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Abstract. During the past decades, the increased impact of

anthropogenic interventions on river basins has prompted

hydrologists to develop various approaches for represent-

ing human–water interactions in large-scale hydrological and

land surface models. The simulation of water reservoir stor-

age and operations has received particular attention, owing

to the ubiquitous presence of dams. Yet, little is known about

(1) the effect of the representation of water reservoirs on

the parameterization of hydrological models, and, therefore,

(2) the risks associated with potential flaws in the calibration

process. To fill in this gap, we contribute a computational

framework based on the Variable Infiltration Capacity (VIC)

model and a multi-objective evolutionary algorithm, which

we use to calibrate VIC’s parameters. An important feature of

our framework is a novel variant of VIC’s routing model that

allows us to simulate the storage dynamics of water reser-

voirs. Using the upper Mekong river basin as a case study, we

calibrate two instances of VIC – with and without reservoirs.

We show that both model instances have the same accuracy

in reproducing daily discharges (over the period 1996–2005),

a result attained by the model without reservoirs by adopting

a parameterization that compensates for the absence of these

infrastructures. The first implication of this flawed parameter

estimation stands in a poor representation of key hydrolog-

ical processes, such as surface runoff, infiltration, and base-

flow. To further demonstrate the risks associated with the use

of such a model, we carry out a climate change impact as-

sessment (for the period 2050–2060), for which we use pre-

cipitation and temperature data retrieved from five global cir-

culation models (GCMs) and two Representative Concentra-

tion Pathways (RCPs 4.5 and 8.5). Results show that the two

model instances (with and without reservoirs) provide dif-

ferent projections of the minimum, maximum, and average

monthly discharges. These results are consistent across both

RCPs. Overall, our study reinforces the message about the

correct representation of human–water interactions in large-

scale hydrological models.

1 Introduction

Hydrological systems consist of multiple physical, chemical,

and biological processes, most of which are profoundly al-

tered by anthropogenic interventions (Nazemi and Wheater,

2015a, b). Land cover modifications or hydraulic infrastruc-

tures, for instance, affect both surface and subsurface hydro-

logical processes by redistributing water over time and space

(Haddeland et al., 2006; Bierkens, 2015). Such alterations are

expected to amplify in the near future, owing to the increase

in water and energy consumption (Abbaspour et al., 2015).

In this context, hydrological models play a key role, as they

help in the planning of the use of water resources in a sustain-

able way, so as to avoid adverse impacts on ecosystems and

livelihoods (Bunn and Arthington, 2002; Yassin et al., 2019).

A detailed and accurate representation of the anthropogenic

interventions within hydrologic models is thus of paramount

importance: successful water management plans must neces-

sarily build on reliable models.

Water reservoirs are arguably one of the most common in-

frastructures altering hydrological processes at the catchment

scale; yet, their representation in hydrological and land sur-

face models is challenged by multiple factors. First, the vast

majority of the models currently available was initially con-
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ceived to study and understand the behavior of natural sys-

tems, so the added representation of water reservoirs entails

the partial modification of the model structure. Second, the

existing databases (e.g., GRanD; Lehner et al., 2011) pro-

vide details on dam design specifications, but no informa-

tion on the management aspects, such as the operating rules

or flood contingency plans. Third, the installation of dams

is generally combined with impoundment (or filling) strate-

gies, which may largely differ from the steady-state operat-

ing rules and last from a few months to several years (Gao

et al., 2010; Zhang et al., 2016). Although the complexity

of these factors varies with the study site at hand, one might

imagine that the representation of water reservoir storage and

operations is particularly challenging for large-scale models,

simply because of the number of dams deployed over time in

large river basins. It is perhaps not surprising to observe that

water reservoirs – and their corresponding operations – have

not been consistently accounted for across the broad number

of large-scale hydrological modeling studies available in the

literature.

A simple and popular approach is the exclusion of large

impounds from the streamflow routing models, a modeling

choice that has been adopted in many regions across the

globe (Maurer et al., 2002; Jayawardena and Mahanama,

2002; Akter and Babel, 2012; de Paiva et al., 2013; Leng

et al., 2016). Such an approach can support the investigation

of various physical processes (e.g., emergence of new hydro-

logical regimes, generation of land surface fluxes), but ob-

viously prevents the application of the hydrological models

to downstream water management problems, such as investi-

gating the impact of regime shifts on hydropower production.

Another potential issue with this approach lies in the model

parameterization, which might be affected by a calibration

process carried out with hydrological time series altered

by anthropogenic interventions. de Paiva et al. (2013), for

instance, implemented the MGB-IPH hydrologic–hydraulic

model to the Amazon River basin – a region characterized

by the presence of hydroelectric dams (Finer and Jenkins,

2012) – and yet showed reliable calibration performance at

multiple gauging stations. A similar example is represented

by Abbaspour et al. (2015), who simulated hydrological and

water quality processes for the entire European continent.

Despite neglecting the presence of hydraulic infrastructures,

the model yielded acceptable values for the goodness-of-fit

statistics. One may thus wonder whether the calibration pro-

cess somehow compensates for a deficiency in the model

structure.

With the goal of striking a balance between an accu-

rate representation of reservoirs and the “costs” due to

the modification of the model structure, several researchers

have adopted a hybrid approach, in which the output of

hydrologic–hydraulic models (e.g., runoff or streamflow at

multiple locations) is postprocessed with the aid of water

management (or reservoir operation) models. The very first

efforts employed data on water uses to correct the output

of global models, such as WaterGAP (Alcamo et al., 1997)

or WBM (Vörösmarty et al., 1998). Using a similar con-

cept, Hanasaki et al. (2006) accounted for 452 reservoirs

in a global river routing model. More sophisticated post-

processing techniques are based on optimization algorithms,

which are used to design either reservoir operating rules or

sequences of reservoir discharges that meet pre-defined ob-

jectives (e.g., hydropower production). Lauri et al. (2012)

and Hoang et al. (2019), for example, first calibrated the

distributed hydrological model VMod for the Mekong river

basin and then postprocessed its output using a linear pro-

gramming algorithm that designed the discharge time se-

ries for 126 dams over a given simulation scenario. Sim-

ilarly, Turner et al. (2017) and Ng et al. (2017) examined

the vulnerability of global hydropower production to climate

changes and El Niño–Southern Oscillation by correcting the

discharge simulated by WaterGAP. In this case, the cor-

rection entailed designing bespoke reservoir operating rules

through the use of a stochastic dynamic programming algo-

rithm (Turner and Galelli, 2016). Other recent applications

of postprocessing techniques were adopted in Masaki et al.

(2017), Veldkamp et al. (2018), Zhou et al. (2018).

Naturally, the most suitable approach lies in the direct rep-

resentation of water storage and operations within a large-

scale hydrological model (Bellin et al., 2016). This approach

requires not only the modification of the model structure (or

to develop a new one), but also the gathering of informa-

tion on the design specifications and operating rules of the

water reservoirs. Because of these challenges, the number

of large-scale hydrological modeling studies adopting such

an approach is limited. A first attempt was carried out by

Pokhrel et al. (2012), who incorporated a water regulation

module into the MATSIRO model to reproduce the dynam-

ics of heavily regulated global river basins. More recently,

Shin et al. (2019) integrated a reservoir storage dynamics

and release scheme into the continental hydrological model

Leaf-Hydro-Flood to simulate ∼ 1900 reservoirs within the

contiguous United States. In both studies, the authors put par-

ticular emphasis on the calibration of the reservoir operating

scheme and demonstrated that the hydrological model accu-

rately represents some processes altered by human interven-

tions, such as the reservoir-floodplain inundation.

