation.

A formal treatment of imprecision in one-dimensional and two-dimensional space is
presented. Specifically, we develop the first-order theory of one-dimensional space based on
haze and order relations. We analyze the theory from the point of view of model theory
and we show that its models are homomorphic to partial orders on a discrete domain. We
propose a conservative two-dimensional extension of the theory of one-dimensional space,
called independent combination, in which the evaluation of two-dimensional operators is
reduced to the evaluation of projected one-dimensional operators over two coordinate copies
of the one-dimensional theory. From the two-dimensional point theory, and by independent
combination, we derive the theory of haze rectangles. Finally, we formalize the notion of
varying granularity in a spatial representation.

Algorithms for reasoning about haze-order relations form the third contribution of this
dissertation. We develop efficient algorithms for determining the consistency of a set of
haze-order relations and deducing new relations from those that are already known. In ad-
dition, we define a quantitative index structure that supports constant-time retrievals. Our
algorithms make use of a data structure called a haze-order graph, which trades space for
efficiency. We implement and experimentally evaluate the perforrnance of these algorithms.

Finally, a spatial data model is defined that facilitates the representation of and reason-
ing with various forms of qualitatively and quantitatively incomplete spatial information,
including indeterminate objects, multiple scales and granularity. Representation of incom-
plete spatial information is accomplished through a spatial constraint language based on
haze-order relations. We identify four reasoning tasks that are addressed during query pro-
cessing in this representation and we offer efficient processing algorithms for each one of
them. Our spatial representation model is integrated with an object-oriented data model by
exploiting the meta-modeling facilities of the latter. The resulting spatial data model has
unique features that make it applicable to a wide range of application involving imprecise

dimensional data, such as temporal databases, genome databases and financial databases.

3

3Time events as well as gemone fragments are one-dimensional entities arranged over an one-dimensional
line and related via spatial an order relationships. Both of these data domains are rich in various forms of
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1.6 Thesis Outline

The rest of this dissertation is organized as follows. In Chapter 2, we review research in
the areas of spatial representations, spatial reasoning and spatial databases. In Chapter
3, we propose and study a representation for imprecise space. In Chapter 4, we present
two different algorithms for reasoning about spatial relations in the context of the proposed
representation. The implementation and the experimental evaluation of the algorithms is
also discussed. In Chapter 5, we introduce a data model based an ideas developed in the
earlier chapters. In Chapter 6, we show potential applications of the developed techniques
in geographical information systems and genome databases. Finally, Chapter 7 concludes

this dissertation with a summary of its contributions and an outlook to future research.

uncertainty. Financial data are also presented as two dimensional spatial configurations at multiple scales.



Chapter 2

The State of the Art

Enueiov eoTiv, ov pépos ovbév A point i3 that which has no parts
EvkXeidn, “Trouxeia Tewpetpiag” Euclides, “Elements of Geometry”
300 r.X. 300 B.C.

2.1 Introduction

Problem solving with spatial data can be decomposed into three fundamental research com-
ponents, each one of which forms a field of study on its own right. These three components

are:

Representation: We need a formalism which is able to represent spatial objects, their

local geometry, their position in space, and spatial relationships among objects.

Reasoning: Given a configuration of objects in space and (some of the) spatial relation-
ships between them, we need to be able to infer the spatial relationship among any

pair of objects.

Management: We need to organize the spatial and non-spatial information so that it can

be efficiently stored and searched.

In this chapter we present a review of the research issues and the solutions given to
each of these components. The interested reader is also referred to survey works dedicated
to each specific field of study, such as [MH95] on representation, [Spad5] on reasoning,

and [Gut94] on management. In our review we give emphasis to the treatment of partial
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p—

College Str

UofT campus: southernmost part

Figure 2.1: University of Toronto campus map

spatial information. The features of the examined methods are studied over the spatial
configuration shown in Figure 2.1. This is a two-dimensional projection of a University
of Toronto campus map. It depicts the buildings and the streets around the department
of Computer Science. Buildings are described by their boundary (spatial description) and
their abbreviated name {non-spatial description). Buildings are grouped into campus blocks
forming a containment hierarchy. The map contains relative scales of the buildings but not
exact metric information. In addition, the map contains various forms of partial information
such as unknown areas, like the space behind the ME building, or unrecorded areas such as
the top left corner of the map.

The rest of this chapter is organized as follows. Section 2 touches upon some ontological
questions which arise in the representations of space. Section 3 reviews representations
of spatial configurations. Section 4 presents various spatial reasoning methods. Finally,
Section 5 reviews work done on spatial databases including data modeling, query processing

and data organization issues.
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2.2 Ontologies of Space

An ontology underlying a body of formally represented knowledge is defined in terms of two
basic kinds of elements: a set of categories, and a set of relations that can hold between
instances of these categories. In other words, an ontology determines a set of representa-
tional terms. In practice, these terms may not necessarily be primitives of the domain but
rather, convenient abstractions which are built out of primitives.

An ontology of some discourse must be epistemologically and pragmatically adequate.
An ontology is epistemologically adequate ontology if it can express everything we want
to express in the universe of the discourse. An ontology is pragmatically adequate if it
can express commonly-expressed things in a relatively easy fashion and support commonly-
accepted inferences in a straightforward way.

Historically, the first known ontology of space is the point-based ontology. The first trea-
tises on the study of space and the establishment of geometry date back to Ancient Greece.
The Euclidean space is still the most favored abstraction of space in spatial databases. The
most primitive notion in Euclidean geometry is the point and the distance between points.
Hegel [Heg59], also accepts the point as the infinitesimal origin of any spatial configuration.
Lines and more complex spatial configurations can be constructed by continuous movements
of simpler spatial entities. Aside from point ontologies, solid body ontologies have also been
investigated in this century when Tarski developed his geometry [Szc86].

The selection between points versus extended entities is not the only criterion in choos-
ing an appropriate ontology for space. Other criteria are boundedness versus infiniteness,
discreteness versus continuity of space, etc. These dichotomies have been the subject of
ongoing philosophical debates. In the context of symbolic representations of space, select-
ing among these alternatives depends largely on specific application domain requirements.
For instance, the point-based ontology is preferable in domains where location informa-
tion is important, whereas the body ontology is preferred in physical systems modeling.
Boundedness seems to generally win over infiniteness in spatial representations. Although
there is always a point in space which is further than the furthest known point, this is not
extremely useful in most applications. For instance, terrains, geometric configurations and
land maps are always bounded. The choice between discreteness versus continuity depends

on the universe within which spatial properties are being interpreted. Discreteness implies
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isomorphism to the cartesian product of integers and continuity to that of reals or rationals.

In some philosophical and psychological studies, the notion of relative distance and the
notion of contact are treated as primitive concepts that underlie the definition of spatial
relations. Van Benthem [vB91] states that the primary spatial operators are comparisons of
relative distance. Clarke [Cla85] proposes a formal theory of mereology based on the notion
of connection between individuals. The notion of intersection, as another form of contact,
is adopted by Egenhofer [Ege89] as a primitive concept for the definition of topological
relations.

Practical ontologies of space have been investigated in the context of knowledge represen-
tation research. In the CYC project, Lenat and Guha [LG89] consider different ontologies of
space from a pragmatic adequacy perspective and discuss abstractions of space which would
better serve the tasks that are performed in a CYC knowledge base environment, such as
prediction of the behavior of some given device, diagnosis, manufacturing and design. The

abstractions they consider include:

Set of points: The basic entities of the domain include points, set of points (lines), forces,
masses, velocities, etc. The relations that hold between sets of points may be spatial
relations, namely, above, below, etc., and spatio-temporal relgtions, such as, connect-
edTo, looselyConnectedTo, etc. The basic computations used in this abstraction are

related to continuum mechanics.

Equations and diagrams: A large class of problems in mechanics uses an equation-level de-
scription of systems. Very often, equations are complemented by diagrams. The basic
entities here are objects, forces, velocities, etc. The relationships between objects
are geometric constraints between specific points on the objects. This abstraction

emphasizes the behavioral aspects of a system.

Solids: This abstraction emphasizes the geometric properties of a system. The primitive
elements are cubes, cylinders, etc. The relations between instances of these primitives

are divided into spatial and spatio-temporal.

Devices: In a device level abstraction entities correspond to functional primitives; for ex-

ample wheel, lever, etc. Relations at the device level are very specialized.

Finally, Gruber and Olsen [GO94] have designed a library of ontologies for the purpose
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of enabling knowledge exchange and reuse. Their work has made available a number of
practical ontologies of space including conceptual foundations for physical dimensions and
units of measure, in the form of Ontoligua [Gru93] classes and first-order logic axioms. In
this study, we will take a similar axiomatic approach to define the abstract properties of an

ontology for imprecise space.

2.3 Spatial Representations

Spatial data representations can be studied at two levels of abstraction, the physical and
the logical level. At the physical level of a spatial representation one is interested in spatial
data structures and access paths. At the logical level one is interested in logical models
for spatial information and their associated inference mechanisms. This section focuses on
logical representation issues.

At the logical level, the goal of a spatial representation is to establish a mapping between
objects in a modeling space, M, and their representation in a symbolic structure which is
called representation space, R. The mapping function s from a subset of the modeling space

to a subset of the representation space
s:D-sV, DCMVCR

is called a representation scheme [Req80]. D is the domain of s and contains all the rep-
resentable objects, and V is the range of s and it contains all the valid representations.
The inverse function of 3, r = s~!, relates representations to objects. If r(v) is a single
element set for any v € V, then the representation scheme s is said to be unambiguous. If
s(r(v)) = {v} for any v € V then the representation scheme is said to be unique.

The modeling space depends on the application area for which a spatial representation is
targeted. For instance, the modeling space for CAD/CAM applications is three-dimensional
solids. Geographical information systems concentrate on representations of two-dimensional
regions. Reasoning about physical systems considers representations of three-dimensional
space.

The representation space is characterized by the primitives and the abstractions that
the representation structure uses, as well as its operations. In CAD/CAM modeling the
representation should be able to handle objects’ structure. In geographical information
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systems, it is important to represent points and regions related through topological and
metric relationships. In reasoning about physical systems, aspects such as motion, time
and imprecision are important.

The mapping function consists of a notation according to which objects are represented
(syntax), and a methodology for associating meaning to the representations (semantics).
The mapping function sets a formal framework for describing and evaluating spatial repre-
sentation schemes.

In the rest of this section, we present a comparative review of spatial representation
schemes based on formal properties such as uniqueness, ambiguity and inferential capabil-
ities, but also on informal properties such as easiness of implementation, length of repre-
sentation and understandability. The presentation focuses primarily upon schemes that are

able to accommodate partial spatial information.

2.3.1 Spatial Representations in Artificial Intelligence

Spatial representations have been developed in many areas of Artificial Intelligence, in-
cluding robot navigation [Kui78, McD80, MD84], qualitative mechanics [For80, FNF87],
computational linguistics [Her85], computational imagery [GP92, Gla93b], imnage interpre-
tation [RM89].

In route finding and robot navigation problems, the objective is to represent large scale
space, usually called working memory, or cognitive map, or simply map [Kui78], [McD80],
and to capture the ability to upgrade the map from observations. The latter is called the
assimilation or map learning problem [Dav86], [Dut89], [KL88]. Given a map, the navigation
problem consists of creating and successfully executing a plan to travel from one place to
another.

The modeling space is a two-dimensional floor, called terrain. The terrain is either known
or partially known (unexplored). The representation considers topological and geometrical
properties of the objects in the terrain such as shape and position of an object in a room,
position of the walls, etc. Non-spatial properties such as the color of the walls are not
considered. Solid objects are represented by a two-dimensional projection on the terrain.
In general, objects in a terrain are viewed as obstacles and thus the representation of their
outline is more useful than their internal structure.

Kuipers and Levitt [KL88] defined a four-layer semantic hierarchy of descriptions of large



CHAPTER 2. THE STATE OF THE ART 15

scale space that supports map learning and navigation. The four layers are the sensorimotor,
the procedural, the topological and the metric layer. The last two layers are relevant to the
focus of this discussion. The topological description is a description of the environment in
terms of fixed entities, such as places, paths, landmarks and regions linked by topological
and order relations. The metric description is a description of the environment in terms of
fixed entities, such as places, paths, landmarks and regions linked by metric relations such
as relative distance or relative angle with respect to a frame of reference.

The spatial representation models developed for the robot exploration and the map
learning problems range from analytic and quantitative, to qualitative models. The quanti-
tative models are appropriate if exact metric information about the terrain is known (e.g.,
Configuration Space [LP81], Voronoi Diagram [Mil85], Polygonal Region Model [Mil85],
etc). The advantage of these models is that they are supported by strong mathematical
models, such as computational geometry and linear algebra. Their disadvantage is that are
limited to a very specialized type of supported operations.

Qualitative models ([KB88], [KL88]) are better in describing environments with metrical
inaccuracy. The TOUR model [Kui78] is an early, but very influential, spatial representation
that is classified as a qualitative model. The TOUR model distinguishes between topological
and metrical spatial information. Its topological component consists of a cognitive map
represented as a network of places and paths linked by containment and boundary relations.
The metrical component refers to the quantitative information that is integrated into the
map. The metrical information is expressed either in terms of local geometry at places along
paths, or in terms of local orientation frames with respect to a global frame of reference.
Non-geometric knowledge about a particular environment is recorded in attribute/value
pairs format.

McDermott and Davis [McD80, MD84] take an approach which combines the qualita-
tive and the quantitative approach in cognitive map representations. According to this
approach, a cognitive map consists of two components: a propositional component and a
fuzzy map. The first corresponds to the topological level and the second is a repository of
metric knowledge. This approach is an attempt to handle imprecision in spatial descrip-
tions. Other interesting features include the support of multiple frames of reference and the
support of object shape. Shapes are represented by a prototype and a modification. Their

system, SPAM, implements a data structure along these lines. SPAM has a non-trivial
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query processor which is capable of three retrieval modes. Retrieva! of assertional knowl-
edge is handled by a special purpose theorem prover. Retrievals from the fuzzy map, term
values and truth tests, are transformed into numerical optimization problems. The retrieval
of objects with specified properties is handled by a structure which is called a discrimination
tree which uses both qualitative and quantitative information. Performance and represen-
tational problems, observed in SPAM, are studied further by Davis [Dav85, Dav86] in the
MERCATOR program.

Glasgow proposed a representation of cognitive maps based on symbolic arrays [Gla93a].
Symbolic arrays are nested structures where elements of the array denote meaningful com-
ponents of a visual scene. In symbolic arrays, space is partitioned relative to the landmarks
that it contains. Symbolic arrays provide an implicit representation of spatial and direc-
tional relations. An advantage of this approach is its ability to capture multiple levels of
abstraction.

From the above classes of spatial representations, the qualitative and qualitative / quan-
titative cognitive maps are distinguished as more interesting from the viewpoint of this

study.

2.3.2 Representation of Objects

In applications such as mechanical CAD/CAM, architectural design, and computer graph-
ics, spatial representations focus on the representation of objects [RV82], usually three-
dimensional solids. The representation of an object must be invariant of shape, location
and orientation, occupy a finite portion of space, be finitely describable, have unambigu-
ously defined boundaries, and finally must produce other objects when motion and boolean
operations are applied to it.

Representation schemes for solid objects are distinguished into elementary and hierar-
chical {Gue88]. In a hierarchical representation scheme, the objects are represented by some
combination of simpler objects of the same dimension. Elementary representation schemes
cannot represent objects as compositions of simpler objects.

Boundary representations are the most noticeable elementary representation schemes
because they find applications in the database modeling field [KW87], [AOG*88]. An ob-
ject is represented by segmenting its boundary into a finite number of bounded subsets
usually called faces. Each face is described by its bounding edges and vertices (see Fig-
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Figure 2.2: Representations of solid objects

ure 2.2(a-b)). Other boundary representations are vertex lists for general polygons and
wireframe representations for 3-dimensional objects [Gue88]. Boundary representations are
unambiguous if their faces are represented unambiguously. In general, they are not unique
and cannot be used to represent objects with holes. They are not good for representing
objects with concave faces. However, they are simple and easy to understand.

The most common hierarchical representation schemes are the spatial occupancy scheme,
the cell decomposition and the constructive solid geometry (CSG) [Gue88].

In the spatial occupancy scheme an object is represented by a list of all spatial cells
(voxels) that it occupies. Cells (voxels) may be cubes of fixed size and lie in a fixed spatial
grid called spatial array. This scheme is unambiguous, unique, but quite verbose.

In the cell decomposition scheme an object is decomposed into cells which must be
either disjoint or meet precisely at a common face. Quadtrees and octrees [Sam84] are
examples of representation schemes which follow the hierarchical decompasition principle.
Quadtrees are discussed in detail in section 2.3.3. Cell decompositions are unambiguous
and non-unique.

The constructive solid geometry scheme represents solid objects in terms of a set of
3-dimensional volumetric primitives (blocks, cylinders, cones and spheres are typical ex-

amples) and a set of operators (set operators such as union, intersection, difference, and
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similarity operators such as rotation, translation and scaling). An object is represented by
a binary tree (the CSG-tree) whose interior nodes correspond to operators and whose leaves
correspond to primitive components or numerical arguments used by the operators. Figure
2.2(d) shows the CSG tree for the solid of Figure 2.2(c). CSG is an unambiguous but not
unique object representation scheme. The difficulty of implementing search operators in
CSG is its strongest drawback. Nevertheless, CSG is widely used in current CAD/CAM
systems [Wil88].

2.3.3 Representation of Regions

Symbolic representations of regions are important in geographic information systems and
pictorial databases. The following sumrmarizes some of the requirements of region represen-
tations: The modeling domain is two-dimensional. Regions might have arbitrary complex
shapes, and their dimensions might be known in limited or full precision. Usually, regions
are represented in order to be stored in a database. There are a vast number of spatial
operators that need to be supported: geographic operators, e.g., north-of, east-of, same-
position-as, etc., local aperators, e.g., overlap, adjacent, includes, etc., set operators, e.g.,
spatial union, intersection, difference, and similarity operators, e.g., rotation translation and
scaling.

There are two approaches to region representation: those that specify the boundaries of
a region and those that focus on the interior of the region.

In this section we survey four different region representation schemes. These are the
polygonal representation scheme, the symbolic projection scheme, the hierarchical partition-
ing scheme and the space filling curves scheme. The first two are boundary representations

whereas the last two organize the interior of a region.

Polygonal Representations

Polyhedral Chains. Guenther’s polygonal (polyhedral) chains [Gue88] and Davis’ polyg-
onal approximation method [Dav85] are the most interesting general purpose polygonal
representations. The minimum bounding rectangle (MBR) model is a simplified polygo-
nal representation that approximates complex shaped objects by their enclosing rectangle.
Minimum bounding rectangles are extensively used in the development of access methods

for spatial objects.
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Figure 2.3: Polygonal chain

The polyhedral chains model can represent polyhedral objects of arbitrary dimensional-
ity and arbitrary shape. A general polyhedron is represented as a convex polyhedral chain,
that is, the algebraic sum of simple convex polyhedra, called cells. For instance, the general
polygon of the “MB” building (in Figure 2.1) is written as the sum of three convex polygons,
MB = P; + P, + P3 (see Figure 2.3). The reason for this is that convex polyhedra are closed
under all set operations (intersection, union, difference). Convex chains can be viewed as a
special case of constructive solid geometry (CSG). Like CSG, the convex chains approach is
a hierarchical representation scheme for polyhedra which is unambiguous but not necessarily
unique.

Convex cells are represented by means of h-vectors. A convex polyhedron in d-dimensional
space, E9, is represented by the intersection of halfspaces in E2. Each halfspace is viewed
as a product h - H where H is an oriented (d-1)-dimensional hyperplane and h is one of
{0,1,-1}. In particular, —1 - H defines the halfspace which stands left of H, 1 -H the right
halfspace and 0 - H the entire ES. [f H = H\H,... Hig; is the list of all (d-1)-dimensional
hyperplanes such that for each face f of any spatial object there is a hyperplane in H
that embeds f, then each polygon p is represented as a ternary vector, called h-vector,
hy, = {0,1, —1}|ﬁ| such that p = ﬂg’l(hp)flg. Likewise, the two-dimensional polygon pl in
Figure 2.3(b) is represented by the h-vector {1,-1,0,0,1, ~1}. It must ne noted that this
approach abandons completely the notion of vertex in representing polyhedral objects.
The MERCATOR Representation. The representation model developed in the MER-
CATOR system [Dav86] deals with two-dimensional objects of arbitrary shape. In par-
ticular, the MERCATOR representation provides facilities for the representation of shape,
multiple description, measurements at varying degree of precision, and approximate reason-
ing support.

MERCATOR’s representational primitive is the line segment. Two-dimensional geom-
etry is represented by straight line segments. Objects are represented by their boundaries

and the description of their interior. An object’s boundary is a set of edges (segments)
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Figure 2.4: Multiple region representation

connecting vertices. An object’s interior is a set of convex polygons. There is no notion of
coordinate system because this presupposes full knowledge about space; instead, relative
positions are supported. Local dimensions are recorded in terms of lengths and orienta-
tion of edges. To account for imprecision, MERCATOR uses range values expressed in a
measurement scale of some grain size. A given object may have several region descriptions
(which vary in the grain size) as shown in Figure 2.4. Objects in a map are hierarchically
organized in a contatnment hierarchy. The non-geographic properties of objects are not part
of the MERCATOR representation; these are recorded in a slot-filler pair representation
scheme.

Space representations in MERCATOR are called maps. Maps are valid descriptions of
the world in which an intelligent agent is situated. In such a setting, the MERCATOR
representation suffers from three basic inadequacies. First, it can express only the presence
of an object, not its absence. Second, it cannot express natural combinations of precise
shape and imprecise dimensions. Third, it is limited to two-dimensional representations.
From a database point of view, the MERCATOR model offers “dream” expressiveness,

which unfortunately is penalized by an expensive computational model.

Symbolic Projections

The symbolic projection scheme was introduced by Chang et al. [CSY87] in the context
of pictorial databases. In the symbolic projection scheme, any two-dimensional shape is
projected to two strings, called 2D-string, along the vertical and the horizontal direction.
It is an approximate representation scheme because the size of the picture objects is known

within a precision threshold that is determined at the creation time. It is also ambiguous
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Figure 2.5: 2D G-string representation

since given a 2D-string many possible pictures can be constructed !. The original 2D-string
supported only two spatial operators “<” (for right/left, bottom/up characterizations) and
“=" (denoting same-position). Several extension of 2D strings have been proposed over the
years, including the 2D H-strings [CL88], a hierarchical extension of 2D strings, and the 2D
G-string [Jun88] which adds local operators such as the edge-to-edge operator, |. Figure 2.5
illustrates a 2D G-string representation of a part of the UofT map.

2D strings can support geographic inferences. For instance, the geographic relationship
north-of between two objects o1, 02 is formulated by the rule:

if X:0, =00 and Y :0; < 02 Voy|o then (north,oy,02)
It should be noted that the database representation of space proposed in this dissertation

is an extension of the hierarchical symbolic projection scheme for multi-scale space.

Space Filling Curves

Space filling curves [Lau85] allow a one-dimensional representation of any kind of d-dimensional
data. In particular, there exists a bijection between a k-dimensional space to 1-dimensional
space by the means of a curve which passes only ouce through any point in the space. Any
point on a curve is assigned a number, called order number. Continucus regions of space
are mapped into a sequence of curve segments or continuous segments and therefore are
characterized by a set of order numbers. The string length of the order number determines
the resolution of the represented space. The Peano curve or z-ordering [OM84] is the most
common space filling curve. Other known curves are the Gray-code curve [Fal88], and the
Hilbert curve [FR89].

Space filling curves can support praximity searches and point-in-polygon queries. Space
filling curves have been used extensively in spatial data handling systems. In particular,
Orenstein and Merrett [OM84), [Ore86] applied them in the development of spatial access

'This claim is not true for the extended 2D strings [Jun88]
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Figure 2.6: Region quadtree

methods, Orenstein and Manola [OMB88] used z-orderings for the representation of spatial
objects. Hilbert and Gray-code curves have also been used as spatial access methods [Fal88§],
[FR89] and [Jag90].

Among the representations of spatial content (objects in a spatial configuration), space

filling curves are best for indexing spatial objects and provide fast access to them.

Hierarchical Partitioning

The hierarchical partitioning of space is the basis for a whole class of methods for represent-
ing and organizing spatial data. The gquadiree [Sam84] is the most common representative
of this class. Many quadtree variants have been proposed which differ according to the type
of data they represent and their space partitioning method [Sam89).

The quadtree approach to region representation is called region gquadtree (see Figure 2.6).
The region quadtree performs successive subdivisions of a bounded (binary) image array
into four equal sized quadrants. The quadrants that do not entirely contain 0 or 1 are further
partitioned, in the same way. The region quadtree is a variable resolution representation
method. The quadtree can also be extended to represent 3-dimensional binary region data.
In this case, the resulting representation is called an octree.

The quadtree is a tree structure which admits a straight forward pointer-based imple-

mentation (i.e, non-leaf nodes are represented as records with four pointers to their chil-
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dren). However, pointer-based representations of quadtrees require a considerable amount
of space, and thus large images cannot fit into core memory. Consequently, there has been
a vast interest in pointerless representations [Gar82], [ABJN85].

Quadtrees are useful for performing set operations such as union (overlay) and inter-
section of several descriptions of the same region. The required time for these algorithms
is proportional t the minimum of the number of nodes at the corresponding levels of the
two quadtrees. It also supports operations that are common in computer graphics such
as scaling by a power of 2 and rotations by multiples of 90 degrees. Area calculations are
extremely easy, too. Lastly, it can be used as an image approximation device. Although the
quadtree is rather an expressive representation, its dependence to main memory structures

does not make it a good representation for large scale space.

2.3.4 Summary

We have presented several approaches to the representation of spatial information and a
framework for characterizing them. Qur presentation is clearly not exhaustive. The wide
spectrum of uses for spatial information makes the enumeration of all different spatial
representations a very challenging task. This presentation has focused on representations
that are interesting from the knowledge representation and database perspectives. For
an additional survey of the representations of spatial knowledge, the interested reader is
referred to the work of Mukerjee and Hernandez [MH95]. A survey of spatial representations
for databases, termed geomatic models, is presented by Paradaens [Par95].

Table 2.1 summarizes the results of our presentation. The abbreviated column headers
UM, UQ, PK and IM stand for unambiguous, unique, partial knowledge and imprecise
measurements respectively. The table also shows the modeling and the representation space

for each representation scheme as well as the most important operations that each model

supports.

2.4 Spatial Reasoning

In this section we review formalismns for spatial knowledge which are suitable for spatial
reasoning. Spatial reasoning is a field which has defined itself over the last few years as

researchers from a variety of subject areas have recognized the importance of automated
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reasoning about spatial relations between physical objects or regions of space. Examples of

the kinds of questions for which spatial reasoning is required, include:
+ Compute the relative position between two entities in space.

® Find whether an arrangement of entities in space is consistent with respect to a set

of topological and geographic relationships that must hold between them.
e Find the route from point A to point B.
o Identify the spatial entities appearing in a certain range of space.

The following is a list of desirable requirements that a spatial reasoning framework can

have:

® [t must be capable of representing and reasoning about a variety of spatial constraints

expressed in a qualitative or quantitative language.

¢ It must be capable of inferring spatial consequences given some specification of spatial

and motional relationships.
e It must be capable of reasoning with partial information.

o It must be capable of reasoning about objects of various shapes and varying granu-

larity.

In many cases, reasoning about the spatial relation between physical objects can not be
done without precise quantitative information about these relations. The ability to reason
with partial information is the essential requirement in this study. In the example of Section
1.2, we have identified several forms of partial spatial information, including incompleteness,
tmprecision and granularity related deficiencies. In the rest of this section we elaborate on
methods that enable spatial reasoning with partial information.

