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ABSTRACT 
The response of steady ocean currents to forced atmospheric cooling is examined by a simplified 
two-layer model. The study focuses on currents, such as the Gulf Stream, which lose their heat to 
the atmosphere as they Row from one region to another. The model is inviscid and includes no 
coupling between the ocean and the atmosphere. Approximate solutions for specified cooling 
processes acting steadily on currents whose undisturbed speed is uniform are obtained 
analytically using a uniformly valid power series expansion. 

It is found that upon encountering a region of cooling, the interface steepens and the whole 
current is displaced horizontally. The streamlines in the upper portion of the light layer are 
displaced to the right (looking downstream) whereas the streamlines in the lower portion of the 
upper layer are displaced to the left. These movements result from a combined effect of 
advection and “thermal wind” motion. For actual currents and heat losses in the ocean, the 
predicted interface steepening is of the same order as the slope upstream and the predicted 
horizontal displacements during strong cooling processes can be as high as - 100 km. 

Possible application of this theory to the separated Gulf Stream which loses heat to the 
atmosphere as it Rows from Cape Hatteras toward the northeast is discussed. The model predicts 
that during the late winter the position of the Gulf Stream front will be farther to the south than it 
is during the summer and that the slope of the interface will be larger in winter. Both processes 
agree qualitatively with the observed seasonal variability of the Stream. 

1. Introduction 

It has been recognized for a long time that 
differential heating plays an important role in ocean 
dynamics and in affecting the structure of the 
ocean. The highest rate of heat loss in the world 
ocean is found to the east of Cape Hatteras where 
its annual average reaches about 5 x lo9 J m-2 (see 
e.g., Budyko, 1963; Worthington, 1976). This heat 
loss from the Gulf Stream and its neighboring 
waters is much larger than the heat loss in most 
other parts of the ocean. During the winter, its 
effect on the Stream is so large that after reaching 
about two thousand kilometers off-shore, the Gulf 
Stream no longer possesses its characteristics of 

’ Present affiliation: Department of Oceanography, 
The Florida State University, Tallahassee, Florida 32306, 
U.S.A. 

high temperature and, consequently, it is no longer 
distinguishable from the neighboring water of the 
Sargasso Sea (Worthington, 1972; Fuglister, 1963, 
Mann, 1967). 

Because of this significant change, it is of interest 
to examine the influence that a reduction in the 
temperature (see Fig. 1) might have on the 
structure of the flow. To do  this we simplify the 
problem to that of an upper uniform flow which is 
subject to a specified cooling process. As the fluid 
flows into the region of cooling, it experiences 
gradual changes in its density which must be offset 
by local changes in the structure of the flow. Our 
aim is to study the general characteristics of this 
process and to examine the details of the oceanic 
response. We do  not intend to simulate all the 
details of the real system; we merely hope to 
preserve enough analogy to the real system so that 
our results will give insight into natural phenomena. 
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RESPONSE OF OCEAN CURRENTS 6 1  

Fig. I .  Average surface temperatures for February [reproduced from Sverdrup er al. (1942)l. The dashed line 
denotes the approximate position of the Gulf Stream. Note that the stream loses a few degrees as it flows from 
Cape Hatteras toward the north-east. 

There have been a number of previous investi- 
gations of ocean-atmosphere heat exchange pro- 
cesses (e.g., Veronis, 1976: Haney, 1974: Gill and 
Niiler, 1973, Stommel and Veronis, 1980; Bryan, 
1965; Bryan el al., 1975) but none of them have 
dealt directly with the problem considered in this 
study where ocean currents adjust themselves to an 
imposed cooling process. To simplify the analysis 
we shall consider a two-layer inviscid model whose 
motions are driven solely by remote forcing and 
local cooling (Fig. 2). In other words. the effects of 
local winds are not taken into account so that the 
specified upstream flow would have remained 
unaltered throughout the whole field had the 
cooling not been imposed. 

