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Abstract 

Hydraulic stimulation technologies are currently widely applied across resource 

and power generation industries to increase productivity of oil/gas or hot water 

reservoirs. These technologies utilise a pressurised fluid, which is applied inside 

the well to initiate and drive fractures as well as to open a network of natural 

fractures. To prevent the opened fractures from complete closure during 

production stage, small particles (proppants) are normally injected with the 

pressurised fluid. These particles are subjected to confining stresses when the 

fluid pressure is removed, which lead to a partial closure of the opened fractures. 

The residual fracture openings are the main outcome of such hydraulic 

stimulations as these openings significantly affect the permeability of the 

reservoirs and, subsequently, well productivity.  Past research was largely focused 

on the assessment of conditions and characteristics of fluid driven fractures as 

well as proppant placement techniques. Surprisingly, not much work was devoted 

to the assessment of the residual fracture profiles. In this work we develop a 

simplified non-linear model of residual closure of a crack filled with deformable 

particles under remote compressive stresses. It is demonstrated that the closure 

profile is significantly influenced by the distribution and compressibility of the 

particles, which are often ignored in the existing analytical or semi-analytical 

models. 

 

Keywords: Hydraulic well stimulation, Well productivity, Fluid driven fractures, 

Proppant, Fracture residual opening, Residual crack closure, Distributed 

Dislocation technique. 



2 

1. Introduction 

The problem under consideration has many important applications in gas/oil 

recovery technologies associated with hydraulic stimulation of underground 

reservoirs (Kotousov et al. 2011). These technologies can provide a significant 

enhancement of the permeability of geological reservoirs and often result in a 

considerable increase in the well productivity (Economides and Nolte 2000). The 

well stimulation procedures typically incorporate an injection of small particles 

(proppant) in order to keep the artificial fractures or network of natural cracks 

(faults) open throughout the production stage. During this stage the hydraulic 

pressure is removed in order to facilitate oil or gas recovery (Golf-Racht 1982; 

Barenblatt et al. 1990) and the in situ stresses lead to a partial closure of the 

fracture channels (Walsh 1981; Pyrak-Nolte et al. 1987). As the permeability of 

the fractured reservoir is strongly affected by the apertures of the fractures, the 

determination of the residual opening and fracture channel permeability filled 

with injected particles is of great practical interest (Vincent 2002).     

 

Over the past fifty years many sophisticated solutions have been developed to 

evaluate the fluid-driven fracture geometries during hydraulic stimulations 

(Adachi et al. 2007). In the same time, a number of effective techniques were 

developed to simulate various proppant transport phenomena and the proppant 

placement along such fractures. These solutions and techniques are currently 

widely utilised in industry and were comprehensively discussed in many review 

papers and books by many researchers, such as Warpinski et al. (1994), Mahrer 

(1999), Economides and Nolte (2000), and Rahman and Rahman (2010) to name a 

few. Nevertheless, the evaluation of the residual fracture profiles, which are 

directly linked to fracture conductivity as mentioned above, has received much 

less attention. For example, Papanastasiou (2000) and Dam et al. (2000) utilised 

oversimplified models to assess the residual fracture profiles but merely neglected 

the proppant compressibility and its distribution inside the fracture. A recent study 

by Kotousov (2011) deals with the final opening of two semi-infinite planes 

compressing a rigid circular inclusion of elastic-linear behaviour. Kotousov’s 

work is of great practical interest in situations where the hydraulic fracture length 

is not known a priori and it is supported by individual particles. Nevertheless, this 
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is not an ideal solution to simulate the residual opening of a hydraulic fracture 

supported by a pack of proppant with non-linear behaviour. 