Dealing with incomplete spatial knowledge is, in many respects, similar to the problem
of incompleteness in symbolic knowledge representation. Techniques such as completion
assumptions and persistence rules can be used for its solution. For instance, if it is stated
that “object A is either to the left or to the right of object B, and there exists a completion
assumption saying that “nothing exists to the right of the wall and B is the wall”, then
we can infer that “A is to the left of B”. Similarly, if it is known that “regions C and D
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are disjoint”, then it can be assumed that “they have equal size” until further information
is learned (persistence rule). These two examples do not really propose a solution to the
spatial incompleteness problem. There is a lot more to be said if the properties of the
spatial ontology are assessed. Nevertheless, they connect this problem to a mature body of
work that exists in Artificial Intelligence [Lev81, Rei80).

Imprecision of spatial knowledge emanates either from limited accuracy of the percep-
tion or the measurement. For example, we can say: “John’s height is about 1.80cm”.
“The measurement of the distance between atoms a; and az in some crystallographic
structure is between 3 and 5 A”. “Point A is close/far to/from point B”. “Region R is
east/west/north/south of region S”. Similarities with these types of examples can be found
in the field of temporal reasoning [All83] or qualitative reasoning about physical systems
[Kui86]. Formalisms such as quantitative and qualitative constraints, fuzzy sets, interval
values, etc., are prime candidates for formalizing spatial imprecision.

In this section we review formalisms that are capable of representing and reasoning
about spatial imprecision. Some of them formulate the problem as a constraint satisfaction
problem over a network of spatial relations in the same way that reasoning with respect
to time is formulated. Other approaches involve qualitative reasoning, approximate calcu-
lations based on fuzzy numbers, and numerical methods. In some cases, spatial reasoning

can be thought of as a generalization of temporal reasoning in a multi-dimensional space.

2.4.1 Temporal Reasoning and Constraint Networks

Time is represented either in a change-based or a time-based fashion [SG88]. In this section
we review the time-based approach because of its similarity to the spatial case. In the
time-based approach, time is explicitly represented in terms of either points or intervals,
and temporal events are related by the means of temporal relationships. A time-based
representation can be seen as the one dimensional projection of a spatial representation
that involves location and relative position operators. The most common representation for
the time-based approach is that of binary constraint networks.

A temporal constraint network is a directed graph where nodes represent temporal
entities, points or intervals, and the edges are labeled with temporal relationships holding
between the connected nodes. The language used for the edge labels can be quantitative or

qualitative, hence the constraint network is characterized as a quantitative or a qualitative
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network. Temporal reasoning is formalized as a constraint reasoning problem [DMP89],
(vB90] or a label inferencing problem [Dav87].

Formally, a constraint network consists of a set of quantities X;, Xo, ..., X, where D; is
the domain of each quantity, and a set of unary, P(X;), and binary, C(Xj, X;), constraints
over these quantities [Mon74], [Mac77|. A solution of the network is a tuple {z|, z3, ..., Zn}
such that the assignment X; = z; satisfies all the constraints. A network is consistent if
at least one solution exists. A constraint C’ is tighter than C” if every pair of values for
C' is allowed by C”, C' C C". This notion is extended to networks. C defines a partial
order over networks. Two networks are equivalent if they have the same set of solutions. A
network M is minimal if there is no equivalent network with tighter constraints.

The basic reasoning problems that are addressed in a constraint network, are: (a) given
a network determine whether it is consistent or not, and (b) given a consistent network,
compute the minimal network that is equivalent to it.

Allen, in his foundational work on temporal reasoning [All83], introduced a time-based
representation based on intervals which are related by thirteen mutually exclusive relations
and their disjunctions. These relations are: before, meets, overlaps, starts, during, finishes,
equals, finished_by, over, started by, overlapped_by, met_by and after. Two temporal events,
“Anne has breakfast” and “Anne reads her morning newspaper”, are represented by tem-
poral intervals T} and T3, and if we also know that Anne never reads while she is eating,
then T} and T, are related by the following Allen’s algebra expression

T, before To V T} meets Tb V T} met_by Tp V T after T,

Allen [AlI83] presented a constraint propagation algorithm for computing the minimum
network equivalent to a given set of interval relations, or reporting inconsistency if it is
unsatisfiable. The basic idea of this algorithm is based on previous algorithms for constraint
satisfaction problems [Mon74], [Mac77], [MF85). The algorithm runs in time O(n3), where
n is the number of intervals in the network, however, it is incomplete. The incompleteness
of this algorithm is not surprising since Vilain and Kautz [VK86] showed that computing
the transitive closure of relations in Allen’s interval Algebra is an NP-complete problem.
Valdes-Perez in [VP86] showed also that Allen’s constraint propagation algorithm is sound
but not complete and he developed a dependency-directed backtracking algorithm [VP87)
with exponential asymptotic complexity which is complete. In practice, Valdez-Perez’s
algorithm terminates early because of quick pruning and clever backtracking.
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Vilain and Kautz [VK86] defined a temporal representation based on time points, which
are related by the three binary qualitative relations {<,>,=}, and their disjunctive combi-
nations. Then, they claimed that Allen’s algorithm computes the minimal network in the
point representation. VanBeek showed [vB89] that this is not the case if the network con-
tains # relationships. By excluding #, the source of incompleteness, from the point algebra,
vanBeek defined a subclass of the point algebra, called a pointisable class, which is complete.
He also presented an Q(n?) algorithm which is complete for the point algebra. Recently,
Nebel and Burckert [NB94] presented the maximum tractable subclass of Allen’s interval
algebra whose satisfiability can be determined by the O(n®) path consistency algorithm.
A similar result was also obtained by Schubert and Gerevini {GS95a]. Various practical
algorithms for reasoning in interval algebra [Koo89] and point algebra were proposed in
[GA89], [MS88], [GS93].

All the above methods deal with abstract time references. Representations of time
may involve absolute references and metric information. For instance, “The next AAAI
conference starts on August 4, 1996, and lasts 3 to 5 days”. In a quantitative representation
of time, this is information is expressed as

start(AAAI96) = “4/8/1996” A (3 < end(AAAII6) — start(AAATIE) < 5)
Dechter, Meiri and Pearl [DMP89], [DMP91] studied quantitative and metric temporal
networks of the form

e STi-T; <1 V...Van < T; = Tj < by

where T; and T; are time points and ay,...,@q,b1,---,bn are real numbers. Deciding the
consistency of quantitative point constraint networks is also an intractable problem. A
tractable subclass occurs when all constraints have only one disjunct, i.e.,a < T;—T; < b. In
this case, deciding consistency and computing the minimal network is done in O(n3). Dean
{Dea89], [DM87] presented a linear time solution for a special case of the [DMP89] network,
which is called distance graph. Dean'’s linear algorithm is based on indexing and caching of
time intervals. Davis [Dav87)] determined that the threshold from polynomial to exponential
complexity in quantitative constraint networks, is the linear inequality constraints.

The combination of qualitative and quantitative constraints was studied by Kautz and

Ladkin [KL91], Meiri [Mei91], and several tractable cases were identified.
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2.4.2 Spatial Reasoning and Constraint Networks

Extending temporal representations to k dimensions has been a popular approach in spatial
representation and reasoning [MB83], [VP86], [Lig90], [MJ90], [Gue89]. The main advantage
of this approach is the reuse of the solid body of work developed for time. The adoption of
temporal representations for representing space restricts reasoning to orthogonal domains.
The key properties that time and space share, and which make methods from temporal
reasoning valid for spatial reasoning, are order and strictly increasing continuity (in the
calculus sense) [VP86]. Both of these properties are possessed by the orthogonal cartesian
axes. Nonetheless, space, unlike time, is static in our world-view; therefore the provision for
persistence that is made in many temporal representations, specifically in the change-based
ones, does not carry for spatial representations, unless a notion of time is explicitly used,
e.g., motion.

Allen’s framework can directly support spatial reasoning in one dimension. Relationships
such as front-of, back-of, and inside correspond directly to after, before and during. Genome
maps (Fre9l] and molecular sequences are typical domain examples which require one-
dimensional spatial reasoning.

One-dimensional spatial relations based on Allen’s framework were developed by Muker-
jee and Joe [MJ90] and Guesgen [Gue89]. Mukerjee and Joe used end-points to express the
thirteen Allen’s relations, and further, they identified five point-to-interval relations: ahead,
front, interior, back and posterior. Their reasoning algorithm is based on a composition table
which determines the relative position between spatial entities A and C given the relative
positions of (A, B) and (B, C). The spatial relation between two objects not orthogonally
oriented is described by a pair comprised of relative positions and relative directions.

Guesgen, proposed a set of spatial relations, namely, left-of, attached-to, overlaps, inside
and their inverses, based on a simplified set of interval relations and the underlying reasoning
algorithm. Malik and Binford {MB83] came up with a set of “everyday” spatial operators
{left_of /right_of, front_of /behind, bellow/above}, as counterparts of the before/after temporal
relations for the z-, y- and z-axes by realizing their isomorphism to the ¢ime-axis. A similar
argument is also made by Sistla et al. [SYH94].

All [MJ90, Gue89, MB83, LJ88] suggested that in k-dimensional orthogonal space, the
spatial operators can be defined as vectors of length k one-dimensional operators. We call
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this approach the decomposition approach. In the decomposition approach, spatial reasoning
is reduced to one-dimensional reasoning along k independent dimensions. The alternative
to the decomposition approach is called unified. In the unified approach, the representation
and reasoning about spatial relations is based on topological properties of space. Clearly, the
decomposition approaches have limited expressiveness when applied to higher dimensional
spaces: they are restricted to orthogonal domains and rectangular shapes. However, in may
applications [SYH94], including databases, their limitations are not restrictive and given

their lower computational complexity [GPP95], are realistic choices.

2.4.3 Qualitative Spatial Reasoning

The qualitative reasoning approach is well suited to spatial problems because of its represen-
tational power for states of partial knowledge. Qualitative representations “make relevant
distinctions” in a given context. In physical systems, “relevant distinctions” mean ordered
sets of landmark values within quantity spaces of the values of parameters and functions
[Kui89]. For instance, the temperature may be measured in the quantity space: {cold, cool,
warm, hot}. In a representation of space based on the representation of objects in space
and their interrelationships, a qualitative representation typically determines the relevant
relations allowed by the representation, e.g., disjoint / not_disjoint. In a holistic representa-
tion of space, qualitativeness may be understood as the way in which space is partitioned
into zones/areas with some distinct feature, e.g., type of land use. Grid representations are
not qualitative because they use a metric condition in their partitioning, e.g, resolution.
In an object-based view of two-dimensional space, a variety of qualitative representa-
tions has been proposed. Guesgen’s representation uses interval based qualitative relations
on individual coordinates in order to capture the spatial relationships between higher di-
mensional objects. Chang et al. [CJL89] represented the content of an image on the basis
of qualitative 2D strings Randell et al. [RCC92a), and Egenhofer [Ege89] developed sets of
qualitative spatial relations based on the theory of mereology and topology, respectively.
Finally, Hernandez [Her92], Freksa [Fre92b] and Frank [Fra91] proposed methods for quali-
tative spatial reasoning based on orientation/direction relations. With the exception of the

2D strings, all of these representations perform reasoning based on transitivity axioms.
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2.4.4 Quantitative Methods

Quantitative methods in spatial reasoning make use of metrics, absolute values, range val-
ues and comparisons. Values are expressed in terms of some absolute unit. Quantitative
methods are distinguished as propositional and analogical.

Propositional-quantitative methods are considered the models that formulate descrip-
tions of space-based metric constraints on the endpoints of the x, y and z coordinates of
objects. The computational methods that are suitable for spatial reasoning, in the con-
text of metric information, include metric constraint networks [DM87, Dea89, DMP89| and
linear programming [MB83, McD82, Dav86).

Analogical-quantitative representations such as the occupancy arrays and hierarchical

partitioning represent space as a whole, including its objects, using metric information.

2.4.5 Semi-Qualitative Approaches

The combination of qualitative and quantitative representation is attempted in cognitive
maps [McD80, MD84, KB88| and in constraint networks [Lad89]. A cognitive map which
follows the layered model of [KL88] consists of a quantitative component (metric layer) and
a qualitative component (topological layer). Reasoning in cognitive maps (spatial learning,
path finding) exploits both representations. Kuipers [KB87, KB88] derives distinctive places
on the map using hill-climbing search on the metric layer and then applies qualitative
simulation [Kui89]. McDermott and Davis [McD80, MD84, Dav86] transform the problem
to a network of fuzzy constraints and apply numerical techniques (Monte Carlo algorithm).
The semi-qualitative approach gains support in qualitative kinematics (poverty conjecture)
[FNF87].

An integration of the qualitative and the quantitative approach in spatial reasoning is
proposed by Dutta [Dut89]. In this method, the relative position of objects is expressed
in qualitative terms, e.g., “SF is near LP”. Imprecision is expressed using range data, e.g.
“the distance between the SF and the LP is between 4 and 6 meters”. The general problem
is, given a set of objects and a set of constraints (generally incomplete and sometimes
conflicting), to find all the induced spatial constraints. Constraints are represented as
possibility assignment equations of the form p — II(;, .,) = F, where p is a natural

language proposition, IT is the possibility assignment and F'is a fuzzy subset of the universe
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of discourse U. For example
“Bob is short” — HHeight(Bob) = SHORT

SHORT is a fuzzy subset and usgorr(Height(Bob)) is the membership function of Height(Bob)
in the set SHORT. An approximation in the fuzziness expression is to use fuzzy numbers
(c,l,r) (i.e., triangular distribution) insteac. of u(u}, e.g., about-five-miles=(5,1,1), north-
eastern-direction=(45,10,10). For metric constraints the membership function is defined:
pa(u) =1ifu € A and pa(u) = 0 if u € A, therefore the fuzzy set has only one value
(s(u) = 1) and the fuzzy number is (¢,0,0), e.g., “Object A is 5 miles NE of object B"
= Moe(a) joc(B)= (5miles, NE), where, Smiles=(5,0,0) and NE=(45,0,0). The mathemat-
ical basis for the spatial reasoning algorithm is the composition of possibility assignment

equations and the fuzzy set theory.

2.4.6 Qualitative Spatial Scenes

The common goal of many qualitative spatial reasoning methods is to relate objects in two,
three or k-dimensional space, by means of spatial relationships, and to do inferences based
on a composition operation (usually transitivity). Such representations are also referred as
spatial scenes [FR93). In this section we discuss the two-dimensional case of spatial scenes.

Two factors determine the relative position of objects in two-dimensional scenes: topo-
logical relations and directional relations. Topological relations describe how the objects
“in-contact” are related to one another. Directional relations describe how the objects

“at-a-distance” are related to one another.

Topological Relations

Topological relations are defined between objects with spatial extension and which are in
contact with one another. There are many sets of topological relations proposed [Gut88,
Ege89, RC89). A representational concern in all of them is that the developed set of relations
must be complete in the sense that it can describe all the qualitative distinct positionings
of two objects in a scene, and, in addition, that these relations are mutually exclusive.
Guting [Gut88] presented a set of topological operators based on set theory. Egenhofer
[Ege89, Ege91], developed a set of binary topological relations based on the intersection of
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Figure 2.7: Egenhofer’s topological relations

the boundaries and interiors of the two objects to be related (see Figure 2.7). Randell and
Cohn [RC89, RCC92a, presented an alternative formalization of topological relations based
on a primitive dyadic relation: C(z,y), meaning region z connects with region y. These
relations are usually referred to a3 RCC relations (see Figure 2.8).

Hernandez [Her92], Papadias [Pap94a, GPP95] studied transitivity-based reasoning us-
ing on Egenhofer’s relations. Cui et al. [CCR92] and Bennett [Ben94] investigated the use
of qualitative simulation and transitivity tables, respectively, as reasoning method for the

RCC relations.

Directional Relations

Topological information alone is insufficient to express positional information, because topol-
ogy has no means to distinguish two topologically disjoint objects which are the one “on
the left of” and the other “on the right of” a third disjoint object. We need the concept of
orientation in order to characterize relative positions in this situation. Orientation is the
basis for defining directional relations.

Orientation is a property of points or extended objects in a scene. QOrientation means
that an object has a “point of view”. In some approaches [Her92, Fra9l|, an object inherits
its point of view from a global reference system; Freksa and Rohrig [FR93] call it ezternal
orientation. Other approaches, e.g., [Fre92b, LR93] assume that orientation is a local prop-
erty. For instance, the orientation of an object is locally determined by some property of the
object such as the “front of the building”, or is determined by the position of a particular

external viewer of the object. Figure 2.9 contrasts these two approaches. On the left side
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Figure 2.8: The RCC relations

of the figure the external orientation is illustrated. Object A induces four sectors around
object B, each one denoting a directional relation. The rightmost part of the figure, we see
a qualitative partitioning of the “directions” space by fixing “front” to be the top of the
page.

Directional relations are derived through qualitative partitioning of two dimensional
space. The degree of partitioning determines the representational granularity of a set of
directional relations. Several sets of directional relations have been proposed. Figure 2.10
illustrates Hernadez’s rod (relative orientation node) model in three granularities [Her92];
this is also termed the anthropocentric system. Figure 2.11 illustrates Frank’s [Fra9l] orthog-
onal system extended with levels of granularity: at granularity level 1, a distinguished front
focus defines a left (or east) and a right (or west) sectors of space (similarly, a north/south
partitioning is defined if the axis is rotated by 90 degrees). By superimposing the two, we
obtain directional relations of level 2, etc.

Inferences of directional relations are based on a composition operation which is fur-
ther reduced to order transitivity in a lower dimension structure [Roe94). For example, in

the case of two-dimensional space, the coordinate cartesian axes are the lower dimension
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structures. Freksa optimizes the size of composition tables used in reasoning, by explor-
ing the structure in the directional relations set and introducing the notion of conceptual
neighborhood [Fre92a). The latter is a key concept that we will revisit in the course of this

study.

2.4.7 Axiomatic Approaches

Formal logic has also been used as a framework for modeling spatial reasoning placing
emphasis on the axiomatization of space. Some of the most notable axiomatic approaches
include Kautz’s [Kau85] and Shoham’s [Sho85] work within the “commonsense summer”
project [Hob85]. Roman’s work in formalizing spatial inference in geographic information
systems [Rom90], and Kaufman'’s work on formalizing imprecision in commonsense space
[Kau91].

Kaufman proposed an ontology for time and space based on tolerance spaces. Tolerance
spaces treat uncertainty as a fundamental principle. Previous models for approximate
spatial reasoning, such as [MD84, Dav86], represented imprecise spatial information using
interval values on measurements. In tolerance spaces the concept of uncertainty is deeply
embedded in their definition. Every tolerance space is characterized by a tolerance relation.
The selection of a tolerance relation is the same as selecting the granularity [Hob85] in
which a spatial domain is viewed. A tolerance preserving function (i.e., a function which
preserves closeness between different spaces) is used for mapping from one granularity level
to another. Informally, a tolerance space is a collection of points with a symmetric and
reflexive tolerance relation defined over them. At sufficiently small scales, positions or
quantities are indistinguishable. Tolerance spaces have been proposed as an alternative
reasoning system to deal with approximation and to complete the qualitative approach in
reasoning about physical systems.

It should be noted that an axiomatic appoach similar to that of Kaufman, is taken in
the development of the proposed theory of space in Chapter 3.

2.4.8 Summary

Table 2.2 summarizes approaches to spatial reasoning discussed in this section. For any
method, the table shows the mechanisms it offers for specifying relative position, its repre-

sentational primitives and modeling domain, and the computational method it employs for
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Method Relative Position Representation Modeling Domain Qomputalional Model
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Tol
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[Kaufa1] N/A space induction

Table 2.2: A classification of spatial reasoning methods
reasoning.

2.5 Spatial Databases

This section reviews research in the field of spatial databases. Spatial databases store k-

dimensional data representing explicit knowledge about objects, their extent and their po-

sition in space [GBY0]. Spatial databases are widely used in applications such as geographic
information systems (GIS) [MP94], environmental protection [MGD91], CAD/CAM, robotics,
medical imaging, etc. Work in this area is broadly divided into spatial data modeling, data

structures and access methods, and query processing and optimization. In our discussion,

we focus on data modeling and query processing aspects, and we simply mention references

to the data structures and access methods work.

The requirements for data management techniques to deal with objects in space differ
widely between applications. When the space of interest is a two-dimensional scene, i.e.,
geographic space, or a human-made space (e.g., VLSI layouts, CAD/CAM designs, drafted
maps, etc), the requirement is to handle large collections of relatively simple geometric
objects. When the space of interest involves digitized images sensed by satellites, medical
scanners, etc., then a different functionality is intended by the database system. In partic-
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ular, the system must be able to extract objects from images and treat images as discrete
entities. Guting [Gut94] assessed these differences and proposed the terms spatial database
system for the former and image database system for the latter. The definition that Guting
gives for spatial database system is currently the most accepted by the research community
[DK+94, Par95). According to this definition, a spatial database system is a database sys-
tem that offers spatial data types in its data model and query language. Its implementation

supports spatial indexing and an efficient spatial join operation.

2.5.1 Spatial Data Models

The fundamental question in spatial database modeling is how to embed spatial aspects in a
data model and the underlying database system such that acceptable interfaces (optimizable
query languages and pictorial interfaces) can be defined. A spatial data model must support
modeling of objects in space (e.g. points, lines, polygons, solids} and space itself, as well as
modeling of the non-spatial aspects of objects in space. Finally, it must support basic spatial
operators. Some important issues related to spatial data types and operations support as

they are realized by Guting [Gut94] and Paradaens [Par95], include:

e Eztenstbility. Spatial operations are usually application dependent. Hence, an effec-

tive spatial data model should allow the definition of user defined operations.

o Completeness. The data model has to be “closed” for all its operations, i.e., the
operations return representable types as answers. In addition, the operations must
capture all the intended functionality of space. For instance, the topological operations
in Section 2.4.6 can capture all the topologically distinct relative positions between

two objects in space.

e Genericity. The operations supported by the spatial data model must be independent
of the content of data [PVdBVG94].

e Set Operations. A spatial data model should support operations defined on individual
objects as well as on sets of objects [GS95b].

All of the proposed spatial data models are associated with some dominant data model-

ing approach, namely, the relational model approach, the extended relational approach, the
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Figure 2.12: A relational implementation of the BR scheme

object-oriented approach, and lately, with the knowledge representation approach to data
modeling.

The relational model has been used in engineering databases [GS82] and in geographic
information systems [CF81, CK81, AS86]. This approach has two major drawbacks. First,
it cannot support the hierarchical construction of spatial objects. Second, geometric opera-
tions are very hard to compute and thus are not supported by the data model. For instance,
the retrieval of the bounding edges of all blocks in Figure 2.1 requires an expensive three-way
join operation between BLOCKS and EDGES and VERTICES relation.

Certain drawbacks of the relational approach are handled by extensions to the relational
model. Useful relational extensions include the user defined types and functions (ADT-
INGRES, “QUEL as a Datatype” [SRG83]), the use of surrogates and long fields in system
R [LP83], the nested relations data model (NF2) [PSS+*87], the entity relationship approach
adopted by GEM [Zan83], the DAPLEX functional data model [CDF*82] and many others.

Extended relational models are able to represent the structure and the manipulations
over geometric entities. Those promoting the notion of abstract data types (ADTs), such as
“QUEL as a Datatype” and GEM are able to model structurally complex entities. DAPLEX
supports structure through the generalization and aggregation abstraction principles. The
extensions of System R and the NF? data model provide constructs for modeling complex
structures. A common drawback of these approaches is that they lack generality. Some of
them are able to model CSG easier than BR or the other way around. Some operations are
very hard to be computed and impossible to be extended. These drawbacks have led to a
third approach to spatial data modeling. Instead of defining extensions it is preferable to
build on extensibility. This approach is taken in the PROBE [OMS88] object-oriented data
model and is also featured by “knowledge models” such as Telos [MBJK90].
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The eztensibility of object-oriented databases allows the inclusion of specific object
classes that support the required data types (spatial data) and the required manipula-
tions. More specialized object classes are added as needed and customized optimizers are

built along with them.

In the PROBE data model (PDM) [MO86], spatial characteristics of entities are repre-
sented and integrated with non-spatial characteristics described in the DAPLEX ordinary
data model, by means of an entity type called PTSET (pointset). Entities of type PTSET
are geometric entities such as lines, areas and volumes. Geometric entities serve as values
of spatial attributes such as boundary or shape of ordinary database entities. The PTSET
type can be specialized to obtain entity subtypes with more specific spatial features (e.g.,
specific shapes). Complex shapes can be built by combining primitive ones. Specialized
types can also have specialized functions that are applied to them. A PTSET can contain
other PTSETs and the container is called space. The operations that are associated with
generic PTSET entities are either point set (e.g., spatial) or structural operations. Point set
operations include point set intersection, union and difference, spatial selection, overlay and
geometric transformations. The structural operations are concerned with the hierarchical
structure of spaces and are defined in terms of non-spatial operators of the PDM algebra.
The following example illustrates the structural facilities of PDM.

type MAP is ENTITY type FEATURE is ENTITY
title(MAP) --> STRING entity-type(FEATURE) --> FEATURE-TYPE
scale(MAP) --> INTEGER feature-id (FEATURE) --> INTEGER
area(MAP) --> PTSET shape(FEATURE) --> PTSET
feature(MAP) --> set of FEATURE

type ROAD is FEATURE create nev R in ROAD (
name (ROAD) --> STRING name ==> "College Str",
crosses (ROAD) --> set of ROAD crosses ==> {"Univ. Ave","St George"},
length(ROAD) --> REAL length ==> 296.89 )

Point sets are implemented by the Approzimate Geometry (AG) component of the PROBE
database system. The AG component consists of a query processor and a storage facility
for spatial objects. The storage structure of AG is based on a grid representation of spatial
objects. Each PTSET entity is decomposed into box-shaped elements. The representation
of PTSET entities by a union of box-shaped elements is approximate because it depends on
the granularity of the grid decomposition. Each grid element is assigned a 2-ordering number
[Ore86]. The use of the z-ordering numbers reduce spatial operations such as precedence
and containment operations, to simple bit-string operations. Hence, approximate spatial

operations are computed by very simple algorithms [OM88].
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An object-oriented approach in spatial data modeling has been taken by Mohan and
Kashyap [MK88], van Oosterom and van den Bos [vOvdB89], Maier et al. [AOG*88], Scholl
and Voisard {SV91] and many others.

The suitability of knowledge representation languages in spatial data modeling is ac-
knowledged by Milios et al. in [MMT89] and Lu {Lu93]. Milios et al. introduce GeoTelos,
an extension of the language Telos [MBJK90]|, to deal with spatial domains. GeoTelos
allows one to organize objects with spatial features (GeoConcepts) using aggregation, gen-
eralization and classification abstraction principles, also to express integrity constraints
and deductive rules. Deductive rules are seen as a means for specifying user-defined spatial
operators. The early design of GeoTelos proposed a set of spatial operators which are a
generalization of Allen’s temporal relations for two dimensions.

Over the last five years, extended relational spatial models had an impressive comeback
with systems such as Paradise [DK+94}, GEO [Vv092] and Montage [Ube94]. These systems

emphasize implementation technologies rather than data modeling issues.

2.5.2 Spatial Access Methods

At the physical level, spatial data are represented in terms of spatial data structures and
access methods. Almost all known spatial data structures are based on the principle of
partitioning the space into cells. A two way mapping relates regions of the space to the
cells that they fill up. Cells or sets of cells are assigned to disk blocks. Access to spatial
objects, given a regiou of space, consists of finding the cells that intersect the region (cell
addressing) and then finding the objects that occupy those cells (data access) [Nie89]. The
general concern during accessing of spatial objects is minimal number of disk accesses;
therefore good access methods are necessary.