The movement is confined to  an upper layer 
which corresponds to  the upper few hundred 
meters of the ocean. The lower layer is assumed to  
be motionless and its density is taken to  be uniform 
everywhere. The upper layer is bounded by a front 
on the left' hand side and extends to  infinity on the 
right. This front corresponds to  the region where 
the interface strikes the free surface and can be 

I Hereafter, right and left are with reference to an 
observer looking downstream. 

thought of as  representing the northern edge of the 
Gulf Stream. As  the current enters the region of 
cooling, its density changes and consequently new 
pressure gradients, which were not present 
upstream, are generated. As we shall see, these 
pressure gradients drive a flow in a direction 
perpendicular to  the current upstream; as  a result 
of this flow, the interface steepens and the current is 
displaced to  the right or left of its upstream 
position. 

To obtain the solution to  the problem, the 
amount of heat loss is specified and a perturbation 
scheme in E = Rd/I ,  the ratio between the Rossby 
deformation radius ( R d )  and the length scale of 
the cooling area ( I ) ,  is applied. The parameter E 

corresponds to  the ratio between the scale of the 
flow in the cross-stream and long-stream directions, 
and is small for most problems of practical interest. 
The perturbation scheme reduces the problem from 
a complicated three-dimensional field to a solvable 
set of equations. As we shall see, the solution of the 
reduced equations indicates that, within our range 
of parameters, the flow field consists of advection 
and "thermal-wind" movements. 

After presenting the detailed solution and its 
implications, the results are qualitatively applied to 
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SIDE VIEW 
Q ( x ~ Y )  
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FRONT VIEW 
Fig. 2. Schematic diagram of the model under study. 
The free surface vertical displacement q(x,y) is measured 
upward from the undisturbed free surface; the interface 
displacement is measured downward lie., e(0,O) = 01. 
H is the upper layer undisturbed depth, Q(x,y)  denotes 
the heat loss to the atmosphere, and Uo is the uniform 
upstream flow. Upstream the upper layer density is 
uniform so that any cooling from above produces an 
instantaneous sinking of surface water to the lower 
portion of the upper layer (see text). Consequently, the 
upper layer density is independent of depth I &  = 

M X , Y ) l .  

the North Atlantic and its corresponding heat- 
exchange. It will be seen that the horizontal 
displacements of the front can be as large as 100 

km and that these displacements are expected to 
vary during the year according to the seasonal 
variability of the heat loss. The predicted seasonal 
movement of the front (in the north-south direc- 
tion) is then qualitatively compared to the observed 
mean variability of the Gulf Stream path and a 
general agreement, in both the direction and 
magnitude, is noted. 

This paper is organized as follows: The for- 
mulation of the problem is presented in Section 2 
and the perturbation analysis in Section 3. The 
detailed solution is given in Section 4 and its 
applicability to the Gulf Stream is considered in 
Section 5 .  The results of the study are summarized 
in Section 6. 

2. Formulation 

As an idealized formulation of the problem, 
consider the two-layer system shown in Fig. 2.  The 
lower layer is taken to be deep and motionless and 
its density is uniform (p). The upper layer contains 
a uniform upstream flow (U,) and its uniform 
upstream density ( p  - Ap,) increases in the field in 
response to the heat exchange with the atmosphere 

We shall focus our attention on cooling pro- 
cesses which are moderate in the sense that the 
corresponding density increase of the upper layer is 
always smaller than Ap, so that breaking of the 
interface and sinking of upper fluid into the lower 
layer does not occur. Since the undisturbed upper 
layer density is uniform, any cooling of the free 
surface will immediately produce local convection 
which will mix the fluid within the upper layer. 
Consequently, the cooling is quickly distributed to 
the whole upper layer column. The time scale 
associated with this fast distribution corresponds to 
a free fall of a fluid parcel (i.e., 

[(Q(x,v)l. 

where Ap* is the density anomaly caused by the 
cooling and H is the depth of the upper layer) 
which would take a few minutes. 