 

The evaluation of the well productivity is typically based on elliptical or constant 

thickness shapes of fracture openings (e.g. Zazovskii and Todua 1991; Entov and 

Murzenko 1994; Murzenko 1994; Kanevskaya and Kats 1996), which cannot be 

considered as realistic fracture shapes for many practical applications. In addition, 

the well productivity estimates often relay on the assumption that the fracture is 

fully filled with proppant and make radical simplifications regarding 

incompressibility of the proppants. One of the objectives of this paper is to 

evaluate the validity of some of these assumptions and simplifications.  

 

The propping agents utilised in hydraulic fracturing are simply an assembly 

(pack) of unconsolidated granular particles (sand is often used as the proppant 

agent), which was the subject of many research papers in the past 

(Panayiotopoulos 1989). Initially, the pack of particles is highly compressible due 

to an initially small contact area between the particles and pack rearrangement 

under loading. Therefore, it is expected that the initial compressibility of the 

proppant inside the fracture has a considerable effect on the residual fracture 

opening and, consequently, on the fracture conductivity (Cutler et al. 1985; 

Montgomery and Steanson 1985). The residual fracture opening is also 

significantly affected by the transport and distribution of proppants within the 

fracture (Cutler et al. 1985; Montgomery and Steanson 1985). This will be 

discussed next. 

 

In a pioneering study, Kern et al. (1959) reported their findings related to 

transport and settling of proppant (sand) near the wellbore in vertical hydraulic 

fractures. In this study it was presented experimental evidences of the 

development of a mound of settled sand on the bottom face of a vertical fracture, 

as illustrated in Fig. 1. It was also demonstrated that the proppant build up 

develops and grows until the injected fluid flow velocity is high enough and 

greater than some critical velocity. 
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After the initial study of Kern et al. (1959), a few other experimental works on 

proppant transport and settling were conducted, for example, the work by Wahl 

and Campbell (1963). These experimental studies were also supported by 

mathematical and numerical modelling. Daneshy (1975; 1978) was one of the first 

researchers who proposed a simplified model for the proppant transport and 

settling in hydraulic fractures. This model was further extended by Novotny 

(1977). In these theoretical developments it was assumed that the proppant 

transport and settling follows Stokes’ law. Novotny’s model, however, also 

incorporates a highly simplified model for an estimate of the residual opening of a 

hydraulic fracture. These works and many others were thoroughly reviewed by 

Clark and Güler (1983). After these early studies, more advanced and complex 

models for the transport and settling of proppants have been proposed, as, for 

instance, the ones by Clifton and Wang (1988), Unwin and Hammond (1995), 

Smith and Klein (1995), and, more recently, Gadde et al. (2004). 

 

 

Fig. 1 Proppant build up in a hydraulic fracture. The cross section ��� is depicted in detail in Fig. 

2a (not to scale) 

 

From what was discussed above it becomes clear the hydraulic fracturing of rock 

formations is a very complex three-dimensional (3D) problem that involves the 

occurrence of several physical phenomena. A comprehensive comparative study 

between two- and three-dimensional simulators was provided by Warpinski et al. 

(1994) whereas a brief review on more recent 3D models was presented by Secchi 

and Schrefler (2012). Although 3D models allow a more comprehensive analysis 

of the fracture propagation and fracture geometry, a significant amount of data is 

required to justify their use and considerable computation effort is demanded. 

a

A

A'

settled
proppants
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Moreover, even 3D models require the adoption of an idealised geometry in order 

to derive effective and useful solutions (Adachi et al. 2007).  

 

In the current study we made an effort to develop a simple nonlinear mathematical 

model capable of predicting the residual opening of a hydraulic fracture taking 

into account both the proppant distribution and its compressibility. The developed 

model can also be useful to understand, investigate and describe the stress state 

around the fracture due to the residual opening. The solution approach is based on 

the Distribution Dislocation Technique (DDT) and the Gauss-Chebyshev 

quadrature. It provides an effective way to solve many complicated Fracture 

Mechanics problems. One example is considered in the Appendix. 

