
ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

On the Representational Power of

Bit-Level and Word-Level Decision Diagrams

Bernd Becker Rolf Drechsler Reinhard Enders

Institute of Computer Science Siemens AG
Albert-Ludwigs-University Corporate Research and Development

79110 Freiburg im Breisgau, Germany 81730 M�unchen, Germany
email: <name>@informatik.uni-freiburg.de email: Reinhard.Enders@zfe.siemens.de

Abstract

Abstract| Several types of Decision Diagrams
(DDs) have have been proposed in the area of
Computer Aided Design (CAD), among them being
bit-level DDs like OBDDs, OFDDs and OKFDDs.
While the aforementioned types of DDs are suitable
for representing Boolean functions at the bit-level
and have proved useful for a lot of applications in
CAD, recently DDs to represent integer-valued func-
tions, like MTBDDs (=ADDs), EVBDDs, FEVBDDs,
(*)BMDs, HDDs (=KBMDs), and K*BMDs, attract
more and more interest, e.g., using *BMDs it was for
the �rst time possible to verify multipliers of bit length
up to n = 256.

In this paper we clarify the representational power
of these DD classes. Several (inclusion) relations and
(exponential) gaps between speci�c classes di�ering in
the availability of additive and/or multiplicative edge
weights and in the choice of decomposition types are
shown. It turns out for example, that K(*)BMDs,
a generalization of OKFDDs to the word-level, also
\include" OBDDs, MTBDDs and (*)BMDs. On the
other hand, it is demonstrated that a restriction of
the K(*)BMD concept to subclasses, such as OBDDs,
MTBDDs, (*)BMDs as well, results in families of func-
tions which lose their e�cient representation.

I. Introduction

One of the most important tasks during the construc-
tion and design of Integrated Circuits (ICs) is the proof
of correctness, i.e. the check whether the design ful�lls its
speci�cation.
In the last few years several methods based on Decision

Diagrams (DDs) have been proposed [20, 18, 7] and in
the meantime are used in industrial applications [14, 10,
1]. The most popular data structure in this context are
Ordered Binary Decision Diagrams (OBDDs) [5].
The major drawback of OBDDs is that they often can-

not represent the functions e�ciently; this also holds for
functions with high practical relevance, like multipliers
[6].
Consequently, several variations of OBDDs have been

proposed. Among these variations are those that use re-
cursive application of three di�erent decomposition types,
the Shannon decomposition and the (positive and neg-
ative) Davio decomposition. This leads to the de�ni-
tion of Ordered Kronecker Functional Decision Diagrams
(OKFDDs) [16], that, based on a formalization of the no-
tion \decomposition type", have been proven to be the

most general ordered DD for Boolean functions [3] com-
bining the advantages of OBDDs that only use the Shan-
non decomposition and of Ordered Functional Decision
Diagrams (OFDDs) that only use Davio decompositions.
Furthermore, it was shown in [4] that OKFDDs in full gen-
erality are necessary to obtain succinct representations.
While the DDs mentioned above are suitable for repre-

senting Boolean functions at the bit-level and have proved
useful for a lot of applications in CAD, recently, DDs to
represent integer-valued functions attract more and more
interest. In particular, Binary Moment Diagrams (BMDs)
and Multiplicative BMDs (*BMDs) [8, 9], that are based
on an integer-valued positive Davio decomposition and
operate on the word-level, have become important. Using
*BMDs it was for the �rst time possible to verify multi-
pliers of bit length up to n = 256. Unfortunately, *BMDs
fail for the representation of Boolean functions that can
easily be represented using OBDDs [17]. Thus, extensions
of *BMDs are of interest. A �rst step in this direction
has been proposed in [11, 13]. There BMDs are combined
with Multi-Terminal BDDs (MTBDDs) [12]. The result-
ing DDs, called Hybrid Decision Diagrams (HDDs) in [11],
are based on integer-valued generalizations of Shannon
and Davio decompositions. They combine the advantages
of MTBDDs and BMDs in a similar way as OKFDDs com-
bine OBDDs and OFDDs. We therefore prefer to call this
class of DDs Kronecker BMDs (KBMDs). With KBMDs
it is e.g. possible to handle functions related to data bits as
BMDs and those related to control signals as MTBDDs.
Kronecker *BMDs (K*BMDs) [15] also use integer-