This time scale is, obviously, much shorter than 
the advection time scale and the adjustment time 
scale ( J - I ,  where f is the Coriolis parameter) so 
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RESPONSE OF OCEAN CURRENTS 63  

that Ap can be taken to be independent of depth 
IAp = Ap(x,y)l. Thus, our model contains an upper 
layer whose density varies horizontally but does 
not vary vertically. I t  will be shown later that this 
representation of the vertical structure by two 
layers is qualitatively adequate for the cooling 
processes under discussion. It should be stressed, 
however, that the model cannot be used to describe 
heating processes because they lack convection so 
that their vertical mixing time scale is not neces- 
sarily small compared to the advection and the 
adjustment time scale. 

The origin of our coordinate system is located 
upstream at the intersection of the sloping interface 
with the upper layer undisturbed depth. This 
undisturbed depth (H) corresponds to the depth 
that the upper layer would have in the absence of 
any motion; it is equivalent to the upper layer depth 
in the absence of both rotation (f = 0) and cooling. 
The x and v axes are directed along and across the 
upstream flow (U,).  The z axis is directed upward 
and the system is rotating uniformly at an angular 
speed ff about the vertical axis. The region of 
cooling has a length scale I so that the time that a 
parcel of fluid spends in the cooling area is l/U,,; 
this time scale is assumed to be much shorter than 
a season so that one may consider the cooling to be 
steady. It is easy to show that this assumption is 
adequate for many cases of practical interest 
because U,  - 0.5 m s - I  and I - 1000 km so that 
the advection time scale is of O(20 days). 

For steady and hydrostatic motions, the 
deviation of the pressure field from the pressure 
associated with a state of rest is: 

+ o ( g 7  4. 
where r](x,j) is the free surface vertical dis- 
placement which is measured upward from the free 
surface (see Fig. 2). Ap, is the upstream density 
difference between the upper and lower layer, and 6 
is defined by: 

Note that 6(x,y) is always positive since it 
corresponds to an upper layer density which 
increases downstream. 

The condition of no flow in the lower layer gives: 

where r( X J )  is the interface vertical displacement 
which is measured downward from the origin li.e., 
r(0,O) = 01. Substitution of (2.3) into (2.1) yields: 

p = gAPp,t(x*Y)[ 1 -- 6(x,v)l - g6(x,Y)&& 

+ gHAp0 (2.4) 

indicating that, since 6 is a function of x and y, the 
pressure gradients are depth dependent so that the 
horizontal velocity components (UJ) are depth 
dependent as well 1i.e.. u = u(x,y,z);  v = v(x,y,z)l .  
With the aid of (2.4), the equations of motion and 
continuity for a frictionless Boussinesq fluid can be 
written in the form: 

au iiu %ti 

ax ?y az 
u - + v - + w - -  s v 

av %v av 
ax 2y az 

u - + 1' -  + w - + fu 

au a11 aw 
~ + - + -==.o, 
ax iiy az 

a t  
-g'( 1 - 6) - 

ax  

( 2 . 5 )  

a< 
-g'( 1 - 6) - 

(2.6) 

(2.7) 

where g' is defined by g' = (Ap,/p)g so that it does 
not vary in the field. 

If the dependence of the density on the tempera- 
ture field is taken to be linear, i.e., 

A P =  P ~ T -  Ti) (2.8) 

where T and T, are the temperatures of the upper 
and lower layers (respectively) and a is the 
coefficient of thermal expansion, then in view of 
(2.2) one finds: 

6 = (To - T) / (T ,  -- T,), (2.9) 

where To is the temperature of the upstream flow. 
Because the density within the upper layer is 

independent of depth. it is convenient to consider 
the vertically integrated equation for conservation 
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64 D. NOF 

of heat. With the aid of (2.9), this equation can be 
written as: 

u d z + -  ' * J H  vdz 
'Y Z=-C(X,Y) 

Q(x,Y) 

current's edge are not known a priori but rather 
must be determined as part of the problem. 