Spatial data objects in d-dimensional space, d > 1, are approximated by their mini-
mum bounding rectangle (MBR). Methods for storage and accessing of (high dimensional)
rectangles fall into three categories [SRF87]:

e Methods that transform the rectangles into points in a space of higher dimensionality;
thus referred as point access methods [NHS84, SK88, Fre87, OSDM89)].

e Methods that use space filling curves to map a k-dimensional space into a 1-dimensional
space {OMB84, Fal88, Jagd0].
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e Methods that decompose the space into sub-regions and distribute appropriately the

data objects [Gut84, SRF87, BKSS90].

Decomposition-based access methods are further classified according to the techniques used
for decomposing the data space. Seeger and Kriegel [SK88] and Sellis et al. [SRF87)
presented two such classifications.

The most common spatial queries supported by spatial access methods include: (a) point
search, (b) range search, (¢) partial match and partial range queries, (d) nearest neighbour
queries, (e) spatial join and (f) zoom-in queries. Point search retrieves the data object that
meets a search criterion with respect to a certain point. Range search retrieves the data
objects that fall into a specified region. Partial match refers to the case where one or more
components of the search key are unspecified. The spatial join between two regions & and
S returns all pairs of data objects r and s such that they are in R and S respectively and

they overlap to one another.

2.5.3 Spatial Query Languages

The goal of a spatial database language is to allow the easy formulation of queries that
involve both spatial and non-spatial predicates without loss of spatial semantics. A desired
requirement is that the queries should be optimizable.

Existing spatial query languages are roughly divided into (a) extensions of the relational
languages, (b) object-oriented languages and (c) pictorial languages.

Chang and Fu [CF81] developed the QPE (query by pictorial example} language as
an extension of the QBE (query by example) and the predicate calculus. PSQL [RFS88],
GEOQL [OSDM89] and Spatial SQL [Ege94] are more recent proposals based on SQL.
[LM88b] used Peano tuple algebra, an extension of relational algebra, and computational
geometry for processing an important subclass of spatial queries. Guting [Gut88] extended
relational algebra in a many-sorted relational algebra with geometric types and geometric
operators.

Examples of the object-oriented approach in spatial query languages are object logic
[AOG*88], the deductive, object-oriented language by Mohan and Kashyap [MK88], GeoTe-
los [MMT89], and O,SQL [RS95).

Pictorial query languages emphasize direct manipulations of pictorial information inte-

grated with ordirary querying facilities. Some known pictorial languages are the PSQL and
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the PICQUERY [JC88].

Optimization problems in spatial databases are significantly different than business
oriented-databases. PROBE [OM88, Ore89] and GEOQL [OSDM89, OSD89] are known
efforts which have progressed in this direction. In particular, PROBE offers a way of ex-
tending the query operations and the optimizer (see section 2.5.1). In GEOQL, Ooi et al.
defined an optimizer which separates the spatial and the non-spatial predicates of the query,
which are handled by different processors, and a high level optimization procedure selects
the query execution plan with the lowest cost. Optimization of spatial subqueries is based

on the use of a spatial index.

2.5.4 Summary

This section presented an overview of the research in spatial databases. Work in this area is
broadly divided into spatial data modeling, data structures and access methods, and query
processing and optimization. Object orientation and knowledge representation offer suitable
modeling approaches for spatial databases because they can support the structural aspects
and a wide range of spatial operations in spatial representation schemes. The spatial data
structures and the access methods are well studied fields. There is virtually no work in query
processing and optimization at the query language level although there is a huge amount
of work at the data access level. The reason for this is that the corresponding problems
have not yet received satisfactory answers even for object ariented databases or knowledge
bases. Perhaps most importantly, the treatment of uncertainty and partial information has

not received enough attention in spatial databases.

2.6 Conclusion

We have reviewed research in the fields of spatial representations, spatial reasoning and
spatial databases. We have also motivated the importance of spatial knowledge management
by presenting several applications which demand support for spatial data.

One first observation is that efforts in spatial representation and reasoning are driven by
the requirements of specific applications. For instance, in robotics the emphasis is placed on
the representation of the free space and the path finding problem. In qualitative mechanics,

the representation and reasoning is mainly based on tangency relations. Geographic appli-
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cations require relative position computations and representation of the extremely arbitrary
shapes. As a result, there is no system that provides adequate functionality for a wide range
of spatial applications.

The second observation is that many applications such as CAD/CAM and geographic in
formation systems, have to cope with large amounts of spatial data. For this purpose, the
functionality of a database system is necessary. At the same time, the support of spatial
knowledge representation and reasoning techniques is generally acknowledged as desirable

and important.



Chapter 3

The Haze-Order Space and its

Axiomatization

3.1 Introduction

In this chapter we present a language for expressing spatial relations on points and regions
in imprecise space. We start by introducing an appropriate ontology of space and then
present the first-order theory of one-dimensional imprecise space. The theory of imprecise
space is axiomatized in terms of haze points and the haze and precedence relations. We
analyze the theory of one-dimensional imprecise space from the point of view of the model
theory and we note useful facts about its models. These facts foreshadow some of the
underlying principles of the spatial reasoning algorithms that are developed in Chapter 4.
This analysis contributes to the theoretical work in spatial representations since it explores
the limits of the haze-based approach. We also propose several extensions of the theory
for higher dimensional space. In the two-dimensional case, we define a complete set of
topological and directional relations that are useful for practical reasoning about space.
The proposed formalism is strictly qualitative with a built-in concept for imprecision.

The rest of this chapter is organized as follows: Section 3.2 discusses motivation and
proposes a new ontology of imprecise space. Section 3.3 reviews some definitions from
first-order logic and model theory. Sections 3.4, 3.5 and 3.6 present the development of
the theories of ore and two-dimensional point and region space, respectively, along with an

assessment of their models. Section 3.7 presents an application of the developed theories to
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the definition of binary spatial relations, and Section 3.8 discusses the problem of varying
the granularity. Finally, Section 3.9 summarizes the technical results of the chapter.

3.2 The Ontology of Haze-Order Space

An ontology of space is a conceptualization of space that includes a formal pattern for space,
its objects and the defined spatial relations. This work is interested in an ontology of space
with a built-in notion to account for imprecision.

The selected ontology of space must be characterized by simplicity and mathematical
clarity. The most successful computational paradigms base their success on their mathemat-
ical clarity. Relational databases are a well known example. The study of formal aspects of
spatial representation and reasoning, however, is a broad area without commonly accepted
formal methods and theoretical tools. A simple and mathematical ontology should be the
basis for proposing a comprehensive theory for spatial representation and reasoning. Such
a theory is expected to provide answers to questions such as: Does a set of spatial rela-
tions allow us to specify all the qualitative distinct situations in space? Are inferences, in
some given representation, sound and/or complete? Are certain theories of space complete
and/or decidable?

We propose the ontology of haze space in which space is viewed as a totality of spatial
objects connected by certain relations. The objects of haze space are either haze points or
haze non-point objects. Haze points refer to points of space which are surrounded by a haze
area, the smallest distinguishable quantity in the representation. Haze non-point objects
are constructed by connecting such areas. A consequence of the haze area around points is
that, at sufficiently small scales, objects are indistinguishable. Figure 3.1 illustrates haze
points in one and two dimensions.

Other researchers used the terms “tolerance” or “noticeable difference” [Rob73], [Kau91]
to describe a similar notion. The former is the closest concept to the proposed ontology
however the formalization of two proposals differs significantly. Tolerance spaces are de-
scribed in terms of inductive axioms. Worth mentioning is also the work on threshold and
interval rerpesentations [KSLT89, Fis85] in the context of measurement theory as well as

the work on logics for approximate reasoning [KH92]. All of the above study the mathe-

'A preliminary version of material presented in Chapter 3 has appeared in [Top94a}.
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Figure 3.1: The haze-point ontology

matics of imprecision in quantitative represesentations. The fundamental difference of our
work is that it is founded on a strictly qualitative basis. The haze-point ontology provides
for a formal treatment of granularity along the lines of [Hob85] because the definitions of
spatial relations are parameterized by a degree of detail. Finally, fuzzy set theory and fuzzy
logic [Zad94, Fre94] have been used as formal models to exploit tolerance for imprecision
and uncertainty leading to probabilistic models of reasoning. These approaches fall beyond
the scope of our study.

We assume two primitive relations, haze and precedence. The haze relation models
the indistinguishability of two objects being too close to each other. For instance, in a
macroscopic view, one cannot determine whether two close points on a line, precede one
another or are in the same place. If the two points start moving to opposite directions then
a precedence relation between the two starts becoming clear. Still the threshold after which
the two points can be sorted is not clear cut: it might depend on the distance from which the
observation is made, or the discriminating power of the particular observers. Finding the
threshold of indistinguishability is an interesting problem alone and it very much depends on
particular application domains. For the purpose of a theoretical investigation of imprecise
space, it is sufficient to assume that such a threshold is available.

The notion of haze can help us to model situations where input information is not precise
such as linguistic descriptions, sonar sensors output, scientific experiment results, etc.; or
situations where we are simply interested in limited degrees of precision. The size of the

haze area accounts for the degree of precision.
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3.3 Background

In this section, we present the definitions of first-order languages, structures and theories
that are needed for the discussion in the rest of this chapter. The theoretical background
of this chapter is based on material described in [End72], [Bri77], [CK77} and [Lad87].

A many-sorted first-order language L is a set of countably infinite symbols including
non-logical symbols such as a set of sort symbols, the V, and 3, quantifiers for each sort s, a
set of predicate, function and constant symbols, and logical symbols including one countably
infinite set of variables, for each sort, the standard sentential connectives A, V, = , & |
parentheses (,), and the equality symbol =,, for each sort s. Atomic formulas, well-formed
formulas and sentences are defined in the usual way [End72].

A first-order theory T is a set of sentences expressed in a first-order language L, that
is closed under logical implication. That is, T is a theory iff T is a set of sentences such
that for any sentence o of £, T = 0 => o € T. A theory is usually specified by providing
its language, a set of sentences called azioms, and a set of inference rules which, in the
case of first-order thoeries, are the stardard first-order inference rules of modus ponens and
generalization.

A many-sorted structure M is a set of objects along with relations and functions on
those objects and distinguished constants that the symbols of a first-order language take
their meaning on. M is an L-structure if: for each sort s in £ there is a domain set in
M, domp(s), where universally quantified variables of sort s take values from; for each
predicate symbol p in £ there is a relation p™ of appropriate arity and sort in M; for each
function symbol f, there is a function fM of the appropriate sort restrictions in M; and,
for each constant c of sort s, there is an element cM of domy;(s).

The truth of a sentence o in L is evaluated with respect to an L-structure M: M k o
reads “c is true in M”. The function v from the variables of £ to their domains in M, is
called valuation. We use the notation M E ¢[v] to say that M satisfies ¢ under valuation v.
The definitions of truth and satisfaction are the standard ones found in [End72]. A model
of a theory T expressed in language £ is an L-structure M, such that all sentences in T are
true in M. A theory T is consistent if there is at least one model for 7.

For a set of sentences £, Mod(X) is defined to be the class of all models of £. The theory
of a class of models M of L, denoted Th(M), is the set of all sentences of the language of
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M that are true in every member of M. Th(Mod(Z) is then the set of all sentences in all
models of . But this is the set of all sentences logically implied by £, called the set of
consequences of £, Cn(X). Thus Cn(X) = {¢: L E o} = Th(Mod(XZ). A set of sentences
T is a theory iff T = Cn(T).

A theory T complete if it is consistent and for every sentence P in the language of T,
either P or not —P, but not both, are in the theory. Th(M) is complete by definition.

Two models M and M’ are isomorphic if and only if there is a one-to-one onto function
from M to M’ such that any true statement about elements of M, in the language of M and
M’ is true also about their images in M’, and vice-versa. The two models are homomorphic
if the mapping function between M and M’ preserves the structure but is not required to
be one-to-one.

A theory T is finitely axiomatizable if there is a set of sentences ¥ such that T is the set
of all deductive consequences of ¥, that is Cn(Z) = Th{Mod(T)). A finitely axiomatizable
theory is axiomatizable, but not necessarily the reverse. A complete and axiomatizable

theory is decidable.

3.4 One-dimensional Haze Space

We start the formal development by first considering haze space in a single dimension,
denoted H1. The axioms of H1 are expressed in a many-sorted first-order language £. £
has two sorts of individuals: P for points and S for scales. The non-logical symbols of
L include the predicate symbols < and h both of sorts P x P x S, the predicate symbol
<, relating individuals of sort § x S, and equality for both sorts. Until Section 3.8, we
will assume that sort S contains a single constant symbol g which denotes the size of the
scope of the h(aze) relation. In the general case, relation h contains an explicit argument
which quantifies its indistinguishability, i.e., its value can grow or shrink denoting that the
imprecision of the representation increases or decreases, respectively. Although, relations <
and h contain a third argument of sort S, for readability purposes, we write them as binary
relations, £ < y and h(z,y). It should be noted that this is an equivalent notation that
does not impose any technical limitations since g is a constant. In the following the letters
z,y, z,u are taken as variables ranging over P.

The first two axioms of H1 state that relation & is reflexive and symmetric.
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Al.  Vz(h(z,zT))

A2.  Vzy(h(z,y) = h(y,z))
The next six axioms, with the exception of A6, express properties of the precedence relation.
Axioms A3, A4 and A5 state that the precedence relation is irreflexive, asymmetric and
transitive. A6 states that relation k is in the symmetric complement of <. Axiom A7 states
that space extends in both directions. Finally, axiom A8 ensures that there is a “step-wise
succession” with respect to the precedeunce relation which adds a discreteness property to

the haze point space.

A3. Vz(-z < 1)

Ad. Vzy(z <y = -y<z)

A5, Vzyz(z <y Ay<z => z<2)

A6. Vzy(h(z,y) = -z <y A -~y<z

A7.1 Vz3iy(y < z)

A72 Vz3y(z <y)

A81 VzIy(zr <y A ~3z2(z <z A z<y))

A82 Vziyly<z A -32{y<z A z2<1z})))
In addition, the equality axioms for each sort and linear order axioms for <, in S, are
assumed.

The symbols of £ are interpreted with respect to a fixed structure P1 which captures
our assumptions, i.e., space is discrete, unbounded, with precedence and haze relations
defined as above. The domain that underlies P1 is Z. The constant symbol g is assigned a
non-negative integer constant g under P1. The domain of P in P1 is the set of all intervals
of size 2g based on integers and it is denoted by I(Z). To each of the predicate symbols <,
h and <,, P1 assigns the relations p,r and < (the “less than” relation in Z)), respectively.

Relations p and r are defined as follows:

p={(i,7,8)li,j € I(Z) and for every z €1 it is the case that z+ g€ j V z - g € j}

r = {(¢,7,8)|3,7 € I(Z) and for every integer z such that z € % it is either
(z€jAz+g€EjAz—gg&For(z2¢jAz<tforeveryt€j)}

Note that an interpreted haze point over the integers line is an interval of length 2g. Two

points that are in haze relation have their interpretation intervals overlapping by at least
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Figure 3.2: A model of T (Example 3.4.1)

half of their length. It is easy to show that for a given g, P1 defines a class of models for
H1. It suffices to show that all axioms are true in P1. We can easily verify this for each
one of them. For instance, the meaning of A6 is that for every two intervals i, j, of size 2g,
if there is an overlapping between them such that their overlapping part is equal or longer
than g, i.e., for every = € 1 it is the case that z + g € j V T — g € j, then it cannot be the
case that i < 7 because we can findone z €1 and z€ jsuch that 2 +g€jAz—-g€j
contrary to what r states. Similarly, it cannot be the case that j < i. In the same way we
can verify the truth of all other axioms under P1.

Example 3.4.1 Let P1, = (I(Z),,7,2) 2 be an L-structure and T = {z < z,h(z.y,9)}
be a set of £ terms. Also, let ¢ be an assignment of £ variables to the domain of P1; such
that i(z) = [3,7],i(y) = [4,8],i(z) = [8,12] where [{,u] denotes a closed integer interval.
Then, the pair (P1,,1) is a model of T (see Figure 3.2).

3.4.1 On the Models of H1

While in the previous section our objective was an explicit axiomatic view of the structure
of haze space, in this section we take a view that combines representation and inference.
This involves, first, the further analysis of the qualitative properties of < and h and the
definition of a quantitative representation (i.e., build the models of H1) which facilitates the
problem of inference, i.e., it leads from recorded assertions to inferred ones. In addition, we
note useful facts about the models of H1. These facts foreshadow some of the underlying
principles of the algorithms presented in Chapter 4.

We start by looking into the haze relation. h(z,y) is a symmetric but not transitive
relation representing the indistinguishability of two points z and y. We can also define
another indifference binary relation on P which is based on < and is transitive. The new

relation is called neighbors, written n(z,y), and we say that z neighbors y if both z and y

2 As was mentioned earlier, sort S contains a single constant and thus, for brevity, its interpretation domain
Z and the interpretation function < for <,, are omitted from P12. Thus, P12 is written as (I(Z),p,r,2)
instead of (I(Z),Z,p,r, <z 2)
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are preceded and followed by exactly the same haze points. More formally, z neighbors y if
for all z such that z < z it is the case that y < 2, and for all u such that u < z it is the case
that u < y, as well as, for all z such that y < z it is the case that = < 2, and for all u such
that u < y it is the case that u < z. That is, z, y are inferred not to satisfy n(z,y) if some
z can be found that stands in relation k to one of them but not the other. Once again, h is
an abstraction of indistinguishability while 7 is a relation that denotes the indifference of
two points which perhaps are not too close to each other but they are perceived indifferent
when related to third points. n, as shown below, is proven very useful in drawing inferences
in haze space.

Some ordering information embodied in h relation can also be recovered by examining
how two hazy points are related to third points. We refer to the recovered ordering infor-
mation using the relation symbol <G and we write zJy to denote that z precedes everything
that y does. The details of G definition have as follows: First, if z < y, then by the tran-
sitivity of <, y < z implies £ < z, and therefore £Jy. Next, if k(z,y) suppose we find a 2
such that £ < z and h(y, z). This is interpreted as evidence that y lies after z; and we assert
that if opposite evidence is never found, then we can treat z as before or equal to y, which
means zJy. One important point that we need to emphasize is the assymetric nature of the
< relation. This involves looking at both its decreasing and increasing direction in order to
specify the delicate distinctions having to do with what exactly goes on the threshold that
determines whether z < y or h(z,y). Therefore, < denotes the ordering relation which is
induced by examining how z, y are related to hazy points that lie before them: zgy if there
is no z that provides contrary evidence, lying after z but before y (i.e., whenever z < =z,
then z < y). By putting together < and < we get the two-sided ordering relation < which
we will call an interval order. By symmetrizing < we obtain an indifference relation: 7i(z, y)
when both zJy and y<z hold. Similarly, we can define n and n, the neighbors relation. We

embody these ideas in the following formal definition.

Definition 3.4.1 Let < be an assymetric binary relation on P. The following relations are

defined in terms of <:
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y is followed by the same z’s as x y is followed by the same t's as x and

y is preceded by the same z's as x.
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x and y are indifferent

Figure 3.3: (a) £ precedes_from_above y, (b) £ precedes_from_below y, (¢) £ precedes y, (d)
T neighbors y

T precedes_from_abovey : Tdy=Vz(z <z = y<2)
T precedes_from_ belowy : zQy=Vz(z <z = z<y)
T precedes y DAYy =zy A zdy

z neighbors y ;o on(z,y) =EVrAy Aydz

The defined relations are illustrated in Figure 3.3.

We now build the quantitative representation for H1. Due to the assymetry of < we
need to take into account both the decreasing and increasing direction of <. We are basically
investigating numeric functions from P to Z with the following property: ¢(z) + & < ¢(y)
for every z < y and also ¢(z) < ¢(y) ~ d for every z < y. Note that it is possible that )
and ¢ can induce different orders on Z. A quantitative representation can capture the two
different induced orders by considering ¢ = ¢ = ¢ and two different threshold values § and
J. In such case, h(z,y) implies that ¢(z) lies in the interval [¢(y) — &, #(y) + 8). But the
symmetry of h implies that § = § = 4. All these concepts are formally summarized in the
next definition.

Definition 3.4.2 Let < be an assymetric binary relation on P. An integer valued function
¢ and an integer constant § form a quantitative representation if for all z,y,z € P, the

following hold:

(a) z <y iff $(z) +6 < $(y)
(t) if ¢(z) = $(y) then n(z,y)

To summarize the discussion until this point, we assumed a set of hazy points P and two

primitive relations < and 4 defined on it. < is an assymetric and transitive relation, while
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h is symmetric and non-transitive. Then, based on the primitive relations, we created two
new relations n and < which both together embody the same information as < and &, and
finally we built a quantitative representation for them over the integers. Now, we can prove

the following propositions:

Proposition 3.4.1 Let ¢ be any integer valued function and & any integer constant. If the
pair (P, 8) respects the Definition 3.4.2, then ($,68) defines a model for HI.

Proof. In Section 3.4, we defined a class of models H1 based on the integers by mapping
each element z of P to an interval, say i(z) = (I, uz], in I(Z) such that u; —I; = 2g (1).
Let us take § = g, ¢(z) = uz — ¢ and @(y) = I, + . Note that uy — § = l; + § because of
(1).

T < y means that either i(z) precedes i(y) or i(z) overlaps #(y) by less than half length i.e.,
uz —ly < g. This is written: u; —ly = ¢(z) +d—¢(y) +d < J or equivalently ¢(z)+6 < ¢(y)
which by definition is the interpretation of < under (¢, §).

h(z,y) means that —g < l; — ly < g. This is written: —8 < ¢(z) + 5 — ¢(y) — 4 < 4, ie,
$(z) 2> (¢(y) -4 and ¢(z) < $(y)+4d meaning that ¢(z) lies in the interval [¢(y) -4, ¢(y) +4]
which is also an implication of Definition 3.4.2 and axiom A6. 0.

Proposition 3.4.2 Relation n (neighbors) is an equivalence relation.

Proof. We need to show that n is reflexive, symmetric and transitive. Reflexivity and
symmetry of n is trivially verified by Definition 3.4.1. Reflexivity: n(z,z) =Vz(z <z
T<2)A (2 <z & z<z)isa tautology. Symmetry: n(z,y) = Vz(z <z & y <
2) A (z<z & z<y)=n(y,z) As for transitivity, suppose that n(z,y) and n(y,z). We
must show that Vw(z <w & z<w) A (w <z & w < z). But, from the hypothesis, for
everywitisz<w & y~<w & z<w,andw <z & w~<y & w <z hence n(z, 2)
and thus n is transitive. 0

Given that n is an equivalence relation on P, n partitions P into equivalent classes the
set of which is denoted by P/n. As the following proposition affirms, the equivalent classes
of n partially ordered by < as well.

Proposition 3.4.3 < partially orders the equivalent classes of n.
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Proof. The equivalent classes defined by n on P are disjoined and by the definition of n
and axioms A4 and A5 we can verify that < is irreflexive and transitive on the equivalence
classes and therefore it is a partial order. a

The following example illustrates the practical implications of the until now discussion
and also gives hints for an algorithm that computes the models of H13.

Example 3.4.1.1 Let P = {a,b,c,d}, <= {(a,d), (b,d)} and h(a,b). < does not discrimi-
nate between a and b. If we add a fifth element e such that e < @ and e < &, then < does
not distinguish @ and b either. Then, it is the case that n(a.b). If we use capital letters to
denote the equivalence classes, we get P+ = A,C,D, E and < = {(A4, D), (E, A)}, where A
is {a, b}.

We can also assign ranks 1 to 4 from low to high relatively to 9 and Q. These values
will help us to come up with a ¢ function when we build a model. < ties the ranks for a, b
while suggests that c lies above a,b and below d. Thus we assigna =1,b=1,c=2,d=3.
< ties a,b and ¢ since nothing is before them. So, we assign a = 1,6 = i,c = 1,d = 2.
Note that the ranking is not a model. We also need to come up with an appropriate §
value that satisfies the conditions stated in the proof of Proposition 3.4.1. For § = 1,
i(a) =[0,2],i(b) = [0,2],%(c) = [2,4] and i(d) = [4, 6] is such a model. O

Let us now investigate conditions under which the partial order structure that underlies
H1 is extended to a linear order. A linear extension of < is possible when A becomes
the identity relation. Then, A6 axiom of Section 3.4 turns to a weak linearity axiom. An
additional axiom stating that Vzy(-~z <y A ~y <z = h(z,y)) is needed to convert the
weak-order to a linear order by adding antisymmetry.

To summarize this section, we have shown (Proposition 3.4.1) that there is a mapping
between the class of models defined in Section 3.4 and the quantitative representation of
structure (P, <,n). In addition, we showed that P/n is partially ordered by <. This
establishes state that the models of H1 consist of partially ordered neighborhoods. We
have also outlined through Example 3.4.1.1 an algorithm to build models of H1.

3See Section 4.3.3.
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3.5 The Theory of Two-dimensional Haze Points

In this section we extend the theory of haze space by adding a second dimension, thus
deriving the theory of two-dimensional haze space. There are two distinct criteria defining
a theory of two dimensional space. First, the alphabet of its language needs to be extended
so that it contains two non-empty sets of operators. Second, the domain within which
the symbols of the language are interpreted needs to be two-dimensional. In providing
a method to define the two-dimensional theory of haze space, we have to pay attention
in the following three points: extending the language, its axiom system and the method
for defining its models. Our solution is based on the combination of two one-dimensional
structures of space and it is termed independent combination.

We extend the language £ with an additional sort of individuals, namely, the sort of
two-dimensional points. The set of sorts in £ now becomes {P, 7, @,S}, where P, P;
are two disjoint copies of P, and Q is the newly introduced sort. For clarity, hereafter we
require quantifiers to range over particular sorts. Let sorts(L) be the set of all sorts in £

and F(z) be a sentence. For each s € sorts(L):
Vz/s F(z) stands for Vz(s(z) = F(z)), and
3z/s F(z) stands for 3z(s(z) A F(z))

Symbols of each one copy of P are related by relation symbols < and h appropriately
subscripted with ; or 2. A pairing function from sorts P, x P; to @, relates two-dimensional

points with their one-dimensional coordinates.

{(z1,z2) it is a pairing function which returns the two-dimensional point formed by its

one-dimensional coordinates

Having augmented our theory vocabulary with new symbols we have to extend the ax-
ioms appropriately. The new theory is denoted by H2. Axiom Bl states that each two-
dimensional point consists of two coordinate one-dimensional points. In addition, axiom
B2 postulates that the pairing function “(,)" is injective (i.e., P1, P2 and Q have the same
cardinality.

Bl. Vz/Q 3z/P 3z2/ P (z = (z1,22))

B2. Vziyi /Py VZay2/ Py ((T1,22) = (Y, 32) = Z1 =41 A T2 =)

The next axiom extends the notion of haze to two-dimensional points, hh:
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B3. Vzy/Q 3ziy1/P 3z2y2/ P (z = (z1,22) A y = (y1,42) A (hh(z,p)
& hi(z1,51) A ha(z2.32)))
We now define a notion of weak collinearity along each coordinate axis in two-dimensions.
By convention, the two coordinate axes are subscripted by , (horizontal) and , (vertical).
B4.l Vzy/Q 3ziy /P Iz2y2/P; (z = (z1,22) A y = (y1,¥2) A (wcolineary(z,y)
& ha(z2,32)))
B4.2 Vzy/Q 3ziy /P zoye/Pe (z = {z1,22) A ¥y = (y1,¥2) A (w-colineary(z,y)
& hi(z,y)))
We also define the hor(z), vert(z) functions from sort @ to P, and P, respectively, to
return a point’s projection on the horizontal and vertical axis.
B5. Vz,/P, Vzo/P; (hor({z1,z2)) = 1)
B6. Vz,/P, Vzo/P, (vert((z1,z2)) = T2)
The point decomposition property is expressed by the following sentence (B7); B7 is a valid
sentence that follows from B1,B5,B6.