While the relevance and needs for the description of

human–water interactions in hydrological models are now

well acknowledged (Nazemi and Wheater, 2015a), less is

known about the risks associated with a poor representation

of such interactions. For example, can the estimation of some

hydrological parameters be flawed by an inaccurate repre-

sentation of water reservoir storage? What are the implica-

tions for the downstream applications of a flawed model?

To answer these questions, we take the upper Mekong river

basin as a case study, for which we develop a computational

framework based on the Variable Infiltration Capacity (VIC)

model (Liang et al., 1994) and a multi-objective evolutionary

algorithm (MOEA) tasked with the problem of calibrating
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the model. A key feature of the framework is a novel vari-

ant of VIC – named VIC-Res – that allows us to represent

the reservoir storage dynamics and operating rules within

the streamflow routing model. In a first experiment, we use

this framework to calibrate two instances of VIC – with and

without reservoirs. As we shall see, both model instances at-

tain the same accuracy, a result obtained by the model in-

stance without reservoirs by adopting a parameterization that

compensates for the absence of these infrastructures. In turn,

this leads to a poor representation of key hydrological pro-

cesses, such as infiltration or baseflow. In our second experi-

ment, we demonstrate the potential implications of these un-

intended consequences by applying two selected model in-

stances (with and without reservoirs) to a climate change im-

pact assessment, for which we obtain partially diverging ex-

pectations on the hydrological alterations caused by global

warming.

In the remainder of the manuscript, we first describe the

study area (Sect. 2) and then proceed by illustrating the com-

putational framework (Sect. 3), including the data on dams

and operating rules. In Sect. 4, we provide a detailed descrip-

tion of the results obtained for the aforementioned experi-

ments, whose implications are further discussed in Sect. 5.

2 Study area

The Mekong is a trans-boundary river that flows through

China, Myanmar, Thailand, and Laos before pouring into one

of the world’s largest deltas, located in Cambodia and Viet-

nam. The catchment area of about 795 000 km2 can be di-

vided into two parts, namely the upper Mekong, or Lancang,

and the lower Mekong basins (Fig. 1a). The upper Mekong

stretches in a north-to-south direction and drains an area of

167 400 km2. As shown in Fig. 1b, the region is characterized

by a complex orography, with high mountains and deep val-

leys (the elevation ranges from 362 to 6494 m). Because of

these orographical conditions, the spatiotemporal variability

of rainfall and temperature is remarkable. The average annual

precipitation across the basin ranges from 752 to 1025 mm,

70 % of which is concentrated in the monsoon season (May

to November). The precipitation in the northwestern part of

the basin is sometimes lower than 250 mm yr−1, making it

dryer than the southeastern part, which receives an average of

1600 mm yr−1 (Han et al., 2019). The average annual temper-

ature across the basin varies narrowly (from 12.3 to 14.3 ◦C),

but the latitudinal temporal gradient is much larger – about

2.2 ◦C per 100 km (Wang et al., 2014). Climate changes are

expected to modify both rainfall and temperature patterns,

making the region warmer, wetter, and more susceptible to

extreme weather events (Tang et al., 2015).

The favorable orography and abundant water availability

have attracted massive investments in the hydropower sector

(see the location of the dams in Fig. 1b), with consequent

impacts on the riverine ecosystems (Lauri et al., 2012; Dang

et al., 2018; Hoang et al., 2019). The impact of these dams

goes beyond the upper Mekong basin (Zhao et al., 2012; Han

et al., 2019): the analysis of historical data shows that dams

have already modified many indicators of hydrological alter-

ations in the entire basin, including the Cambodian lowlands

and Vietnamese river delta (Hecht et al., 2018). These al-

terations appear to be more evident since the early 1990s,

when Xi’er He 1 and Manwan dams started storing water

(Cochrane et al., 2014; Lu et al., 2014; Dang et al., 2016).

Overall, the upper Mekong basin offers two desirable fea-

tures for investigating the effect of water reservoir storage

and operations on the parameterization of hydrological mod-

els. First, the catchment is heavily regulated (Hecht et al.,

2018). Second, the catchment area is about 24 % of the whole

Mekong river basin, so this helps reduce the computational

requirements of the optimization-based calibration process.

The location of the gauging station (Chiang Saen) used for

the calibration process is illustrated in Fig. 1a. This station

provides a long and reliable daily time series, which has been

adopted by several studies on the Mekong basin (e.g., Lauri

et al., 2012, 2014; Cochrane et al., 2014; Hoang et al., 2016).

To validate the model, we use monthly discharge values at

Jiuzhou station (see Fig. 1a), retrieved from He et al. (2009),

Wang et al. (2018), and Tang et al. (2019). For both stations,

we used data belonging to the period 1996–2005.

The aforementioned orography and climate conditions are

not particularly suitable for agricultural activities, which are

indeed limited. The basin is mountainous, with mostly rocks

and a shallow Quaternary alluvium (Carling, 2009; Gupta,

2009). Due to the impermeability of bedrock underneath iso-

lated valleys, only a very small fraction of water leaks into

the ground through karst aquifer units (Lee et al., 2017). As

a result, subsurface water is mostly generated in the shallow

loam layer in the form of baseflow.

3 Materials and methods

The first goal of our study is to investigate the role of water

reservoir storage and operations on the parameterization of

large-scale hydrological models. For this purpose, we adopt

the computational framework illustrated in Fig. 2, which con-

sists of VIC’s rainfall–runoff and routing models and the ε-

NSGA-II MOEA. In Sect. 3.1 we provide a detailed descrip-

tion of VIC, including the proposed variant for represent-

ing reservoir storage dynamics. The data and experimental

setup of the framework are outlined in Sect. 3.2 and 3.3. In

Sect. 3.4, we describe the climate change data used for our

second goal, that is, to demonstrate that different model pa-

rameterizations caused by the absence (presence) of water

reservoirs can affect the results of a climate change impact

assessment.

www.hydrol-earth-syst-sci.net/24/397/2020/ Hydrol. Earth Syst. Sci., 24, 397–416, 2020



400 T. D. Dang et al.: On the representation of water reservoir storage

Figure 1. Mekong river basin (a) and elevation map and location of the hydropower dams in the upper Mekong basin (b). The red squares

denote dams built before 2005 (and therefore included in our study), while the yellow circles indicate dams built after 2005.

3.1 Hydrological-water resources management model

3.1.1 Variable Infiltration Capacity model

VIC is a large-scale, semi-distributed land hydrological

model maintained and developed by the University of

Washington (http://www.hydro.washington.edu, last access:

22 January 2020). VIC consists of two core components,

namely a rainfall–runoff and routing model (Fig. 2), which

can be applied to multiple spatial scales and implemented

with different temporal resolutions – daily, in our case. The

rainfall–runoff model simulates the water and energy fluxes

that govern the terrestrial hydrological cycle (Liang et al.,

1994). For these purposes, it takes as input climate forcings

(precipitation and temperature), land use and soil maps, leaf

area index and albedo, and a digital elevation model (DEM).