As we shall see in the coming Sections, these 
conditions are sufficient for determining the 
solution; it is not necessary to impose any 
limitations on the flow downstream. 

where Q(x,y) is the vertical heat flux through the 
free surface (which will be specified later) and C, is 
the water heat capacity. Note that in obtaining 
(2.10) we have used the approximation h z H + C 
(since Apfp G 1 so that v G 0, neglected horizontal 
diffusion of heat and, assumed that there is no heat 
flux through the interface l z  = -((x,y)l .  

The system (2.5-2.7) and equation (2.10) are 
subject to the following boundary conditions: 

(2.1 la) 

(2.11b) 

(2.1 lc) 

(2.1 Id) 

(2.1 le) 

(2.1 If) 

(2.1 19) 

(2.11h) 

where f i x )  - y = 0 denotes the left edge of the 
current [do) = g'H/fU, l  and V, is the horizontal 
two-dimensional del-operator. Relations (2.1 1 a-c) 
reflect the upstream conditions and the assumption 
that the flow remains unaltered until the region of 
cooling is reached. Condition (2.1 Id) represents the 
specified cooling function and (2.1 le-f) corre- 
spond to the condition of no normal flow through 
the free surface and the interface. Relation (2.1 lg) 
states that the interface strikes the free surface ( r  = 
- H )  along a curve which is not known in advance 
[ y  = f i x ) ]  while (2.1 lh) requires that this curve will 
be a streamline. These two conditions correspond 
to the fact that the location and shape of the 

3. Perturbation analysis 

To simplify the structure of the governing 
equations we shall restrict ourselves to those cases 
where the heat exchange causes only small changes 
in the structure of the flow. That is, we shall focus 
our attention on processes whose heat-exchange 
driven velocity components are small compared to 
the mean upstream flow. In order to obtain the 
corresponding equations, the following scales and 
non-dimensional variables are introduced: 

I R ,  = (g'H)'I2ff 

E = R,/I 

V = R d V H  
Here, R ,  and F,  are the Rossby and Froude 
numbers which are not necessarily small. R,, the 
deformation radius, is typically ->&SO km since 
g' - 2 x s-I; 
the parameter E is of O(O.01) because the length 
scale of the cooling region is typically - lo00 km. 

Note that in defining the non-dimensional vari- 
ables, it has been assumed that the cross-stream 
displacements of the flow will have a length scale of 
the deformation radius ( R , ) .  While this assumption 
is plausible, it is not a priori obvious under what 
conditions, the assumption is adequate because the 
displacement will, in general, depend on 6 which is 
not represented in R,. We shall see later, however, 
that for the range of parameters considered in this 
study, the horizontal displacements are of O(R,) 
despite the fact that R ,  is independent of 6. 

m ss2, H - 500 m and f - 
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RESPONSE OF OCEAN CURRENTS 65 

In terms of the scaled variables defined in (3.1). 
the governing equations (2.5-2.8) and (2.10) are: 

aa aa 

Fr ” a t  as - 
- __ U =  - - ( I  - 6)- + ~ (<+ i) (3.2) H, aa 8.2 

I: at as ” ” + -r u^ = --( 1 - 6)- + - (< + z )  (3.3) H, a? a t  
iia iic F A  

- + - + - = o  (3.4) ?a 2$ ai 

(3.5) 

The corresponding non-dimensional boundary 

1: f = O :  - a < $ < R , I F ,  (3.6a) 

conditions are: 

D = G = 0: 2 = 0 ;  - 00 < f < R , / F ,  (3.6b) 

, - co < $ <  R , / F ,  ( 3 . 6 ~ )  - F ,  <=--$; . f = @  

4, 
= b(2,.f): 0 ,< 2 ,< 1: - CE <$ < t(2) (3.6d) 

i = I + 4(<f,$) (3.6e) 

i = -,e(.f,?:, (3.6f) 

&a,?:,=-l; $=jW ( 3 . 6 d  

(ai + 61). V l j 4 2 )  -$I  = 0:  ?’ = $(a); 
i =  1 (3.6h) 

It is further assumed that the dependent vari- 
ables possess power series expansions in E. e.g.. 