B7 Vz/Q (z = (hor(z),vert(z)))

Order (precedence) in the two-dimensional space is defined in terms of the <, <, relations

of the one-dimensional case.
Cl. Vzy/Q 3ziy1/Py Iz2y2/ P2 (z = (z1,%2) A y = (y1,%2) A (east(z,y) & 71 <1 y1))
C2. Vzy/Q 3z\y1 /P, 3z2y2/ P2 (z = (T1,T2) A ¥y = (Y1, ¥2) A (west(z,y) & y <1 71))
C3. Vzy/Q 3ziyr/Pi 3zay2/ P (z = (z1,22) A y = (y1,¥2) A (north(z,y) & y2 <2 Z2))
C4. Vzy/Q Iziy1/Pi Fzay2/ P (z = (T1,22) A y = (y1,¥2) A (south(z,y) & z2 <212))

East, west, north and south are irreflexive, asymmetric and transitive, and, in addition,
east is the inverse of west and south is the inverse of north. The following axiom states the
totality property in the two-dimensional space, i.e., any two points are related with one of
the nine disjunctive relationships. Figure 3.4(a) illustrates the nine distinct placements of

two points in two dimensions.
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Figure 3.4: A graphical illustration of axioms C5 and C6

C5. Vzy/Q (hh(z,y)V (1)
(w-colineary(z,y) A east(z,y))V (2)
(w-colineary(z,y) A west(z,y))V (3)
(w-colineary(z,y) A north(z,y))V 4)
(w-colineary(z,y) A south(z,y))V (5)
(north(z,y) A east(z,y))V (6)
(south(z,y) A east(z,y))V (7
(north(z,y) A west(z,y))V (8)
(south(z,y) A west(z,y))) 9)

Axiom C6 is to ensure the orthogonality property in H2 (see Figure 3.4(b}).

C6.1 Vryz/Q (w_colineary(z,y) Aw colinear,(z,z) = 3u/Q(w_colineary(z,u) A
w_colinear,(y,u)))
C6.2 Vzyz/Q (w-colineary(z,y) A w_colineary(z,2) = Ju/Q(w-colineary(z,u) A

w.colinear, (y,u)))

It can be easily seen that theory H2 has a class of models, i.e., is consistent, which are

based on the cartesian plane Z x Z. Next section precisely characterizes these models.

3.5.1 Models of H2

We developed a two-dimensional theory for space, H2, based on a combination of two theo-

ries that correspond to (independent) one-dimensional coordinates. This combination views
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each dimension independently. We require that the two-dimensional individuals are pairs
of one-dimensional individuals for which a separate structure is assumed. Cross-domain op-
erators defined between two-dimensional individuals are decomposable to primitive single
domain operators.

We will now examine the models of H2 and in particular their structure and the se-
mantics of evaluating two dimensional operators in them. First, we introduce the notation
used in the rest of this section. Op(Lc) denotes the set of non-logical symbols of a first-
order language Lc which is used to express statements about a theory C. Let (A, op,)
and (B, opp) are two L-structures of some first order language £ the cartesian product of
(A, 0p.) @ (B, opy) will be (A® B,op,oo0py) such that for each {(a;,b),{az,b) € AR B,
(a1,b1) opaoopy (a2, b2) is equivalent to ajopaaz A bropsbe.

The idea is to define a combination of two logic systems. For that we assume that the
language of a system is given by set of symbols and a set of formula building rules such as
the ones described in Section 3.3. Let Cy, Ca be two copies of the theory of one-dimensional
space referring to different coordinate lines. Statements about C, C2 are expressed in using
the same language, i.e., the formula building rules are the same, but on different sets of
symbols. In general, we do not want any non-boolean operator t be shares between the two
copies of the language; this may cause problems when we combine their axiomatizations.
To avoid such a behavior, independent combination imposes the restriction Op(Lc,) N
Op(Lc,) = @. The combined theory is H2. As far as its axiomatization is concerned, let
£}, X3 be axiom systems of Cj, Cs, respectively, then ©; U Z; U {B1,B2,...,B6} is the
axiom system of H2.

The models of the independently combined theory of two-dimensional haze space are
composed out of connecting the models of the two coordinate one-dimensional theories in the
following way. Let the structures P; = (dom(P1), hy, <1,g1) ¢ and P2 = (dom(P3), h2, <2, g2)
be models of C|, C> (as defined in Section 3.4), then the models of the combined theory have
the form (dom(P;),dom(P2), dom(P;) ®dom(P2), <1, <2, <10 <2, h1, h2, h1oha, g1, g281082).
Domains dom(P;),dom(P2) are the domains that sorts P, P, are interpreted at, where
domain dom(P;)®dom(P2) serves as an interpretation for sort . Due to axioms Bl and

B2, dom(P;) ®dom(P,) is nothing but the cartesian product of dom(P;1) and dom(P,).

4Note that hy, in this font, is the relation of P; that is used for the interpretation of the relation symbol
h1 of C;.
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Analogously, relation <; o <, stands as the interpretation of the vector operator (<, <2),
and so on.

Given an independent combination, every sentence of the combined language is decom-
posed into a C) formula, a C> formula and a P(airs)-part. Two projection operators H and
V separate the parts of the sentence that correspond to C| and C; respectively. In specific,
any H2 sentence of the form HV(Vz,..z;/Q ®) is written as

vfif-'l--zi/Q 3211"zt'l/P1 311:---7":'2/?2 (z1 = (xlnzl:) AcAzi = (zinziz) A H(®) A V(D))

where H(¢) (resp. V(¢)) involves only C; (resp. C2) symbols, and A; z; = (z;,, Zi,) is the
P-part and Q@ = P,®P,. Subscripts ;, 2 denote symbols from C| and C, respectively.

The H and V projections are obtained as follows:

1. atomic formulas

¢ H(¢) V(¢) P
L <141 L <1¥ T z =(z1,Z2) Ay = (y1,¥2)
T2 <2 Y2 T T2 <2 Y2 z=(z1,%2) Ay = (Y1, 32)
hi(z1,41) hi(z1, 1) T z =(z1,72) Ay = (y1,¥2)
ha(z2,12) T ha(z2,2) z = (z1,T2) A ¥y = (y1,Y2)
op(z,y) H{¢1) V(¢2) z = (31,22} Ay = (y1,52)

where op is one of the {hh, w_colineary, wcolinear. v, east, west, north, south}.

2. non-atomic formulas

® H(®) V(@) P(®)
—¢ —H(¢) -V{p) none
pAY H(¢) A H(¥) V{g) A V(¥) none

Vz/Q(¢(z)) Vz1 /P (H($(z1)) Vza/ P (V(¢(z2)) T = (z1,22)
3, v, = formulas are derived in the usual way.
Proposition 3.5.1 Let Hy be an independent combination of Cy and C2, and M = M\,&M,

the combined structure of M; and M where My and M, are models of C; and C3, respec-
tively. An H2 sentence ¢ is true in M under @ valuation v, if and only if H(¢) and V(¢)
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are true in My, My with valuations v, and vy and v = vy 0vy, i.e.,

M E ¢[v] iff M, E H(¢)[v1], Ma F V(¢)[v2] and v = viove = {{(z1,Z2)|Z1 € vy and z2 € va}

Proof: By induction on the structure of $.
Base case: ¢ is atomic. All five possibilities need to be considered. In fact, due to their
similarity, we group the first four into one case, which, without any loss of generality, we

assume to be the following: H($) = z; <) y1 and V(¢) =T. Then

M E=Vzy/Q3z iy /Pi3z2ye/Pa(z = (z,22) Ay =y ) AT <1 AT) &
M E=Vzy/Q3z \y, /Pi(z = (z1,vert(z)) Ay = (y,vert(z) Az, <1 n AT) &
M = (Vzy/Q(z = (z1, vert(z)) A y = (y1,vert(z)))[v1] and

M l"—" (1.'1 =<1 y1)[v1] and M }=T <~

M, ® Mz = (z = (z1,vert(z)) A y = (y1,vert(y)))[v] and

M = (z1 <1 y1)[vi] and

M2 E= T and

vy = {az|{a1,a2) € v, a1 € v1},a;’s are constants.

The remaining base case is if ¢ is atomic of the particular type op(z,y) with H(¢) and V(¢)

to be op1(z1,y1) and opa(z2, 12), respectively. Then

M = Vzy/Q3ziyi/Pi3zaye/Pa(z = (z1,22) A ¥y = (y1,¥2) A opr(z1,01) A
opa(z2, 12)) &

M = (z = (hor(z), vert(z)) A y = (hor(y), vert(y))[v] and

M = op1(z1,y1)[v] and

M = opa(z2, y2)lv] &

M [= (z = (hor(z),vert(z)) A y = (hor(y), vert(y))[v] and

M | opi(z1,)[v1] and

M; |= opa(z2, y2)[ve] and
v = {z|hor(z) = z| € v, vert(z) = z2 € v2}

Inductive step: The inductive step is straightforward. To simplify the presentation, we

will use the ¥ notation as short form of z,,zs,...,%n, and (Z,y) as equivalent of A;z; =

(zi,, Zi,). Then an H2 sentence is written as VZ/Q3Z:/P13z2/P2(T = (Z1,Z2) A ®(Z)).
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®(T) might be one of ,(F) A D2(F), €1(Z) V P2(Z) and —~P,(Z). We perform the inductive

step for first case only, since the rest of them are similar.

M |=VZ/Q3z\/P13%2/PAZT = (T1,Z2) A (21(T) A 92(3)) &

M, ® M = YZ/Q3z,/ P13%2/P2(Z = (T1,T2) A ®1(T) A 32(T) &

M, = VZ/Q3T, /P13Z2/P2(T = (Ti,Z2) A ®1(T) A ®2(Z) and

M, |=VZ/Q3Z, [/ P13Z2/ P2T = (71, T2) A €1(Z) A D2(Z),

which is true by the induction hypothesis. O

A similar method for combining two one-dimensional logic systems into a two-dimensional
system in the context of temporal logics, has been proposed by Finger [Fin93]. Finger
showed that the independent combination of two sound, complete and decidable logic sys-

tems carries the aforementioned properties.

3.6 The Theory of Two-dimensional Rectangles

We will now extend £ with an additional sort, R, for rectangles. A haze rectangle is
constructed by a pair of two-dimensional haze points. The new symbols in the language

include two predicate symbols for inclusion, and a pairing function symbol:

ing(p,a) point p is inside rectangle a
ini(a,b) rectangle a is inside rectangle b
[p, 4] is the pairing function which returns the convex rectangle which is formed
by the two-dimensional points p, q.
The necessary axioms for the augmented theory are stated in the sequel. The new theory
is called HR. For notational convenience, the letters z,y, z,u will be taken as individual
variables ranging over @, and the letters a, b, ¢, d will be taken as individual variables ranging
over R.
Similarly to the point pairing function, rectangle pairing possesses the axioms:
D1. Va/R 3zy/Q (a = [z,y] A east(z,y) A south(z,y))
D2. Vzyzu/Q ([z,y] =[z,u] = z=2Ay=u)
D3. Vzy/Q (low([z,y]) = z)
D4. Vzy/Q (high([z,y]) = y)
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Axiom D1 states that each rectangular region is composed of two two-dimensional points:
a bottom-left z point and a top-right y point, i.e., z is in east-south relation to y. Due to
axiom C5, z and y cannot be in the haze of each other (hh relation). To avoid inconsistencies
we restrict the domain of R to consist of those pairs of z,y € Q for which hh(z,y) does not
hold. Axiom B2 postulates that there is a unique way to construct each distinct rectangle
in R. Axioms D3 and D4 name the first and the second component point of a rectangle
pair to by low and high, respectively. Then, the rectangle decomposition property follows
from D1,D3,D4.
Ya/R (a = [low(e), high(a)])

We abbreviate formula east(z,y) A south(z,y), by ¢ <p y, meaning that z “diagonally”
precedes y. Then, we can state that all points included in a rectangle must be diagonally
included by its low and high point. Also, any two rectangles are in inclusion relation, i.e.,
in,, if and only if the inner rectangle’s points are diagonally enclosed by the outer’s extreme
points.

D5. Vz/QVa/R (ing(z,a) < low(a) <p T <p high(a))

D6. Vab/R(ini(a,b) & low(b) <p low(a) <p high(a) <p high(b))
In fact, D4,D5 define the two inclusion relations in terms of our ontological primitives,
namely, points, haze and precedence. in; is a partial order relation (transitive, reflexive
and antisymmetric) and ing is transitive over in,.
The following topological relations are defined in terms of in;. Their definitions are self
explanatory.

El. overlaps(a,b) = 3e(ini(c, a) A ini(c, b))

E2. disjoint(a,b) = VYc(~ini(c,a) V —ini(c,b))
The smallest, non-decomposable area in our representation is the haze area that surrounds
a point and is called atomic. Any other (non-atomic) region is called proper Region.

The precedence relations between rectangles are also defined in terms of the corre-

sponding relations in Q. As each rectangle is seen as a pair of two haze point objects, then

precedence is defined as:

a op b = high(a) op low(b)
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where op € {east,south,<p} as defined for two-dimensional haze points. Transitivity,
irreflexivity and asymmetry of these operators in R is easily derived.
The following axioms combine the notions of inclusion and precedence.
D7. Vab/R (aopb = -overlaps(a,b))
D8. Vab/R{(aopb = VYc/R (ini(c,a) = copb))
D9. Vab/R(aopb = Vc/R (ini{c,b) = aopc))
D10. Vabe/R (a op b op c = VYd/R (ini(a,d) A ini{c,d) = in(b,d)))

3.6.1 Models of HR

Inclusion is the base primitive for axiomatizing the theory of rectangles. In our ontology,
inclusion, a purely topological concept, is expressed in terms of the primitives of the ontology
(axioms D5,D6), thus showing that HR is an extension of H2. In consequence, only the
pairing function, “[, ]”, and the axioms D5-D10 are needed to define HR as an extension
of H2, and they follow the syntactic rules of the independent combination. All the other

sentences presented under H R are theorems in it.

3.7 Binary Spatial Relations

In this section we use the developed framework for the definition of topological and directional
relations. In particular, we define Egenhofer’s topological [EF91], [Ege91] and Hernandez'’s
directional relations [Her92] within the same framework.

Topological relations are defined between pairs of rectangles. In the cartesian plane, a
rectangle is defined by two points, the left-bottom and the right-top point. When points
are assumed to be haze points the extension of the rectangle may grow by size g at each
side. This means that there is uncertainty about the exact position of the rectangle and
the size of its area. In our simplified domain we can visualize a rectangle having a stripe of

width 2g as boundary. The real shape can be placed anywhere in this area.

disjoint(a,b) = —~iny(e,b) V ~ini(b,a)

tangent) (a,b) = 3p, q(ino(p,a) A ing(q,b) A hh(p,q))
overlap(a,b) = Ic(in,(c,a) A ini(c,b)

inside.(a,b) = ini(a, b) A Vc(tangenty(c,a) A tangenti(c, b))

insgidej(a,b) = in1(a,b) A -3Ic(tangent;(c,a) A tangent;(c,b)
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contain,(a,b) = inside;'(a,b)
contain;(a,b) = inside; *(a,b)

equal(a,b) = in,(a,b) A in;(ba)

The notion of tangency as defined here is “loose” tangency in the sense that two the rect-
angles share a point of their haze. If the size of the haze decreases tangent relationship
changes to disjointness.

Directional relations are defined between pairs of points. The first point is the reference
and the second is the referencing point. The characterization of direction is done by means
of the precedence and haze relations. Thus, granularity plays a role here, as well. Axiom
C5 defines nine disjoint positionings of a haze point y with respect to a haze point z.
The eight of them are directional: east(2), west(3), north(4), south(5), north east(6),

south_east(7), north.west(8) and south west(9) °.

3.8 Granularity

In this section we study the implications of supporting multiple granularity. There are two
ways to support multiple granularities. The first is to change the constant g in the original
theory H1 to a variable of sort S. Then, haze points are interpreted by integer intervals of
arbitrary length.

The second way to incorporate granularity change is to increase or decrease the value of
the constant g. This means that the haze area of all points in the representation increases or
decreases respectively and therefore the truth/falsehood of its statements changes as well.

The following axioms state these changes.

Gl.(=) Vg192/S (g1 < g2 = Vzy/P (h(z,y.91) = h(z,y,92))) coarsening

G2.(+) Vgi92/S (92 < g1 = Vz/P3y/P (h(z,y,q1) A —h(z,y,92))) refinement
The idea is that when the granularity changes then the original theory, say Tj, has to
change. In particular, Gl states that two points that are indistinguishable at g;, they
continue to be so at g2 > g; (—). G2 states that the transition from finer, g;, to coarser
granularity, g2 < g1, does not preserve indistinguishability (+-). Our future research goal is

to investigate syntactic methods for computing the theories T, and T_,.

5The number enclosed in parentheses identifies the corresponding disjunct of axiom C3
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An early work towards a formal treatment of granularity in reasoning systems was
presented by Hobbs [Hob85], where the use of a transitive indistinguishability relation was
proposed to select a local theory out of a global one. One of Hobbs conclusions was that
grain size should be an explicit argument of many predications. In our case, we chose the
h relation to be the grain-dependent predicate and we developed a theory using it as a
primitive. One advantage of our solution is that local, and possibly minor, changes of the
theory can reflect major modifications, because A influences the definition of many binary
spatial relations. Our goal is to explore rewriting techniques for carrying out this task and
provide soundness and completeness guarantees for theories of a certain syntactic type.

Our work is also compared to temporal modules and time units proposed by Wang et
al [WJS93]. This work, deals with the problem of mismatches in temporal databases with
different units of time. Their solution is to superimpose various units of time, finer or
coarser, over the predefined unit that appears in the database. That method has a global
effect in the sense that when the time unit changes the change affects the truth of all
the domain facts. Our approach adds a granularity argument to spatial relations; therefore,
changes of the grain size affect only the truth of neighbouring relations — assuming a notion
of neighbouring relations similar to the one presented in [Fre92a].

Finally, the rationale for supporting granularity in cur model is not only to allow for
imprecise descriptions but also to support indeterminate retrievals. In the latter case, an
indeterminate query, underconstrained in the Al terminology, is initially directed to the

coarser theory and its answer is refined as the logical theory is refined.

3.9 Conclusion

In this chapter we presented a concise and formal treatment of imprecision in one-dimensional
and two-dimensional space which appears useful as an underlying framework for addressing
the spatial reasoning and management questions of the subsequent chapters. Our discussion
extends to k dimensional spaces provided that the conditions of independent composition
are preserved when adding dimensions. The chapter also developed a mathematical basis
for the definition of spatial relations and the formal handling of concepts such as scale and
granularity in space.

The technical results presented in this chapter are summarized as follows: Initially we
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developed a first-order theory of one-dimensional space, H1, with haze and precedence rela-
tions, and we showed that its models are partial orders on a discrete domain. We proposed
a conservative two-dimensional extension of H1, called independent combination, in which
the evaluation of two-dimensional operators is reduced to the evaluation of projected one-
dimensional operators over two coordinate copies of Hl. From the two-dimensional point
theory, H2, and by independent combination, we derived the theory of haze rectangles,
HR. Finally, we outlined the effects of haze in reasoning with varying granularity.



Chapter 4

Reasoning with Qualitative

Constraints

4.1 Introduction

This chapter presents efficient algorithms for qualitative spatial reasoning based on the
haze-point ontology introduced in the previous chapter.

As established in Chapter 3, space in haze-point ontology is viewed as a totality of
spatial objects connected in terms of spatial relations. A haze point is the most primitive
object type which has non-zero size. A haze point can be thought in terms of an area of
haze such that the point in question may be located anywhere inside it. Haze points are
related in terms of haze or precedence relations. The former means that two objects are
“close” to each other and therefore indistinguishable. The latter means that one object
(one-dimensionally) precedes the other. Reasoning with spatial objects and their relation-
ships in haze-space essentially amounts to reasoning with one-dimensional haze points and
the haze and precedence relations (or the model of haze-orders, for short). Answers to
the reasoning problem drawn in this context are then combined to create answers to the
reasoning questions using higher-order constructs.

Reasoning about haze-orders involves, first, determining the consistency (satisfiability)
of a set of haze-order assertions, and, second, deducing new relations from those that are
already known (i.e., computing the closure of the input haze-order assertions). In this

chapter we study both reasoning questions in the context of one-dimensional haze-order

68
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space.

The rest of this chapter is organized as follows. Section 4.2 introduces the structure
of the qualitative graphs which underlie the reasoning algorithms developed in Section
4.3. Section 4.4 presents an alternative formulation of the haze-order reasoming problem
through constraint relational algebras. Section 4.5 presents an experimental evaluation of
the proposed algorithms. Finally, Section 4.6 summarizes the contributions and concludes

the chapter. !

4.2 Haze-Order Graphs

In this section we summarize the definitions and the theorems on which reasoning about
haze-orders is based. We also introduce a graph-based data structure, called haze-order
graph, that is based on the haze space ontology presented in the previous chapter and used

for the representation of a set of haze-order constraints.

Definition 4.2.1 A haze-order constraint is ¢ conjunction of haze-order terms. A haze-
order term is an atomic term of one of the following types: h(z,y) and = < y, where h and

< are the haze and precedence relations defined in Section 3.4.

Haze-order constraints are a special case of the language of haze point space introduced in
Section 3.4. The selected special case of the initial theory is motivated, first, by the starting
requirement of this research which is to study efficient reasoning algorithms, and second,
by the practical considerations that are discussed in Sections 5.4.2 and 5.4.3.

Haze-order constaints are represented in terms of haze-order graphs.

Definition 4.2.2 A haze-order graph is a labeled graph whose vertices represent one-dime-
nsional haze points and its edges represent binary haze-order relations that hold between
points. Edges are denoted by triples (z,l,y) and are either directed (1 is <) standing for <

relations or undirected (I is g) standing for h relations.

Figure 4.1 illustrates several haze-order graphs. For instance, graph (e) represents the set of
haze-order constraints {z < z, h(z,y}, h(y, z)}. Every vertex of a haze-order graph is named

IThe contents of Sections 4.2 and 4.3 have been published in [Top96a). An preliminary version of the
contents of Chapter 4 have also appeared in [Top94b).
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by a distinct variable name. It must be noted that in the language of haze-order constraints
we do not include constants to name specific haze points; instead, we use unbound variables
to name points with the understanding that any particular model provides an interpretation

for free variables.

Definition 4.2.3 In a haze-order graph kG, a sequence of n successive edges (zi,li, Tiy1)
defines a path of length n. If all the labels along a path are <, then the path is a <-path. A
path (z1,11,z2) ... (ZTi—1,li-1,Zi), (Ti, bi, 1) 18 a cyclic path. A cyclic path with both < and
g edges is called < g-cycle. An <%, g7-cycle is a <, g-cycle with i occurrences of < edges and

J occurrences of g edges.

The vertices of a haze-order graph are interpreted with respect to a totally ordered
set, i.e., the integers with the “less than” order relation. According to Proposition 3.4.1
of Section 3.4.1, there is a duality in the way that the models of H1 are represented, i.e.,
either as same length intervals or points over the integers line which have to be in certain
distance to each other. In this section we follow the second approach. Hence, a model of
a haze-order constraint set is a mapping from vertices to the integers, such that the values
assigned to any two vertices satisfy the relation represented by the edge connecting them.
A model also assigns a value g to the parameter that stands for the size of the haze. All

these are summarized formally in the following definition:

Definition 4.2.4 Given a haze-order graph, hG = (V, E), a model is a quintuple (v, P, R,
Ry, g) where P is a totally ordered set, v is a mapping from its vertices V to P, g is a
constant denoting the haze size, R« i3 a binary relation whose elements are pairs of P
elements such that for every (z,<,y) € E, {(v(z),v(y)) € R< and R, is a binary relation
whose elements are the pairs of P such that for every (z,9,y) € E, (v(z),v(y)) € R, .

The set of integers, Z, along with the relations Z. and Z, establish the interpretation
structure for haze-order graphs in this chapter. For some g, relations Z . and Z, are defined

as follows:
Z.={(a,b)la,b € Z and b~a > g}
Z, = {(a,b)|a,b € Z and |a — b} < g}

Note that there is more than one ordering that can satisfy a set of haze-order constraints.

For example, the constraints in C = {z < y, h{y, 2)} are satisfied by the orderings v(z) <
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Figure 4.1: Inconsistent (a-d) and consistent (e-f) <*, g7-cycles.

v(y) < v(z) and v(z) < v(z) < v(y), where v(z) denotes the integer value assigned to z.
Both orderings are models of C. A haze-order graph is consistent if it has at least one model.
Theorem 4.1 establishes a graph-theoretic condition which guarantees the consistency of a
haze-order graph. This condition is enforced by the consistency checking algorithm of
Section 4.3.1.

Theorem 4.1 A haze-order graph is consistent if and only if it does not contain any <%, ¢’-

cycles with ¢ > j.

Proof. (Omly if) If j = 0 we end up with an <-cycle which is inconsistent due to the
irreflexivity of <. If j # 0 and 7 > j, then we can cancel any g-edge on the path and
its preceding <-edge and still obtain a <-cycle which induces inconsistency. If { = j an
extreme case is encountered in which all the g-edges, (z,g,y), need to be interpreted by
an ordering where y precedes z (i.e., the g-edges materialize to the counter direction of
the <-edges), and all the <-edges, (z,<,z), are tight (i.e., the distance between z and z
is just above the g threshold). As a result, for any pair of successive < and g-edges, e.g.,
(2,<,z) A (z,9,y), z will precede y. Applying this inductive argument fur the <t g'-cycle
starting from a vertex v, we will eventually find that v precedes itself, since the cycle closes
at v, leading to a contradiction and therefore to inconsistency. The ¢ > j condition is
illustrated in Figure 4.1, Graphs (a)-(d) satisfy the condition and therefore are inconsistent
whereas graphs (e)-(g) are consistent. In particular, graph (f) is a <2, g3-cycle with the
ordering {v(z), v(y), v(v),v(2),v(w)} being a consistent model for it.

If) We need to show that any consistent graph does not contain a <*, g7-cycle with i > j.
Yy
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To show this, we use inductive on the number of edges. For the cases of 1 (trivial graph),
2 and 3 vertices, the base cases, this is verified by inspection of graphs (a), (b) and (e) in
Figure 4.1. In the induction step, we assume a consistent graph without an <?, ¢/-cycle,
¢ > 7, and insert an edge. Adding an <-edge will leave the graph consistent as long as it
doesn’t close a <-cycle or become the ith <-edge in a <*,g’-cycle and i = j. In any other
case a consistent model exist. The constraint imposed by the new edge refines the allowable
existing orderings of the graph vertices by eliminating those that violate it. Adding a g-
edge, as long as it is not the jth g-edge that closes a <?,g’-cycle and i = j, leaves the
consistency of the graph unchanged. d

From the remarks made in the proof of theorem 4.1 we conjecture additional con-
ditions that a consistent haze-order graph with <*,g’-cycles must satisfy. Observe the
graph in Figure 4.2(a). It contains a <2, g3-cycle, and thus it is consistent. The ordering
{v(z), v(w), v(y), v{v), v(u),v(s), v(z),v(t)} is a potential model for it. The condition that
must be satisfied in order for the above ordering to become a model is that all the order and
the haze relations are satisfied. This requires that there exists an assignment from vertices
to integer values and an integer value g that satisfies all the constraints. The selection of
allowable g values involves resolving some additional metric constraints. The expression
t*(g+ 1) — j* g = 0 determines the lower bound for the g value. The meaning of the
expression is that in the boundary case, that is, i = j — 1, all the g-edges are ordered
in the counter direction of the <-edges, and <-edges are all tight (i.e., just above the g
threshold). In this case a g exists such that it guarantees that the length cycle remains
zero and therefore is consistent. If ¢ < j — 1 (non-boundary case), this condition changes
to ;zl(g +a,) — (j — k) * g + by = 0 where q; is an integer increment (> 1) by which
each <-constraint exceeds the g threshold, & > j — ¢ is the number of g-edges, (z,g,y),
that are interpreted by a (v(z),v(y)) ordering, and b = Zf[v(y)g — ¢(z)i}. The cycle in
Figure 4.2(a) requires that g is at least 2 due to the above condition. Hence, a model can
be (g = 2,v(z) = 0,v(w) = 2,v(y) = 3,v(v) = 4,v(u) = 5,v(s) = 5,v(z) = 6,v(t) = 8).
Figure 4.2(b) shows the sorted cycle.