 

A detailed description of the mechanical model and its underpinning theory will 

be presented in the next Section. This model is followed by a mathematical 

formulation and the solution approach. A discussion of obtained results and 

conclusions regarding the main outcomes of the current work will be provided in 

the final section of this paper. In the Appendix a verification study is conducted 

and results are compared with an analytical solution of a problem having a very 

similar mathematical formulation but belonging to a completely different area. 

2. Mechanical Model and Boundary Conditions 

The shape and structure of hydraulically driven fractures are normally very 

complex (Rahman and Rahman 2010). Any approach (analytical or numerical) to 

the description and evaluation of the hydraulically driven fractures will require 

some radical simplifications. It is important to highlight that currently it is 

practically impossible to avoid many of these simplifications. In the mechanical 

model to be developed in the current paper we just eliminate some of the most 

essential and critical simplifications associated with the distribution of the 

proppant along fracture and its incompressibility. Therefore, the considered model 

can be considered as a step improvement to the existing models widely utilised in 

gas and petroleum industries. It is expected that this model will be more adequate 

in the description of realistic fracture profiles and will allow evaluating the effect 

of various parameters, which are related to the hydraulic stimulation techniques, 

on the well productivity.   
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It is obvious that despite the presence of propping agents inside the fracture, the 

action of the confining stresses, ��, will lead to a reduction ∆��� in the fracture 

opening, as illustrated in Fig. 2. This reduction depends on the proppants 

mechanical response to the compressive loading as well as its distribution inside 

the fracture. 

 

 

Fig. 2 The opening of a fracture due to an internal pressure 	 (a) is reduced after such pressure is 

removed (b). The hydraulic fracture full closure is prevented by the normal effective stress acting 

on the proppant, �
�  

 

To find the residual fracture profile (Fig. 2b) we do have to introduce essential 

simplifications. The most radical simplification is that the fracture is considered to 

be a two-dimensional (2D) centred straight crack located along the line segment |�|  �, � � 0, subjected to plane strain conditions. This is a typical assumption 

utilised in almost all analytical studies conducted in the past which is valid only 

for elastic rock formations (Papanastasiou 2000). Further, the surrounding 

medium is assumed to be impermeable, isotropic, homogeneous, and linearly 

elastic with Young’s modulus � and Poisson’s ratio �. The crack is subjected to a 

remote, normal, uniform compressive stress, �� � 0, such that 

������ � �� � ∞� � ��. (1) 

According to the Linear Elastic Fracture Mechanics, a constant fluid pressure, 	 � 0, inside the fracture will lead to an fracture initial opening �����, see Fig. 

2a, given by the well-known expression: 

2a
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����� � 4 �� � 	��  �� ! ��; (2) 

where �� has negative sign, �� being the reduced Young’s modulus defined as: �� � �, for plane stress, and �� � � �1 ! ���⁄ , for plane strain. Additionally, the 

initial stress intensity factor due to the applied pressure can be written as 

&� � ��� � 	�√(�. (3) 

After the reduction, or total removal of the fluid pressure within the fracture 

during the stimulation stage, the proppants will be subjected to the remote 

compressive stress (or overburden pressure). It will prevent the full closure of the 

crack (as illustrated in Fig. 2b). The residual opening ����, being ���� � Δ��� ������, to be obtained from the problem governing equations, which will be 

discussed in the next section. 

 

From the mechanical model described above it is possible to formulate the 

boundary-value problem that will define the residual shape of the fracture 

opening. The boundary conditions for the problem are as follows: 

�����, �� � ��,   �� � �� � ∞; (4a) 

and, at � � 0, 

�����, �� � �
� ,  |�|  +; (4b) 

���� � 0,  |�| � �; (4c) 

where + is the settled proppants length (see Fig. 2) and �
�  is the normal effective 

stress acting on the proppants. The latter depends both on the fracture residual 

opening and on the mechanical properties of the proppant. Next, the problem 

governing equations will be presented followed by a model for the mechanical 

response of a pack of proppant. 