Similarly, the position of the front F = ha) is 
expanded: 

$ = y‘O’(2) + &y“’(f) + & * y ‘ * ’ ( i )  + . . . (3.7a) 

Substitution of (3.7) into (3.2-3.5) and collecting 
terms of order unity gives the zeroth-order 
equations : 

&lo’ &+O, awcol 
-+-+-- -0 

3.f ii$ ai 
(3.10) 

These equations correspond to a basic state 
where no-cooling is taking place because the right 
hand side of (3.1 I), which represents the cooling, 
equals zero. The solution is, therefore, identical to 
the structure upstream, i.e., 

UKI = 1. t,(ol = wIol == gco, = 0. 

F (3.12) 
((“1 = - -$; p = R, /F  

RO 

The first-order balances are: 

x (- 2 3  + i) (3.13) 

(3.14) 

(3.15) 

(3.16) 
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66 D. NOF 

and the corresponding first-order boundary con- 
ditions can be written as: 

dl) = 0; 2 = 0; - 03 < $ < R o / F r  (3.17a) 

dl )  = w(') = 0; ,f = 0; - 03 < .$ < R o / F ,  (3.17b) 

C'" = 0: .2 = 0: - 03 < y^ < Ro/Fr  (3.17c) 

0 = - 03 < $  < y(i)(3.17d) 

w'"=O; r ^ =  1 (3.1 7e) 

0 < a  < 03; 

(3.17f) 

(3.1 7h) 

We see that the perturbation scheme has removed 
the non-linearity from the problem and simplified 
considerably the structure of the governing 
equations. 

Because the lower layer is taken to be motion- 
less, we must require that no cooling is taking place 
in regions where this layer is in direct contact with 
the atmosphere. Thus, our cooling function e 
should satisfy: 

Q = o ;  O < ~ < C O ;  + ( ~ ) < $ < C O  (3.18) 

In order to satisfy this condition, we choose to be 
of the form: 

(3.19) I e = (1  - 6 G(Z); - 00 < p <  y(2) 
e=o; y(a)<$<aJ 
where G ( 2 )  will be specified later. Relation (3.19) 
states that the cooling function decreases toward 
the left and vanishes at the current's edge as 
required. This choice of e does not only satisfy 
(3.18) but also simplifies the problem considerably 
because, as we shall see, it corresponds to a density 
field which is independent of 9. It will be demon- 
strated later that this choice of e is supported by 
considerations related to the actual heat-exchange 
process. 

Since (3.16) represents a balance of terms of O(E) 
and-the right-hand side of (3.5) is of o(&), we 
should, for consistency, neglect terms of O(E) in 

(3.19). In other words, terms of O(E) in contribute 
to the second-order balances and should be ignored 
as small. Thus, we neglect the contribution of 
to 0 and approximate (3.19) by: 

- a < < j(2) (3.20) 

P = o ;  o<a<O3; 

4. Solution 

To obtain the solution to the problem we proceed 
as follows. First, we insert (3.20) into (3.16) and 
integrate in .2 to find: 

(4.1) 

where the integration constant F O  is to be 
determined. Since 6") = 0 at 3 = 0 for all y < 
R o / F r ,  it follows that F ( J )  = 0 so that 8') is 
independent of 9, i.e., 

(4.2) 

In view of this, the third term on the right hand side 
of (3.14) vanishes and one concludes that u( ' )  is not 
a function of i [i.e., dl) = u(')(i,y31. Therefore, the 
only term which can balance the term which 
includes i in (3.13) is the term which includes 
d l ) .  Consequently, u(I) is of the form: 

(4.3) 

where M(f,y3 is to be determined. By substituting 
(4.3) into (3.13), (3.14) and (3.15), inspecting the 
new resulting set of equations and the boundary 
conditions, one finds that M = 0 and: 

(4.4) 

w(') = 0; = - ( R o / F r )  6''' 