The minimum g value for each <?, g7-cycle, determined by the above expression, defines
the maximum degree of detail for which a consistent assignment for an <*,g’-cycle exists.
Therefore, a maximum g value that makes all <}, g7-cycles of a haze-order graph consistent
will characterize the minimal model among the potentially many possible models of the
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graph.

Definition 4.2.5 Two haze-order graphs are logically equivalent if they have the same set
of models.

Definition 4.2.6 Given a haze-order graph, an edge (z,g,y) ts disambiguated to the left
(resp. right) if the ordering (v(y),v(z)) (resp. (v(z),v(y))) cannot occur in any of its
graph’s models.

Notation: Label < denotes a “close-order” relationship; (z, <1,y) says that although z,y
are close to each other, z is slightly preceding y. Disambiguation of g-edges introduces
a new edge label and therefore a new type of edges. <-paths ands <, <, g-paths are also

defined in a similar fashion as the <, g-paths.

Proposition 4.2.1 In a haze-order graph, a g-edge between vertices ©,y is disambiguated,
i
1. (g-edges over triangles) vertices z,z and y are connected by a g*-path and z,y by an

<-edge, then the g-edges disambiguate to (z,<,z) and (z,<,y) (Figure {.3);

2. (g3, <-cycles) the two out of three vertices in a ¢°, <-cycle ordered as the last g-edges

are disambiguated in the counter direction of the <-edge;

3. (g%, <*~L-cycles) all the i in the number g-edges of a g*, <*~!-cycle are disambiguated
in the counter direction of the <-edges (Figure 4.2).

Proof The proof is based on the same argument as the proof of Theorem 4.1 since all the
above are special cases of <*, g7-cycles. 1 and 2 are trivial cases as illustrated in Figure 4.3.

An informal proof justification for 3 is given in the post-Theorem 4.1 discussion. a
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Long g-paths represent many possible orderings. The consequence of this proposition is
that in certain cases we can prune some impossible orderings by just using the structure of

the haze-order graph. This is beneficial in the design of an order inferencing algorithm.

Proposition 4.2.2 The vertices of any g-cycle with 2n + 1 edges can be interpreted inside

an interval with mazimum length ng.

Proof In the extreme case that half of the g-edges are disambiguated as <I-edges and the
other half as >-edges (opposite <-edges) and the maximum haze size is considered, their

2n + 1 vertices span over an interval with length ng. The same also holds for 2n edges. (1

Definition 4.2.7 A disambiguated haze-order graph is a haze order graph with all the g-

edges possible to disambiguate, disambiguated.

The corresponding disambiguated graph, dG, of some haze-order graph, hG, has the same
set of vertices and edges as AG and a richer set of labels.

In the following, we wish to entail the relations that hold between any two haze points
T and y given a haze-order graph representation. Most importantly, we want to entail
the strongest relations between any two points. For any two points, we want to decide
whether the one precedes the other (i.e., z < y) or are in haze relation (ie., h(z,y)) or
if either relation can hold (i.e., z <y V h(z,y)) or, finally, if the universal relation holds
(ie, z <y V h(z,y) V y < 7). The meaning of the universal relation is that any relative
positioning of the two points is possible.
Notation: If the expression ri(z,y) V ... V rp(z,y) is entailed by a haze-order graph, then
we say that relation R = {ry,..,r} holds between the two points z,y.

The two lemmata below present a graph-theoretic definition for the notion of entailment.

Lemma 4.2.1 Let hG be a consistent haze-order graph and let z, y be two vertices of hG;
hG entatls

1. z <y, if there i3 an <-edge or an <-path or a <*, g’ -path with i > j between T and y;
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2. 1 <y V h(z,y), if there is a <¥,¢7-path with j =i V j =i — 1, between z and y;
3. h(z,y), if there is a g-edge between z and y;

4. the universal relation in all other cases.

Proof. Since the haze-order graph is consistent, there are no forbidden <*, g7-cycles. How-
ever, there might be multiple paths connecting any two of its nodes. First, we cousider single
paths. The entailment of < relationships is justified by the transitivity of < if the two nodes
are connected either by a <-edge or an <-path, and by the quantitative constraint stated
in the proof of Theorem 1. If there is a <, g7-path between z and y, ie., if all the g-edges
disambiguate to the opposite direction of the <-edges, then still due to the the definition
of Z. and Z, and even if the <-edges are defined just above the g threshold, the < relation
is the only possibility between z and y. The {h, <} relation is derived if the < relation can
not win over a <*, g/-path. This happens if the number of g-edges is equal to or exceeds by
one the number of < edges as suggested by the quantitative formula given earlier. {h,~<}
cannot be derived if § > i+ 1 since the <!, g3-path, {z < y, h(y, 2}, h(z, t), h(¢, s)}, can have
a model which satisfies s < z. Thus, <!, ¢/-paths with j > i + 1 should entail the {<,h >}
relation. The entailment of 4 is a trivial case. If two nodes are connected by multiple paths
then the entailed relation will be the intersection of the relations entailed for each path. O

Lemma 4.2.2 Let dG be the disambiguated graph of a haze-order graph hG and let z, y be
two vertices of dG; dG entails

1. z < y, if there is an <-edge or a <-path or a <,<-path or a <i, <k, g7 -path with

i+k>j, k> 1, between z and y;

2. z <y V hiz,y), if there is a <*, <F ¢g/-path with i +k = j Vi+k—1 = j and
1#0V k#0, between z and y;

3. h(z,y), if there is g-edge or a Q-edge between T and y;
4. the universal relation in all other cases.

Proof. The proof of Lemma 4.2.2 is an extension of the proof of Lemma 4.2.1. In particular,

<-edges appear as result of disambiguating g-edges. These edges allow us to refine some
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of the £ < y V h{z,y) inferences to z < y inferences since they provide evidence that
certain haze relations are one-sided. Edges labeled by < entail A(z, y) relations because of
Definition 4.2.6. d

Proposition 4.2.3 Let hG be a haze-order graph and dG its corresponding disambiguated
haze-order graph. If dG entails zRy and hG entails zR'y then R implies R' (but not

necessarily the converse).

Proof. By applying Lemmata 4.2.1 and 4.2.2. 0

In the rest of this section, we show that the entailment notion based on haze-order
graphs computes stronger relations between haze-points, than the relations computed by
the path consistency algorithm.

Qualitative constraint networks are common tools in the study of constraint satisfaction
problems and strongest relations entailment in the context of temporal and spatial reason-
ing. A qualitative constraint network for haze-order constraints is a haze-order graph with
a complete set of edges, i.e., each vertex is connected to all other vertices. The intersection
and composition operations are key concepts for the consistency theory developed in the

context of qualitative constraint networks.

Definition 4.2.8 If RI and R2 are two relations holding between a pair of points z,y, then
the combined relation between z,y is defined by their intersection, R = R1 N R2.

Definition 4.2.9 The composition of two relations R1 and R2 holding between two pairs
of points z,y and y, z, respectively, is defined as R = R1 ® R2 = U ;,cRi rere T(r1,72),
where T is the composition operation between atomic relations (defined by a composition

table).

Figure 4.4 shows the tables that define the composition operations in the relation set
represented in a haze-order graph (T}) and a disambiguated haze-order graph (73). Notice
that table T5 is more detailed around the haze relation (labels <, g,>).

The following definitions are “classics” in constraint networks references [Mac77], [Fre82],
[vB92], [GS95a], etc.

A constraint network is arc-consistent if for each pair of vertices the entailed relation

is not empty, and it is path-consistent if for any triple of vertices, z,y and z, the condition
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Figure 4.4: Composition tables

R3 C R1 ® R2 holds, where R1, R2, R3 are the relationships between (z,y), (v,2) and
(z, z), respectively. Path consistency can be checked in O(n®) time, where n is the number
of vertices in the constraint graph, using the Mackworth’s path consistency (PC) algorithm
Mac77).

A constraint network is minimal if the relations holding between each pairs of its vertices
are the strongest possible. Relation Rl is stronger than R2 if Rl implies R2 but not
the reverse. An equivalent definition for a constraint network to be minimal is if every
subnetwork relative to the overall network is strongly consistent (the relations between
its vertices are minimal). The size of the subnetwork depends on the deployed constraint
language. 2

In the following we investigate conditions that determine minimality in haze-order
graphs. A haze-order graph is minimal if the relation entailed for each pair of its vertices
is the strongest possible. Unfortunately path consistency can not guarantee minimality in
haze-order graphs. Figure 4.5 shows counter examples. Path-consistency using the compo-
sition table T}, will determine that relation {<,g} holds between vertices z,y in the first
graph, where, by Lemma 4.2.1, the relation < is entailed. Path-consistency using the com-
position table T, however, yields the correct result for the first graph but it fails to ensure
minimality for a graph with a g3-pat: such as the the lower graph in Figure 4.5. Path

consistency with T; guarantees 5-consistency (any sub-network with 5 vertices is minimal)

?For instance, in the (exact) point algebra (PA) the condition of minimality is that each 4-node subgraph
has to be consistent. In the PA without # relations the size of the consistent subgraph is 3, etc. [vB92].
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but not 6-consistency for this graph. An interesting observation that is revealed by this
example is that the consistency condition in the presence of a haze relations, depends on the
length of the g-paths in the constraint set. Another point is that by enriching the relation
set with relations refining the qualitative scope of the original haze relation such as < and
>, we can increase the degree of consistency that the PC algorithm achieves. Naturally, this
process has a limit which is the refinement of the approximate haze up to the exact equal
and therefore the recovery of the {<, =, >} relation set for which PC guarantees minimality

(excluding the # relations).

Proposition 4.2.4 The path consistency property can not guarantee strongest relations in

a haze-order graph.
Proof. By the counter example of Figure 4.5. O
Theorem 4.2 Any disambiguated haze-order graph entails minimal relations.

Proof. We follow the same argument line as in [GS95a]. A minimal relation is the strongest
possible relation entailed. We need to show that any stronger relation than the entailed by
a haze-order graph is not feasible. We take the case of the haze-order graph with labels
{<,9,>}, for which Lemma 4.2.1 establishes entailment. This entailment is strong. The
lattice {ALL — {h, <}, {h,<} — h,{h,<} —<} represents all the “weaker to stronger”
relation pairs. Let r be the relation on vertices z, y, as entailed by this lemma. Any solution
for z, y that replaces r with a stronger relation, r', according to the above lattice will not be
logically equivalent, i.e., will not satisfy all the models that a solution containing r satisfies.
This is supported by a case analysis of the transitions and the checking of the quantitative
expression that corresponds to each entailment as described in Lemma 4.2.1. A similar
argument applies to labels {<, <, g,>, >} and Lemma 4.2.2. a



CHAPTER 4. REASONING WITH QUALITATIVE CONSTRAINTS 79

The implication of Theorem 4.2 is that the minimal network representation for a haze-
order graph can be constructed by simply computing the strongest entailed relation for each

patr of nodes.

4.3 Efficient Algorithms for Qualitative Reasoning about Haze-
Orders

4.3.1 Consistency

Theorem 4.1 suggests that a haze-order graph is consistent if and only if it does not contain
any <%, ¢’-cycles with i > j. We now present an algorithm (referred to as HOC hereafter)
which enforces this consistency detection criterion. The main idea is to reduce the haze-
order graph to a graph that contains <-edges only and whose nodes are collections of nodes
related by g-edges (hereafter we will refer to these nodes as hyper-nodes). Then, in a second
phase, we detect cycles that satisfy the inconsistency criterion.

The algorithm operates on an adjacency list representation of the haze-order graph. Let
Alist(v) be the adjacency list that corresponds to node v. For every (v, g, u) edge, u appears
in Alist(v) and v appears in Alist(u). For every (v, <,u) edge, u appears in Alist(v) but
not the reverse.

A hyper-node is a node created as a result of collapsing nodes connected by g-edges.
Each hyper node has a single “entry” point (node) and possibly many “exit” points. Each
enclosed node, v, in hyper-node, h, has a value d(v) denoting the distance of v from the
entry point of A according to a breadth-first traversal. If v is an exit point then d(v) is
assigned as a label to the hyper-edge emanating from v. The set of nodes enclosed by a
hyper-node h is denoted by nodes(h).

The following notation is used in the consistency algorithm: status(v) denotes the status
of node v during the course of the consistency algorithm. Initially all nodes are marked as
closed. If a node is reached by the algorithm, it is marked open, and when its processing is
completed it is marked done. Function in_point(v) returns true if node v has an incoming
<-edge, otherwise it returns false. Function out_point(v) returns true if there exists an
outgoing <-edge from node v, otherwise returns false. HyQueue is a queue of potential
hyper-nodes. H _edgeQueue is a queue for gathering boundary h-edges and <-edges that
are to be be inserted in the hyper-graph. queue(h) is a queue which stores the nodes that
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potentially become part of hyper-node A.
We can now outline the steps of the algorithm. A detailed description of the algorithm
is given in Figure 4.6.

Step 1 (reduction) :
This step builds a graph. It starts from some initial node, vy, and creates a hyper-
node h with queue(h) = Alist(vp). Queued nodes are inserted in A if they are not
out_points and connected to an enclosed node with a g-edge. out_points are queued
in HyQueue since they are potential nuclei for subsequent hyper-nodes. Edges that
lead to out_points are also queued for further processing. [n particular, queued <-
edges become edges of the hyper-graph. Queued g-edges are used to correct the d
values. This step continues until all nodes of the haze-order graph are marked done,

i.e., placed in some hyper-node.

Step 2 (detection) :
Let R be the reduced hyper-graph of AG. R is a directed graph. We run the strongly
connected components (SCC) algorithm on R to detect cycles. For each cycle found,
we test whether #edges > Ef:f’e’weight(edge,-) (1). If (1) holds the graph hG is

inconsistent.

Theorem 4.3 The HOC algorithm correctly detects inconsistency for any haze-order graph
in O(n + e) time, where n and e are the numbers of nodes and edges, respectively, in the

haze-order graph.

Proof. The correctness criterion for algorithm HOC is established in Theorem 4.1. The
algorithm described in Figure 4.6 enforces exactly this criterion. First, it computes the
maximum length of a g-paths that occur uninterrupted and encloses them in hyper-nodes.
Hyper-nodes are linked by directed edges, thus forming a directed graph R. The HOC
algorithm detects <-cycles on graph R by calling a procedure which finds the strongly
connected components of R. At this step the algorithm may exit with a recommendation
that the hG is consistent, if no cycles are found, or it enforces the consistency condition,
otherwise. The running time of the algorithm is dominated by the graph building phase
which is O(n + e). The consistency detection phase takes O(n’ + ¢') time, where n’ and €’
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Algorithm: HOC
Input: A haze-order graph hG = (V, E)
Output: Success, if hG is consistent, failure otherwise.
Let R = (V', E') be the reduced graph, initially empty, i.e., V' := {}; E' := {}
for all nodes v € V do d(v) := 0 ; status(v) :=closed end for
HyQueue := {} ; h_edgeQueue := {}
Let v := yg be the starting node, status(v) :=open //has to be either an in_ or out_ point
HyQueue := HyQueue U {v}
while HyQueue # @ do
h := pop(HyQueue)
Create hyper-node h with nodes(h) := v; queue(h) := Alist(v);
V' =V'u{h};
status(v) :=open; d(v) := 0;
while queue(h) # @ do
u := pop(queue(h))
if in_point(u) then
HyQueue := HyQueue U {u}
h_edgeQueue := h_edgeQueue U {(h,{,u)}
else if status(u) # done then
nodes(h) := nodes(h) U {u}; status(u) := done
for each w € Alist(u) do
if status(w) = closed then
status(w) :=open; d(w) := d(u) + 1; end if
queue(h) := queue(h) U {w}
end for
end if
end while
end while
while h_edgeQueue # @ do
(v,1,u) := pop(h-edgeQueue)
hy, hy are the hyper-nodes of v and u, respectively
casel is
g: 1if hy = nezt(h,) then
*correct* label for (hy, hy) hyper-edge
else if hy # nezt(h,) then
E' = E'U{(prev(hy), —d(v) — 1, hy)}
else if |hy| = |hy| then merge(hy, hy) end if
<: E' = E' U {(hy,—d(v), hy)}
end case
end while
consistency := True
C = {clc is cycle found while running SCC(R)}
while not (C = @ and consistency) do
let c=(e',v')e€C; C:=C - {c}
if (|¢'] > =I¢!weight(e;)) then consistency := False end if
end while
return conststency

Figure 4.6: The haze-order consistency algorithm



CHAPTER 4. REASONING WITH QUALITATIVE CONSTRAINTS 82

are the number of nodes and edges of R. In effect, the overall time complexity of HOC is
O(n +e). g

4.3.2 Computing the “Tight” Graph

Having computed a consistent haze-order graph, the next step is to compute the tight
graph, i.e., a haze-order graph with the most tight order relations 3. The tight graph, T,
underlying a haze-order graph, AG, has the following properties:

o all the disambiguations that are possible in hG, are made explicit in T’;
e any order relation implied by AG, is derivable in T by a path traversal.

A key concern in the development of the algorithm for computing a tight-order graph, is
to resolve ambiguities pertaining to <*, g’-cycles. An interesting situation arises when the
<*, ¢-cycles overlap.

The “tightening” algorithm operates on the directed graph R that is constructed during
the reduction step of the consistency algorithm. A topological sort of R gives an initial
ordering of the nodes which is then refined. The refinement step uses information about each
node’s connections. For each node v we maintain the following parameters: nezt_gtr(v),
prevss(v), next_geq(v) and prev.ieq(v), all with the obvious meaning. For each hyper-
node we classify its enclosed nodes to those that are connected only with internal nodes,
called the tnside set, and those connected with nodes outside the hyper-node, the frontier
set. From the connectivity of the frontier nodes to the outside ones we can deduce order
information about them. For instance, if two nodes v and u of the same hyper-node k; are
connected to the same node w of an adjacent hyper-node k2, and it is (v, <,w) and (u, g, w)
then v precedes wu; if it happens to be (v,g,u) this haze relationship disambiguates to a
close-precedes (<1) relationship.

The refinement phase of the algorithm traverses the nodes of the haze-order graph
twice. First, it walks the nodes starting from the nodes of the topologically last hyper-node
going backwards. At each node, it determines the nodes pointing to it via a nezt_gtr link.
All the g-neighbours of these nodes are examined and updated. In effect, all the implicit

triangles of nodes involving at least one explicit g-edge, that is, the currently traversed, one

3For each vertex the immediate next and previous vertices are identified
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of its predecessors and a g-neighbor of the later, are examined. The examination stage,
determines whether the third node is p_ordered. A node is p_ordered if either its next_gir
link points to one of its original g-neighbors (i.e., a disambiguation has happened) or its
nezt_geq link points beyond its next_gtr link. If the third node is not p_ordered then its
nezt_geq link is directed to the first node. A similar traversal is done starting from the
nodes of the topologically first hyper-node and going forward. This time the “previous”
links are updated. At the end of this process we have information about the closest next
and closest previous node for each each node v, as well as information about the possible
next and possible previous node of v. To facilitate the presentation, we have presented
a very high-level description of the algorithm. A detailed description of the “tightening”
algorithm (THO) is presented in Appendix A.1. The next step is to create a representation
of the tight-order graph which is suitable for query processing.

4.3.3 Computing the Query Graph

A query graph is used for answering queries. The query graph, Q, that corresponds to a
tight-order graph, T, is a logically equivalent representation to T that supports constant-
time retrievals. The query graph is computed using a ranking process similar to that of
[GA89] and [GS93] which assigns a rank to each node, thus making query processing a
lookup-and-compare operation.

In a haze-order graph the assignment of a single ranking value to each node will not
produce the desirable result. For instance, due to the haze relations, there are cases where
two points can be either before or after each other. The assignment of a single ranking
value will not reflect this relationship. Although the disambiguation of haze relations was
a major concern in the design of the “tightening” algorithm, such scenarios may still arise
since it is always possible that some haze relationships have still remained. To handle such
cases, the ranking process is designed to assign a low and a high value to each node.

The Haze Indez algorithm computes a query graph. The algorithm receives as input
a tight-order graph, i.e., a haze-order graph with previous (prev_eq, previss) and next
(nezt_geq, next_gtr) links computed for each node. The objective of the algorithm is to
create a quantitative index of the tight-order graph, i.e., assign an interval value to each
node of the graph such that the order relationship between any two nodes can be retrieved by

comparing their respective index values. The algorithm trades space for time. In particular,
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it transforms the edges-based representation of the graph to an adjacency list representation.
The n x n array option is rejected since the graph is expected to be sparse in most of the
cases. Note that the tight-order graph is a multi-graph, i.e., two nodes may be connected
by more than one edge. During the course of the transformation of the multi-graph to an
adjacency list of a directed graph, we collapse all the edges from v to u in a single edge
whose label is the composition of all single labels. The total cost of these preprocessing
steps is @(n +e).

The main step of the algorithm assigns ranking information to the nodes. This step is
essentially a depth first traversal algorithm starting from a special node called start. During
the traversal each node is assigned a rank (the value of an incrementing counter) any time it
is traversed. In effect, 2 node may have more than one rank. The minimum and maximum
rank of the node define its index range. The value(s) assigned as rank of a node, depend(s)
on the predecessor node rank and the type of the traversed edge. This step is also realized
in O(n + e) time. A detailed description of the HT algorithm is presented in appendix A.2.

4.4 Constraint Relation Algebras

In this section we introduce constraint relational algebras as an alternative formulation of
the haze-order reasoning problem. The purpose of this formulation is twofold. First, it
sets a framework that can accommodate and help in classifying various qualitative con-
straint languages based on haze relations. Second, it provides the background material for
incorporating into our discussion a class of matrix-based sequential and parallel algorithms
developed in the context of qualitative binary temporal constraint reasoning [LM94].

The 1 operator is used in the definition of the haze-order algebra. Let B be a set of
basic binary haze-order relations and D = 22 be the set of all their disjunctions. Members
of D related by the subsumes, D, relation form a lattice with the universal relation as the
top node. Given a member, a, of this lattice, the 1 operator returns the relation of the next
higher lattice level that subsumes a, i.e., a 1= b such that b D a.

Example. Let B = {<,9,>}, then D = {<, < g, 9, g >, >, <>, <g >, @}. For
notational convenience, we write < g to denote the relation {<, g} which corresponds to

the disjunction of < and g basic relations. The subsumes lattice is
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Definition 4.4.1 A haze-order algebra, HOp, over a set of basic haze-order relations, B,
consists of an underlying set of all possible relations, Dp, that can hold between two haze
points (usually Dg = 2B), a unary inverse operator, —, and two binary operators for

intersection, @, and composition, ®, satisfying the following properties:

1. D is closed under the operations inverse, intersection and composition, i.e., a™ € D,

a®beD,anda®b€ D, foralla,be D;

9. intersection ts associative, commutative, idempotent and has an identity element I,

ie,a®(bdc)=(adb)Bc, a®b=0ba,a®a =g, anda®I =a, foralla,b,c € D;

3. composilion is associative, commutative and has a quast identity, Q, and an annthi-
lator J, i.e.,a® (b®@c)=(a®b) @c),a®b=0Q¢e, a®Q =at, anda®J = J, for
alla,b,c € D;

4. composition distributes over intersection provided that the intersection does not eval-
uate to the empty set, i.e.,a® (b@c) =a@b6Ba®c, and (aBH)R®c=ac®®cHb®c,
for all a,b,c € D.

The elements of HOp are constraints that hold between two haze points. Note that in a
haze-order algebra, the composition operator has a quasi-identity, contrary to the compo-
sition identity of a regular relational algebra [vB90].

In the following we present specific haze-order algebras defined in the context of quali-

tative haze-order reasoning.

Basic Haze-Order Algebra HO;:
By ={<,9,>}
Dy={<, <g, g, g> >, <>, <g>, @}
I=<g>
Q=g
J=0
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Note that Dy is the set of all subsets of B (D = 28). The intersection and composition are

defined as:
a®b=anbd
a®b= U eq e T1(2,7)

where @, b € Dy and T is the topmost composition table in Figure 4.4. The inverse operation

is defined as

op < 1<g| g |g>]| > |<>|<g>! ©@

op~ jlg> > |<>]| < |<g]| g %] <g9g>

Clearly, HO, satisfies all the conditions of Definition 4.4.1.

Haze-Order Algebra with disambiguation , HOy:
Bd = {<1 <9, D1>}
Dy={<, <4, <g, 4, <dg, g, g, g&, g>>, D>, g>, > > > <D, 4>,
B>, <A >, < 4>, <D >, <D >, < g0, Agb >, b, <>,

< dg >, <gb >, < 4gb >, Agb, < g >, @}

I =< 9> >
Q=g
J=0.

Dy; contains all the subsets of B. However, many of the relations in Dy are synonyms of
the same relation (e.g-, <> and <Jgb> are thesame as g; < g >, < dg >, < gb >, < b >
are the same as < <{gb> > that we simply call ALL, etc.) By removing the symonyms in

Dy, we obtain a subset D} which contains all the useful and qualitative distinct relations,
Di={<, <q, <g, 4, g, 9, g>, >, g>, > >, >, <>, ALL,0}

The intersection and composition operations for HOy4 are defined analogously to those of

HOy. Composition for HOy4 uses the composition table T, (see Figure 4.4).

Haze-Order Algebra with multiple haze sizes , HOp:
By = {<,9,>, N}, where N is a natural number,
Dy={<,g9 > N, <g, <N, <> gN,g> N> <gN, <N> gN> <g>,
<gN >,0}
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I=<g>
Q=g
J=0

The meaning of N is that it allows the representation of many haze relations whose size
is a multiple of the size of g, e.g., 29,3g,.... Accordingly, < N is the order relation
corresponding to Ng, i.e., for some N the triple {< N, Ng, N >} completely covers the one
dimensional space. Some relations in Dy do not make sense in the physical space, e.g., N

and < N >. By deleting these relations, we obtain

v=1{<.9 > <g <N, <>, gN,g> N> <gN, gN> <g>, @}

Haze-Order Algebra with divisible haze , HOp-1:
By-1 = {<,9,>, N~} where N is a natural number
Dy-1={<, 9 > <@g 72 <> F. 9> % 3 <g>, o}*!

I=<g>
Q=g
J=0@

HOp-1 allows the representation of haze relations with size smaller than g. In this case,
N~! actually causes refinement of granularity g, where in HOpx, N causes coarsening of the
granularity. In addition, < is taken to be same as <, § a haze relation with half the size of

g, and 529 is taken as the disjunction of the < and the £ relations.

4.4.1 Haze-Order Reasoning and Relation Algebras

In the context of relation algebras, haze-order reasoning is expressed as a qualitative binary
constraint reasoning problem represented by a binary constraint network.

A haze-order constraint network of size n (number of vertices) can be represented by an
n X n matrix M over elements of a haze-order algebra HOp. An n x n matrix M is path
consistent if M; ; C M; x ® My for all 4, k, j. Path consistency is a necessary condition for
consistency in a constraint problem, but, in general, it does not imply consistency [LM94].
Instead, path consistency can be used as a pruning technique to narrow down the search

for a solution to the constraint problem represented by M.

4Only the realizable relations are considered.



CHAPTER 4. REASONING WITH QUALITATIVE CONSTRAINTS 88

In the following we present a modified path consistency algorithm for haze-order con-
straints. As shown in Section 4.2, path consistency cannot compute a minimal haze-order
graph (proposition 4.2.4).

