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We describe a new algorithm, based on sieving procedures, for

determining the minimal index and all elements with minimal

index in a class of totally real quartic fields with Galois groupD8. It is not universally applicable, but its applicability is

easily checked for any particular example, and it is very fast

when applicable. We include several tables demonstrating

the potential of the method. (A more general approach for

quartic fields, described in [Gaál et al.], requires much more

computation time for each field.)

Finally, we present a family of totally real quartic fields with

Galois group D8 and having minimal index 1 (that is, a power

integral basis).

1. INTRODUCTIONLet K be a totally real quartic number �eld withGalois group D8. Such �elds can be obtained inthe form K = Q (p�), with an algebraic integer� = 12(e + fpm), where e;m; f are integers, mis square-free, and � is totally positive and not asquare in the quadratic sub�eld L = Q (pm).Fixing the notation above, set� g = h = 1 if m � 1 mod 4,g = 0 and h = 2 if m � 2 or 3 mod 4,so that for ! = 12(g + hpm) the pair f1; !g is anintegral basis of L. We assume that K=L has arelative integral basis. Hence, a basis of K over Qis of the form f1; !;  ; ! g, with = 14(a+ bpm+ (c+ dpm)p�)for suitable a; b; c; d 2 Z (see [Pohst 1975], for ex-ample). We know thatK has such an integral basis
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if L has class number one. We recall [Ga�al et al.1991a, eq. (2)] that the discriminant of K isDK = ((! � !0)2( 1 �  3)( 2 �  4))2;where !0 = 12(g � hpm) and  1; : : : ;  4 are theconjugates of  2 K over Q ordered in correspon-dence with p�, p�0, �p�, �p�0, where �0 =12(e � fpm). (In general we will use a prime 0to denote the nontrivial Q -automorphism of L.)For 1 � i � 4, let li(X) = li(X2;X3;X4) bethe conjugates of the linear form l(X) = !X2 + X3 + ! X4. Then we obtain forms lij(X) :=li(X)� lj(X), for 1 � i; j � 4, i 6= j. We list themfor i < j:l12(X) = (!�!0)X2+( 1� 2)X3+(! 1�!0 2)X4;l23(X) = (!0�!)X2+( 2� 3)X3+(!0 2�! 3)X4;l34(X) = (!�!0)X2+( 3� 4)X3+(! 3�!0 4)X4;l14(X) = (!�!0)X2+( 1� 4)X3+(! 1�!0 4)X4;l13(X) = ( 1� 3)(X3+!X4);l24(X) = ( 2� 4)(X3+!0X4):The discriminant formDK=Q (!X2 +  X3 + ! X4) = Y1�i;j�4i6=j lij(X)
can be written asDK=Q (!X2 +  X3 + ! X4) = I(X2;X3;X4)2DK;where I(X2;X3;X4) is a form of degree six with in-teger coe�cients called the index form correspond-ing to the basis f1; !;  ; ! g of K.In a series of papers [Ga�al et al. 1991a; 1991b;1995] we considered the problem of the resolutionof the index form equationI(x2; x3; x4) = J with x2; x3; x4 2 Z (1.1)for a given nonzero integer J . For J = �1 thesolutions yield all power integral bases of K. Inthe case of quartic �elds containing a quadraticsub�eld we gave in [Ga�al et al. 1991a] a \fast" al-gorithm for determining the \small" solutions of(1.1), that is, solutions with max(jx2j; jx3j; jx4j) <