This solution satisfies the governing equations and 
the boundary conditions for all i and 9 and thus is 
a valid solution to the problem. 
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With the aid of (3.7). (3.12). (4.2) and (4.4). the 
total solution can be written in the form: 

Ro 

Fr 
L = 1 + O(E’);  fi = - E - G ( i )  f + O(E’) (4.5) 

G = 0. (4.8 

In terms of the density field 6(.f). these variables 
are: 

We see that while the interface depth is altered due 
to the cooling, the flow in the i direction remains 
unchanged. The cross-stream velocity (1:) is 
generated by the cooling and its corresponding 
balance of forces is similar to the so-called 
“thermal wind” relationship. 

To illustrate the properties of (4.9) and to 
analyze its various effects we shall consider a 
cooling function I &P.$)l whose P dependency 
IG(l)l and corresponding density field are: 

Al; O < P < 1  

A ;  I < l < m  
G ( l )  = 

&4(.?)‘/2; O < l < I  

&A(.?-+) ;  
6( l )  == 

(4.10) 

where A is a known constant of order unity (see 
Fig. 3). Under these conditions, the detailed 
solution is: 
L z l ;  O < P < C o  (4.1 1) 

i J%Oo:  0<.4<Co (4.13) 

Fig. 3.  The function G ( 2 )  (top panel) and the corre- 
sponding density function a(?) (lower panel) adopted for 
the model ( A  = I. E =: 0.1). 

(4.14) 

(4.15) 

The interface depth (b, as a function of l and $, 
is shown in Fig. 4. This figure indicates that the 
cooling increases the interface tilt and shifts the 
position of the front toward the right (as also 
shown in Fig. 5) .  The velocity vector (Li + fij) 
rotates counterclockwise with depth as shown in 
Fig. 6; at  f = 0 the horizontal component fi 
vanishes so that the velocity vector is directed 
along the 2 axis. 

Before concluding the present discussion, it is 
appropriate to examine the validity of the pertur- 
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Fig. 4 .  The predicted interface depth as a function of ,? 
and 9. The solid line (-) denotes the interface at 
9 = 0; the dashed line (----) and dashed-dotted line 
(-.- .-. ) correspond to the interface at ,f = 2 and-,? = 4 
respectively ( A  = 1, E = 0.1, F J R ,  = 5 ) .  The line (= -1 
corresponds to the undisturbed free surface. Note that 
the interface steepens due to the cooling; this steepening 
results from cross-stream velocities which are generated 
by the horizontal density gradients induced by the 
cooling. 

Fig. 5.  The displacements of the surface streamlines land 
the front ( 5  = - I ) ]  as a result of the cooling ( A  = I .  E = 
0.2 and F , / R ,  = 5) .  The migration of the streamlines to 
the right of their upstream position results from cross- 
stream velocities which are generated by a downstream 
pressure gradient caused by the heat loss 

A- 
V 0.02 

Fig. 6 .  The velocity vector (ui + u])  as  a function of 
depth ( A  = I ,  E = 0.2 and F , / R ,  = 5) .  The 
counterclockwise rotation with depth results from the 
fact that the pressure gradients are depth dependent even 
though the density is not (see text and eq. 2.4). 

These equations show that  the second correction to  
the  velocity field is of O(e2) because d2)  - O(d ' ) ) .  
In  view of this, it is expected tha t  the perturbation 
scheme will be valid a s  long a s  E is small compared 
t o  unity. That  is, the perturbation scheme is 
uniformly valid and  gives the correct solution 
everywhere. 

As mentioned earlier, the  scaling that  we have 
used (3.1) is adequate  as long a s  the displacement 
of the flow in t h e y  direction is of O(R,) or smaller. 
Using the solution (4.9) in a dimensional form, it is 
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RESPONSE OF OCEAN CURRENTS 69 

easy to show that this will be the case as long as 
6 - O ( F J / * .  This condition is satisfied by many 
flows of practical interest since 6, the ratio between 
the horizontal temperature gradient and the vertical 
gradient, is typically of -O(O. 1) and (FJLf2 is of the 
same order for U,, - 0.5 H m s-', Ap/p - O( 
and H - 500 m. 