The practical importance of this algorithm is that it can detect inconsistency of random
haze-order networks. Ladkin and Reinefeld [LR92] use a path consistency algorithm as a
pruning technique while searching for consistency of interval problems. Two remarkable
results of their work are first that every random interval problem can be solved in reason-
able time, given that the general problem is NP-complete, and second, path-consistency
computation time dominates the overall computation time since inconsistency is almost
guaranteed for large random networks. In our work, we are interested in studying the av-
erage time performance of inconsistency detection of the path consistency based algorithm,
as well as studying the relative quality of the algorithm’s output as we move along the
hierarchy of the haze-order relation algebras defined in Section 4.4. The final objective is
to establish an experimental test-bed (i.e., experiment parameters and criteria) that we can
use for the experimental evaluation of the haze-order graph techniques described in Section
4.3.

Figure 4.7 presents the algorithmic scheme for path consistency of haze orders. Various
versions of the same algorithmic scheme also appear in [Mac77], [Mei91], [vB90], etc. PC2—
HO, and PC2 — HOp are two derivatives of this scheme after substituting the & and
® operations with the addition and the multiplication operation defined by the tables
presented in Figures 4.8 and 4.9, respectively.

4.5 Experimental Evaluation

The algorithms presented in Sections 4.3 and 4.4 have been implemented and their perfor-
mance has been experimentally evaluated. In this section we present an overview of their

implementation and our experimental results.

4.5.1 Implementation of the Algorithms

The implementation of PC2-HO is based on a typical binary constraint networks imple-
mentation [A1l83], [VKvB89], [RCC92b]. The constraint network of size n is represented by

an n X n array, each entry (4,;) of which represents a constraint relation between entities
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Algorithm: PC2-Haze-Orders
Input: A matrix representation of a haze-order network, M
Output: “inconsistency” if M is inconsistent, or M’ C M.

Q= {(i,k,j)Ii <4,k #14,5}
while @ # @ do
select and delete any triplet (3, %, ) from Q@
if REVISE(, k, j) then
Q :=QURELATED_PATHS(:,k,7)
end while

SR L N

REVISE(, k, j)

1. Z:=Mijem,k®Mk,k®CkJ
2. if Z = M;; then return true
3. else return false

4. end

RELATED _PATHS(, k, 5)
1. return {({,7,m)} U {(m,i,n)} U{(.i,m)} U{(i, 5, m)}

Figure 4.7: The path-consistency algorithm

t,7. The implemented algorithm follows the algorithmic scheme of Figure 4.7. The algo-
rithm consults an addition and a multiplication table such as those presented in Figures
4.8 and 4.9. In fact, we have implemented two instances of this algorithm corresponding to
haze-order algebras HO, and HOy, respectively.

The implementation of HOC algorithm is based on the algorithmic description of Figure
4.6. This part of our implementation uses heavily algorithmic techniques of graph theory
[CLR91]. The implementation language for both algorithms is C.

4.5.2 Experimental Data

We ran the implemented algorithms using three classes of experimental data: randomly
generated “consistent” haze-order graphs, randomly generated graphs, and, finally, test
data from a real application.

The first category of test data refers to data that were created randomly and then filtered
by the consistency algorithm so that only consistent sets were finally selected. According
to the result of Ladkin and Reinefeld [LR92], randomly generated constraint satisfaction
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Figure 4.8: The addition and multiplication tables for HO,
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Figure 4.9: The addition and multiplication tables for HOn
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Figure 4.10: Fragment of a genetic sequence (contig-369)

problems beyond a certain size are almost guaranteed to be inconsistent. This data set has
been preprocessed in order to eliminate inconsistencies, since our purpose is to use the data
for measuring the relative performance of the two different algorithms.

The second category of data is used for comparing the two algorithms with respect to
their running time until they detect inconsistency. This dataset is program generated and
consists of haze-order graphs with randomly generated connectivity. Each graph node has
a fanout degree k in the range of 3 to 6 and each edge is labeled by either a haze or order
relation with probabilities g and 1 — g, respectively.

The third set of data is taken from the human genome project {Fre91] and in particular
they have been retrieved using the AceDB system ([TMD92]. This dataset originally con-
tained ordering information which we have fuzzed thus creating haze-order relations. Figure
4.10 illustrates a fragment of the sequence of genetic intervals that has been used to create
this dataset 5. The genetic intervals shown in Figure 4.10 have been identified by biological
experiments of limited precision. Particular problems of imprecision in genome data and
possible solutions using our formalism are discussed in Chapter 6. Here, we only use genome
data as suitable one-dimensional haze-order data for testing the variants of PC2-HO al-
gorithms, A preprocessing transformation has been applied to these data which turned
genetic intervals to haze points related by haze (overlapping intervals) and order relations.

4.5.3 Results

The graphs of Figure 4.11 illustrate the running time of the HOC algorithm as a function
of the input size for program generated haze-order graphs. The graph on the left in Figure
4.11 displays HOC’s running time in contrast to the nlogn line while the graph on the

%The genetic intervals (called YACs) depicted in Figure 4.10 belong to the contig-369 [DOES2].
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Figure 4.11: Performance of the Haze-Order Consistency algorithm

right in Figure 4.11 displays HOC’s cost contrasted with the n? line. n? is the worst case
complexity bound of HOC'’s for the case in which the input is a complete haze-order graph.
The input haze-order graphs used in this experiment where sparse graphs. Each graph of
Figure 4.11 summarizes a 400 runs of the HOC algorithm.

The graphs of Figure 4.12 show the dependence of HOC’s performance on the type input
relations, i.e., the labels of haze-graph edges. Two experiments were conducted to study
this dependence. In the first experiment we varied the number of order relations/labels
from 10% to 90% of the total number of edges for fixed size haze-order graphs. The results
are illustrated by the graph on the left of Figure 4.12 and show a peak in the cost of HOC
when the number of order relations (#orders) is equal to the number of haze relations
(#hazes). When #torders > #hazes, the cost of HOC is a little higher. The explanation
of this is that gforders controls the number of hyper-nodes that the algorithm creates, and
that the detection part depends on this number. The second experiment plots the cost
of HOC for various #orders/#thazes ratios as a function of the size of the graph. The
finding in this experiment is that the cost increase with respect to N is sharper for bigger
#orders/#hazes, exactly for the same reasons as in the previous experiment. The results
are shown on the graph on the right in Figure 4.12.

The third series of experiments compares the cost of HOC and PC-HO-b algorithms.
This part uses test data of the first and the second category. The graph on the left in



CHAPTER 4. REASONING WITH QUALITATIVE CONSTRAINTS 94

running time (msecs)

HOC: haze relstions

running time (msecs)

HOC: haze reiations

—
200.00 [ ! TN 00 [ ’ ‘ . 0%
=5 ¢ 6%
180.00 — - ) ’, 554
160.00 — - 250.00 — S S
! %0
14000 — - 200.00 — R |
120,00 — - A
- .I I.,:.d’ ;
100.00 |— - 150.00 |- —
|
80.00 — - i
60.00 — . r) - - L} _ 100.00 — -t
."' ~® }
40.00 | e - 50.00 _JN‘
20.00 |~ - i
i i
0.00 — — 0.00 — —
1 ] ! h% { i | I
0.00 50.00 100.00 50.00 100.00

Figure 4.12: Dependence of HOC’s performance on the relations’ type

Figure 4.13 displays the relative cost of HOC and PC-HO-b for large and “consistent” data
sets. As the data set is relatively sparse, the obtained running times for both algorithms
are far from their upper complexity bound. HOC outperforms PC-HO-b, since it takes
advantage of the structure of the input data. However, when the test data are random,
then by a high probability they contain an inconsistency. In this case PC-HO-b is expected
to detect it earlier than HOC. This is because HOC undergoes a preprocessing phase before
its consistency detection phase. In our experiments we have modified PC-HO-b in two ways:
(a) stop after the first inconsistency found, and (b) avoid updating the constraint network
with relations that cause inconsistency so that it can finally process the entire input data
set. These two variants are displayed on the graph on the right in 4.13 as PC-inconsistency
and PC-all. The same modifications have also been made for HOC (denoted by HOC-
inconsistency and HOC-2ll}. In addition, we have measured the HOC's preprocessing cost.
The results show that the preprocessing phase dominates the cost of HOC and also verified
our intuition that if random input is used, then PC-inconsistency ceases very early.

The fourth series of experiments studies the differences between the variants of PC-HO
algorithms. These experiments use the third dataset. The input for these experiments is
a number of order (#orders) and haze (#hazes) relations on fixed sized haze-order graph
(fragment of contig-369). The goal is to inspect the relations sitting on the edges of the con-
straint network when PC-HO-* stabilize. These relations are classified in the following types:
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Figure 4.13: Comparison between HOC and PC-HO algorithms

ORD={<,<wn,>,>N}, HAZ={g,Ng}, HLF={< g,9 >, < gN,gN >} and NOR={ALL}.
The top two tables in Figure 4.14 show the results. Figures 4.15 and 4.15 (left) show the
plots and a bar chart derived from these tables. Finally, the table at the bottom of Figure
4.14 presents the resulting output relations before and after the application of a preprocess-
ing phase which enforces the rule described in Figure 4.3. This step attempts to increase
the order information that is used as input by the PC-HO algorithms. The success of the
preprocessing step is shown on the Gain column of the same table. The bar chart on the
right of Figure 4.15 displays the results. As the results show, PC-HO-N succeeds in trans-
forming many NOR constraints to either HAZ of HLF constraints. PC-HO-N becomes more

successful when the number of input order relations increases.

4.6 Conclusions

We have studied the problem of qualitative spatial reasoning in one-dimensional haze space.
Haze-space is a qualitative representation of space where entities are related in terms of an
indistinguishability and a precedence relation.

The main contribution of this work is the definition of a computational model for reason-
ing about haze-orders. We have defined a data structure, called a haze-order graph, which
is used to represent constraints on haze-space entities. We have addressed two reasoning

questions, namely, the consistency of a set of haze-order constraints, and the strongest re-
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PC-HO-b (No preprocessing)

Input Output

## haze # order | ORD HAZ HLF NOR

152 95 432 470 2202 8560

152 141 728 498 3200 7672

152 220 1784 812 5226 3842

152 241 2350 844 5110 3360

152 239 1262 588 4446 5366

152 323 2512 860 5050 3242

PC-HO-N (No preprocessing)

Input Output

# haze # order | ORD HAZ HLF NOR

152 98 378 3041 7041 1204

152 180 1146 4460 5916 142

152 231 1765 2599 6590 710

152 303 2308 1016 7049 1291

152 409 2902 1692 6492 654

152 531 3732 3109 4693 130

Experiment Output

Algorithm Prepr. Gain (%) | ORD HAZ HLF NOR
PC-HO-b No 1454 540 4432 5238
PC-HO-b Yes 8% 1524 502 4154 5484
PC-HO-N No 1200 3597 6361 506
PC-HO-N  Yes 8% 1324 1723 7467 1150

Figure 4.14: Experimental results from the PC-HO-b and PC-HO-N algorithms
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lation computation between any two entities. We have developed polynomial algorithms

for both problems, and in addition we have defined a quantitative index structure that

can support constant time retrievals. Another interesting finding of our study is the proof

that the classical path consistency algorithm can not be used for computing the strongest

relation between any two entities.
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Chapter 5

Modeling Spatial Imprecision in

Databases

5.1 Introduction

This chapter proposes a novel spatial data model which facilitates representation and rea-
soning with various forms of qualitatively and quantitatively incomplete spatial information.
1

As mentioned in Chapters 1 and 2, existing spatial representations for databases can
generally be classified into two broad categories. The first category includes models that
focus on explicit representations of space usually in terms of a quantitative formalism such
as a map or a digitized array. We call these models complete since they represent the
entire modeling space (see for example, [OM88], [RFS88], [GS95b]). The second category
includes models that focus on the representation of spatial features that are essential and
are expressed in terms of a qualitative formalism such as symbolic arrays [GP92] or spatial
relations [Her92]. The models are capable of reasoning about partial spatial information
but, by-and-large, ignore quantitative spatial information and performance concerns.

The proposed spatial data model accommodates both qualitatively and quantitatively
partial spatial information. The expressiveness of the model is further enhanced by the
provision of facilities for dealing with granularity and scale within a single framework.
The formal tools employed in the development of the data model include a conceptual

1The contents of Chapter 3 have appeared in [Top36b].
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modeling language, where the features of the proposed spatial data model are embedded,
and a constraint-based language that is suitable for representing partially specified spatial
information.

The rest of this chapter is organized as follows. Section 5.2, includes an informal pre-
sentation of the features of the proposed spatial data model using the running example
of Section 1.2. Section 5.3, integrates the proposed features with a conceptual modeling
language, while Section 5.4 presents a formalization of the data model. Finally, Section 5.5,
presents a summary of the work described in the chapter.

5.2 Granularity and Haze in Spatial Representations

This section first introduces the notions of scale and grain as basic concepts emerging from
the example of Section 1.2 and then presents two fundamental constructs of the proposed

spatial data model: the spatial envelope and the map structure.

5.2.1 Basic Concepts

A spatial object is a symbol structure representing a point or region of space.

Spatial Object Types. As suggested by the example of Section 1.2, spatial objects can be
either landmarks, in which case there is complete information about the point or region of
space being represented, or indeterminate objects (or indeterminates, for short), for which
there is only partial information about the point or region being represented. Indeterminates
are related to landmarks through constraints expressed in a qualitative constraint language.
Scale. In a representation space, a scale is a system of ordered marks used as a reference
standard in determining the relationships between representations. For metric domains, a
scale is defined as an ascending set of point values which differ by a fixed interval, called
grain (or unit), denoting distance from a fixed constant of the system. In qualitative domains
a scale is defined as a fixed order between landmarks which may differ by a variable size
qualitative interval.

Scale Hierarchy. A scale hierarchy is an ordered set of scales, S = {s1,92,..., 3}, such that
for each spatial object & at scale s; there exists a container object container(a) at scale
s;1 that contains a, i.e., inside(a, container(a)), for i = 2...n. The existence of a unique

container requires that the scales are not overlapping and that scale s;_; is “coarser” than
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Figure 5.1: Representation of landmark and indeterminate spatial objects

3;. The coarser relation is a total order. The ordered set {city, section,division} of the
above example, defines such a scale hierarchy.

Haze. Haze is 2 region which contains an indeterminate spatial object (point or region) and
specifies the degree of indeterminacy associated with the object. In the example, assume
that the position of V; is specified as “at University Ave. and Queen St.” where V, is said
to be “near College and St. George St.”. In effect, V2’s position is given more precisely

than that of Vy. Consequently, the haze size for V, is greater than the haze size for V,.

5.2.2 Spatial Constraints

Constraints have been shown to be very useful in representing qualitative and quantitative
temporal information [vB90], [KL91], {Kou94b]. This section develops a particular class of
spatial constraints, which provide a convenient syntactic facility for expressing partial and
relative information about spatial objects.

Spatial constraints are conjunctions of atomic formulas expressed in a constraint lan-

guage L. Section 5.4 presents such a language, namely, the language of qualitative and
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quantitative constraints on indeterminates and landmarks in one or two-dimensional space.
In section 5.4, we also define a set of higher level topological and directional spatial relations

which can serve as basic vocabulary for the constraint language. Here are some examples:
o close(V2, “University Ave. and Queen St.”)
e south_side(V'1, “UofT”) Aeast.of(V1, “Spadina Ave.”)

The discussion in the rest of this section is restricted to constraints on a single dimension,
that are conjunctions of the following two types of atomic constraints: z Rc, and z—y Rc;
where z, y are variables representing indeterminates, ¢ is a constant representing a landmark,

and R is one of {=, <, <}.

5.2.3 Spatial Envelopes

Spatial constraints can be used to define arbitrary types of spatial indeterminacy. Spatial
envelopes provide a convenient mechanism for defining a useful and often-occurring type of
spatial indeterminacy. In particular, spatial envelopes constrain an indeterminate spatial
object to fall within a region. If z is an indeterminate spatial object, its spatial envelope
is denoted by env(z). The spatial envelope of a two-dimensional object is a rectangle
characterized by two one-dimensional envelopes. A one-dimensional envelope constrains
the exact position of an indeterminate spatial interval.

Indeterminacy in one-dimension is formulated as follows. Let I be an indeterminate
interval whose (partly known) start and end points are denoted respectively by Is and
Ir. The length of I is denoted by some constant ¢, defined with respect to the scale of
the metric domain of I. The envelope interval of I, env(I), is a pair of point envelopes,
env(Is), env(Ig) (see Figure 5.2 for a graphical illustration). In a discrete domain, each
point envelope, env(P), is represented by two points, P, and Py which impose lower and
upper bounds on the position of point P. Assuming that the size of the haze is g, then
points P and Py are related by the constraint 0 < Py — Py, < 2g, and the envelope definition
P, < P < Py for some point P. For interval envelopes, the length of the interval poses an
additional metric constraint, i.e., Jg = Is + ¢. As a result, the one-dimensional interval
envelope, env(I), can be characterized by four variables, Ig,,Is,,Ig , and Ig,, related by

the following constraints:
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Figure 5.2: Spatial envelopes

0<Ig —1Is, <2,
0 < Ig —1Ig <29,
Is, < Is < I,
Ig, < Ip < I,

Ip—-Is=c

An envelope provides a convenient way for representing indeterminates after compiling-in
their indeterminacy: a spatial object whose location is partially known is enclosed inside

envelope parameters.

5.2.4 The Map Structure

The map structure is a logical data structure used to define a collection of spatial objects

and their inter-relationships. Formally, a map structure m is a quintuple
m=(L7 I" C'l 81 g)

where L is a finite set of landmarks, I is a finite set of indeterminate spatial objects, C is
a set of spatial constraints and s and g are its scale and grain, respectively. As is often the
case, the same block of space may be represented by multiple maps of variable granularity.
For example, Figure 5.1 shows several maps at various grains of scale division representing
the same block of space. Specifically, L = {A,B,C,D,E,F}, I = {Vy,V2,V3,X} and m;, =
(L, I, C,division, gm, ), ma = {L, I, C,division, gn, ), m3 = (L, I, C,division, gm,} are maps
corresponding to Figures 5.1(b), (c) and (e), respectively. The set of constraints, C, is
explained below.

Every map definition must be such that its grain size can accommodate the haze size
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of its indeterminates. More formally, if haze is a function returning the haze size of an
indeterminate and g, is the grain size of map m, then this condition is written as g, <
min{haze(i)|t € I}. The map corresponding to Figure 5.1(c) satisfies this condition since
haze(Vy) = hy, haze(Vy) = haze(V3) = hg, haze(X) = hz, gm, < h2 < hy = hz. The map
shown on Figure 5.1(b) is an example of a map which violates this condition.

The construction of a map involves two phases: First, the set of landmarks of the map
are represented, followed by a definition of the map indeterminates. For the first phase, we
assume that the input is a “segmented image”, e.g., an n X m occupancy array, containing a
set of landmarks, L. The grain, g, for the map is captured by the size of the array cells. A set
of X and Y constraints can then be defined so that each one contains all the known order
and distance relationships between landmarks along the X and the Y axes, respectively.
Indeterminacy can now be circumscribed for map indeterminates through spatial envelope
constraints.

Example 5.2.2.1 This example shows a constraint representation created for the static
part of Figure 1.1(d). As indicated earlier, landmarks are approximated by their mini-
mum bounding rectangle; we therefore need four parameters for representing them, namely,
Asy,Agpy,As, and Ag,. Let g be the grain of the map. Then, with the help of an
appropriate “cutting” function, we construct the array representation, say this is the ar-
ray of Figure 5.1(c). The following two sets of equality constraints define X and Y axis

projections of this array:

Xeon : { Esy=0,A5,=0,Egy,=3,Cs55 =5, Cpx=T, Arx=9,
Bs,=9,Fs,=11,Ds, =11, Bg, =12,Dg, =15,Fg, =15}

Yeon : { Es,=0,Fs,=0,Eg,=2,Fg, =2, Ds,=5,Dg, =T,
Cs,=1,Ce,=10,As, =15, Bs,=15,Bg, =17,Ag, =20}

a

Indeterminates are introduced next. According to the earlier discussion, a two-dimensional
indeterminate is represented by a spatial envelope which consists of two coordinate one-
dimensional envelopes. Each one-dimensional interval (resp. point) envelope is specified by
four (resp. two) parameters, which are related by a fixed set of constraints as presented
in section 5.2.3. The notion of envelope parameters used here (in courier font) is similar

to Koubarakis’ e(zistential)-variables [Kou94a], intended to represent values which are not
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completely known but for which a global constraint exists. The indeterminate parameters

(in italics style) are also e-variables since they name a specific indeterminate and their
possible values are bounded by envelope constraints.

Example 5.2.2.2 The insertion of a rectangular indeterminate into the map of Figure 5.1(b)

(see Figure 6.1 for a magnified view) is demonstrated next: Let V1 = (V1Xg5,V1Xg,V1Ys, V1YE),
grain(V'1) = g, size(V1) =¢y; ¢, is a constant that denotes the size of V'1’s scope. As for

the discussion of section 5.2.3, the following constraints are introduced:

0 S leSn - VIXSL S 2g]_ 0 S ViYsu - VIYSL S 2g1
ViXs, < V1Xs < ViXg,
ViXg, < V1Xg < ViXg
ViXgp —-ViXs=c 10. V1Y - ViYg=¢

6

0 S V1XEU b VIXEL < 2g[ 7. 0 < ViYgu - VlYgL S 291
8 ViYs, < V1Ys < ViXg,
9

ViYg, < V1Yg < ViXg,

groe W

In addition, the position of V1 in the representation space is specified by constraints 11-14

(on the envelope parameters):

11. (Eg, = ViXs) A (ViXg < Cs, ), 13.  (Csy, < ViXg) A (ViXg, = Cgy)
12. (Cg, < Vi¥s)A (ViYs, < As,), 14.  (Bg, = ViYg) A (ViYg, < Ag,)

Constraints 1, 2, 11, and 13 are integrated into the Xcon constraint set of the earlier
map and similarly, constraints 6, 7, 12 and 14 are integrated into its Ycon constraint set.

Constraints 3, 4, 5 and 8, 9, 10 are local to object V1. O

5.3 Modeling Space in Telos

This section describes the integration of the proposed features for representing spatial infor-
mation with the conceptual modeling language Telos [MBJK90]. This integration endows
the resulting spatial data model with abstraction mechanisms such as generalization, classifi-
cation and attribution, inherited from Telos, as well as facilities for expressing meta-concepts
and for asserting constraints and rules.

Integration of spatial modeling facilities into Telos is accomplished through a library of
meta-classes and meta-attributes that capture the semantics of the features presented in

the previous section. The central class of the model is the Map class. Spatial information
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is attached to physical objects through a spatial object which participates in one or more
maps.

It is assumed that the world being modeled includes, among other things, physical ob-
jects, which might have a temporal and a spatial aspect [Hay85]. The class PhysicalObjectClass
is a metaclass whose instances include physical object classes such as the class of ve-
hicles, and the class of buildings or parks. All these classes are also specializations of
PhysicalObject, which is also an instance of PhysicalObjectClass. In addition, we in-
troduce the metaclass SpatialObjectClass, whose instances are spatial object classes such
as Street, Lot, Parcel etc. These classes are also specializations of SpatialQObject, which
is an instance of SpatialObjectClass. Figure 5.3 illustrates this class hierarchy. Physical
objects can have an associated spatial object, about which information is represented in

terms of one or more maps.

CLASS PhysicalObjectClass IN M1_CLASS
VITH
necessary,single
when:TemporalClass
where:SpatialClass
what:0rdinaryClass
attribute
feature:AttributeClass
time-feature:TemporalAttrClass
space-feature:SpatialAttrClass
END PhysicalObjectClass

CLASS PhysicalObject IN PhysicalObjectClass
WiTH
vhere
place:SpatialQbject
END PhysicalObject

CLASS SpatialObject IN SpatialObjectClass
WITH
attribute
in-gpace:Spatiallbject
in-map:Map
END SpatialObject

CLASS UofT-Lot IN SpatialObject
WITH

in-space
8l:division-City-Toronto-Parcel

in-map
mi:mapl;
m2:map2;
m3:map3
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END UofT-Lot

According to these definitions, the place attribute of PhysicalObject is declared to
be an instance of the vhere meta-attribute of PhysicalObjectClass. A spatial object has
an in-space attribute, which provides a spatial context, and zero or more associated maps
that give information about the object. The next two definitions introduce different classes

of spatial relationships. 2

CLASS In-Map IN SpatialAttributeClass
WITH
components
from:SpatialObject
label:in-map
to:Map
attribute
rtype:RepresentationType
END In-Map

CLASS In-Space IN SpatialAttributeClass
WITH
components
from:SpatialObject
label:in-space
to:SpatialObject
attribute
stype:SpatialType
END In-Space

According to these definitions, in-map attributes have an associated attribute which
specifies the representation type (landmark or indeterminate) of an object in a map. *
Note that the same spatial object may have different types in different maps, i.e., be a
landmark in one map and an indeterminate in another. Likewise, in-space associates a
spatial type (region, point,...} to every spatial object / spatial context association. Again,
the definition implies that a spatial object may have different types in different contexts.

A spatial object that serves as context for another object is itself described in terms of
one or more maps. For example, the spatial token UofT-Lot is part of a division of the city
of Toronto parcel, another spatial cbject, and participates in maps map1, map2 and map3
through relationships m1, m2 and m3. The two types of spatial object types supported in

2Telos does not have a built-in distinction between attributes and relationships.
3In Telos, all relationships are represented by a three-tuple, (from, label, to), which is called proposition.
Intuitively, a proposition can be thought of as a link.
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our model are declared as instances of RepresentationType. Analogously, the geometric

types of objects (i.e., point vs. region) are defined as instances of SpatialType.

CLASS Map IN SpatialObjectClass
WITH
single,necessary
grain: Grain
scale: Scale
attribute
X-constraint: ConstraintSet
Y-constraint: ConstraintSet
deductiveRule
Rl:indeterminate(ThisClassInstance,X):-
instance(X,SpatialObject), instance(Y,In-map),
proposition(X,Y,ThisClassInstance), rtype(Y,Indeterminate).
R2:landmark(ThisClassInstance,X):-
instance(X,SpatialObject), instance(Y,In-map),
proposition(X,Y,ThisClassInstance), rtype(Y,Landmark).
integrityConstraint
:indeterminate(ThisClassInstance,X) and X.haze > ThisClassInstance.grain
END Map

The Map class models the principal data structure of our spatial data model. A map is
characterized by its grain and scale attributes and the set of objects it inter-relates. X-
and Y-constraint attributes take as values object inter-relationships, where the objects
included in a map are retrieved by deductive rules. 4 Additional integrity constraints
specify properties that any Map instance needs to satisfy.

Granularity and scale is modeled in a similar fashion. Figure 5.4 illustrates graphically
the Telos formalization.

CLASS MetricScale ISA Scale WITH
attribute
grain:Domain
base :Domain
unit :Domain
integrityConstraint
:in(X,MetricScale)==>(X.unit=X.grain.value)
END MetricScale

CLASS Measurement IN S_CLASS WITH
attribute, single
value: Domain
inscale: MetricScale
END Measurement

4For simplicity, deductive rules R1 and R2 are specified in Prolog notation.
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5.4 Quantitative and Qualitative Spatial Constraints

This section extends the qualitative constraint language presented in Chapter 3 with a
quantitative component. The section also presents an enumeration of four spatial reasoning
tasks encountered in query processing and a discussion of algorithms for solving each one

of them.