3. Governing Equations 

From the boundary conditions introduced in the previous Section along with the 

help of the Distribution Dislocation Technique it is possible to set a system of the 

governing equations for the problem. These equations will be derived below for 
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arbitrary mechanical response of the proppant pack, which will be formulated in 

the next section. 

 

In their classic work Bilby and Eshelby (1968) postulated that the perturbation of 

the uniform stress field in a body owing to the presence of a fracture may be 

deemed due to the existence of a distribution of dislocations along |�|  �, � � 0. 

Therefore, for the boundary conditions of the problem formulated above, the 

stresses along the fracture opening can be found from the corresponding Airy 

stress functions based on the unknown dislocation density ,��� such that 

������ � �-4( . ,�/�� ! / d/�
!�  (5) 

and 

������ � �-41 . ,�/�� ! / d/�
!� � �∞. (6) 

The out-of-plane stress component being a consequence of the accepted plane 

strain assumption is then given by  

�22��� � � 3�44��� � ������5. (7) 

 

The dislocation density is not known a priori and can be obtained from the 

solution of the problem. Therefore, the dislocation density ,��� can be found 

from the following integral equation: 

��4( . ,�/�� ! / d/6
76 � !�� � �
� , |�|  �. (8) 

 

The requirement that the net content of the dislocations must be vanished at the 

fracture ends gives rise to the following additional single-value condition which 

also has to be satisfied (Kotousov and Codrington 2010): 

. ,�/�d/6
76 � 0. (9) 

The fracture residual opening, ���, is then given by (Hills et al. 1996) 
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���� � ! . ,�/�d/4
76 . (10) 

 

The exact solution of the integral equations (8) and (9) introduced above is not 

straightforward and requires an inversion of the left hand side integral in Eq. (8). 

Nonetheless, an effective solution may be obtained by the employment of 

numerical and computational methods, which will be discussed later in this paper. 

4. Mechanical Behaviour of a Pack of Compressible 

Particles 

One possible approach to evaluate the elastic properties of low consolidated 

media was recently presented by Bortolan Neto et al. (2011a; 2011b) and it will 

be employed here to complete the mathematical formulation of the problem. In 

this approach the particles are assumed to be of spherical shape, having a small 

contact area and the deformation of the particles follows the classical Hertz 

contact theory (Hertz 1896; Johnson 1982; Johnson 1985). Under such conditions 

the porosity of the medium is close to the percolation limit, which allows an 

application of simplified analytical techniques. It was demonstrated that the 

approach developed by Bortolan Neto et al. (2011a; 2011b) can adequately 

describe the combined behaviour of non-consolidated particles near the 

percolation limit and provides a good agreement with experimental results. 

 

If �8 is the Young’s modulus and �8 is the Poisson’s ratio of the particles, the 

relationship between the bulk modulus of elasticity of the pack of particles (either 

saturated or not) and the elastic properties of the single particle is given by 

(Bortolan Neto et al. 2011b): 

9: � ;�81 ! ν8� =>;?@:2 � 9B CC� D32 >;�1 ! C�F 1 ! C1 ! C�
G � C1 ! ?@:H

! 9B 32 >;�1 ! C�F 1 ! C1 ! C�
G ln K CC� �1 ! ?@:�L. (11) 
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The relationship for the volumetric strain (dilatation), ?@:, as a function of 

porosity, C, being (Bortolan Neto et al. 2011b) 

?@: � 2>; D1 ! F1 ! C�1 ! CG H ; (12) 

with 9B being the fluid bulk modulus, C� the initial porosity of the particles 

assembly, > the contact area parameter and ; the packing constant. The latter two 

variables can be represented as a function of C� and are given, respectively, by 

(Bortolan Neto et al. 2011b) 

; � 0.0207C�7�.NOP (13) 

and 

> � exp�5C�� 3⁄ . (14) 