For each computational cell, the model uses one vegetation

layer and two (or three) soil layers: the upper soil layer con-

trols evaporation, infiltration, and runoff, while the lower

layer controls the baseflow generation. These gridded vari-

ables are then used by the routing model (Lohmann et al.,

1996, 1998), which simulates discharge throughout the river

network using a linearized version of the Saint-Venant equa-

tions. Specifically, the model first creates the impulse re-

sponse functions for each grid cell, and then simulates the

flow convolution by aggregating the flow contribution from

all upstream cells at each time step lagged according the re-

sponse functions (ibid).

Following the approach adopted in previous works on the

calibration of VIC (e.g., Dan et al., 2012; Park and Markus,

2014; Xue et al., 2015), we focus our attention on six main

parameters that control the rainfall–runoff process (Table 1).

These parameters are the thickness of the two soil layers (d1

and d2), the infiltration parameter (b), and three baseflow

parameters (Ds, Dmax, and Ws). The parameter b character-

izes the shape of the VIC curve, and therefore influences the

available infiltration capacity and quantity of runoff gener-

ated by each cell (for additional details, please refer to Ren-

Jun, 1992, and Todini, 1996). A higher value of b leads to a

lower infiltration rate and higher surface runoff. The three

Hydrol. Earth Syst. Sci., 24, 397–416, 2020 www.hydrol-earth-syst-sci.net/24/397/2020/
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Figure 2. Computational framework adopted in the first part of this study. The framework consists of VIC’s rainfall–runoff and routing

models and the MOEA ε-NSGA-II. The output of the rainfall–runoff model (i.e., gridded baseflow and runoff) is used by the routing model,

which simulates the streamflow at multiple locations within the upper Mekong basin. The simulated streamflow is then used to calculate

goodness-of-fit statistics, whose value is optimized with ε-NSGA-II by calibrating the parameters of the rainfall–runoff model. In other

words, these parameters and goodness-of-fit statistics represent the decision variables and objective functions used by ε-NSGA-II.

parameters Ds, Dmax, and Ws determine the shape of the

baseflow curve (Franchini and Pacciani, 1991), which re-

lates the soil moisture in the lower layer to the amount of

baseflow. More specifically, Dmax is the maximum baseflow

that can occur in the lower layer, while Ds is the fraction of

Dmax associated with the transition from linear to nonlinear

(rapidly increasing) baseflow generation. Ws is the fraction of

the maximum soil moisture (in the lower layer) where non-

linear baseflow occurs. Hence, higher values of Ws increase

the water content needed for rapidly increasing baseflow. The

thickness of the two soil layers affects several processes. In

general, thicker layers delay the seasonal peak flow and in-

crease the evaporation losses (since they increase the water

storage capacity).

3.1.2 Water reservoir storage and operations

To represent the storage dynamics of water reservoirs, we

modified VIC’s routing model (version 4.2) using the follow-

ing steps. First, we determine the location of all dams within

the basin and directly add them to the model using a dam

cell (Fig. 3a–b). To avoid allocating multiple dams within the

same cell, we adopt a high spatial resolution of 0.0625◦ (ap-

proximately 6.9 km). Then, we aggregate the reservoir stor-

age in the dam cell, where we calculate the daily mass bal-

ance. From the dam cell, water is discharged using the rule

curves described in the following paragraph. Since the con-

struction of a dam is likely to create an impoundment with

surface area larger than the dam cell, we proceed by estimat-

ing the maximum reservoir extent, a factor used to determine

the so-called reservoir cells, namely cells that are at least

half-covered by water (see Fig. 3b). Although these cells do

not contain the reservoir storage, they can affect the evapo-

ration processes, so their number and location must be deter-

mined accurately. The flow routing in these cells follows the

information provided in the flow direction map (described

in Sect. 3.2.1). Further details about the implementation of

this variant of VIC’s routing model are given in Sect. S1 in

the Supplement. We note that a more realistic way of repre-

senting a reservoir within a hydrological model is to spread

the reservoir storage over multiple upstream cells from the

dam location (Shin et al., 2019). However, a successful im-

plementation of this method requires detailed bathymetry of

all reservoirs within the basin (information that may not al-

ways be available) and a 2-D model of the reservoir, so as

to accurately calculate the water fluxes between the different

reservoir cells.
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Table 1. Main parameters controlling the rainfall–runoff process in VIC. The third column contains the range of each parameter value

considered during the calibration process. Note that these are the same ranges typically adopted for the implementation of VIC to large

basins (cf., Dan et al., 2012; Xue et al., 2015; Wi et al., 2017).

Name Unit Feasible range Description

d1 m [0.05, 0.25] Thickness of the upper soil layer

d2 m [0.3, 1.5] Thickness of the lower soil layer

b – (0, 0.9] Variable Infiltration Capacity curve parameter

Dmax mm d−1 (0, 30] Maximum baseflow

Ds – (0, 1) Fraction of Dmax where nonlinear baseflow begins

Ws – (0, 1) Fraction of maximum soil moisture where nonlinear baseflow occurs

Figure 3. Graphical representation of VIC’s spatial domain (adapted from http://www.hydro.washington.edu, last access: 22 January 2020)

(a), including the selection of dam cell (black), reservoir cells (blue), and cells with other land use (white and white with green lines). The

black and pink arrows indicate the direction of the flow routing and discharge from the reservoir (b). Seasonal rule curve (c).

As for the reservoir operations, we adopt an approach sim-

ilar to that of Piman et al. (2012), which relies on rule curves

conceived to maximize the hydropower production – an as-

sumption justified by the fact that all dams within the up-

per Mekong are operated for hydropower supply (Räsänen

et al., 2017). Determining the rule curve for a given reservoir

means determining the daily target water levels. For the case

of hydropower production in the Mekong basin, such a rule

should allow (1) drawdown of the reservoir storage during

the drier months (e.g., December to May) to maximize the

production of electricity, (2) recharge of the depleted storage

during the monsoon season, and (3) avoidance of the risks

Hydrol. Earth Syst. Sci., 24, 397–416, 2020 www.hydrol-earth-syst-sci.net/24/397/2020/
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of spilling water at the end of the monsoon season (see the

illustration in Fig. 3c). Rule curves are tailored to each reser-

voir within the basin by determining the time at which the

minimum and maximum water levels are reached (May and

November, in the Mekong; Piman et al., 2012), setting the

value of the minimum and maximum water levels (the mini-

mum and maximum elevation levels of each reservoir, in our

case), and finally connecting these points with a piecewise

linear function that gives us the daily target level for each

calendar day.

As shown in Fig. 3c, there are three water levels that di-

vide the storage into four zones. These levels are the dead

water (or minimum elevation) level, the target water level,

and the full (or maximum elevation) level. If the water level

falls below the dead water level (Zone 1), the turbines are

not operated. If the level is between the dead water and tar-

get level (Zone 2), the model first uses the information on the

incoming daily inflow to solve a mass balance equation, in

which the discharge from the dam is kept at zero. The aim is

to understand whether the water level is expected to go be-

yond the target at the end of the day. If that is the case, the

model discharges through the turbines the amount of water

needed to keep the level close to the target. Otherwise, the

turbines are not activated. In Zone 3 (between the target and

full level), the turbines are used at their maximum capacity,

until the water reaches the target level. In Zone 4 (i.e., level

above the maximum elevation), both turbines and spillways

are used. The key advantage of the rule curves adopted here

is that they do not require the calibration of any parameter.