5. Gulf Stream displacements 

In this section, we shall qualitatively apply our 
results to the separated Gulf Stream and examine 
the influence of cooling on its mean position and 
the position of its front. As mentioned earlier, we 
shall focus our attention on the region east of Cape 
Hatteras, where the Gulf Stream flows toward the 
northeast and gradually loses its heat to the 
atmosphere (see Fig. I ) .  

Before discussing the numerical predictions of 
the model and their relationship to the behavior of 
the Gulf Stream, it is appropriate to comment on 
the applicability of the model to the actual flow. 
Obviously, the model is too simple to account for 
all the details of the actual flow. and for giving 
quantitative predictions. This results from our 
approximations, the most important one being the 
representation of the vertical structure by two 
layers. 

As we saw earlier, when atmospheric cooling 
operates on such a system, the resulting upper layer 
density is independent of depth. Clearly, the actual 
decrease in temperature is not necessarily depth 
independent because the actual upper layer is 
stratified. However, various observations of the 
Gulf Stream suggest that the effects of winter 
cooling on the Stream penetrate as deep as 600 m 
(see e.g., Fig. 7 and the temperature maps 
presented by Gorshkov (1978)) so that the two- 
layer representation is probably qualitatively ade- 
quate. This is not to say that the actual mixing 
processes are identical to the cooling and resulting 
mixing considered in this model. Rather. we merely 
wish to point out that because the actual cooling 
penetrates deeply into the ocean, the two-layer 
approximation of the cooling area is as good as the 
two-layer approximation upstream where no cool- 
ing is taking place. 

An additional approximation which has been 
used and should be discussed in some detail is the 
choice of a cooling function which decreases 

Fig. 7. Vertical section showing the 5 "C and 10 "C 
isotherms east of the Grand Banks in January 1964 
(dashed lines) and April 1964 (solid lines). Reproduced 
from Worthington (1976). Note that the interface 
steepens due to cooling as predicted theoretically [Fig. 4 
and eq. (4.9) with fixed F , / R ,  and 6 - 0.5 which is 
typcial for the Streaml. 

toward the left. Presently, there are no sufficiently 
accurate heat flux measurements which could 
support this choice but a qualitative examination of 
the actual mechanism involved in the heat loss 
process shows that such a decrease is adequate. To 
illustrate this point, consider a flow similar to the 
two-layer model shown in Fig. 2 but with an upper 
layer which is continuously stratified. Under such 
conditions, all the isopycnals intersect the free 
surface so that the sea surface temperature 
increases toward the right. If the temperature of the 
atmosphere is uniform and the heat loss is 
proportional to the temperature difference between 
the air and the sea surface, then the heat loss 
increases toward the right as has been assumed. 
These considerations support, therefore, the choice 
of a heat loss function which decreases toward the 
left. 

We shall now address the relationship between 
the predictions of the model and the Gulf Stream. 
So far, there have not been any sufficiently detailed 
estimates of the actual heat loss which could be 
adequately used to specify the heat loss function 
(Q). Therefore, we shall use the observed density 
gradient ( 6 )  as an input for our model. Density 
maps prepared by Gorshkov (1978) for the sea 
surface, 100 m depth and 200 m depth suggest that 
a horizontal density increase of - 1  x 10-3/1200 
km and -0.5 x 10- )/I200 km is typical for the late 
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winter and summer, respectively. Note that these 
density gradients are of the same order as those 
that one would obtain by considering the actual 
heat loss (5 x lo9 m-2 yrr ' )  operating on a current 
similar to the Stream. 