valued generalizations of Shannon and Davio decompo-
sitions and in addition allow edge values as it is possi-
ble with *BMDs, Edge-Valued Binary Decision Diagrams
(EVBDDs) [19], and Factored EBDDs (FEVBDDs) [21].
We obtain a data structure, that is a generalization of
*BMDs, OBDDs and FEVBDDs as well. Thus, on the
one hand it is possible to represent functions e�ciently,
that have a good word-level description, on the the other
hand K*BMDs are also applicable to veri�cation problems
at the bit-level.

In this paper we clarify the representational power of
classes of DDs. We prove several exponential gaps be-
tween speci�c classes. It follows that with respect to
e�cient representation it is advantageous to use (addi-
tive and multiplicative) edge weights. Furthermore, data
structures that only allow the Shannon decomposition or
only allow the Davio decomposition are not su�cient.
DDs that allow di�erent decomposition types in the same
graph should be prefered, like OKFDDs, KBMDs and
K*BMDs. Combining our results it follows that a re-

striction of the K*BMD concept to subclasses, such as
*BMDs and EVBDDs as well, results in families of func-
tions which lose their e�cient representation.

The paper is structured as follows: In Section II. we
briey review the de�nitions of the several types of DDs
considered in this paper. In Section III. we then study the
relation between these data structures. We �nish with a
resume of the results.

II. Decision Diagrams

In this section we introduce several classes of DDs.
All these data structures are graph-based representations,
where at each (non terminal) node (labeled with a vari-
able x) a decomposition of the function (represented by
this node) into two subfunctions (the low-function and
the high-function) is performed. Furthermore, the under-
lying graph is ordered, i.e. the variables occur in the same
order on all paths of the DD.
We �rst briey review the basic notations and de�ni-

tions of bit-level DDs like OKFDDs, OFDDs, OBDDs.
Then word-level DDs like MTBDDs (=ADDs), BMDs,
KBMDs, EVBDDs, FEVBDDs, *BMDs, and K*BMDs
are introduced.

A. Bit-Level Decision Diagrams

We use OKFDDs as introduced in [16].
An OKFDD is a graph-based representation of a

Boolean function f : Bn ! B, where at each non termi-
nal node v (labeled with variable x) one of the following
three decompositions is carried out:

f = xflow(v) � xfhigh(v) Shannon (S)

f = flow(v) � xfhigh(v) positive Davio (pD)

f = flow(v) � xfhigh(v) negative Davio (nD)

(f is the function represented at node v, flow(v)
(fhigh(v)) denotes the function represented by the low -

edge (high-edge) of v. � is the Boolean Exclusive OR op-
eration.) The recursion stops at terminal nodes labeled
with 0 or 1.
Decomposition types are associated to the n Boolean

variables x1; x2; : : : ; xn with the help of a Decomposi-
tion Type List (DTL) d := (d1; : : : ; dn) where di 2
fS; pD; nDg, i.e. di provides the decomposition type for
variable xi (i = 1; : : : ; n). An OKFDD with DTL
(S; : : : ; S), i.e. all nodes are Shannon nodes, is an OBDD.
An OKFDD with DTL d := (d1; : : : ; dn) where di 2
fpD; nDg, i.e. all nodes are Davio nodes, is an OFDD.
Analogously, OpFDDs (OnFDDs) are OKFDDs with only
positive (negative) Davio nodes.
On OKFDDs reductions can be de�ned resulting

in canonical representations for not only OBDDs and
OFDDs, but also for OKFDDs. The size of an OKFDD
can be further reduced, if Complement Edges (CEs), that
are well known from OBDDs, are used. Then a node is
used to represent a function and its complement at the
same time.
The scenario of bit-level DDs considered in this paper

is given in the upper part of Fig. 1. A line indicates a
subset relation, that is directly given by the de�nitions,
e.g., OBDDs are a subset of OKFDDs.