Naturally, such an approach is less applicable when the infor-

mation on the operating objectives is not available, or when

dealing with multi-purpose water systems.

Overall, our model implements the following mass bal-

ance equation at each simulation time step t (and for each

reservoir):

St+1 = St + Qt − Et − Rt , (1a)

0 ≤ St ≤ Scap, (1b)

0 ≤ Rt ≤ min(St + Qt − Et ,Rmax), (1c)

where St is the reservoir storage at time t , Qt is the inflow

volume, Et is the evaporation loss, and Rt is the water re-

leased from the reservoir. Both storage St and discharge Rt

are constrained by the design specifications of each reservoir.

Specifically, the storage cannot exceed the reservoir capacity

Scap (Eq. 1b), while the discharge is bounded by the water

availability and capacity of the turbines Rmax (Eq. 1c). The

excess water, if any, is spilled:

Spillt = max(0,St + Qt − Rmax − Et − Scap). (1d)

Equation (1d) thus represents the release dynamics when

the reservoir water level is in Zone 4. Zone 1, 2, and 3 are

represented by the following equations:

Rt =























































































0 if St ≤ Sd(Zone 1)

0 if Sd ≤ St ≤ Sts,tmodT
and

St + Qt − Et

≤ Sts,tmodT
(Zone 2,case 1)

Sts,tmodT
− (St + Qt − Et ) if Sd ≤ St ≤ Sts,tmodT

and

St + Qt − Et

> Sts,tmodT
(Zone 2,case 2)

(St + Qt − Et ) − Sts,tmodT
if Sts,tmodT

≤ St ≤ Scap and

St + Qt − Et − Rmax

≤ Sts,tmodT
(Zone 3,case 1)

Rmax if Sts,tmodT
≤ St ≤ Scap and

St + Qt − Et − Rmax

> Sts,tmodT
(Zone 3,case 2)

(2)

where Sd is the storage corresponding to the dead water level,

and Sts,tmodT
the target storage at time tmodT (in our study, we

use a period T of 365 d).

3.2 Data and preprocessing

3.2.1 Climate forcings and other input variables

Climate forcings are represented by precipitation and air tem-

perature (maximum and minimum), which must be provided

at a daily time step. As far as precipitation is concerned, we

use the APHRODITE dataset (Asian Precipitation – Highly-

Resolved Observational Data Integration Towards Evalua-

tion), developed by the University of Tsukuba, Japan, using

rain-gauge data (Yatagai et al., 2012). APHRODITE is avail-

able with a spatial resolution of 0.25◦ and has been shown

by Lauri et al. (2014) to be the most suitable precipitation

dataset available for the Mekong basin. A similar observa-

tion applies to the CFSR (Climate Forecast System Reanaly-

sis) maximum and minimum temperature dataset (Saha et al.,

2014). These data are then interpolated to meet the spatial

resolution of 0.0625◦ adopted in our implementation. More

specifically, we use the bilinear interpolation method, which

has found successful application in some recent studies (e.g.,

Hoang et al., 2016; Shin et al., 2019). We also bias correct the

APHRODITE dataset (using a multiplying factor of 1.26), as

recommended by Lauri et al. (2014).

The monthly leaf area index and albedo are derived

from the Moderate Resolution Imaging Spectroradiometer

(Terra MODIS) satellite images, which represent changes in

canopy and snow coverage over time. (It is worth noting that

snowmelt only marginally contributes to the streamflow of

the Mekong river; Räsänen et al., 2016.) Land use and land

cover data are obtained from the Global Land Cover Char-

acterization (GLCC) dataset, developed by the United States

Geological Survey. We choose this product because it was

completed in 1993, close to the simulation period adopted in

our study (1995–2005). With such a choice, we make sure

that the influence of land use dynamics on the model pa-

rameterization is minimized. Soil data are extracted from the

Harmonized World Soil Database (HWSD), developed by the

International Institute for Applied System Analysis and Food
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and Agriculture Organization and last updated in 2013. Both

land use and soil maps are generated with the majority re-

sampling technique, since their original spatial resolution is

30 arcsec (approximately 1 km). This technique assigns the

most common values found from the group of involved pixels

to the new cell. The resulting maps are illustrated in Fig. 4a–

b. The land use map shows that the upper reaches of the

basin are characterized by the presence of grassland, while

the lower reaches – with complex terrain and large altitudi-

nal variations – present mixed coniferous forest ecoregions.

Soil characteristics are also heterogeneous: in the central and

northern part of the basin, soil is characterized by a shallow

layer consisting of loam, sandy loam, and clay. At the bor-

der between China, Myanmar, and Laos (near Chiang Saen

station), soil characteristics are dominated by the presence of

sandy clay loam.

To estimate the flow directions, we use the Global

30 arcsec Elevation (GTOPO30) DEM, which has been

adopted in several studies (e.g., Kite, 2001; Wu et al., 2012;

Li et al., 2013). First, we mask this DEM with the shape

of the upper Mekong basin. Since GTOPO30 has a spatial

resolution of 30 arcsec, we then resample the DEM to the

resolution of our VIC model using the average resampling

technique (Hoang et al., 2019). Finally, we manually correct

the flow direction map generated by ArcGIS by comparing

it to a detailed river network provided by the Mekong River

Commission. Such correction is necessary, since errors are

to some extent unavoidable when automatically generating a

flow direction map – because overland runoff and interflow

directions depend on the relation between hillslope charac-

teristics and adopted spatial resolution. The resulting flow

direction map is illustrated in Fig. 4c.

3.2.2 Dams and reservoir information

Our model requires detailed information on the reservoirs,

namely location, storage capacity, dam height, dead storage,

turbine design discharge, and maximum and minimum el-

evation levels. Such information (summarized in Table 2)

was retrieved by cross-checking the databases provided by

the Mekong River Commission, the International Commis-

sion On Large Dams, and the Global Reservoir and Dam

Database. Since data on reservoir bathymetry are not avail-

able, we modeled the storage–depth relationship with Liebe’s

method, which assumes that the reservoir is shaped like a top-

down pyramid cut diagonally in half (Liebe et al., 2005). In

other words, the relation between reservoir volume (V ) and

depth (or level, h) is equal to V = ah3, where a is a shape

factor equal to Vcap/h
3
max (Vcap is the live storage capacity

and hmax the maximum water depth). This method has been

adopted for regional and global studies (see Ng et al., 2017;

Shin et al., 2019).

As for the maximum reservoir extent (needed to deter-

mine the reservoir cells), the existing databases do not pro-

vide detailed information, such as the reservoir polygon,

so we proceeded by analyzing remotely sensed data. More

specifically, we extracted surface water profiles from Land-

sat TM and ETM+ imagery. Landsat images are raster

grids with seven layers corresponding to seven bands (ex-

cluding the panchromatic band). The normalized differ-

ence water index (NDWI) was calculated using the near-

infrared (NIR, Band 4) and shortwave infrared (SWIR,

Band 5) bands: NDWI = (NIR − SWIR) / (NIR + SWIR).