 

Using the well known relationship between the longitudinal modulus and the bulk 

modulus,  

U: � 39: 1 ! �:1 � �:, (15) 

and taking into account that for low consolidated particles �: V 0, the following 

relationship can be obtained: 

U: � 39:. (16) 

 

The particle pack final porosity, C, can be found iteratively from 

�
� � U:�C�?:�C�, (17) 

where the uniaxial strain, ?:, is found to be (Bortolan Neto et al. 2011b): 

?: � 1 ! F1 ! C�1 ! CG . (18) 

 

It is important to highlight that the presented is just one of several other models 

available in the literature and there is no conceptual limitation that prevents the 

utilisation of more complicated or more comprehensive theories in the current 

mathematical formulation. 
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5. Solution Procedure 

The governing integral equation, Eq. (8), has singular behaviour at the ends of the 

integration interval and it has to be solved for the unknown density of 

dislocations, ,���. As it was pointed out above, an exact solution is not 

straightforward since the inversion of the left hand side of the equation is 

required. Furthermore, the singularity of the Cauchy kernel of the integral, �� ! /�7W, prevents the utilisation of common numerical integration methods to 

obtain an accurate solution, specifically at the singular points. Nevertheless, there 

are a number of numerical procedures that can be effective in handling singular 

behaviour of the solution function. One of such procedures is the Gauss-

Chebyshev quadrature method, which was employed in the current paper to 

generate the numerical results. It will be discussed next. 

5.1 Numerical formulation 

The first step in deriving a proper numerical solution method is to introduce 

normalising parameters over the interval X– �, ��Z. Therefore,  

[ � / �⁄  (19a) 

and 

\ � � �⁄ . (19b) 

 

Thus, as the dislocation density ,�[� tends to infinity in a square root singular 

manner as |[| approaches the unity, the dislocation density can be expressed as a 

product of the fundamental solution, 1 √1 ! [�⁄ , and an unknown regular 

function, ]�[�, such that (Hills et al. 1996): 

,�[� � ]�[�√1 ! [�. (20) 

 

Therefore, with the application of the normalisations in Eq. (19) along with the 

Gauss-Chebyshev quadrature for 1 sampling points, equations (8) to (10) yield 

the following system of non-linear algebraic equations: 
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��41 ^ ]�[_�\̀ ! [_
a

_bW � !�� � �
� , (21) 

(�1 ^ ]�[_�a
_bW � 0, (22) 

�c\̀ d � (�1 ^ ]�[_�`
_bW ; (23) 

 with e � 1, 2 … 1, g � 1, 2 … 1 ! 1 and [_, \̀  being the discrete integration and 

collocation points of the Gauss-Chebyshev method given, respectively, by 

[_ � cos h( 2e ! 121 i (25a) 

and 

\̀ � cos h( g1i. (25b) 

 

The numerical equations detailed above can be solved computationally without 

serious difficulties by employing standard numerical iterative procedures.  

5.2 Computational formulation 

The system of equations presented above can be rewritten in matrix form. The 

main advantage of working with arrays is that its utilisation provides a concise 

formulation which can be easily implemented computationally. Thus, consider the 

following set of arrays:  

j � k lW,W lW,�l�,W l�,� m lW,am l�,an nla,W la,� o nm la,a
p, (25) 

qr � s]W ]� m ]at, (26) 

ur � svW v� m vat. (27) 

 

The matrix j, which may be termed as the Cauchy kernel matrix, has its 

elements given by 
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l̀ ,_ � ��41 1c\̀ ! [_d, (28a) 

la,_ � �(1 . (28b) 

Whereas the components of the stress vector S  are 

v̀ � !�� � �
� , (29a) 

va � 0; (29b) 

with e � 1, 2 … 1, g � 1, 2 … 1 ! 1 and with �
�  given by Eq. (11). 