B. Word-Level Decision Diagrams

We now briey introduce Decision Diagrams for the
representation of integer-valued functions f : Bn ! Z.
(For more details see [12, 2, 8, 9, 11, 19, 15].)
All word-level DDs considered here are also graph-based

representations where the underlying graph is ordered. As
for bit-level DDs, reductions can be de�ned resulting in
canonical representations for all types of DDs considered
here.
We start with word-level DDs making no use of edge

values.

B.1 Word-Level DDs without edge values

MTBDDs (=ADDs) are based on the (integer-valued)
Shannon decomposition (S) and allow terminal nodes la-
beled with integer values. BMDs make use of the (integer-
valued) positive Davio decomposition (pD) and allow ter-
minal nodes labeled with integer values, i.e., they are the
integer-valued generalization of OpFDDs.
KBMDs (or HDDs as they are called by Clarke et

al. [11]) try to combine the advantages of MTBDDs and
BMDs. Analogously to OKFDDs at the bit-level, di�er-
ent decomposition types per variable can be used. Since
we consider integer-valued functions a lot of di�ering de-
composition types are possible. They can be de�ned by
the set Z2;2 of non singular 2 � 2 matrices over Z [11].
As for OKFDDs decomposition types are associated to
the n Boolean variables with the help of a Decomposition
Type List (DTL) d := (d1; : : : ; dn) where di 2 Z2;2, i.e. for
each variable one �xed decomposition is chosen. Following
[11] the matrices corresponding to Shannon (S), positive
Davio (pD) and negative Davio (nD), respectively, are�

1 0
0 1

� �
1 0
�1 1

� �
0 1
1 �1

�
:

The middle part of Fig. 1 depicts the scenario of word-
level DDs without edge values.

B.2 Word-Level DDs with edge values

Edge values are introduced to increase the amount
of subgraph sharing when using integer-valued terminal
nodes. It has to be di�erentiated between additive and
multiplicative edge values.
EVBDDs are MTBDDs where a constant a is added

to the function being represented. Thus, in the EVBDD
an edge with weight a to a node v labeled with variable
x represents the function < a; f >= a+ (1 � x)flow(v) +
xfhigh(v). (As before f is the function represented at node

v, flow(v) (fhigh(v)) denotes the function represented by

the low -edge (high-edge) of v. � and + denote the usual
operations in the ring Z.)
*BMDs are a generalization of BMDs in the sense that

they allow multiplicative edge weights: the values at the
edges are multiplied with the functions represented. Thus,
an edge with weight m to a node v in a *BMD represents
the function < m; f >= m(flow(v) + xfhigh(v)).
K*BMDs di�er from KBMDs in the fact that they al-

low the use of integer weights, additive and multiplica-
tive weights in parallel. An anlogous concept is realized
for MTBDDs in [21]. There EVBDDs are supplied with
an additional multiplicative weight resulting in Factored
EVBDDs (FEVBDDs). K*BMDs (and FEVBDDs) make
use of the following type of representation:

< (a;m); f >:= a+mf

FEVBDDs

EVBDDs

K*BMDs

*BMDs

PPP

word-level
+ edge values

MTBDDs=ADDs BMDs

KBMDs=HDDs

���
HHH

word-level

OBDDs OFDDs

OKFDDs

���
HHH

bit-level

Fig. 1. World of Ordered Decision Diagrams

In contrast to FEVBDDs, which are based on Shan-
non decomposition, K*BMDs allow di�ering decomposi-
tion types per variable. In the case of Shannon decom-
position, positive and negative Davio decomposition the
function represented at a node v is then given by