Water bodies have NDWI values greater than 0.3 (McFeeters,

2013), so from the NDWI raster we can create a binary raster

in which 1 denotes a reservoir cell (and 0 a non-reservoir

cell). This process yields an accurate estimation of the reser-

voir cells, since Landsat images have a spatial resolution of

30 m × 30 m.

When calculating the daily mass balance for each reser-

voir, we consider three main processes, namely inflow, evap-

oration, and release. Infiltration and seepage (via dam body,

abutment, and foundation) are neglected. That is because of

two reasons. First, the upper Mekong basin is a mountainous

region, with mostly rocks and a shallow Quaternary alluvium

(see Sect. 2), so infiltration losses are to some extent marginal

as compared to inflow, release, and evaporation. Second, the

dams considered in our study are built with concrete (and

with rocky abutments and foundations), so seepage is indeed

limited.

3.3 Experimental setup

To carry out the calibration exercise (with and without

reservoirs), we couple VIC with the ε-NSGA-II algorithm,

which has found successful application in many water re-

sources problems – including model calibration (Reed et al.,

2013). In our case, the decision variables are represented

by the six parameters controlling the rainfall–runoff process

in VIC (Sect. 3.1.1), and whose range of variability is re-

ported in Table 1. As for the objective functions, we consider

two goodness-of-fit statistics dependent upon the simulated

streamflow, namely the Nash–Sutcliffe efficiency (NSE) and

transformed root mean square error (TRMSE), which assess

the model performance on high and low flows, respectively

(Dawson et al., 2007). The NSE is defined as follows:

NSE = 1 −

∑n
t=1(Q

t
s − Qt

o)
2

∑n
t=1(Q

t
o − Qo)2

, (3)

where n is the number of time steps, Qt
s is the simulated

streamflow (at time t), Qt
o is the observed streamflow (at

Chiang Saen station), and Qo is the mean of the observed

streamflow. The TRMSE is defined as follows:

TRMSE =

√

√

√

√

1

n

n
∑

t=1

(zs,t − zo,t )
2, (4)

where zs,t and zo,t represent the value of the simulated and

observed streamflow (at time t) transformed by the expres-

sion z =
(1+Q)λ−1

λ
, (λ = 0.3). In other words, λ scales down
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Figure 4. Land use map derived from the Global Land Cover Characterization dataset (a); soil map (for the top layer) retrieved from the

Harmonized World Soil Database (b); flow direction map (c). The red triangles denote the position of the Chiang Saen and Jiuzhou gauging

stations.

the values of the streamflow, and TRMSE thus emphasizes

the errors on the low flows. In this specific modeling prob-

lem, capturing both high and low flows is particularly impor-

tant, since the riverine ecosystems are sensitive to both dry

and wet conditions (Hoang et al., 2016).

Both objective functions are calculated for the period

1996–2005 – after a 1-year spin-up period, 1995 – and scaled

between 0 and 1, so we set only one value of ε (equal to

0.001). The other ε-NSGA-II parameters to set up are the size

of the initial population and number of function evaluations,

which are equal to 10 and 250 – a setting that strikes a rea-

sonable balance between the computational requirements of

the calibration exercise and the quality of the solutions. Each

calibration exercise (with and without reservoirs) is solved

with 20 different random seeds, so as to characterize the vari-

ability in the ε-NSGA-II stochastic search process. The fi-

nal set of Pareto-efficient solutions (i.e., alternative param-

eterizations of VIC) thus corresponds to the set of Pareto-

efficient solutions identified across all 20 seeds. All experi-

ments are carried out on an Intel (R) Xeon (R) W-2175 CPU

2.50 GHz with 128 GB RAM running Linux Ubuntu 16.04

(Xenial Xerus), using a Python implementation of various

MOEAs (Platypus) that allows the optimization experiments

to be parallelized. For each of the 20 seeds, we used four

cores, taking approximately 200 h per core (wall-clock time).

Since 6 (out of 11) dams became operational during the

study period (see Table 2), the VIC simulation with reser-

voirs is implemented in such a way to activate the reservoirs

at the right time. In this specific implementation, we do not

use filling strategies different from the rule curves described

in Sect. 3.2.2, because all six dams reach a steady-state oper-

ation within a few months (data not shown).

3.4 Climate change data

For our second experiment, we used the CMIP5 climate

projections to derive climate change scenarios for the pe-

riod 2050–2060. Since the data provided by the Coordinated

Regional Climate Downscaling Experiment only cover one

GCM for our study site (Giorgi and Gutowski Jr., 2015), we

followed the approach taken by previous studies (e.g., Hoang

et al., 2016, 2019) and proceeded by using GCM projec-

tions as a basis for our scenarios. As far as the GCMs are

concerned, we used ACCESS1-0, CCSM4, CSIRO Mk3.6,

HadGEM2-ES, and MPI-ESM-LR, whose reliability for this

region has been evaluated in a few previous studies (Sill-

mann et al., 2013; Huang et al., 2014; Ul Hasson et al.,

2016; Hoang et al., 2016). The main characteristics of the
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Table 2. Design specifications of the dams implemented in our VIC model (simulation period 1995–2005). The column marked “Year”

denotes the year in which each reservoir became operational.

No. Name Year Long. Lat. Height Storage Design discharge Installed capacity

(◦ E) (◦ N) (m) (Mm3) (m3 s−1) (MW)

1 Xi’er He 4 1971 100.066 20.000 20 14 283 50

2 Xi’er He 1 1989 100.202 30.000 30 1,501 60 105

3 Xi’er He 2 1987 100.131 25.562 37.25 0.2 168 50

4 Xi’er He 3 1988 100.108 20.700 20.70 0.09 304 50

5 Manwan 1992 100.446 24.625 136 257 1,700 1,670

6 Longdi 1997 99.724 26.221 95 13.30 12.34 10

7 Laoyinyan 1997 99.818 24.469 4.31 10.92 9.3 16

8 XunCun 1999 99.993 25.422 67 73.74 146 78

9 Jinfeng 1998 101.225 21.592 45 19.48 45 16

10 Dachaoshan 2003 100.370 24.025 115 367 2,109 1350

11 Jinhe 2004 97.333 34.000 34 4.27 222 60

GCMs are summarized in Table 3. As for the RCPs, we chose

RCPs 4.5 and 8.5. The former is a medium-to-low scenario

that assumes a stabilization of radiative forcing to 4.5 W m−2

by 2100, while the latter is a high emission scenario based

on an increase of the radiative forcing to 8.5 W m−2 by 2100.

These two RCPs provide a broad range of climate variability

for the region – and thus exclude RCP 2.6, which is charac-

terized by the lowest radiative forcings.

To prepare the precipitation and temperature data used by

VIC, we then re-gridded and bias corrected the GCMs out-

puts. The first step is necessary to overcome the limited spa-

tial resolution of the GCMs (our VIC implementation uses

a resolution of 0.0625◦
× 0.0625◦) and is carried out using

the bilinear interpolation method. The bias correction is per-

formed with the delta method (Diaz-Nieto and Wilby, 2005;

Choi et al., 2009), which has already been applied to our

study site (Lauri et al., 2012). With this method, we calculate

correcting factors for precipitation and temperature using the

following expressions:

1PRE =
P series,i

P ref,i

, (5)

1TEMP =
T series,i − T ref,i

σref,i
, (6)

where P series,i and T series,i are the (11-year) average precip-

itation and temperature for month i produced by the GCM

in our control period (1995–2005), P ref,i and T ref,i are the

(11-year) average observed precipitation and temperature for

month i in the period 1995–2005, and σref,i is the stan-

dard deviation of the monthly average temperature during

the same period for month i. These factors were then used

to correct the future climate projections for each time series

(using the same factor for all daily data in a given month).