1020, say. The computation time was a few sec-onds per example on an HP 9000/433 workstation.Methods for the complete resolution of (1.1) haveso far been developed only for quartic �elds withGalois group C4 [Ga�al et al. 1991b] and V4 [Ga�alet al. 1995]. These methods produce all solutionsof (1.1), but the computation time can be severalminutes (and more) per example.This paper describes an algorithm for the fastcomputation of all solutions of (1:1) in quartic �eldsof Galois group D8. The algorithm is based onsuitable sieving methods. It reduces the problemof solving (1.1) to the solution of equations of typeGn = x2 +D for n; x 2 Z ; (1.2)where Gn is a second-order linear recurrence se-quence and D is a given integer. The method issuccessful only for a subset of the �elds of inter-est, which we characterize later (Corollary 6.3); itturns out that this subset includes about 70% ofthe totally real quartic �elds of Galois group D8having discriminant less than 106. Table 1 in Sec-tion 8 gives some statistics. When successful, themethod produces all solutions fast, say in a fewseconds. It allows the determination of the mini-mal index of K and all integers of K with minimalindex.The last section of this paper presents an in�nitefamily of totally real quartic �elds of Galois groupD8 with minimal index 1.
2. FROM INDEX FORM EQUATIONS TO LINEAR

RECURRENCE SEQUENCESIn this section we show how the resolution of theindex form equation (1.1) can be reduced to that ofan equation of type (1.2). We keep all the notationof the previous section. We excerpt the followingtwo statements from [Ga�al et al. 1991a].
Proposition 2.1. Let J be a nonzero integer . Thenx = (x2; x3; x4) 2 Z3 is a solution of (1.1) if andonly if there exist j1; j2 2 Z satisfying j1j2 = J ,x23 + (! + !0)x3x4 + !!0x24 = j1; (2.1)
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and l12(x)l23(x)l34(x)l41(x) = j2(! � !0)2: (2.2)

Theorem 2.2. If the system of equations (2.1) and(2.2) has a solution x 2 Z3 , there exists a rationalinteger v such thatv2 = j21��0� 14(c2 � d2m)�2 + 4j2h2m: (2.3)We use these results to prove:
Theorem 2.3. Let " > 1 be the fundamental unit ofL, and let B be a maximal set of nonassociate el-ements of Z + Z! with norm j1. If the system ofequations (2.1) and (2.2) has a solution x 2 Z3 ,there exist � 2 B and y; n; v 2 Z such that v satis-�es (2.3) and�(c+dpm)2�2"2n+�0(c�dpm)2�02"02n = my2+8v:

(2.4)Moreover, possibly after replacing x with �x, wehave x3 = 12(�"n + �0"0n);x4 = 12(�"n � �0"0n)=pm;x2 = 18(�2(bx3 + ax4) + y)if m � 2 or 3 mod 4, andx3 = (�w0�"n + w�0"0n)=pm;x4 = (�"n � �0"0n)=pm;x2 = 14(�2bx3 � (a+ b)x4 + y)if m � 1 mod 4.
Proof. We assume that x 2 Z3 is a solution of (1.1).Then, by Proposition 2.1 and Theorem 2.2, thereexist integers j1; j2; v 2 Z satisfying (2.1){(2.3).For m � 2 or 3 mod 4, equation (2.1) has theform x23 �mx24 = j1:Hence there exist � 2 B and n 2 Z withx3 +pmx4 = �"n:This implies that x3 and x4 are of the form givenin the theorem, and the same holds for x2 because