5.4.1 A Formal Language for Spatial Constraints

Ly is intended as a language for specifying qualitative and quantitative constraints in one-
dimensional space. Ly is not a new language. L3 extends the language of qualitative haze-
order constraints of Section 4.2 (Definition 4.2.1) and it is also based on the axiomatization
of haze-order space of Section 3.4. ® L3 has two sorts, a sort for haze points, H, and a sort
for exact points, E; z,, z, .. are variables of sort H, ¢, ¢, €3, .. are constants (uninterpreted
integers) of sort E, and g is a designated constant also of sort E. The non-logical symbols
of Ly include the predicate symbols =, < relating objects of sorts H x H and H x E,
respectively, the predicate symbols =, < relating objects of sorts £ x E, and the function
symbol — of sort H x H —»+ E. ©

An atomic formula of Ly has one of the following forms: z =y, z <y, ¢ = ¢,
c <c2, TRC, T<C, Yy—I =C¢, and y—z < ¢;. The definition of terms and well-formed
formulae in Ly is the same as in Section 3.3.

The terms of L3 are interpreted over the domain of integers. ¢ is interpreted as the
integer constant g. Each constant ¢; of the sort F is interpreted as the integer i. Symbols <
, = and — receive the standard interpretation of order, equality and subtraction over integers.
Each variable = of sort H is interpreted as an integer x in the that ranges in the interval
[x* — g, x* +g], where x* is some integer. Predicate symbols = and < are interpreted by the
relations R(x,y) = {(x,¥) : [x — y| < 2g} and S(x,y) = {(x,y) : y — x > g}, respectively.

It should be noted that £y does not use constants to name a specific element of sort E;

instead, it uses unbound variables which receive as interpretation the specific element of E

5The historical evolution of languages of haze-order space presented in this study, has as follows: In
Section 3.4, we defined the first-order language of haze space and axiomatized the theory of one-dimensional
qualitative haze space. In Section 4.2, we limited the language to conjunctive formulae and we called them
qualitative haze-order consiraints. In this section, we add a new sort for exact points to the language to
provide for qualitative and quantitative haze-order constraints.

®The reader should notice that relation symbols ~ and < correspond to relation symbols h and < of

Section 3.4, respectively.
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Figure 5.5: Graphical interpretation of Ly terms

in any particular model of its theory.

Moreover, if g is assigned 0 in an interpretation, then =~ and < have “exact” meaning
(i.e., same as = and <), and Ly becomes the language of discrete point order constraints.
In fact, this is the language used for the spatial envelope constraints, since the envelopes
have already “compiled away” spatial indeterminacy.

Example 5.4.1.1 Figure 5.5 illustrates graphically the meaning of the terms of £3;. Assume
that g=2 throughout this example. If an interpretation v, assigns y to y*=6, then y can
be one of {4,5,6,7,8}. If z =~ y, then tke image of z has to be within at most 2 points from
ay, i.e., x can be one of {2,3,4,5,6} if y = 4 and so on. The x*,y* notation is used in the
Figure 5.5 to show this relationship.

In the same model, z < y means that x* < 4 if y*=6. The meaning of the terms ¢; = ¢
and c; < c¢; i8 the obvious one. The (hazy) equality between a haze point and an exact
constant, T = ¢;, means that i —g < x < i+g, i.e., if i=8 then x can be one of {6,7,8,9,10}.
Analogously, in the same model, z for z < cg is interpreted as an integer which is less than
6.

The subtraction operator “—” is useful in defining a notion of distance between haze
points; “—" returns an exact quantity. ' Let, for instance, x be interpreted in {1,2,3,4,5}
and y in {7,8,9,10,11}, the term y — £ = cg means that x and y are now restricted to be
exactly 6 units apart, i.e., the following five pairs {(1,7),(2,8),(3,9),(4,10),(5,11)} are the
only allowable interpretations for the pair z,y. O

The language of one-dimensional hazy-point space is extended to a language where one

can state relationships between two-dimensional hazy points and rectangles. This is accom-

"The language is also extendible with a subtraction operator “~" which returns a hazy quantity. In the
content of this example, the “hazy” subtraction, £ ~ y = ce, asserts that the distance between z and y has
to be in the range [4,8] (i.e., 6 +g) and therefore the following 25 pairs are possible models for the z, y pair:
{7, (1,8), (1,9), (2,7), (2,8), (2,9), (2,10), (3,7), ..., (3,11), (4,8), ..., (4,11), (5)9), (5,10), (5,11)}.
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plished by using the technique of independent combination described in Section 3.5. By
independent combination and Lemma 3.5.1, we can generate a calculus on two-dimensional
spatial objects which has the computational properties of its one-dimensional coordinate
calculi. Moreover, we can compose a solution for a two-dimensional constraint satisfaction
problem by combining solutions of its coordinate problems. Of course, such a restricted
form of combination imposes limitations to the expressiveness of the constraint language
for the two-dimensional space. As already mentioned, one limitation of this method is that
it limits two-dimensional spatial objects to either points or rectangles. In Section 6.3, we
show how the language can be extended to model objects of arbitrary shape. The resulting
language is expressive enough to cover an interesting set of spatial relationships encountered
in geographic information systems [Pap94a] and picture retrieval systems [SYH94]. In the

next section, we explore sets of spatial relations that are expressible in our formalism.

5.4.2 Spatial Relations

Egenhofer’s proposal [Ege91] of eight fundamental topological relations for two planar re-
gions is the most popular set of topological spatial relations. One advantage of his proposal
is its clean topological semantics. Qur work defines an alternative semantics for these rela-
tions based on the ontology of hazy points. The novelty in our approach is that it considers
spatial relationships between objects with vague boundaries. In addition, a measure of
precision appears as a parameter in the relations’ definition, thus making reasoning about
imprecise spatial information possible.

Figure 5.6 shows a graphical presentation of topological relations. Their formal definition

requires the definitions of the helping relations ing,in; and close. 8

(Rsy <x Px A Px <x Rex) N\ (Rs, <v Pr A Py <y Rg,)
(R2sy <x Rlsy A Rlg, <x R2g,) A (R2s, <y Rls, A Rlg, <y R2g,)
(Plx =x P2x) A (Ply =y P2y)

ing(P, R)
in1(R1, R2)
close(P1, P2)

P, P1 and P2 are points and R1, R2 rectangles. ®

8"Closeness” in the this definition is expressed in terms of the properties of the representation, e.g., the
size of the haze relation. Other approaches define "closeness” in terms of the context of the representaticn

[Rob&g].

®Notation: z; < ¥i = Ti <i yi V & = yi. Subscript ; denotes the projection axis. ; is either x or v.
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Figure 5.6: Hazy topological relations

~3P(ing(P, R1) A ing(P, R2))

3P1, P2(ing(P1, R1) A ing(P2, R2) A close(Pl, P2))

AP(ing(P, R1) A ing(P, R2))

in\ (R1, R2)

(R2s, <x Rls, A Rlg, <x R2g,) A (R2s, <v Rls, A Rlg, <y R2p,)
contain.(R1, R2) inside.(R2, Rl)

contain;(R1, R2) inside;(R2, R1)

equal(R1, R2) = dose(Rlgs, R2g) A close(Rlg, R2g)

disjoint(R1, R2)
tangent; (R1, R2)
overlap(Rl, R2)
inside;(R1, R2)
inside:(R1, R2)

]

The notion of tangency as defined here is “loocse” tangency in the sense that two rectangles
share a point of their haze. If the size of the haze decreases, a tangent relationship will
change to disjointness. The above set of relations characterize all the qualitative distinct
relative positionings of two object using the proposed ontology of space [Top94a].

Many researchers developed sets of directional relations exploring either characteristic
points of the participant objects [PS94, Her92] or the order relation of the underlying domain
[SYH94]. Our directional relations definition is closely related to the approach of [SYH94];
this model comes with a deductive reasoner that is shown to be sound and complete for the
three-dimensions and sound only for the two dimensions. We show that the axioms of this
deductive reasoner (except one) are theorems of PR2. Its incompleteness result does not
affect our case since we do not use this rule system for inferencing.

The following non directional spatial relations complete Sistla’s model: inside (same

as the earlier inside;), outside (same as disjoint) and overlaps (with the obvious
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I leftof(A,B) Aleftof(B,C) = leftof(A,C) t
I1 leftof(A,B) A overlaps(B,C) A left.of(C,D) = leftof(A,D) i
IIIa inside(A, B) A leftof(B,C) = leftof(A,C) *
IITb leftof(A,B) A inside(C,B} = leftof(A,C) *
v overlaps(B,A) = overlaps(A, B) **
\'% outside(A,B) = leftof(A,B) i
VI inside(A,B) = overlaps(A, B) i
VII inside(C, A) A overlaps(C,B) = overlaps(A,B)

VIII inside(A, A)

t The same rule scheme is repeated for relationship symbols above, and inside

t same for above

* same for above and outside

*% same for outside

#*x not express in our formalism

Table 5.1: Rules for deducing spatial relationships

meaning). The axioms of [SYH94] deductive system are summarized in table 5.1. The rules
of table 5.1 (except VI) are theorems of DR2.

Finally, and as a result of the independent combination property, our model can handle
relationships between one-dimensional and two-dimensional point or region objects.

Entry R6’ of table 5.2 could be completed in the same way as the preceding entries i.e.,
by taking all possible conjunctions of the < and = over the eight parameters defined by
two regions; that would result in 64 different relative positions, many of them meaningless
and therefore unsuitable to be used in a query language. Instead, we use a more succinct
way to express the twelve aforementioned two-dimensional relations. Their formulation
uses a language with existentially quantified variables and therefore are suited better for
querying the database using a quantifier-elimination query processing strategy [Kou94b).
For insertions, we favor a subset, R6, of 38 meaningful relations out of the 64, which are
shown on Table C.1 of appendix B. All relations in R6 are translated in a conjunctive

expression over hazy points.

5.4.3 Reasoning

A map structure is represented now in terms of two constraint sets, Xcon and Ycon,
each of which is a conjunction of z R ¢ and z — y R d atomic constraints, where =,y
are variables representing the parameters of a spatial envelope, R is one of {=,<,<}, d
is a grain parameter, and c is a constant corresponding to a landmark parameter. Any

map with an envelope representation for its indeterminate objects can be placed in this
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R1: one-dimensional, point-to-point

Zi <i Yi

Ti &5 Yi

R2: one-dimensional, point-to-interval {

beforei(zi, I;) = z; <i Is;
ni(zi, I;) = Is; <i Ti A 7; <i I,
after_(zi, I;) = Ig;, <i :5i

touches;i(zi, I;) = =i =; I,
touched_by;(z;, I;) = z; =; Ig,

R3: one-dimensional, interval-to-interval

same;(I;, J;) = Is, ~; Js; A Ig; =; JE;
meets;(I;, J;) = Ig, =i Js;
starts;(I;, J;) = I, =i Js; A Ig; =i Jg,

before‘i(-[is J:l) = IE" =i JSg
finishes;(L;, J;) = Js, <i Is,Ig; =i JE,
overi(L;, J;) = Js; =i Is; A Ig, <i JE,

overlaps(I;, Ji) =1Is, <i Js; A Js, =i Ig;, A Ig; < JE;

R4: two-dimensional, point-to-point

close(P,Q) = Px =x Qx A Pr =y Qv
north(P, Q) = Qy <y Pr

south(P,Q) = Py <y Qv

northeast(P,Q) = Qy <v Py A Px <x @x
northwest(P,Q) = Qv <y Pr A Qx <x Px
z colinear(P,Q) = Py =~y Qv

east(P,Q) = Px <x Qx

west(P, Q) = Qx <x Px

south_east(P,Q) = Py <y Qv A Px <x Qx
south.west(P,Q) = Py <y Qv A Q@x <x Px
ycolinear(P,Q) = Px ~x Qx

RS5: two-dimensional, point-to-region

inside(P, A) = As, <x Px A Px <x Agx A As, <y Py A By <v Ag,

north(P, A} = Ag, <y Pr
east(P, A) = Px <x Asy

south(P, A) = Py <y As,
west(P, A) = Agp, <x Py

north_east(P, A) = Ag, <y Pr A Px <x Asy

south_east(P,A) = Py <v As, A Px <x Asy

north_west(P, A) = Apy <v Pr A Ap, <x Px

south_west(P,A) = Py <y As, A Ag, <x Px

onldeft side(P,A) = Px =x Asy A As, <y Pr A Py <v Ag,

on_top_side(P, A) = Py Xy Ap, A Asy <x Px N Px <x Agyx

on_right_side(P,A) = Px ~x Ag, AN As, <y Py A Py <y Ag,

on_bottom _side(P, A) = Py =y As, A Asy <x Px A Px <x Agy
R6' : two-dimensional, region-to-region **

disjoint(A, B) tangent;(A, B)

overlap(A, B) inside;(A, B)
inside,(A, B) containy(A, B)
contain;(A, B) equal(A, B)
leftof(A,B) right_of (A, B)
above(A, B) below(A, B)

¥  subscript ; is either x or y
1  with their inverses, except same;, they make the Allen’s thirteen.
*+ the same as the topological and directional relations defined earlier.

Table 5.2: Spatial Relations
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simple normal form. Note that the set of variables in the two sets is disjoint (except for
d's). The reader should also recognize that the deployed language in the map constraints
is the language of linear order constraints on integers as resulted from the compilation of
indeterminates into envelope constraints.

The fundamental reasoning problems addressed in a constraint representation of a map

structure are as follows:

P1. Given the Xcon and Ycon constraint sets, decide if the constraint sets are satisfiable,

i.e., there is an assignment for variables that satisfies every atomic formula in the

Xecon and Y con set.

P2. Given the Xcon and Ycon constraint sets, compute an assignment for all variables

that satisfies every atomic formula in the Xcon and Ycon set.

The type of the d parameters plays a pivotal role in the determination of the complexity
of the above problems. If d’s are integer constants (fixed grains) then both problems are
solveable in polynomial time. For instance, problem P1 could be solved using one of several
path consistency algorithms proposed in [Mac77, DMP89, KL91, Kou94b]. The complexity
of path consistency algorithms for the type of constraints considered is O(n3) where n is
the number of variables in the constraint set. In the database literature, the classic results
of [RH80] offer another alternative with the same complexity. Our guess is that even better
performance can be achieved if one explores the structure and especially the sparsity of
constraint sets. The second reasoning problem, is closely related to the first one. In fact,
a solution for P2 implies a solution for P1. A plethora of solutions is available for P2,
including the above-mentioned path consistency algorithms as well as the dual method
involving variable elimination algorithms (see [LM88a, Kou92]).

The two problems change complexity if the ds are taken to be integer variables. Then,
for a single d value, efficient algorithms are still possible since computing a solution involves
solving a system of linear inequalities (a known polynomial complexity problem). For more
than one d value, on the other hand, the problem of computing a minimal solution becomes
intractable since it is equivalent to integer programming [Pap94b]. In our future work we
plan to investigate efficient special cases for the last problem.

In addition to P1 and P2, there are two derivative spatial reasoning problems which

require attention:
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P3. Given a consistent and minimal constraint set, Xcon U Y con, of a map structure m,
and i, an indeterminate of m, find the strongest possible bounds for the parameters of

i 10
Algorithmically, P3 involves, first, projecting a solution of P2 to the variables of i’s
envelope and, second, applying a path consistency algorithm on the selected set of con-
straints conjoined with i’s local constraints. Both steps are realized in polynomial time.

Note that in order to determine the consistency of a map, m, we need to test P3 for all of

its indeterminates.

P4. Given a consistent and minimal constraint set, Xcon U Y con, of a map structure m,

and ¢’, a new grain value (resolution) for m, recompute problem P2 with grain value

!

g.

Problem P4 involves recomputing the constants for the landmark parameters in the X con
and Y con constraint sets and then computing P2. For the first step, the following linear
time procedure applies. There are two directions to which the representation’s grain can

change

o refinement (¢’ < g): Let r be the refinement factor, 7 = % (assume g’ divides g).
Then each P = v conjunct in the Xcon and Y con constraint set is replaced by the

constraint (r* (v —1) < P) A (P <r=xv).

e coarsening (¢’ > g): Let s be the coarseness factor, s = 9g-' (assume g divides ¢').

Replace each term P = v with P = £,

There are various semantic issues that our quick coverage of the transition operations has
overlooked. Ciapessoni et al. [CCMSP93] present an elaborate framework for scale-related
granularity which is relevant to the above problem. Clifford and Rao [CR87] have studied

the problem of scale transitions in discrete temporal domains.

1%Recall that parameters of an indeterminate are constrained by its envelope and the size constraints.
Problem P3 calls for the determination of tight bounds, i.e., the smallest interval that a parameter can take
values from, for the parameters of a specific indeterminate.
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5.5 Conclusions

We have presented a spatial data model which facilitates the representation of and reason-
ing with various forms of qualitatively and quantitatively incomplete spatial information,
including indeterminate objects, multiple scales and granularity. Representation of incom-
plete spatial information is accomplished through a spatial constraint language with built-in
notions for representing partial spatial information. Reasoning with such representations
is addressed by identifying four classes of reasoning tasks and offering efficient processing
algorithms for each class. Our proposal accommodates object-orientation by embedding the
proposed model within Telos and exploiting the meta-modeling facilities of the latter.

The proposed spatial data model is unique in the combination of features that it ac-
commodates. In particular, it integrates ideas from object-oriented knowledge representa-
tion [MBJK90], constraint-based data models [KKR90], spatial knowledge representation
[PS94], quantitative and qualitative temporal reasoning {[KL91], and granularity modeling
[CCMSP93].

Our spatial data model may be atypical of other proposals, however it complies with
general structure of spatial data models. For example, the model matches features from
three out of four abstractions of space that need to exist in spatial data model according
to Guting’s recent definition [Gut94)]. In particular, it organizes the underlying space on a
geometric basis (represented by constraints), offers a spatial relation-based language, and,
integrates geometric types into the data model. Our model has limited spatial data types
support, points and rectilinear regions, but as we show in Chapter 6, the integration of lines
and polygons is straight forward.

We believe that the model could be of use in non-spatial applications as well, particu-
larly ones involving dimensional data, such as temporal databases, genome databases and

financial databases.



Chapter 6

Applications

In this chapter we present example applications of the proposed spatial data model and haze-
order reasoning techniques in the fields of Geographic Information Systemrs and Genome
Informatics. The presentation of each example application focuses on a specific feature of
the developed methods and in addition it points to directions in which the methods can be
extended.

The rest of this chapter is organized as follows: Section 6.1 presents a solution to
problem of multiple representations of space. Section 6.2 applies the machinery developed
in Chapter 5 in order to process queries with a granularity argument. Section 6.3 presents
a solution to the problem of modeling objects with indeterminate boundaries in spatial
databases. Section 6.4 discusses applications of the haze-order space in the context of the
Human Genome Project. Finally, section 6.5 concludes the chapter with a discussion on the

implementation of spatial knowledge bases within a3 knowledge base management system.

6.1 Multiple Representations of Space

In cartographic representations, an object’s representation changes according to the level of
abstraction at which data is represented. The process of converting spatial data from one
scale-dependent to another is called generalization [SM89]. Recent geographic information
systems aim to support cartographic generalization by maintaining multiple representations
(RS95].

The spatial data model introduced in Chapter 5 supports multiple spatial represen-
tations. According to this model, every spatial object has an in-space attribute which

118
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specifies the object’s spatial context, and one or more in-map attributes which specify the
object’s spatial type and location in different maps. A map is the data structure used to
represent a chunk of space along with the objects that it contains. A map has a scale
attribute. Hence, multiple scales representation support is equivalent to creating multiple
instances of a map for different scales.

In Chapter 5, we have shown a constraint-based implementation of maps as well as
operations for conversing scales in a constraint-based representation. Other data types
are also candidates for implementing maps. For instance a map can be implemented as a
binary array (see Figure 5.1(a)). In this case, the embedded objects are represented by an
enumeration of the cells they occupy or represented by their boundary. Scale conversions

are well studied in grid-like representations (Sam89].

6.2 Querying Spatial Data

Storing a granularity parameter together with the data forms an alternative solution to the
similarity-based retrieval problem. In similarity-based retrieval, a query is associated with
a similarity measure that specifies the degree of similarity between the retrieved times and
the matching criteria [Jur95].

Our model associates a (spatial) granularity and a (spatial) scale parameter to the data
being stored. Hence, the data “know” about their imprecise placement in space. A query
can either be an exact query against imprecise data or it can specify the degree of precision
at which an answer is sought. The following examples illustrate cases of granularity-based
retrieval based on the map model developed in Chapter 5 and the example of Figure 6.1.
A more comprehensive form of this example is presented in appendix D.

Example 6.2.1 Querying Spatial Relations with Granularity.

Assume the query: Find if the Computer Science Department is inside the scope of V1.
This query may be initially evaluated with the highest possible precision (lowest grain),
i.e., go = 0. Then the query is whether the Computer Science Department, an exact point

with coordinates, say, {5, 16), is inside the scope of V1. !

Qlg = {true|P = (5,16) A g, =0 A (inside(P,V1,g4) V on_any_side(inside(P,V'1,g,))}

lon_any . side abbreviates on left _side V on_right_side V on_top_side V on_ bottom_side.
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Figure 6.1: A map example

This query is an instance of problem P3 for V1 (see Section 5.4) followed by the evaluation
of the query predicates. As there is more than one database model describing a consistent
set of parameters for V'1, this query is ambiguous and can be answered with respect to
one or all possible worlds. In comstraint-based query processing there are two possible
semantics that can be used for answering such a query: (a) truth in at least one possible
world, and (b) truth in all possible worlds. Koubarakis [Kou94a] calls them the possibility
and certatnty problems, respectively. The existence of a grain notion in our representation
makes the answers to these two problems Dependent on the grain size of the query or the
representation. Below, we ask the same query assuming indeterminate position for the

Computer Science Department
Qly = {true|P = (5,16) A g, =1 A (inside(P,V1,g,) V on_any_side(inside(P,V'1,g,))}

The implication of using an imprecise search point is to extend the selectivity of the query

predicates. This a done by compiling their expressions for g; = 1. One can obtain another
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variant of the query by changing the precision of V1. This means that its envelope con-
straints have to be recompiled, leading to new instances of problems P1 and P2, i.e., the
consistency and minimality of the map must be verified for the new envelope constraints.
Then the query is evaluated following the steps described above. Other spatial relation-
based queries can be expressed, and evaluated, along the same lines. O
In spatial databases, operations that relate sets of spatial objects are very important,
e.g., overlay of two maps, merging of adjacent areas, etc. These operations are easily handled
by constraint-based representation if no scale parameter is involved. In the case of multiple
scale representations, a scale adjustment operation needs to be preceded.
Example 6.2.2 Map Overlay as Constraint Merging Operation.
Assume that we are given a map of Toronto hospitals and wish to find which hospital is
closer to a trouble spot. This involves adjusting the scales, recomputing the constants
(problem P4), merging the constraint sets of the two, and proceeding with problems P1
and P2 (i.e., verify the consistency of the merged map) and evaluating of the predicate
close(X, H). A number of optimizations are possible in this case, especially if we exploit the
inclusion/nesting property of the scale hierarchy. O
Changing the scale of a map to a coarser one is known as the map simplification operation
[PD95] in geography. The P4 reasoning operation, mentioned in Chapter 5, computes a
solution of the map simplification operation in the context of minimum boundary rectangle

representations of spatial databases such as the one studied in [PTSE94].

6.3 Regions with Indeterminate Boundaries

Objects with indeterminate boundaries are not handled by today’s Geographic Information
Systems. Modeling of indeterminate boundaries is desired in many applications such as
modeling habitats (the area that wheat grows may not be crisp), coast lines (the coast line
changes with time or seasons), etc. A difficulty with habitats, for example, is that some of
their boundary points are not connected, hence regions are not convex and not connected.
The boundary of a habitat is intrinsically probabilistic. This property is nicely captured by
the ontology of haze space.

Typical queries that can be asked against a habitat include topological queries such as
“i3 place X part of the habitat?”, and geometric queries such as “what is the area of the
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Table 6.1: Conjoining certainty values of boundary points in Figure 6.2(b)

habitat?”. The first query is expected to yield a yes/no/maybe answer while the second
query is expected to return a range value for the habitat area consisting of 2 minimum and
maximum value. Current GISs should give a yes/no (binary) answer and a real number
result for the former and latter queries, respectively.

Hadzilacos [Had96] has suggested two alternative solutions towards the modeling of
habitats in GISs: In the first solution, a habitat is seen as a sequence of regions with
crisp boundary [Coh95], [PD95]. This is referred to as the matrioska (Russian doll) model.
This solution operates under the binary query model. The second solution is based on
the haze-order ontology of space and utilizes a query processing strategy which is capable
of yes/no/maybe answers. The following two examples illustrate the application of the
haze-order space in habitats modeling.

Example 6.3.1 (Rectangular Regions)

Figure 6.2(a) and (b) illustrate rectangular regions with crisp and multiple haze boundaries
respectively. Figure 6.2(c) shows the steps needed to tramsform a crisp rectangle to a
laze rectangle with haze size gl. The point-in-rectangle query at granularity g, = 0, Qlo,
specified in Example 6.2.1 yields a yes or naybe answer if and only if its expression evaluates
to true in all possibie models or in some models, respectively. In all other cases, it returns a
no answer. Finally, Figure 6.2(d) depicts the case of a rectangular region with a wider haze
boundary, g2 > gl. Overlaying the two haze boundaries, we obtain a region with multiple
haze boundaries that resembles the matrioskas model but with fewer represented rectangles.
In a region with a single boundary, we have defined three qualitative distinct areas: the
certain interior (1), the haze boundary (0), and the certain exterior (-1). Points of the haze
boundary may be thought as of being part of the habitat with certainty 0.5. In a realistic
habitat, however, the distant points of the haze boundary should have lower certainty of
being part of the habitat. Overlaying two or more haze boundaries enforces this property.
The point-to-rectangle query is now posed against both granularities, and the certainty of

the boundary points is scaled after conjoining the two answers as the table 6.1 dictates. O
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(a) regionwitha (b) region with
crisp boundary multiple haze
baundaries

(¢} haza region, g1

(d) haze region, g2>g1

Figure 6.2: Rectangular region with multiple haze boundaries

An extension of our data model is to provide for the representation of arbitrary complex-
ity (shape) convex objects. How is this done and what are the implications for the validity
of the earlier discussion? The support of non-rectilinear spatial objects in two-dimensional
haze space is a straightforward task. We first define a line to be a pair of two points, called
endpoints. Then we define a chain to be a sequence of connected lines, and a polygon to
be a closed polygon. A polygon in a plane defines two regions: the interior and the exte-
rior. As the points used in these definitions have a haze, the defined types are inherently
“haze”. The representational model is now extended with construction operators such as
line(P,, P,) which constructs a line out of two points, etc. Each type now has a complexity
identifier, for instance a two-dimensional point has complexity 0, a line has complexity 1,
and a region has a complexity 2. Thus many interesting type constraints may be associated
with types such as the boundary of an object o has to be an object with complexity one
less than o’s complexity etc.

Relations between convex objects of arbitrary shape are defined either in terms of
Egenhofer’s 3-intersection model [Ege9l] or by relating characteristic points of objects
[Pap94a]. A necessary extension to the underlying computational model is that the primitive

point_to_polygon operation becomes a 3-valued operation. This change only affects reasoning



CHAPTER 6. APPLICATIONS 124
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cregp bout
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Figure 6.3: Region with multiple haze boundaries

with topological relations using the 3-intersection model. The proposed, constraint-based
reasoning model based on two one-dimensional projections and minimum bounding rectan-
gle (mbr) approximations is still valid. In addition, further non-mbr based computations
using the one-dimensional projections are possible, provided that a new mapping between
two-dimensional relations and their one-dimensional projections is defined.

Example 6.3.2 (Arbitrary Shapes)

Figure 6.3 outlines the same process for regions with arbitrary shape. A region with ar-
bitrary shape is described by its boundary which is a closed sequence of connected line
segments. The difference with previous example is the way that the point-in-polygon query

is computed. a

6.4 Genome Mapping

A major goal of the Human Genome Project is to construct detailed physical maps of the
human genome. A physical map is an assignment of DNA fragments to their locations
on the genome. Complete maps of large genomes require the integration of many kinds
of experimental data, each with its own forms of noise and experimental error [HB94].