The impact of climate change on hydrological processes is

often assessed by studying changes in the flow regime, and,

in particular, changes in the monthly, seasonal, and annual

river discharges (Lauri et al., 2012, 2014). More recently,

some studies have focussed on hydrological extremes, such

as high (Q5) and low flows (Q95) (Hoang et al., 2016). Since

our goal is to demonstrate that different model parameteriza-

tions caused by the absence (or presence) of water reservoirs

can largely impact the results of climate change assessments

– and not to push forward the boundaries of climate change

impact assessments – we chose a simple and established cri-

terion, namely the annual and monthly river discharges at

Chiang Saen and Jiuzhou stations.

4 Results

To discuss the impact of water reservoirs on the parameter-

ization of hydrological models, we first compare the results

of the calibration exercise carried out with and without reser-

voirs and then proceed by comparing the performance of two

selected parameterizations on the climate change impact as-

sessment.

4.1 Model parameterization

The optimization-based parameterization exercise yielded a

total of 118 and 109 parameterizations (or Pareto-efficient

solutions) for the VIC implementations with and without

reservoirs, respectively. To prove our hypothesis that the cal-

ibration process may somehow compensate for a deficiency

in the model structure – the absence of reservoirs, in our

case – we begin by analyzing the values of the goodness-

of-fit statistics, namely NSE and TRMSE. Figure 5 reports

the probability plots of NSE and TRMSE values obtained

for the two model setups: results show that the calibration

exercise yields a reasonable modeling accuracy, with NSE

and TRMSE varying in the ranges 0.68–0.79 and 8.10–

16.69. More interestingly, these results show that the NSE

and TRMSE values of both model setups belong to the same

range of variability and follow an almost identical distribu-
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Table 3. CMIP5 GCMs used for the climate change impact assessment.

GCM Spatial resolution Control baseline Developer

(long × lat)

ACCESS1-0 1.875◦
× 1.25◦ 1850–2006 Commonwealth Scientific and Industrial Research

Organization, Australia

CCSM4 1.25◦
× 0.94◦ 1850–2005 National Center for Atmospheric Research, USA

CSIRO Mk3.6 1.875◦
× 1.875◦ 1850–2005 Commonwealth Scientific and Industrial Research Organization

and the Queensland Climate Change Centre of Excellence,

Australia

HadGEM2 ES 1.875◦
× 1.24◦ 1861–2010 Met Office, UK

MPI-ESM-LR 1.875◦
× 1.875◦ 1850–2005 Max Planck Institute for Meteorology, Germany

tion. In addition, all NSE and TRMSE values of the mod-

els without reservoirs fall within the 95 % confidence lim-

its calculated using the NSE and TRMSE values attained by

the models with reservoirs. To corroborate this finding, we

carried out a Kolmogorov–Smirnov two-sample test to re-

ject the null hypothesis that the values of NSE (and TRMSE)

produced by the two model setups come from the same dis-

tribution. For both goodness-of-fit statistics, the hypothesis

cannot be rejected (with a 5 % significance level). Overall,

this confirms that the accuracy of the models is not affected

by the presence (absence) of the reservoirs.

How does the parameterization compensate for the ab-

sence of water reservoirs? To answer this question, we vi-

sualize both goodness-of-fit statistics (NSE and TRMSE)

and model parameters (Ds, Dmax, Ws, b, d1 and d2) in a

parallel-coordinate plot (Fig. 6). These eight variables are

shown in eight parallel axes, so each line connecting the

axes represents a parameterization (i.e., a solution of the opti-

mization problem) along with the corresponding value of the

goodness-of-fit statistics (i.e., the objectives). Blue and red

lines denote solutions obtained with and without reservoirs,

respectively. First of all, one can notice that while NSE and

TRMSE spread over the same ranges (results discussed in

the previous paragraph), the presence or absence of reser-

voirs consistently yields different parameterizations. Let’s

analyze them. The value of b – characterizing the shape of the

VIC curve – belongs to two distinct ranges (0.319–0.495 and

0.002–0.195) for the model implementation with and with-

out reservoirs, respectively, indicating that the model with-

out reservoirs has higher infiltration and lower surface runoff

than the model with reservoirs (recall that a higher value of

b leads to a lower infiltration rate and higher surface runoff;

Sect. 3.1.1). A similar observation applies to the parameters

Ds, Dmax, and Ws, which determine the shape of the baseflow

curve. In this case, the model without reservoirs has higher

values of Dmax (i.e., maximum baseflow) and lower values

of Ds and Ws (i.e., fraction of Dmax where rapidly increasing

baseflow begins, and fraction of the maximum soil moisture

in the lower layer where rapidly increasing baseflow occurs),

suggesting that the absence of reservoirs leads to model pa-

rameterizations that favor the generation of baseflow in the

lower layer. Finally, we can note that d1 (the thickness of

the first layer) in the models without reservoirs tends to be

larger, indicating that these model instances increase the wa-

ter storage capacity of the top layer. The only parameter that

does not appear to depend on the absence (or presence) of

water reservoirs is d2, the thickness of the second soil layer.

This result is corroborated by a global sensitivity analysis,

which shows that d2 is indeed the parameter with the least

influence on the model output (Fig. S2 in the Supplement).

Overall, it appears that the calibration process compensates

for the absence of water reservoirs by determining values of

the soil parameters that can somehow ‘mimic’ the alterations

caused by water reservoirs, namely an increase in the evap-

oration and delay in the peak flows – obtained by increasing

infiltration, baseflow, and soil water storage capacity.

To further understand the unintended consequences of the

absence of water reservoirs, we select two model parameter-

izations (with and without reservoirs) characterized by the

same performance over the period 1996–2005. The values

of NSE, TRMSE, and model parameters are illustrated in

Fig. 7a, while the simulated daily discharges produced by

both models are compared in the scatter plot of Fig. 7b. In

Fig. 8, we contrast the average values of simulated base-

flow and runoff during the dry (December–April) and wet

(May–November) seasons of the period 1996–2005. Unsur-

prisingly, results show that during the dry season the model

without reservoirs generates more baseflow and runoff than

the model with reservoirs (left four panels of Fig. 8): dur-

ing the dry months, hydropower reservoirs release part of the

water stored during the monsoon (recall the rule curves de-

scribed in Sect. 3.1.2) – a process simulated by the model

without reservoirs by increasing both baseflow and runoff –

and, therefore, the discharge at the catchment outlet. During

the wet season, we find an opposite trend: in these months,

hydropower reservoirs tend to store part of the water (thus

reducing the discharge at the catchment outlet), so the model

without reservoirs slightly decreases the discharge by reduc-

ing baseflow and runoff (right four panels of Fig. 8). We also

note that the difference between the two models is clearer

during the dry season, when a larger amount of the water

volumes is controlled by the hydropower reservoirs.
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Figure 5. Probability plots for the NSE (a) and TRMSE (b) obtained in the model calibration process. The blue circles and red stars

specify the results obtained by the models with and without reservoirs, respectively. The dashed blue and red lines represent the theoretical

distributions. In both plots, we also report the 95 % confidence limits for the models calibrated with reservoirs.