of (2.2). As in the derivation of [Ga�al et al. 1991a,eq. (20)], we obtain�(mA3 + A4 + A34pm)�2"2n+ (mA3 +A4 �A34pm)�02"02n�=(4m)= y21 +A0 � j1(mA3 �A4)=(2m) (2.5)with y1 2 Z andA3 = 4m(c2e+ d2me+ 2cdfm);A4 = 4m2(c2e+ d2me+ 2cdfm) = mA3;A34 = 8m2(c2f + d2mf + 2cde);A0 = 32mv:From these expressions we getmA3 +A4 �A34pm = 8m2(e� fpm)(c� dpm)2:Recalling that � = 12(e+fpm), we can write (2.5)as4m(�(c+ dpm)2�2"2n + �0(c� dpm)2�02"02n)= y21 + 32mv:Since e and f are even and m is square-free, 2mdivides y1. Putting y = y1=(2m) we get (2.4).For m � 1 mod 4 the proof is analogous. �We note that the left-hand side of (2.4) is a se-quence in n that obeys a second-order linear re-currence. Hence, the resolution of (1.1) is reducedto solving an equation of type (2.4). For this wedevelop sieving procedures for general second-orderlinear recurrence sequences in Sections 3 to 7.
3. USEFUL PROPERTIES OF RECURRENCE SEQUENCESTake P;Q 2 Z such that P 2+4Q 6= 0, and let �; �be the (distinct) zeros of x2�Px�Q. For n 2 Z�0(or for n 2 Z if jQj = 1), setVn = �n + �n; Un = �n � �n�� � ;Wn = � Vn if P is odd,12Vn otherwise.
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It is easy to see that Vn is odd if and only if P is oddand 3 does not divide n. The following propertiesare easily proved for n; l 2 Z:2Un+l = UnVl + UlVn (3.1)2Vn+l = VnVl + (�� �)2UnUl (3.2)V2n = V 2n � 2(�Q)n (3.3)U2n = UnVn (3.4)Vn j Vnm for m odd: (3.5)

Lemma 3.1. Let jQj = 1 and n = 2km 2 Z withk � 1. Additionally , if P is odd let m 6� 0 mod 3and if Q = 1 let m be even. ThenUn+l � �Ul modW2k�1m;Vn+l � �Vl modW2k�1mfor all l 2 Z.
Proof. We only prove the �rst congruence becausethe proof of the second is similar. By (3.1), (3.4)and (3.3) we obtain2Un+l = UnVl + UlVn � UlVn mod Vn=2� �2Ul(�Q)n=2 mod Vn=2� �2Ul mod Vn=2:If P is even, so is Vn=2. Otherwise Vn=2 is oddbecause 3 does not divide m. Dividing the lastcongruence by 2 we get the desired result. �This lemma can be generalized to all second-orderlinear recurrence sequences. If the terms of a se-quence fGng1n=0 satisfyGn+2 = PGn+1 +QGn;we call x2 � Px�Q the characteristic polynomialof that sequence.
Theorem 3.2. Let fGng be a second-order linear re-currence sequence of integers with characteristicpolynomial x2 � Px � Q. Let n, k and m be asin Lemma 3.1. Then Gn+l � �Gl modW2k�1m forevery l 2 Z.