< (a;m); f > = a+m((1� x)flow(v) + xfhigh(v))

< (a;m); f > = a+m(flow(v) + xfhigh(v))

< (a;m); f > = a+m(flow(v) + (1� x)fhigh(v))

To make DDs with edge values a canonical representa-
tion some further restrictions on the graph with respect
to weights are required. For simplicity, here we only com-
ment on these restrictions for the case of K*BMDs. (For
other DD types the restrictions are similar.) Basically
the following is required: There exists only one leaf and
this leaf is labeled 0, the low -edge of a node has additive
weight 0 and the remaining weights have greatest common
divisor 1.
The lower part of Fig. 1 gives the edge-valued word-

level DDs considered here.

III. Relations between Decision Diagrams

In this section we study the representational power of
these DDs in more detail. In particular, we are interested
in exponential trade-o�s of the following kind: \For the
representation of bit-level functions OFDDs are at least
as small as *BMDs. There exist functions where the best
*BMD representation is exponentially larger than the cor-
responding EVBDD representation."

A. Basic Properties

We start with some simple observations.

It follows directly from the de�nition that MTBDDs
for Boolean functions are isomorphic to OBDDs (without
CEs).

According to the normalization rules for K*BMDs (and
FEVBDDs) it follows easily that an edge weight (1;�1)
at the high-edge of a node that represents a Boolean
function corresponds to a complement edge. Thus, in
K*BMDs for Boolean functions consisting of only Shan-
non nodes (= FEVBDDs) all inner nodes also represent
only Boolean functions (in contrast to *BMDs). It fol-
lows, that K*BMDs (for the representation of Boolean
functions) are isomorphic to OBDDs with CEs, if the
Shannon decomposition is carried out in each node.

If K(*)BMDs with decomposition types S, pD, nD are
used for the representation of Boolean functions, they
are always larger (or equal) in size than OKFDDs (with
CEs), since OKFDDs result from KBMDs and K*BMDs
by performing a modulo 2 operation on the terminals and
nodes, respectively, and performing a reduce operation.
As a special case it follows, that *BMDs (EVBDDs) for
Boolean functions are always larger (or equal) in size than
OpFDDs (OBDDs).

It follows from the normalization rule that K*BMDs
have only one node for the representation of a single vari-
able. In EVBDDs and *BMDs several nodes might be
used. In general K*BMDs need a smaller number of nodes
than *BMDs for the representation of functions, since
they have a larger expressive power (see the following sec-
tions), but the space needed for each node is slightly larger
due to the additive and multiplicative weights. In the fol-
lowing subsection we will show that merely the use of edge
values leads to smaller (sometimes exponentially smaller)
representation sizes (counted in the number of nodes).

add-DD

(add,mult)-DD

mult-DD

DD

�����
����

HHHHj
HHHj

HHHHj
HHHj

�����
����

Fig. 2. DDs with di�ering edge values.

B. Why to Use Edge Values

For the following let DD be any of the word-level DDs
without edge values as introduced in the previous section.
We now consider three classes resulting from DD by the
di�ering types of edge values:

add-DD: DD is augmented by additive weights. (E.g.,
MTBDDs and EVBDDs are related in this way.)

mult-DD: The DD is augmented by multiplicative
weights. (For an example consider BMDs and
*BMDs.)

(add,mult)-DD: DD is augmented by additive and mul-
tiplicative weights. (K*BMDs result from KBMDs
by doing this.)

It can be shown inductively that common subfunctions
in DD remain common subfunctions after the augmenta-
tion of the DD with edge values. It may happen that a
\lot" of new common subfunctions result when edge val-
ues are allowed.