 

The multiplication of j and the dislocation vector q yields a vector which 

components are analogous to the left hand side of equations (21) and (22). The 

right hand side of those equations is given by the components of the stress vector u. Therefore, the elements of the dislocation vector ]_, which represent the value 

of the unknown function ] at the point [_ c]_ � ]�[_�d, can be obtained from the 

solution of the following 1 w 1 system of linear equations: 

jq � u. (30) 

5.3 Stress Analysis 

Once an appropriate solution for the unknown function ]�[_� is obtained it is then 

possible to carry out stress analyses. 

 

From an asymptotic analysis the stress intensity factor & can be obtained from the 

following expression: 

& � 4�� √(�]�x1�. (31) 

 

Equation (19) gives the residual opening as a function of ]�[_� and from 

equations (5) and (6) the stresses along the fracture opening can be found as  

���c\gd � �-41 ^ ]�[e�\g ! [e
1

e�1  (32) 

and 
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���c\gd � �-41 ^ ]�[e�\g ! [e
1

e�1 � �∞. (33) 

 

The out-of-plane stress component �22c\̀ d is found from Eq. (7). Equations (31) – 

(33) provide the full stress field in the surrounding medium due to the presence of 

the fracture filled with compressible particles. 

6. Physical Remarks 

Despite having a different nature, the modelling approach utilised in this paper 

can be applied to solve many other non-linear problems of Fracture Mechanics. 

For example, a comparison of the present approach with Cox and Rose (1996) 

analytical results on the modelling of the non-linear behaviour of composite 

patching repair of fatigue cracks is presented in the Appendix. This comparison 

was used to validate the current approach and assess its accuracy. As one can see 

from the upcoming comparison the highly accurate results can be obtained at 

relatively high number of integration points. Below, the solutions obtained using 

the formulation presented earlier are analysed in light of the physical behaviour 

expected. 

6.1 Hydraulic Fracture Residual Opening and Stress Response 

From the developed approach derived above (Sections 2 to 5) it is possible to 

describe both the fracture profiles and the stress response of hydraulic fractures 

either fully or partially filled with proppants.  

 

The dependences in Fig. 3 provide a succinct view of the fracture residual profile 

for different cases of proppant placement inside the fracture. In this figure the 

normalised fracture face displacement, y, was plotted against the normalised 

position along the fracture, \ (see Eq. (19b)). The proppant placement is described 

by the variation of the ratio + �⁄ , see Fig. 2 for definitions. In the presented 

calculations the initial porosity, C�, and the normalised stress, z, where kept at 

constant values. The normalised values y and z are given, respectively, by 
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y � ��4���� � 	� ���� (34) 

and 

z � ��8�� �
� �� � 0��	 � ��� . (35) 

 

 

Fig. 3 Fracture normalised residual profiles for a variety of + �⁄  ratios. The dashed curve 

represents the fracture normalised initial opening. When + �⁄ � 0, y�\� � 0 

 

From Fig. 3 an abrupt drop in the fracture residual opening profile curve is 

observed when \ � + �⁄  is relatively small due to the lack of the support provided 

by the proppants inside the fracture. At small values of + �⁄ , the residual opening, 

as expected, is limiting to zero but this cannot be the case in practice as there are 

other mechanisms, which can prevent the full closure of the opened fractures. One 

of such mechanisms is the roughness induced crack opening, which can dominate 

in the case when the particles were not injected with the pressurised fluid or when 

the proppants occupy a relatively short portion of the total length of the fracture 

(Dyskin and Galybin 2001; Kotousov et al. 2011). 

 

The behaviour of the effective stresses acting on the proppant over the crack 

length is depicted in Fig. 4 for a few different cases of proppant placement. The 

U

0.0

0.5

1.0
P = 0.10

Increasing b/a

0.0 0.5 t

= 0.2444
0
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latter is once again described by the variation of the ratio + �⁄  whereas the 

normalised stress over the proppant pack, z�, is simply described as 

z� � �
���. (36) 

The initial porosity, C�, and the normalised stress, z, where also maintained at 

constant values.  