Proof. It is well known thatGn = a�n � b�n�� �for a = G1��G0, b = G1��G0 and n 2 Z. Hence,a short calculation yieldsGn = G1Un +QG0Un�1: (3.6)Using the �rst congruence in Lemma 3.1 we imme-diately get the desired result. �
4. THE FIRST SIEVING PROCEDUREIn the sequel, � xm� denotes the Jacobi symbol forx;m 2 Z>0 . We maintain the notation for recur-rence sequences introduced in the previous section.For an integer m we �x a complete residue sys-tem modulo m, and we denote by r(m) the lengthof the minimal period of the sequence fUn mod mg.It follows from (3.6) that the minimal period offGn mod mg divides r(m) for any recurrence se-quence fGng with the same characteristic polyno-mial as fUng. In this case Q is an arbitrary integer.The following lemma can be used very e�cientlyfor proving that (1.2) is not solvable or for local-izing the solutions of (1.2) in a few residue classeswith respect to an appropriate module.
Lemma 4.1. Let D be an integer , S = fp1; : : : ; ptg aset of prime numbers, R the least common multipleof r(p1); : : : ; r(pt), andM = fm1; : : : ;msg with 0 �m1 < m2 < � � � < ms < R. If there exists for allm 2M an index i 2 [1; t] such that�Gm �Dpi � = �1; (4.1)then all solutions n; x 2 Z of (1.2) satisfy n 6� mmod R for all m 2M.
Proof. Assume that n; x 2 Z is a solution of (1.2)with n �= mi mod R for some mi 2M. Then�Gn �Dp � = 1 or 0for all primes p 2 S because of (1.2).
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On the other hand, by assumption there existspi 2 S satisfying (4.1). Because n � m mod Rand r(pi) divides R, we have n � m mod r(pi).Thus Gn � Gm mod pi which together with (4.1)contradicts the previous paragraph. �The idea of using modular methods for the reso-lution of (1.2) goes back to [Wunderlich 1963]. Itscombination with an e�ective upper bound for thesolutions was applied in [Peth}o 1993; 1991] for de-termining all cubes and �fth powers, respectively,in the Fibonacci sequence. An \intelligent" im-plementation of those ideas is described in [Nemes1991].
5. THE SECOND SIEVING PROCEDUREThe disadvantage of the �rst sieving procedure isthat a solution n; x 2 Z of (1.2) cannot be locatedin its residue class moduloR. Therefore we developanother method that allows us to prove that, foranother appropriate module R1, expected to be notmuch larger than R, and for all but one element ofthe residue classes modulo R1 containing n, equa-tion (1.2) is not solvable.Such an idea was invented by Cohn [1964] andapplied also by Ribenboim [1989]. In the nextlemma we formulate the background of the algo-rithm. In the sequel we assume that the recurrencesequences under consideration satisfy jQj = 1.
Lemma 5.1. Let m and D be integers, and S =fp1; : : : ; ptg a set of prime numbers greater than3. Assume that there exist a; b1; : : : ; bt 2 Z>0 suchthat for every � � a there exist nonnegative inte-gers �1 � b1, : : :, �t � bt satisfying� �Gm �DW2�p�11 :::p�tt � = �1: (5.1)Then (1.2) has at most one solution n; x 2 Z withn � m mod 2a+1pb11 : : : pbtt , namely n = m.
Proof. Let n; x 2 Z be a solution of (1.2) satisfy-ing n � m mod 2a+1pb11 : : : pbtt and n 6= m. Thenthere exists h 2 Z such that n = m + 2a+1sh,where s = pb11 : : : pbtt . Let h = �2ch1 with h1 odd.

Then V2a+c+1s divides V2a+c+1sh1 because of (3.5)and therefore W2a+c+1s divides W2a+c+1sh1. Hence,Lemma 3.1 yieldsGn �D � �Gm �D modW2a+cs:We put � = a+ c � a. By assumption there existnonnegative integers �1 � b1, : : : ; �t � bt satis-fying satisfying (5.1). Because of (3.5), V2�p�11 :::p�ttdivides V2�pb11 :::pbtt , so the last congruence impliesGn �D � �Gm �D modW2�p�11 :::p�tt :This and (5.1) contradict the assumption that n; xgive a solution of (1.2). �How do we apply this lemma? We can apply Ja-cobi's reciprocity law almost automatically becausefor any n 2 Z not divisible by 3 we haveW4n(P;Q) � n�1 mod 4 if P is odd,1 mod 4 if P is even.The proof of this property is a simple applicationof (3.5). Choosing � � 2 and combining the lastcongruence with (5.1), we get� �Gm �DW2�p�11 :::p�tt � = ��W2�p�11 :::p�ttGm +D �;
where the sign on the right depends only on thesign of Gm + D and on the parity of P . To beable to apply Lemma 5.1 we have to analyze thesequence Vn more carefully. This is done in thenext section.
6. ANALYSIS OF THE SECOND SIEVING PROCEDUREFor �xed t;M 2 Z>0 , de�nev(t;M; n) � Vt2n modMfor every n 2 Z, where we take the smallest non-negative residues modM . It is obvious that the se-quence fv(t;M; n)g1n=0 is eventually periodic. Lete(t;M) be its minimal preperiod (or 1 if the pre-period is 0), and r(t;M) its minimal period.
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Lemma 6.1. Assume that t is odd and M > 1. Thenr(t;M) divides r = r(1;M) and e(t;M) � e =e(1;M).
Proof. We use induction on t. The case t = 1 istrivial. We assume that the result is true for anyodd u with 1 � u < t. Then the congruencev(u;M; e) � v(u;M; r + e) modM (6.1)immediately follows for all such u. To completethe induction step it is su�cient to prove (6.1) foru = t. For u = 1 equation (6.1) means�2e+r + �2e+r � �2e + �2e modMbecause of the de�nition of Vn. Taking the t-thpower of this congruence, using the binomial the-orem and the identity �tj� = � tt�j�, we get(t�1)=2Xj=0 �tj�(�j2e+r�(t�j)2e+r + �(u�j)2e+r�j2e+r)
� (t�1)=2Xj=0 �tj�(�j2e�(t�j)2e + �(u�j)2e�j2e) modM:
We have j < t � j, �� = �Q = �1 and e � 1, sothat�j2e�(t�j)2e = �(t�2j)2e ; �(t�j)2e�j2e = �(t�2j)2e :Analogous identities hold if we replace e by e+ r.Thus the above congruence of sums implies(t�1)=2Xj=0 �tj�(V(t�2j)2e � V(t�2j)2e+r) � 0 modM:
Because t�2j < t for j > 0 and t�2j is always odd,the induction hypothesis means that all summandson the left with j > 0 vanish. The remaining con-gruence is exactly (6.1) for u = t. This proves theinduction step. �We can now characterize those pairs n;D for whichthe result of Lemma 6.1 can be successfully ap-plied. We remark that if m and D are �xed then�Gm �D is a �xed integer, which we call M .