In addition, the Human Genome Project has caused an incredible data explosion in the
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Figure 6.4: Physical mapping strategies (based on [DOE92])

biological sciences. New laboratory procedures and laboratory automation systematically
produce large data sets that need to be stored in databases and processed by data-analysis
programs [GRS94].

Our work is related both to the physical mapping problem and to the laboratory
database support of the Human Genome. In the rest of this section we summarize the
data requirements and outline the applicability of our methods for both problems. A de-
tailed treatment of the proposed solutions constitutes future work of this dissertation.

Genome maps are constructed either in top-down or bottom-up fashion (see Figure 6.4,
[DOE92]). In top-down mapping, a single chromosome is cut into large pieces which are
ordered and subdivided; the smaller pieces are then mapped further. This approach yields
maps without gaps but with low resolution. The bottom-up approach involves cutting the
chromosome into small pieces each of which is cloned and ordered. The ordered fragments
form DNA blocks, called contigs. Contig maps consist of a linked library of small overlapping
clones representing a chromosome segment. Although this technique is useful for creating
good local maps, contig maps are difficult to extend over large stretches of the chromosome.
In this case, sophisticated order reasoning that utilizes biological laws and experimental
data is sought [Cui94].

The problem of physical map assembly is illustrated in Figure 6.5. The same abstract
scenario is encountered at different levels of resolution. Overlapping intervals of various
resolutions (e.g. YACs, cosmids, plasmids) need to be ordered and put together in order
to create longer fragments of sequenced genome. At the highest resolution, the bottom
line, we see landmarks of the genetic sequence, called probes, whose position in the genetic
sequence has been identified by experimental means. The linkage (intersection) of known
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Figure 6.5: Types of genome maps (based on [DOE92])

probes with the overlapping interval is the input for the physical mapping problem.

The challenging part of the problem and its relevance to the techniques developed in
this thesis, is that these genetic intervals are incomplete (orientation information might
be missing, metric information is not always available), imprecise (their endpoints are not
precise), ambiguous (high rate of false negatives), and often contradictory (due to the
previous reasons). The input information for the physical mapping problem is a set of
statements of the type: ”probe p hits interval . Since probes are ordered, this information
can be used to order and assemble the intervals. Unfortunately, the data may contain up
to 40% false negatives and false positives. In a false negative, probe p; appears not to hit
interval i; although it should, and the opposite for false positives. Earlier map assembling
techniques [WJ86] operate under the assumption on non-ambiguous data. Recent research
addressed the problem by considering the ambiguity of data [GR93], [HB94], [Cui94]. This
problems sounds as a very promising application for haze-order constraints.

Haze-order constraints is logic-based constraint langnage with a built-in concept for
imprecision merging qualitative and quantitative terms. As a first step, we can use haze-
order constraints as a succinct model to describe experimental genome map data that
accounts for false negatives and measurement errors.

Genetic intervals may be represented as ordered pairs of haze points related to other
points via haze and order relationships. We assume that genetic intervals are haze points.
If any two of them are “hit” by the same probe, we say that they are in a haze relationship,
else they are ordered. False positives are represented by “illegal” haze relations where false
negatives may exists in the place of “absent” haze relations. The questions are which of the
haze relations are “illegal” and where should there be “absent” haze relations. Biological
knowledge can give hints for answering these questions. Such knowledge can be used in
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order to add/remove haze relations. The consistency checking algorithm will either accept
or reject such updates. This type of analysis may also localize inconsistencies and insist on
further laboratory experiments for this part of the genome.

A representation of incomplete and imprecise data has more than one model (orderings)
that satisfies the specification. Existing databases for laboratory support use exact nu-
merical representations and therefore maintain a single and perhaps faulty model for each
set of experiments. Qur proposal suggests storing uninterpreted data, such as haze-order
constraints. Hence the data are represented together with all of their models. The “tight”
graph algorithm defined in Section 4.3, can be used to minimize the number of possible
models.

6.5 Implementing Multi-resolution Space in Telos

An implementation of the proposed data model is prototyped by first defiring the non-
spatial concepts using an existing data model (e.g., the one presented in section 5.3 or as
relations in an object-based or relational system) and then implementing a constraint-based
inference engine for spatial constraints.

To date, there is no generally accepted way for implementing large constraint databases.
Logic programming and constraint logic programming are two obvious alternatives with re-
spective limitations regarding their scalability for large workloads. Constraint-based reason-
ers are another option. We are currently exploring the last option. Our proposed solution
to the scalability problem is to explore the scale and grain features in order to partition
large chunks of space into many and small maps.

This section describes an implementation of the proposed features for representing spa-
tial information using the conceptual modeling language Telos [MBJKS0]. The integration
of the spatial representation features with Telos endows the resulting spatial data model
with abstraction mechanisms such as generalization, classification and attribution, inherited
from Telos, as well as facilities for expressing meta-concepts and for asserting constraints
and rules. The integrated system is then put together using the framework developed in
the Telos knowledge base management project [Top93], [MCP+95], [ST95].

Integration of spatial modeling facilities into Telos is accomplished through a library

of meta-classes and meta-attributes that capture the semantics of the features presented
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Figure 6.6: Representing spatial information in Telos

in Section 5.3. The central class of the model is the Map class (introduced in Section
5.2.4). Spatial information is attached to physical objects through a spatial object which
participates in one or more maps. Figure 6.6 displays part of the knowledge base that
implements the spatial data model using the the Telos Repository system [Stag95].

The second part of our implementation involves implementation of constraint reasoning
in the context of haze orders and integrating it with the object model. Our achievements to
date include the implementation of algorithms presented in Section 4.3. These algorithmns
include a qualitative constraint consistency checking algorithm based on the data structure
of haze-order graphs [Top96a], and a ranking procedure which converts qualitative haze-
order graphs to a quantitative form that is suitable for query processing [Top94b].

The implementation will be completed with the development of a third component which
will be responsible for answering queries with spatial and non-spatial qualifications. To date,
this component is not available. However, we envision this component as being a hybrid
query processor in the spirit of [SPT87], [TIS92] which extends the Telos query processor
[ST95] with a spatial reasoning capabilities.
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6.6 Conclusions

We have presented applications of the proposed spatial data model and haze-order reasoning
techniques in the fields of Geographic Information systems and the Human Genome Project.
In addition, we have outlined a prototype implementation of the proposed data model based
on the Telos knowledge base management framework.

Our main interest in this chapter has been to discuss the potentials for applications of
the methods proposed in this dissertation rather than work out the technical details in each
individual application. Consequently, this chapter contributes to the thesis by generating a

plethora of open research questions related to several practical applications.



Chapter 7

Conclusions

In this final chapter we give a summary of the dissertation, highlight its main contributions
and identify open problems.

7.1 Summary

This dissertation studies the problem of representing and reasoning with imprecise spa-
tial information in knowledge bases. We have given examples of spatial information for
which existing representations are unable to provide well-founded support. Generality and
efficiency have been the main objectives in this work. Generality in information manage-
ment issues is achieved through an extensible data model. Efficiency, on the other hand, is
achieved through the selection of an appropriate ontology for space. This dissertation ar-
gues that the combination of artificial intelligence methods and databases offers a powerful
framework for addressing the problems in question.

Initially, we have introduced a new ontology of imprecise space in which space is viewed
as a totality of objects surrounded by a haze area and connected in terms of qualitative
spatial relations. A haze point is the most elementary object type in this representation
since higher order objects are composed of haze points. A haze point is a non zero-sized
object that is associated with an area of haze such that the point in question may be located
anywhere inside it. Haze points are related in terms of an indistingunishability (called haze)
or an order relation.

We have developed a first-order theory of one-dimensional haze-order space and we
have studied its models from the point of view of model theory. We have shown that its
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models are homomorphic to partial orders on a discrete domain. We have also proposed
a conservative two-dimensional extension of the theory of one-dimensional space, called
independent combination, in which the evaluation of two-dimensional operators is reduced
to the evaluation of projected one-dimensional operators over two coordinate copies of the
one-dimensional theory. This result is generalizable for & dimensional spaces provided that
the conditions of independent composition are preserved when adding dimensions. The
developed formalism is strictly qualitative with a built-in concept for imprecision. The
account of imprecision within the representation language has allowed us to formalize the
notion of granularity in spatial representation.

Next, we have developed algorithms for reasoning about relations in haze-order space.
In particular we have developed efficient algorithms for determining the consistency of a
set of haze-order relations, and deducing new relations from those that are already known.
In additiorn we have defined a quantitative index structure that can support constant-time
retrievals. QOur algorithms make use of a data structure called haze-order graph which
trades space for efficiency. We have also investigated adaptations of the path consistency
algorithm for haze-order constraint networks and we have demonstrated that path consis-
tency cannot compute minimal relations. Although incomplete, the development of path
consistency based algorithms was motivated by pragmatic reasons since path consistency
is proven to be an effective inconsistency detection technique for certain datasets. The
developed algorithms have been implemented and their performance has been experimen-
tally evaluated. The contribution in this part of the dissertation has been the development
of a computational model for haze-order reasoning and the development of a testbed for
evaluating alternative algorithms.

Another contribution is the development of a spatial data model which facilitates the
representation of and reasoning with various forms of qualitatively and quantitatively in-
complete spatial information, including indeterminate objects, multiple scales and granu-
larity. Representation of incomplete spatial information is accomplished through a spatial
constraint language based on haze-order relations. For pragmatic adequacy purposes, we
have extended the qualitative constraint language of space with a quantitative component
which allows us to relate indeterminate objects to landmarks. Finally, we have identified
four reasoning tasks that are addressed during query processing in this representation and

we have offered efficient processing algorithms for each one of them. We have integrated our



CHAPTER 7. CONCLUSIONS 132

spatial representation model with an object-oriented data model by exploiting the meta-
modeling facilities of the latter. The resulting spatial data model has unique features that
make it applicable to a wide range of applications involving imprecise dimensional data such
as temporal databases, genome databases and financial databases.

Finally, we have presented four applications of the proposed spatial data model and
haze-order reasoning techniques in the fields of geographic information systems and genome
informatics. Specifically, we have outlined a solution to map generalization based on our
model’s ability to support multiple scales. We have illustrated the role of granularity in
querying imprecise data. Haze-order semantics have been applied to model regions with
indeterminate boundaries in geographic information systems. We have also demonstrated
the use of the haze-order language in specifying experimental data in the Human Genome

Project in the context of order inferencing and map assembly operations.

7.2 Future Work

The results of this work can be extended in different directions. We have shown a general
and extensible framework that puts into a perspective all the relevant issues, (i.e., represen-
tation, reasoning and management) towards spatial data support in advanced information
processing tasks. This work has touched upon imprecise, propositional spatial information.
The same framework can be used for addressing images and image content information, or
other types of dimensional non-spatial data, such as temporal or scientific data.

A starting point in this work was the selection of an appropriate ontology of space. The
particular choice has influenced the solutions in the later steps. Extending the basis of the
developed framework with more ontologies of space will have double impact. First, this will
increase the scope of potential application of the framework. Second and more important,
it will advance the knowledge level specification of the spatial domain. A new ontology
of a subject matter, increases the terminology about the subject, but does not necessarily
add any knowledge about it. The specification of an ontology needs to state axioms in
order to constrain the interpretation of the defined terms. Going into the “intelligence
agents” era, extended ontological bases increase the potentials of knowledge sharing and
knowledge-based systems interoperation. As candidate ontologies of space to be studied
under this light, we consider the topological, metric and linguistic space.
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As far as spatial reasoning in databases is concerned, we believe that constraint databases
is a prominent direction to follow. Earlier work in constraint databases [KKR90] and tem-
poral constraint databases [Kou94b] have produced interesting query processing complexity
results. The same stream of work may be extended for the case of spatial constraint ob-
ject bases, i.e., spatial knowledge bases. Practical reasoning using haze order constraints
requires the merging of qualitative and quantitative methods (the “poverty of qualitative
reasoning”). As we pointed out in Chapter 5, query processing under such requirements is
heavily based on a variable elimination algorithm. The development of one such algorithm
is in our current research agenda. Another extension of the haze-order language that we
are interested in exploiting is the accommodation of Datalog [BCW93] type rules.

The application of haze-orders and the integrated data model in multi-scale and granu-
larity supporting geographic information systems, opens a number of issues which need to
be looked into further. In particular, we intend to extend the current results to model ob-
jects with arbitrary shapes. Moreover, we plan to define a library of methods for geometric
and scale-related operations. The latter is related to the implementation plans that were
briefly discussed in Section 6.5. An alternative direction in our implementation plan is to
use extended relational technology to replace Telos for production oriented applications.

Haze-order constraints are shown to be a representation model that can deal with im-
precision and uncertainty of dimensional (geographic, temporal, genomic, financial) data.
In its applications to a specific data domain, one early decision to be made is the selection
of a "good” degree of precision, or in other words the scope of the haze relation. There is
top-down and a bottom-up approach to give an answer to this question. In the top-down
method, a continuous data domain such as the geographic space is discretized and hence
the distinguisability of objects will be depenedent to the discritization operation. In the
bottom-up approach, the data contain the imprecision as created (e.g., a photo-intensity
map). The problem then is to find and apply an appropriate threshold value. Finding the
discretization method or defining a threshold value for specific application domains is an
interesting problem that is left for applied follow-up work.

User interface and visualization issues have not been considered in this dissertation.
Visualization of the spatial information has always been an important issue. Thriving
multimedia technologies and world wide web applications, make these issues even more

important. For a long while, a logic-based interaction language with a spatial knowledge
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base was our preferred alternative. Not any longer. Its usability insufficiencies and the

visualization requirements suggest a graphical alternative [CM93].

7.3 Conclusions

The guiding principle throughout this dissertation has been that spatial information man-
agement depends on the assumed ontology of space rather than the application domain.
Consequently, we have proposed a three-layered framework for addressing spatial knowl-
edge management in which the selection of a spatial ontology constitutes the first (bottom)
layer. The second layer which is tightly connected to the selected ontology, consists of effi-
cient algorithms that support the most common operations in this context. The third layer
provides the glue for sticking together the parts of the architecture. This is an extensible
data model which combines classic data model facilities with meta modeling features sc
that the ontology’s primitives are expressed in it.

The approach just proposed is horizontally extensibie at all layers. This proposal draws
from our work in knowledge base management systems [MCP*95], [Top93], where a similar
layered architecture has been proposed for the implementation of “any” knowledge base.

An interesting part of our work is the synthesis of many research areas. Most of our
work is motivated by and focused on imprecise, propositional spatial information. Artificial
Intelligence and constraint reasoning techniques were employed in the technical chapters of
the work, while advanced data modeling techniques were used to interconnect the compo-
nents. In addition to sound theoretical results and the methodological contribution, this
study has attempted to address potential applications and implementation issues.

The final conclusion of this dissertation is that management issues for types of informa-
tion found in advanced applications, imprecise spatial knowledge in this case, need to place
emphasis on the integration of modeling features with rich, well-founded semantics as well

as efficient implementations techniques with established good performance.



Appendix A

Algorithms

In this appendix, we present the algorithmic language description of the Tight Haze-Order
(THO) and Haze-Index (HI) algorithms introduced in Chapter 4.
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A.1 The Tight Haze-Order (THO) Algorithm

Input: A consistent haze-order graph AG = (V, E)
Qutput: A tight haze-order graph.

Let R = (V', E') be the graph constructed during the consistency algorithm.
Topologically sort R
Let start and end be two pseudo-points enclosing AG form both ends.
for each v € V do
previss(v) := prevleq(v) := start
nezt_gtr(v) := next_geq(v) := end
end for
for each h € V' do
recover order relationships ({<, <}) by relating frontier nodes with the adjacent
hypernodes propagate effects inside i by running a local CSP problem
for each node v € nodes(h) do
if (v, {<, <}, u) € edges(h) then
nect_gtr(v) :==u
else if (L := {u|(v,<,u) € E} and |L| > 1) then
nezt_gtr(v) := topo.closer(L)
else if ((v,g,u) € E and u € nodes(topo_nezt(h))) then
nert_geg(v) := s such that Vt € nodes(h)[(¢, <,s) € E and s € nodes(h’)
where b’ = min{h; is topologically after topo_nezt(h)}]
else
nezt_geq(v) := u such that u € topo_nert(h) and 3s € nodes(h)((s, <,u) € E]
next_gtr(v) := u such that Vs € nodes(h)[(s, <,u) € E and u € nodes(h’),
where k' = min{h; is topologically after topo_nezt(h)}]
end if
end for
for each node v € nodes(h) do
if (u, {<, <}, v) € edges(h) then
previss(v) == u
else if (L := {u|(u,<,v) € E} and |L| > 1) then
prev 1ss(v) = topo_closer(L)
else if ((u,g,v) € E and u € nodes(topo_prev(h))) then
prevss(v) := s such that Vt € nodes(h)|[(s, <,t) € E and s € nodes(h')
where b’ = min{h; is topologically before topo_prev(h)}]
else
prevdeq(v) := u such that u € topo_prev(h) and 3s € nodes(h)[(u, <, s) € E]
prev Iss(v) := u such that Vs € nodes(h)[(s, <,u) € E and u € nodes(h'),
where k' = min{h; is topologically before topo_prev(h)}]
end if
end for
end for
refinement phase (see procedure TRef)
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Procedure: TRef
Input: Algorithmm THO continued — the refinement phase.
Output: A tight haze-order graph.

% Refine the “next” links starting from the last topologically ordered hyper-node going backwards
hy_node := topo_last(R)
while all hyper-node are traversed do
for each node v € hy_node do
W is the set of nodes pointing to v via nezt_gtr links
for each node n € W do
if not n_ordered(n) then
for each g-neighbor of n, u do
if not n_ordered(u) then
u.next.geq := n.next_gtr
end if
end for
end if
end for
end for
hy_node := topo_prev(hy_node)
end while
% Refine the “previous” links starting from the first topologically ordered hyper-node going forward
hy node := topo.first(R)
while all hyper-nodes are traversed do
for each node v € hy_node do
W is the set of nodes pointing to v via previss links
for each node n € W do
if not p_ordered(n) then
for each g-neighbor of n, u do
if not p_ordered(u) then
u.prevleq := n.previss
end if
end for
end if
end for
end for
hy_node := topo.nezxt(hy node)
end while
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A.2 The Haze-Index (HI) Algorithm

Input: A tight haze-order graph and a resolution parameter.

Qutput: A quactitative representation of a qualitative haze-order graph.

E' := EU Next U Prev;
for each node v € V do
alist(v) := {}
end for
for each edge e = (v,!,u) € E' do
if u € adjacents(v) then
label(v,u) := label(v,u) ol
else
add u in adjacents(v) with label(v,u) :=1
end if
end for
k is the resolution parameter
for each node v € V' do
status(v) := closed
hi(v) = {}
end for
v := start ; status(v):=open
while P # @ do
for each edge (v,!,u) do
if status(u)=closed then
status(v):=open;
push_in_queue(Q,u)
end if
hi(u) := hi(u) U {hi(v) ¥ weight({)}
end for
v:=pop(Q)
status(v) := done
end while
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Transitivity Tables

Figure B.1 displays the derivations of part of the multiplication table for HOy defined in
Figure 4.9. Index (3, ) refers to row i and column j of the table at the bottom of Fig. 4.9.
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Canonical Relations

In this appendix, we present a set of binary spatial relations defined between two-dimensional
rectangular regions, called canonical relations. A canonical relation can be translated into
a conjuctive epxression involving haze and order relations on point arguments.

Some topological relations defined in 5.4.2, such as contain, inside and equal, are
already in the canonical form. The rest of the topological relations are transformed to
canonical relations by conjoining them with a directional constraint, called directional in-
clination. The following cases identify the type of directional inclination associated to each
non-canonical topological relation. Table C.1 list the derived canonical relations.

case 1: The two regions are far apart. Then the directional relation between them is derived
by the directional relation between designated points (the closest) which depends on

the relation.

case 2: The two regions are close, i.e., in a contact relation (either tangent i or overlap).
Then the above principle is variated as follows: the directional relation between the

regions is based on their most diametrical paints.

case 3: The two regions are in a containment relation, then the one is bigger than the
other. The characterization of the direction makes sense only if there is tangency
form inside. The two regions agree in at least one side so their directional inclination

is desided by the side of disagreement.
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[ topological relation | inclination | canonical relation | expression
disjoint(a,b) W O0(as,bg) | disjoint west(a,b) | as, —be, >2¢
EO(ag,bs) | disjoint_east(a,b) | bsy —~ag, >2¢
N O(as,bg) | disjoint morth(a,b) | bs, —ag, > 2g
S.0(ag,bs) | disjoint _south(a,b) | as, —bg, > 29¢
tangent(a,b) W O(ag,bs) | tangent, west(a,b) | 0<as, —bg, <2¢
EO(as,bg) | tangent; east(a,b) | 0<bs, —ag, <2¢
N_O(ag, bs) tangent; north(a,b) | 0 < as, —bg, < 2g
S 0(as,bg) | tangent;_south(a,b) | 0<bs, —ag, <29
overlap(a,b) W O(ag,bs) | overlap_west(a,b) asy <bsy <agy
EO0(as,bg) overlap_east(a,b) bsy <asy < bey
N O(ag,bs) | overlapnorth(a,b) | bs, <as, < bg,
S.0(as,bg) | overlap_south(ab) | as, <bs, < bg,
inside_tangent(a,b) | NW.i(as,bs) | inside. NW —g <agx —bE, < gA
-g<ag, —bg, <gA
bsx >as, A
bs,, >as,
W_0(as, bs) inside, SW —g<ag, —bg, <gA
-g<as, —bs, <gA
bsy > asy A
bg, <@g,
E.0(ag,beg) | inside. NE ~g<ag, —bs, <gA
—-g<eag, —bg, <gA
b[gx <agy A
bs, > as,
SE.i(ag,bg) | inside..SE —g<as, —bs, < gA
-g <as, —bs, <gA
bex < @Ex A
bEy < ag,
W_0(as,bs) inside, west as, <bhs, <bg, <as, A
—g<ag, —bgy <gA
as, <bs,
E0(ag,bg) | inside..east as, < bs, < bg, <as, A
—g <asy _be <gA
ag, > bE,
N_O(as,bs) | inside;north asy <bs, <bg, <as, A
-g<ag, ~bg, <gA
asy <bs,
SO(ag,bg) | inside._south as, <bsy <bgx <asy A

-g<a.§y —bsv <gA
GE, >bEy

contain tangent(a,b)

analogous to inside.tangent

EO(p,q) = px <gx
WO(p,q) = px > ax
NO(p,q) = py > qy
S_O(p, Q) =Dy < qy

N A(p,qE px > qx A Py > Qv
SE1(p,q= px <gx A py < gy

Table C.1: Canonical spatial relations

141



Appendix D

Map Example

The tables below represent the map m5 of Figure 6.1 using a constraint database in the spitit
of [KKR90]. This is a more convenient form for displaying instance data than the represen-
tation proposed in Section 5.3. Following the definition os Section 5.2.4, the representation
makes use of universal and existential variables as in [Kou93]. Universal variables appear
only in an object’s local constraint and they are enclosed in a U() function term. Existensial
variables represent values which are not completely known but for which a global constraint
holds. Existensial variables are shown in courier font (e.g., ViX1, XY, ..). Subscripts .

and y the lower and upper envelope value for indeterminates.

LANDMARKS
LID | MAP | TYPE | PARAMETERS | CONSTRAINTS

A m5 rect | {a1,81,83,84} | {61 < a3, az < a4}
B m5 rect | {bi,ba,ba,b4} | {b1 < b3, b2 < b4}
C m5 rect | {e1,2,63,¢4} | {c1 <cay €2 <ceq}
D | ms5 | rect | {di,da,ds,di} | {dh <ds, da <da}
E m5 rect | {e1,e2,e3,e4} | {€1 <es, €2 <eq}
F | m5 | rect | {fi,fo,fa fa} | {Hi < fs, f2<fa}
H m5 pnt | {h1,h2} {h1 < ho}
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INDETERMINATES

| 110 | map | TvPE | PARAMETERS | GRAIN | X CONSTR | Y.CONSTR ]
Vi | ms rect | {VIX1,viX2 g=4 | {U(VX2) = U(V1X1) =6, | {U(viY2) - U(V1YL) =6,
V1Y1LV1Y2} ViX1, < U(VIX1) < ViXtg, | ViYL < U(ViY1) < Viviy,
ViX2 < U(ViX2) < ViX2g} | Vivz, < U(ViY2) < Vivzg}
V2 | ms rect | {V2x1,v2x2 g=1 | (U(V2X2) - U(V2X1) =4, | {U(V2Y2) - U(V2Y¥1) =4,
V2Y1,v2Y2} VX1 < U(V2X1) < V2X1g, | V2Y1 < U(V2Y1) < vavig,
V2X2, < U(V2X2) < V2X2} | VY2 < U(V2Y2) < Vav2g)
vi!| ms rect | {ViX1,vax2 g2=1 | {U(V3X2) - U(V3X1) =4, | {U(V3Y2) - U(V3¥1) = 4,
V3Y1,v3Y2} V3X1y < U(VSX1) < V3Rig, | VY1, < U(V3Y1) < V3Yig,
V3x2 < U(V3X2) < V3x2g} | vav, < U(V3Y2) < Vavy}
X m5 pnt {xXx.xY} ga=3 | xx, < U(Xx) < XXg, XY, < U(XY) < XY,
MAPS
MID | GRAIN | SCALE | X_.CONSTR | Y.CONSTR
ms | go=1 8 cXx, ch

CX[ = { ay = 1,03 = 20,b1 =20,b3 =26,Cl = 10,63 = 13,

dl = 26,d3 = 30,61 = 0,83 = G,fl = 25,f3 = 30,h1 =20,

ViXiy — ViX1 < 2g;, V1X2p — V1X2p < 2g,

ViXii —a1 > g0 —ViXi3 > gy, ViX2p — ¢ <291 Ve —VIX2; < 2g1, az — V1X2y > g1
Vxlu —Vvaxi, S 2g2, v2x2n - V212;, S 2g1,

V2X1, —¢3 > g2, h1 —V2K1g > go, V2X2, — hy > go, di — V2X2y > gy,

V3X1n —V3X1, S Zgg. V3X2; — V3x2, _<_ 292,

V3Xi, —e3 > g2, V3X1g —c; < 2¢2 V ¢ — V3Kiy < 2¢9,

V3X2L —c3 £ 292 V ca —V3X2, < 2gq,h1 — V3X2p > g2

nu - HL 5 2g31

XX — b1 > g3, by —XXg < 2g3 V XXg— b3 <2g35 }

CY; = { a2 = 30,84 = 40,5, = 30,b4 = 34,c; = 14,¢4 = 20,

CLZ = 101d4 = 14162 :Oie4 =41f2 = 01 f4 = 4!hﬁ =20,

VivYiy — Vivyi, S 291, VlYQu bl V1Y2L _<_ 291,

ViYig —cqs > g1, a2 —ViYig > g1, VY2 — by <291 V by —V1Y2 < 291, a4 — V1Y2p > gy,
V2Y1g — V2Y1, < 2g2, V2Y25 — V2Y2; < 2g.

VY1, — fa > g2, d2 —V2Y1y > go,

V2Y2, —dy > go, ds —V2Y25 > gy,

V3Y1g — V3Y1; < 292, V3Y2p - V3Y2, < 2¢9,

V3Y1, —e2 € 2g2 V e —V3Y1, < 2gs, e4 —V3Y1y > g9,

V3X2, —eq4 <2g2 V €4 —V3X2, £ 2gy, dy — V3X2y > g2 XYg — XY, < 2g3,

XYL —cq4 > g3, bo — XXy —bg > g3 }
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