 

 

Fig. 4 Proppant pack normalised stress response for different + �⁄  ratios. The dashed curve 

represents the stress over the proppant pack when the crack is fully filled, i.e. + �⁄ � 1. When \ � + �⁄ , z��\� � 0 

 

It can be realised from Fig. 4 that when the hydraulic fracture is fully filled with 

proppant, i.e. + �⁄ � 1, the proppant pack stress response magnitude matches the 

one from the confining stress, i.e. z��\� � 1. For situations where + �⁄ � 1 the 

stresses over the proppant pack magnitudes are extremely high at the edge of the 

proppant pack, i.e. at \ � +/�, and have a tendency to approach the confining 

stress magnitude as \ closes to zero, i.e. z��\ � 0� � 1. 

 

The high stresses occurring over the proppant pack when the ratio + �⁄  is 

sufficiently small is very beneficial as it may help preventing proppant flowback, 

a phenomenon which restricts well production and that has been the subject of 

several studies in the past (Nguyen and Jaripatke 2009). Hence, an optimum 

P'

0

10

5

0.0 t0.5

= 0.2444
0

= 0.10P

Increasing

b/a
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balance between the proppant placement and the fracture residual opening must be 

found in order to maximise well production rate. 

6.2 Stress Intensity Factor  

It can be noticed from what was discussed above that the crack closure has a 

strong non-linear behaviour influenced by the proppant distribution and 

mechanical properties. Nonetheless, the homogeneous elastic-linear medium 

assumption adopted (Section 2) means that the crack tip behaviour and stress state 

is dictated by the stress intensity factor – an elastic-linear parameter. 

 

Therefore, the latter provides two limiting cases to assess and validate the residual 

opening of a fluid driven fracture filled with particles. The first limit corresponds 

to the situation when the stress intensity factor & is approaching the initial value 

of the stress intensity factor &�. This case takes place when the fracture is fully 

filled �+ �⁄ � 1� with hardly compressible particles. The second limiting case 

manifests that & approaches zero when the fracture opening is fully filled with 

highly compressive particles or when the placement length of the proppant + is 

very short. The formulation presented earlier (Sections 2 to 4) fully complies with 

these limitations. 

 

A normalised stress intensity factor, &a| , is introduced as 

&a| � & &�⁄ . (37) 

The dependences presented in Fig. 5 clearly demonstrate the tendency of & 

approaching &�, i.e. &a| � 1, if the fracture is fully filled with relatively stiff 

particles �z } 0.1�. This case also corresponds to the maximum residual opening 

of the crack. 

 

If the compressibility of particles is low (or when non-dimensional parameter z, 

see Eq. (35), is less then 10
-4

) then & tends to zero, i.e. &a| � 0. Additionally, Fig. 

5 also shows the significant effect of the settled proppants length on the residual 

opening. 
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Fig. 5 Normalised stress intensity factor &a|  versus the normalised stress z for different + �⁄  ratios 

and constant C0 

 

7. Conclusions 

Despite the residual opening of fractures significantly affecting the permeability 

of geological reservoirs, and subsequently the well productivity, not much work 

has been done so far on mechanical and mathematical modelling of this important 

phenomenon. In this paper we developed a simplified non-linear model of a crack 

in an infinite linear elastic medium filled with compressible particles and 

subjected to remote compressive stresses. Further we implemented an effective 

approach for obtaining numerical results, which is based on the Distributed 

Dislocation Technique.  The approach is very general and can be applied to many 

other non-linear Fracture Mechanics problems. In particular, it was applied to a 

completely different problem having a similar mathematical formulation allowing 

a semi-analytical solution in order to verify the general computational technique. 