Theorem 6.2. LetM be an odd integer with jM j > 1,and let e = e(1;M) and r = r(1;M). If there existintegers m1;m2 such that e � m1;m2 � e+ r and�W2m1M ��W2m2M � = �1;then for all k such that e � k � e + r and all" 2 f1;�1g there exists a prime p > 3 satisfying�W2kpM � = ":
Proof. Let R = R(M) be the minimal period ofthe sequence fVn modMg1n=�1. (This sequence ispurely periodic for all M because jQj = 1.) LetR = 2su with u odd. Starting with a longer prepe-riod than the minimal one, if necessary, we canassume without loss of generality that�W2m1M � = ";e = m1 � s andm1 � k. By Dirichlet's theorem onprimes in an arithmetic progression there exists aprime p such that p2k � 2m1 mod R. This impliesV2kp � V2m1 mod M , and since M is odd we getW2kp �W2m1 modM , hence the theorem. �Combining Theorem 2.3 and Lemma 6.1 we imme-diately get the following corollary:
Corollary 6.3. Let fGng be a recurrence sequencewith jQj = 1, let D 2 Z, and set M = Gm+D. LetfVng be the recurrence sequence de�ned by the zerosof the characteristic polynomial of fGng. If thereexist integersm1;m2 such that e(1;M) � m1;m2 �e(1;M) + r(1;M) and�W2m1M ��W2m2M � = �1;there exist an integer a � e(1;M)+r(1;M)+1 andprimes p1; : : : ; pt > 3 such that (1.2) has at mostone solution n; x 2 Z with n � m mod 2ap1 � � � pt,namely n = m.
7. THE ALGORITHMWe are ready to summarize our results and spellout a practical algorithm for the resolution of (1.1).
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In a �rst step we reduce that problem to that ofcalculating all solutions of (1.2), as described inSection 2. In the sequel we �x D and the sequencefGng. To solve (1.2) we then apply two sievingprocedures, called Sieve 1 and Sieve 2 in the sequel.
Sieve 1. This amounts to an application of Lemma4.1. Choose enough prime numbers p1; : : : ; pt sothat the least commonmultipleR of r(p1); : : : ; r(pt)is not much larger than max1�i�t r(pi). Using thelemma, determine a subsetM0 of f0; 1; : : : ; R� 1gthat is as large as possible. Note that M0 neces-sarily contains all solutions of (1.2).
Sieve 2. Let m 2 f0; 1; : : : ; R�1gnM0 be an indexof the output of Sieve 1. Let M be the square-freepart of Gm +D. Compute the sequencesn�v(p;M; n)M �or(1;M)+e(1;M)n=1until �nding a prime number p such that�v(p;M; n)M � = "for all n 2 f1; 2; : : : ; e(1;M) + r(1;M)g, where "is 1 or �1 depending only on M (see the end ofSection 5).For given P;Q and small M we will of course pre-compute the appropriate sieving modules, that is,a product of convenient primes.
Algorithm. Step 1. Choose a module R as describedabove and calculate all solutions of (1.2) in n mod-ulo R. For this use Sieve 1 so that the absolutesmallest representatives of the remaining residueclasses correspond to the actual solutions. Denotethese representatives by ni, for 1 � i � t. If t = 0there are no solutions to (1.2) and the algorithmterminates.
Step 2. Let 1 � i � t. Using Sieve 2, try to deter-mine a number Mi = 2kipi1 : : : pisi with the prop-erty that a solution n of (1.2) with n � ni modMisatis�es n = ni. According to Corollary 6.3 this isnot always possible.