As an example consider the function

m(x1; x2; : : : ; xn) :=

nY
i=1

pxii + 1

where pi is the ith prime number. It is easy to
see that m(x) has linear (add,mult)-MTBDD size (=
FEVBDD size) but only exponential MTBDDs, add-
MTBDDs (=EVBDDs) and mult-MTBDDs (= MTBDDs
with multiplicative weights).
In a similar way one can show exponential gaps for all

cases, where edge values are added. For illustration see
Fig. 2, where a double arrow from A to B means that,
given an ordering of the variables and a DTL, the repre-
sentation for any function f in class A is always larger (or
equal), sometimes exponentially larger than in class B.

We summarize the results obtained in Subsections III.A
and III.B. (For illustration see Fig. 3. An arrow from A
to B indicates that representation in A is always larger
or equal as in B. A double arrow has the same meaning
as in Fig. 2. Solid lines are used to denote the inclusion
(of OBDDs in FEVBDDs and K*BMDs).) Until now we
have shown some \vertical relations":

� Going from bit-level DDs to word-level DDs in
general increases the size for the representation of
Boolean functions.

� This increase can be \softened" by the introduction
of edge values which reduce reduction size sometimes
exponentially (compared to the DD version without
weights).

� On the other hand, the gaps may remain exponen-
tial even in the presence of weights. See the double
arrows between K(*)BMDs and OKFDDs ((*)BMDs
and OFDDs). (This will be shown in Theorem 1
given in the next section.)

� FEVBDDs and K*BMDs are the only word-level DDs
that contain a bit-level DD type (OBDDs) and thus
guarantee at least the same representation size as
OBDDs.

C. Why to Use di�erent Decomposition Types

In this subsection we discuss gaps resulting from the
use of di�erent decomposition types. This will help us to
clarify the \horizontal" relations between DDs.

The representation size for a function may heavily de-
pend on the decomposition type. This can be demon-
strated by the so-called clique functions which are shortly
introduced in the following:
Consider n nodes 1; 2; : : : ; n and n(n � 1)=2 Boolean

variables xi;j (1 � i < j � n). Then an assign-

ment x = (x1;2; x1;3; : : : ; xn�1;n) 2 Bn(n�1)=2 de�nes an
undirected graph Gx = (V;Ex) with V = f1; : : : ; ng
and Ex = f(i; j)jxi;j = 1g. A group consisting of
3 nodes is called a 3-clique (or clique for simplicity),
i� every two of them are connected by an edge. Let
d = (d1;2; d1;3; : : : ; dn�1;n) be a DTL. Then the polar-

ity function pold : Bn(n�1)=2 ! Bn(n�1)=2 is de�ned by
pold(x1;2; : : : ; xn�1;n) := (xd1;2; : : : ; x

d
n�1;n) with

xdi;j :=

�
xi;j : di;j = S; di;j = pD
xi;j : di;j = nD

For a �xed DTL d we consider the 1-clique-function
1-cldn;3, the parity-clique-function �-cl

d
n;3 and the number-

clique-function #-cldn;3 de�ned by

� 1-cldn;3(x) = 1, i� Gpold(x) contains exactly three

edges and these edges build a 3-clique.

� �-cldn;3(x) = 1, i� Gpold(x) contains an odd number
of 3-cliques.

� #-cldn;3(x) = k, i� Gpold(x) contains exactly k 3-

cliques.

In Table I we provide some experimental data giv-
ing OBDD (OFDD, EVBDD, *BMD, K*BMD) rep-

resentation sizes of 1-cldn;3;�-cl
d
n;3 and #-cldn;3 (d =

(pD; pD; : : : ; pD)) for varying n. An `X' symbolizes that
the function has an integer range and the data structure
is Boolean only. A `-' symbolizes that the construction
exceeded a node limit of 100.000 nodes. Only the \pure"
DDs are considered for K*BMDs, i.e. mixing of decom-
position types is not yet considered. For all functions we
used the initial variable ordering. Our experiments show,
that Shannon-based DDs can handle 1-cldn;3. #-cldn;3 is

FEVBDDs

EVBDDs

?? @
@R
@@R ����

����

K*BMDs

*BMDs

word-level
+ edge values

MTBDDs BMDs

KBMDs

word-level

OBDDs OFDDs

OKFDDs

bit-level

66

??