In this work the mechanical response of a pack of low consolidated particles was 

described by using an earlier developed mathematical model for cohesionless 

particles. This model provides a reasonable compromise between the accuracy and 

complexity. However, there are no limitations on the mechanical behaviour or the 

proppants, which can relatively easy be incorporated into the computational 

approach.   

b/a = 1.0

= 0.31b/a

= 0.81b/a
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N

0

0.8

0.4
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10
−5

10 P
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The underling mechanical model incorporates a number of simplifications needed 

for the development of the mathematical model. Many of these simplifications, 

such as 2D fracture geometry and linear elastic behaviour of the surrounding 

medium, represent a well-established foundation for modelling of hydraulic 

stimulation techniques. We have not focused on a critical analysis of these 

assumptions but rather tried to eliminate and evaluate some of them. The current 

study concentrated on the effect of the particle compressibility ant its distribution 

along the fracture length on the residual fracture profile. The numerical results 

obtained within the developed mathematical model indicate that the 

compressibility and distribution of the proppant inside the fracture have a strong 

influence of the residual fracture profile and can not be disregarded when 

assessing the outcomes of the hydraulic stimulations.  

Appendix: Validation of the Computational 

Approach 

Cox and Rose (1996) work focused on the modelling of the non-linear behaviour 

of composite patching repair of fatigue cracks when a notch of length + is present. 

Despite having a different nature, its mathematical formulation is very similar to 

the problem considered above. The analytical results presented by these authors 

were, therefore, adopted as the benchmark for validating the mathematical model 

described in Section 3. Their solution utilises elastic/perfectly-plastic springs to 

model the crack bridging patch. Therefore, changes in the formulation presented 

earlier are needed in order to make the comparisons. The required changes 

specifically concern the boundary conditions and �
� ���, being given by: 

�����, �� � �� ! �
� ���, +  |�|  �, � � 0; (A.1a) 

�
� ��� � ��~����, ���� � ��; (A.1b) 

�
� ��� � �� � ��~��, ���� } ��; (A.1c) 

where ~ is a constant characterising the spring stiffness in the linear range, �� is 

the yield stress, and �� is a characteristic crack opening beyond which the spring 

response changes from being elastic to being perfectly plastic, see Cox and Rose, 
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1996. Additionally, the initial stress intensity factor &� and the initial crack 

opening �� set at zero. 

 

The formulae presented by Cox and Rose (1996) for predicting the stress intensity 

factor & and the crack opening ���� are, respectively, as follow: 

& � ��√(� ! 2=�( . �
� ���√�� ! ��
6

� d�, (A.2) 

���� � 4 ����  �� ! �� ! 4(�� . ln � �� ! /� � √�� ! �� �� ! /� ! √�� ! ���6
� �
� �/�d/. (A.3) 

These formulae can be rewritten in a numerical fashion and solved numerically. 

 

A concise description of the employed algebraic manipulations and obtained 

results can be achieved by the adoption of the following normalisations: 

� � 4~�( , (A.4a) 

9 � 4~+( , (A.4b) 

&a � &√~�� . (A.4c) 

� being the normalised crack length, 9 the normalised notch length and &a the 

normalised stress intensity factor. 

 

The development of the normalised stress intensity factor &a for various 

normalised fracture lengths � as predicted by the above developed formulation, 

for a varying 1, is compared against Cox and Rose (1996) approach (equations 

(A.2) and (A.3)). Such comparison is presented in Fig. A.1, which provides a 

succinct overview of the solutions obtained. 
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Fig. A.1 Normalised stress intensity factor &1 development for both elastic and elastic/perfectly-

plastic cases. Situations (a) with zero notch length �9 � 0� and (b) with moderate notch length �9 � 2� are shown 

 

The comparison presented in Fig. A.1 demonstrates a good agreement between 

the numerical approach derived above and the results presented by Cox and Rose 

(1996). The difference totally disappears with an increase of the number of 

integration points in the numerical solution. 
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