Step 3. For each i = 1; : : : ; t, try to prove|possiblyby enlarging the initial set of prime numbers|thatfor a solution n of (1.2) subject to n � ni mod Rthere exists an index j 2 [1; t] with n � nj modMi.For this use Sieve 1 again. This procedure is notdeterministic.The next section illustrates the algorithm with adetailed example. We also present the results ofa computation where we applied the algorithm toall totally real quartic �elds with Galois group D8and discriminant < 106.
8. APPLICATION OF THE SIEVE METHODTo exemplify the algorithm, we use the followinginput data, in the notation of Sections 1{5: DK=725, m=5, a=2, b=0, c=2, d=0, g=h=J =1,e=14, f =4. Equation (2.3) has four solutions:(j1; j2; v) = (1;�1;�3) and (1; 1;�7). Thus wehave to solve four equations of type (2.4), namelyGn := 5(7� 2p5)�3 +p52 �n + 5(7 + 2p5)�3�p52 �n= y20 + 10v (8.1)for v = �3;�7, where we multiplied (2.4) by 54 andset y0 = 52y. We want integer solutions n; y0.The binary recursive sequence fGng is de�nedby the initial values G0 = 70, G1 = 55 and bythe di�erence equation Gn+2 = 3Gn+1 � Gn forn � 0 or n < 0, that is, P = 3 and Q = �1.Considering (8.1) modulo the primes in the setS = f3; 7; 11; 13; 29; 31; 41; 61; 71; 83; 167; 211; 241;281; 421; 911; 1427g, we see by Lemma 4.1 that thesolutions of (8.1) modulo 840 are the following,where j denotes the least positive remainder of nmodulo 840: v j y0 y = 25y03 1 5 2�3 4 25 10�3 0 10 47 2 5 27 0 0 0�7 �1 15 6
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Now we apply Sieve 2 six times. We haveWk = Vk = �3 +p52 �k + �3�p52 �k:By the remark at the end of Section 5 we also haveVk � �1 mod 4 if k is not divisible by 3. For j = 1,v = 3, D = 30 we obtain �Gj�D = �85 = �5�17.Let k be an integer not divisible by 3. Then��Gj �DVk �= ��5 � 17Vk �=��Vk5 ��Vk17�= �Vk17�;because �Vk5 � = �1for all k. We also have:k = 0 1 2 3 4�V2k17 � = �1 �1 1 �1 �1�V5�2k17 � = 1 �1 �1 1 �1The period length of both sequences is three andby Lemma 5.1 we obtain n = 1 for n � 1 mod 20,hence there exists only one solution that is divis-ible by 840. In four more of the six cases similarcomputations lead to the same result, with newperiod lengths equal to 1540, 56, 16 and 20 for(v; j) = (�3; 4), (7; 2), (7; 0) and (�7;�1), respec-tively.