6

666

?? ??

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB

KAAK

��

��

MB
BM

%%

ee

Fig. 3. \Vertical" relations between di�erent types of DDs

easily represented by Davio-based word-level representa-
tions, while Shannon-based representations fail already
for n = 8. �-cldn;3 can only be represented e�ciently

using OFDDs (= bit-level Davio-based representations).
Word-level representations (even the word-level Davio-
based ones) fail.
The (more) theoretical counterpart of these experi-

ments is provided by a number of exponential gaps be-
tween speci�c classes of DDs given in the following. For
bit-level DDs these gaps have been already shown in [4],
they are briey repeated here for the sake of completeness.
Furthermore, we demonstrate how the results of [17] and
[4] can be extended to general word-level DDs.
The key to the proofs of all theorems given in the follow-

ing is an investigation of the relation between functions
which are represented by the same (bit-level or word-level)
DD G. Of course, changing the DTL d for G in general
also changes the function represented by the DD. Nev-
ertheless, it can be shown that the functions are related
by a bijective operator, called the generalized � -operator.
Because of its importance we shortly introduce this oper-
ator. All further proofs in this paper are left out due to
page limitation.
De�ning the generalized �-operator �d for a function f

and DTL d by

�d(f)(x) :=
M
y�dx

f(y)

it can be shown that the the functions associated to DDs
by di�erent interpretations can be computed from each
other through the generalized � -operator and its inverse.1

1
L

(in the formula) denotes the sum in the Boolean or integer
domain depending on whether we consider bit- or word-level DDs.
y �d x (\smaller with respect to d") i� all components i satisfy

Using this it is possible to transfer results between dif-
ferent types of DDs. In particular, the existence of fam-
ilies of functions that provide exponential gaps can be
proven.

Theorem 1 (Gaps: Shannon versus Davio)
For any order � of the variables xi;j and any DTL d =

(d1;2; : : : ; dn�1;n) 2 fpD; nDgn(n�1)=2 it holds:

i.) 1-cldn;3 has OBDDs, MTBDDs (=ADDs), EVBDDs,

FEVBDDs of polynomial size (O(n5)), but only
OFDDs, KBMDs, K*BMDs (with DTL d) of expo-

nential size (2
(n
2)).

ii.) �-cldn;3 has OFDDs (with DTL d) of polynomial size

O(n3), but only OBDDs, *BMDs, K(*)BMDs with

DTL d of exponential size (2
(n)).

iii.) #-cldn;3 has KBMDs, K*BMDs (with DTL d) of poly-

nomial size (O(n3)), but only MTBDDs (=ADDs),

EVBDDs, FEVBDDs of exponential size (2
(n
2)).

We illustrate relations obtained by this theorem in
Fig. 4). (The arrows denote potential gaps.) It follows
that depending on the function it is advantageous to con-
sider both, Shannon-based DDs and Davio-based DDs.
Thus, DDs combining Shannon and Davio decompositions
are helpful.

D. Why to use \many" DTLs

As demonstrated in the previous subsection OKFDDs,
KBMDs, K*BMDs with S-nodes and OKFDDs, KBMDs,

yi �di
xi, where yi �di

xi means yi � xi (yi � xi, yi = xi) i�
di = pD (di = nD, di = S).

TABLE I
Comparison between different DD types

name n inp OBDD OFDD *BMD K*BMD
S pD nD

1-cldn;3 5 10 47 114 171 47 154 65
7 21 207 6248 19676 207 19399 275
8 28 367 - - 367 - 477
10 45 947 - - 947 - 1185

�-cldn;3 5 10 94 22 123 94 112 217
7 21 4005 65 25410 4005 24647 -
8 28 36392 98 - 36392 - -
10 45 - 192 - - - -

#-cldn;3 5 10 X X 22 108 22 33
7 21 X X 65 6452 65 94
8 28 X X 98 - 98 139
10 45 X X 192 - 192 263

K*BMDs with D-nodes should be considered. We now
show that it also makes sense to mix di�ering decomposi-
tion types within one and the same DD. Furthermore, it
is shown that the restriction to a few DTLs reduces the
power of DDs.
We �rst provide an exponential gap for DDs with DTL

d 2 fpD; nDgn and DDs with DTL d. Here, the DTL d
results from the DTL d by changing the decomposition
types from pD to nD and vice versa.