Figure 6. Parallel coordinate plot illustrating the values of the goodness-of-fit statistics (NSE and TRMSE) and model parameters (Ds,

Dmax, Ws, b, d1 and d2) obtained through the optimization-based parameterization exercise. Each line connecting the axes represents a

parameterization, along with the corresponding model performance. Blue and red lines denote parameterizations obtained with and without

reservoirs.

The effect of such flawed representation of baseflow and

runoff is further demonstrated by validating the simulated

discharge at Jiuzhou station. Figure 9 shows a macroscopic

difference between the models calibrated with and without

reservoirs. In particular we note that the model calibrated

without reservoirs largely overestimates the dry season flow

and slightly underestimates the wet season one; a result con-

firmed by the values of NSE (equal to 0.82 and 0.79 for

the model with and without reservoirs) and TRMSE (equal

to 21.48 and 28.95). One may also suspect that these unin-

tended consequences could further propagate in downstream

applications of the models, such as a climate change impact

assessment.

4.2 Climate change impact assessment

To begin the climate change impact assessment, we compare

the data produced by the GCMs over the reference and fu-

ture period (1996–2005 and 2050–2060). In general, the to-

tal annual precipitation in the Lancang basin is projected to

increase under almost all climate change scenarios – only the

CSIRO MK3-RCP 8.5 scenario projects a −3.12 % decrease

in the total annual precipitation. Yet, we observe a large spa-
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Figure 7. Radar chart illustrating the values of the Nash–Sutcliffe efficiency (NSE), transformed root mean square error (TRMSE), and

model parameters (Ds, Dmax, Ws, b, d1 and d2) of the two selected models (a); scatter plot comparing the daily discharges at Chiang Saen

station simulated by the two models over the period 1996–2005 (b).

Figure 8. Average values of simulated baseflow (a, b, c, d) and runoff (e, f, g, h) simulated by the selected models (with and without

reservoirs) during the dry (December–April) and wet (May–November) seasons of the period 1996–2005.
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tial variability in the total annual rainfall within each scenario

(see Fig. S3). For example, in ACCESS-RCP 4.5, rainfall

changes vary between −2 % in the central part of the basin

to more than +10 % in the southern part. All scenarios (but

for CSIRO MK3-RCP 8.5) tend to share a similar spatial pat-

tern, in which the lower part of the basin exhibits an increase

in the projected precipitation. As for the temperature, we ob-

serve an increase in both minimum and maximum tempera-

ture across all scenarios (see Fig. S4), with higher warming

for the RCP 8.5. Also in this case, we can note some vari-

ability across the GCMs as well as the spatial domain. As

discussed in Hoang et al. (2016), these precipitation and tem-

perature scenarios represent an improvement with respect to

the CMIP3 ones, which show a broader variability. However,

there still are some non-negligible differences across the sce-

narios that are likely to cause different projections of the an-

nual and monthly river discharges.

The expected climate change impacts on the annual river

discharge at Chiang Saen are synthesized in Table 4, where

we report the relative changes in discharge with respect to the

period 1996–2005. Interestingly, it appears that the projec-

tions are robust with respect to the representation of the wa-

ter reservoirs. Indeed, the model with and without reservoirs

yield comparable ensemble means and ranges for the two

RCPs. Specifically, we find that the annual discharge is pre-

dicted to increase in the vast majority of the scenarios, in re-

sponse to the increase in precipitation described above. Such

similarity between the projections is arguably attributable to

the calibration process, which generates models producing

similar aggregate performance measures at Chiang Saen sta-

tion.

What is perhaps more interesting is a comparison between

the monthly discharges at Chiang Saen predicted by the mod-

els with and without reservoirs. While both models produce

similar ensemble ranges (see Fig. 10a–d), a closer analysis of

the data reveals a non-negligible difference in the minimum,

maximum, and average monthly discharges (across the GCM

scenarios) produced by the two models (Fig. 10e–f). In par-

ticular, the model with reservoirs predicts higher discharges

in the July–September period and lower discharges in Oc-

tober and November. Note that such difference is consistent

across both RCPs. Since both models share the same rain-

fall and temperature scenarios, the only cause for this stark

difference must lie in the unintended consequences of the pa-

rameterization process. As explained in Sect. 4.1, the model

without reservoirs shows two “artifacts” that help compen-

sate for the absence of the hydropower reservoirs: first, it in-

creases both baseflow and runoff during the dry season (to

account for the water discharged to sustain hydropower pro-

duction in the dry months); second, it decreases baseflow and

runoff (to account for part of the water stored by the dams

during the wet months). The latter artifact is responsible for

the macroscopic change in the hydrograph described above.

In the wetter conditions depicted by the GCM and RCP sce-

narios, the hydropower reservoirs of the Lancang basin re-

ceive larger inflows, part of which is directly spilled into the

downstream reaches (data not shown). This is an unprece-

dented situation for the model without reservoirs, which can-

not simulate an increase in the use of the spillways. In fact,

this model tends to reproduce the dynamics learned during

the calibration process, that is, storing part of the water (in

the lower soil layer) during the monsoon season and slowly

discharging it in the following months.

Naturally, the difference between the monthly discharges

predicted by the two models becomes even more apparent

when we consider Jiuzhou station, which was not used in

the calibration process. As depicted in Fig. 11, the model

without reservoirs consistently yields higher discharges in

the pre-monsoon season and lower discharges in the mon-

soon season. Note that, in some months, the difference be-

tween the average monthly discharges produced by the two

models causes an uncertainty larger than the one surrounding

the downscaled climate projections. For instance, the average

monthly discharge in March (under both RCPs) predicted by

two models is about 500 and 750 m3 s−1, that is, a 50 % dif-

ference.

5 Discussion and conclusions

This work contributes to the existing literature on large-

scale hydrological modeling by studying the effect of wa-

ter reservoir storage and operations on the parameterization

of process-based models. To this purpose, we developed a

computational framework consisting of VIC and the multi-

objective evolutionary algorithm ε-NSGA-II, which we used

to calibrate the model parameters through a simulation–

optimization process. Our framework also includes a novel

variant of VIC that simulates both storage dynamics and op-

erations of water reservoirs. Using the Lancang river basin as

a case study, we calibrated two implementations of VIC, with

and without reservoirs. In line with previous studies (e.g.,

de Paiva et al., 2013; Abbaspour et al., 2015), we found that

the model without reservoirs attains a reasonable modeling

accuracy. In fact, we found that the calibration process of

both model implementations yields de facto the same values

of the goodness-of-fit statistics (NSE and TRMSE), suggest-

ing that the model parameterization helps compensates for a

structural error, namely the absence of the water reservoirs.

More specifically, this effect is achieved by determining the

values of six soil parameters (Ds, Dmax, Ws, b, d1 and d2)

that let this model implementation emulate the presence of

water reservoirs.

The first implication of a flawed parameter estimation

stands in a poor representation of key hydrological pro-

cesses, such as surface runoff, infiltration, and baseflow. In

our case, we found that, during the dry months, the models

calibrated without water reservoirs generate a higher amount

of baseflow and runoff than the models with reservoirs.