Unfortunately our method does not work in thecase j = 0, v = �3, D = �30. There we have�Gj �D = �40 = �23 � 5, but Lemma 5.1 is notapplicable since��23 � 5Vk � = � 2Vk� = 1
for all k � 0 not divisible by 3.This method was implemented in Maple [Char etal. 1991] by J. Sajtos of the Mathematical Institute,Kossuth Lajos University, Debrecen. We tested themethod for all totally real number �elds of Galoisgroup D8 with discriminants up to 106 containinga quadratic sub�eld of class number one. In eachcase we computed the minimal index and, if themethod worked, all elements with minimal index.Table 1 gives some statistics about these computa-tions.Hence, the algorithm succeeds for about 85% ofthe equations (1.2). The rate of success seems togrow rapidly with the size of the discriminant ofK.
9. AN INFINITE FAMILY OF FIELDS WITH A POWER

INTEGRAL BASISWe now describe an in�nite family of totally realquartic �elds with Galois group D8 and minimalindex one.Range of DK (in units of 105)# of �elds (or of index form equations)# of recurrence equations (1.2)# without solutions after Step 1# of equivalence classes left after Step 1# of solutions isolated by Step 2# of algorithm failures

(0; 1]3791036406839574265

(1; 2]4281223590792568224

(2; 3]4491400691856640216

(3; 4]4421404709825610215

(4; 5]4511340705742569173

(5; 6]4491490806799617182

(6; 7]4311268650722545177

(7; 8]4501436767778615163

(8; 9]4471366701770611159

(9; 10]4531304670727570157

Total4379132676595785059191931
TABLE 1. Frequency data resulting from the application of the algorithm of Section 7 to all totally real number�elds K of Galois group D8 with DK � 106. For each range of values of DK (�rst row) we give: the numberof equations (1.1) for �elds in that range (second row); the number of resulting recurrence equations of theform (1.2), possibly several to a �eld, according to Theorem 2.3 (third row); the number of such equations thathave no solution, as given by Step 1 of the algorithm (fourth row); the number of equivalence classes remainingafter Step 1, possibly several to each recurrence equation (�fth row); number of successes, that is, solutionsof recurrence equations isolated by Step 2 (sixth row); and number of failures, that is, equivalence classes forwhich Step 2 does not isolate the solution (last row). Note that the rate of success seems to grow with the sizeof the discriminant of K.
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Theorem 9.1. There are in�nitely many positive in-tegers k such that K = Q (p2k +p2) is a non-cyclic quartic �eld with minimal index one.
Proof. Let k � 1 be an integer, and consider � =2k+p2 with norm N(�) = 2(2k2� 1). Obviously,this norm is not divisible by 22. It follows from[Nagell 1922] that there are in�nitely many positiveintegers k such that 2k2 � 1 is not divisible by thesquare of a prime number. For all such k the �eldQ (p�) is of degree four over Q and has minimalindex one. Indeed, an integral basis of K isf1;p2;p�;p2p�g[Pohst 1975]. Because p2 = (p�)2 � 2k, the ele-ments 1, p�, �, �p� form a power integral basisof K. �We note that the discriminant of K is 210(4k2�2),and by Proposition 2.1 the index form equationI(x2; x3; x4) = �1 for the integral basis f1;p2;p�;p2p�g is tantamount to the system of equationsx23� 2x24 =�1;8x42� 8kx22x23� 16x22x3x4� 16kx22x24+x43+8kx33x4+4x23x24+16k2x23x24+16kx3x34+4x44 =�1;with the obvious solution (x2; x3; x4) = (0; 1; 0).
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