Theorem 2 (Gaps: Davio versus inverse Davio)
Consider any order � of the variables xi;j and any DTL

d 2 fpD; nDgn(n�1)=2. De�ne the DTL d by di := pD
(nD) if di = nD (pD). Then it holds:

1-cldn;3 has K(*)BMDs with DTL d of polyno-

mial size, but only K(*)BMDs with DTL d of
exponential size.

The last two theorems are the basis for an important
corollary.

Corollary 1 There exists an exponential gap between
two DTLs, d1 and d2, di�ering in all components.

Summing up the results so far, we have shown that it
is advantageous to consider K(*)BMDs with several dif-
ferent DTLs. A restriction to only one DTL results in
functions that lose their e�cient representation. We now
consider the problem, whether a restriction to a few DTLs
reduces the power of K(*)BMDs. We show that as in the
bit-level case a few DTLs are not as powerful as general
K(*)BMDs. This also implies that mixing of decomposi-
tion types in one DTL is important.

Theorem 3 (Gaps for restricted DTLs) Consider a

set D = fd1; d2; : : : ; dkg (k 2 N constant) of DTLs

dj = (dj1; d
j
2; : : : ; d

j
n) with dji 2 fS; pD; nDg. Then the

following holds:

There exists a function fn over n variables, such
that each K*BMD (with DTL dj ; 1 � j � k)
for fn has exponential size, while there exist
K*BMDs for fn of polynomial size.

At the end of this section we want to mention some fur-
ther points of interest not discussed in this paper. Besides
representation size also the complexity of synthesis oper-
ations on DDs is of interest. The exponential gaps proved
in this paper can be used to determine the worst case
complexity of operations. It can for example be shown
that already for \simple" word-level DDs, like BMDs,
*BMDs, FEVBDDs, multiplication has exponential worst
case complexity. Thus, conciseness of representation (at
least in some cases) has to be paid for with a decrease of
e�ciency in the operations.

IV. Conclusions

In this paper we presented some results to clarify the
relation between di�erent types of Decision Diagrams -
data structures frequently used in CAD applications.
We proved several (exponential) gaps between speci�c

classes. A good summary is provided by the combination
of Fig. 1, 3, 4:
In general the representation of Boolean functions with

word-level DDs leads to an increase in size. K(*)BMDs
and FEVBDDs have the advantage to \link" word-level
and bit-level representation in the sense, that OBDDs are
contained as a subset in both.
In the �eld of word-level DDs (additive and multiplica-

tive) edge weights should be used to reduce the size.
For bit-level and word-level representations as well,

data structures that only allow Shannon decompositions
(only allow Davio decompositions) are not su�cient. DDs
that provide the possibility to use di�erent decomposition
types in the same graph should be prefered, like OKFDDs,
KBMDs and K*BMDs. We also showed that a restriction
of the K(*)BMD concept to a �xed number of subclasses,
e.g. BMDs, MTBDDs, *BMDs and EVBDDs as well, re-
sults in families of functions which lose their e�cient rep-
resentation.

References

[1] D.P. Appenzeller and A. Kuehlmann. Formal veri�cation
of a PowerPC microprocessor. In Int'l Conf. on Comp.
Design, pages 79{84, 1995.