This is an artifact needed to reproduce the higher discharges
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Figure 9. Comparison between observed and simulated monthly discharges at Jiuzhou station over the period 1996–2005. Simulated data

are produced by the two selected models with and without reservoirs (blue and red dots, respectively).

Figure 10. Projected monthly discharges at Chiang Saen under five GCMs and two RCPs for the two selected models calibrated without

and with reservoirs (a–d). Box plots highlighting the variability in monthly discharges predicted by the two models under RCP 4.5 (e) and

RCP 8.5 (f).
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Table 4. Relative changes in annual river discharges at the Chiang Saen station for the future period (2050–2060) relative to the reference

one (1996–2005). The lowest and highest changes are presented with the corresponding scenarios. The results reported in the first and second

rows were produced by the selected models without and with reservoirs.

Scenario RCP 4.5 RCP 8.5

Ensemble Range Ensemble Range

mean (%) (%) mean (%) (%)

Without reservoirs +13.62 +6.36 to +23.66 +13.92 −0.67 to +28.89

CSIRO–ACCESS CSIRO–ACCESS

With reservoirs +13.56 +6.28 to +23.56 +13.83 −0.63 to +28.68

CSIRO–ACCESS CSIRO–ACCESS

Figure 11. Variability in monthly discharges at Jiuzhou station predicted by the two selected models (with and without reservoirs) under

RCP 4.5 (a) and RCP 8.5 (b).

of hydropower dams that sustain the production of hydro-

electricity in the dry season. Vice versa, baseflow and runoff

are reduced during the wet months, so as to account for the

decrease in peak flows caused by the fact that dams store part

of the water for the following dry season. A poor parameter

estimation is also likely to affect several downstream appli-

cations of a hydrological model. In our second experiment

we exemplify this concept through a climate change impact

assessment, in which we contrasted the annual and monthly

discharges projected by two selected models (with and with-

out reservoirs). Both models show a similar trend in the flow

regime – i.e., increased monthly discharges during the mon-

soon season, caused by the projected increase in precipita-

tion – a result found in previous studies (Lauri et al., 2012;

Hoang et al., 2016, 2019). Yet, one cannot neglect the differ-

ent nuances of the flow regime alterations predicted by the

two models. In particular, the model with reservoirs presents

higher discharges at the peak of the monsoon season than the

model without reservoirs. These nuances may impact some

of the conclusions of a climate change impact assessment as

well as other model-based studies depending on a reliable

estimation of the flow regime.

Like any hydrological modeling study, this work also

builds on a few modeling assumptions that should be prop-

erly discussed. First, our model calibration focuses solely on

six main parameters controlling the rainfall–runoff process

and assumes that they are homogeneously distributed across

the basin. As explained in Sect. 3.1.1, the choice of these pa-

rameters is already established in the literature (Dan et al.,

2012; Park and Markus, 2014; Xue et al., 2015); yet, it is

reasonable to expect that the use of more parameters could

further improve the model accuracy. As for the use of homo-

geneously distributed parameters, our modeling choice is jus-

tified by the fact that the use of heterogeneously distributed

parameters would largely impact the computational require-

ments of the calibration process. We also note that there are

no reasons to believe that the use of more (or spatially dis-

tributed) parameters would deeply alter the main findings of

this work. Second, the large spatial domain – and associated

soil water retention capacity – might be a factor controlling

the capability of the calibration process to compensate for

the absence of water reservoirs. In other words, such capa-

bility might be dependent on the relation between soil water

retention capacity and total storage volume of the reservoirs.

In a small basin regulated by a large dam, a modified rep-

resentation of runoff, infiltration, and baseflow may not be

sufficient to compensate fully for a poor representation of

reservoir storage and operations. Third, we focussed our at-
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tention on water reservoirs, which are indeed the infrastruc-

tures affecting the flow regime in the Lancang. In the lower

Mekong basin (not considered in our spatial domain), the

flow regime has been modified not only by hydropower reser-

voirs, but also by withdrawals for irrigation supply (Hoang

et al., 2019). Looking forward, it would thus be interesting to

extend the spatial domain of our model and study how these

withdrawals could affect its parameterization.

As the pervasiveness of water resources management in

Earth system models expands, so too does the need for a

deeper understanding of the mechanisms regulating the cal-

ibration process. The explicit representation of water reser-

voirs – and other infrastructure – is indeed likely to result

in more realistic soil parameters, a hypothesis whose ver-

ification depends on the availability of observations about

soil physical properties for large spatial domains. In turn,

this highlights the importance of studies aimed to infer such

properties from remotely sensed images (Chang and Islam,

2000; Chabrillat et al., 2019). A related topic that may also

deserve future research is the robustness of these models with

respect to changes in the operations or physical characteris-

tics of dams. Variability in water and energy demand is a

key driver for multiple management and planning interven-

tions (e.g., modifications of the operating rules, construction

on new storage), so it is paramount to know the extent to

which models can still capture key hydrological processes

once these modifications are in place.

Overall, the findings of this study reinforce the message

that water infrastructures – and their operational settings –

play a key role in the reliability of a hydrological modeling

exercise, like the quality of the hydro-meteorological data,

the model structure, or the calibration process (Francés et al.,

2007; Madsen, 2000). These findings gain further promi-

nence if one considers the expected increase in hydropower

development in several regions of the world (Zarfl et al.,

2015).

Code and data availability. Precipitation and air temperature data

were retrieved from APHRODITE and CFSR datasets, available

at http://www.chikyu.ac.jp/precip/english/downloads.html (RIHN

and MRI/JMA, 2018) and https://rda.ucar.edu/datasets/ds093.1/#!

(National Center for Atmospheric Research, 2018) Land use

and land cover data were obtained from the GLCC dataset

(https://www.usgs.gov/centers/eros/science/, United States Geo-

logical Survey, 2018a), while the soil data were extracted from

the HWSD database (http://www.fao.org/soils-portal/soil-survey/

soil-maps-and-databases/harmonized-world-soil-database-v12/

en/, Food and Agriculture Organization of the United Nations,

2018). The Terra MODIS satellite images (used to calcu-

late the monthly Leaf Area Index and albedo) are available

at https://earthexplorer.usgs.gov/ (National Aeronautics and

Space Administration, 2018a). The Landsat TM and ETM+

imagery are available at https://earthexplorer.usgs.gov/ (Na-

tional Aeronautics and Space Administration, 2018b). The

global Digital Elevation Model (GTOPO30) is available at

https://www.usgs.gov/centers/eros/science/ (United States Geo-

logical Survey, 2018b). The GCMs projections were retrieved

from https://esgf-node.llnl.gov/search/esgf-llnl/ (Lawrence

Livermore National Laboratory, 2018). All these data are

publicly available. The daily discharge data at Chiang Saen

and the design specifications of all dams were obtained by

the authors from the Mekong River Commission and the In-

ternational Commission On Large Dams, so they cannot be

shared without their consent. Additional data about the dams

were retrieved from the Global Reservoir and Dam Database,

available at http://globaldamwatch.org/data/#core_global (So-

cioeconomic Data and Application Center, 2018). The variant

of VIC used in this study – named VIC-Res – is available at

https://github.com/thanhiwer/VICRes (Dang, 2019).
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