FEVBDDs

EVBDDs

K*BMDs

*BMDs

PPPqexp

-�
exp

HHHHj
exp ����� exp

word-level
+ edge values

MTBDDs BMDs

KBMDs

�����
HHHHj

-�
exp

expexp

word-level

OBDDs OFDDs

OKFDDs

�����
HHHHj

-�
exp

expexp

bit-level

Fig. 4. Exponential \horizontal" gaps between di�erent types of DDs.

[2] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel,
E. Macii, A. Prado, and F. Somenzi. Algebraic decision
diagrams and their application. In Int'l Conf. on CAD,
pages 188{191, 1993.

[3] B. Becker and R. Drechsler. How many decomposition
types do we need? In European Design & Test Conf.,
pages 438{443, 1995.

[4] B. Becker, R. Drechsler, and M. Theobald. OKFDDs
versus OBDDs and OFDDs. In ICALP, LNCS 944, pages
475{486, 1995.

[5] R.E. Bryant. Graph - based algorithms for Boolean func-
tion manipulation. IEEE Trans. on Comp., 8:677{691,
1986.

[6] R.E. Bryant. On the complexity of VLSI implementa-
tions and graph representations of Boolean functions with
application to integer multiplication. IEEE Trans. on
Comp., 40:205{213, 1991.

[7] R.E. Bryant. Symbolic boolean manipulation with or-
dered binary decision diagrams. ACM, Comp. Surveys,
24:293{318, 1992.

[8] R.E. Bryant and Y.-A. Chen. Veri�cation of arithmetic
functions with binary moment diagrams. Technical re-
port, CMU-CS-94-160, 1994.

[9] R.E. Bryant and Y.-A. Chen. Veri�cation of arithmetic
functions with binary moment diagrams. In Design Au-
tomation Conf., pages 535{541, 1995.

[10] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and

L.J. Hwang. Symbolic model checking: 1020 states and
beyond. Information and Computation, 98(2):142{170,
1992.

[11] E.M. Clarke, M. Fujita, and X. Zhao. Hybrid decision
diagrams - overcoming the limitations of MTBDDs and
BMDs. In Int'l Conf. on CAD, pages 159{163, 1995.

[12] E.M. Clarke, K. McMillan, X. Zhao, M. Fujita, and
J. Yang. Spectral transforms for large boolean functions

with application to technology mapping. In Design Au-
tomation Conf., pages 54{60, 1993.

[13] E.M. Clarke and X. Zhao. Word level symbolic model
checking - a new approach for verifying arithmetic cir-
cuits. Technical Report CMU-CS-95-161, 1995.

[14] O. Coudert, C. Berthet, and J.C. Madre. Veri�cation
of sequential machines based on symbolic execution. In
Automatic Veri�cation Methods for Finite State Systems,
LNCS 407, pages 365{373, 1989.

[15] R. Drechsler, B. Becker, and S. Ruppertz. K*BMDs: a
new data structure for veri�cation. In European Design
& Test Conf., pages 2{8, 1996.

[16] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and
M.A. Perkowski. E�cient representation and manipula-
tion of switching functions based on Ordered Kronecker
Functional Decision Diagrams. In Design Automation
Conf., pages 415{419, 1994.

[17] R. Enders. Note on the complexity of binary moment
diagram representations. IFIP WG 10.5 Workshop on
Applications of the Reed-Muller Expansion in Circuit De-
sign, pages 191{197, 1995.

[18] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and
improvements of boolean comparison method based on
binary decision diagrams. In Int'l Conf. on CAD, pages
2{5, 1988.

[19] Y.-T. Lai and S. Sastry. Edge-valued binary decision di-
agrams for multi-level hierarchical veri�cation. In Design
Automation Conf., pages 608{613, 1992.

[20] S. Malik, A.R. Wang, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. Logic veri�cation using binary
decision diagrams in a logic synthesis environment. In
Int'l Conf. on CAD, pages 6{9, 1988.

[21] P. Tafertshofer and M. Pedram. Factored edge-valued
binary decision diagrams. to appear in Formal Methods
in System Design, 1996.