If the upstream density difference between the 
two layers is taken to be, say, 2 x H - 400 m 
and f - s-I, then in view of (4.9), the 
horizontal density gradients will produce cross- 
stream velocities of -3 cm s-' (late winter) and - 1.5 cm s-I (summer). With a mean flow of -0.40 
m s-', these velocities will cause off-shore 
southward deflections (Fig. 8) of -90 km (winter) 
and -45 km (summer). Hence, our model predicts 
that during the late winter, the position of the Gulf 
Stream northern edge will be -45 km farther to the 
south than it is during the summer. This prediction 
agrees with Fuglister's (1972) analysis of the mean 
position of the Gulf Stream edge which is shown in 
Fig. 9. This figure shows that during the late winter, 
when the heat loss is largest, the mean position of 
the Stream edge is located farther to the south as 

f" 

no cooling - 
f a l l  L summer ---- 
l a t e  winter _._._ 

Fig. 8. Schematic diagram of the model applicability to 
the seasonal variability of the Gulf Stream northern edge. 
As shown in Figs. 4 and 5 ,  the edge migrates to the right 
of its upstream position due to cooling. Consequently, 
the model predicts a southern position during the late 
winter [when the cooling is the strongest (Worthington, 
1972)l. 

1965 (966 

MONTH 

Fig. 9. North to South displacement of the Gulf Stream 
during 1965-66 [reproduced from Fuglister (l972)l. 
Note that the observed southward position during late 
winter (when the cooling is the strongest) agrees with the 
theoretical prediction (Figs. 5 and 8). 

predicted theoretically. Note that the analysis of 
Fuglister was performed for a wide portion of the 
stream (-2000 km) so that the effects of meanders 
are probably filtered out. 

This process, regarding the seasonal variability 
of the Gulf Stream edge, has been previously 
considered by both Iselin (1940) and Worthington 
(1976). Iselin (1940) suggested that the seasonal 
variability of the Gulf Stream path is related to the 
seasonal variability of the wind field and 
Worthington (1976) proposed that it is related to 
the formation of the 18OC water south of the 
Stream. While both processes are possible, our 
present study indicates that the seasonal movement 
will be present without any of the previously 
proposed mechanisms being active. In other words, 
the present model suggests that the observed 
behavior may simply result from cooling and loss 
of heat. 

In addition to the prediction regarding the 
position of the Stream edge, the model predicts a 
steeper thermocline during the late winter. Using 
the numerical values given earlier, one finds that the 
steepening due to cooling is of the same order as 
the interface slope upstream. This prediction is also 
supported observationally as shown in Fig. 7 which 
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clearly illustrates that during the late winter the 
slope of the 5 OC and 10 OC isotherms is consider- 
ably larger than it is during the early winter when 
the heat loss is small. 

6. Summary and conclusions 

Prior to listing our conclusions, it is appropriate 
to mention again the main limitations involved in 
the analysis. The most important assumptions 
which have been made throughout the study are 
that the flow is frictionless and non-diffusive, that 
the vertical structure can be represented by two 
layers and that the cooling decreases toward the 
left edge of the current. Scaling arguments and 
considerations of the observed density field support 
the validity of these assumptions for the cases 
under discussion, but it should be kept in mind that 
under different circumstances the assumptions may 
not be valid. The results of the study can be 
summarized as follows: 

(i) When a uniform current (flowing above an in- 
finitely deep fluid) enters a region of cooling, 
horizontal movements in a direction perpen- 
dicular to the undisturbed flow are generated. 

(ii) These cross-stream movements result from 
down-stream density gradients and are, in some 
sense, similar to the “thermal wind” effect. 
They are depth dependent and, consequently, 
the velocity vector rotates counterclockwise 
with depth. 

(iii) The imposed heat loss causes a displacement 
of the front (and the upper portion of the light 
layer) to the right of the corresponding up- 
stream position. In contrast, the fluid in the 
lower portion of the upper layer is displaced to 
the left of its corresponding upstream position. 

(iv) The cross-stream velocities (induced by the 
cooling) cause steepening of the interface: they 
affect the position of the current but have no 
effect on the total transport which remains 
unaltered. 

Prediction (iii) and the first part of (iv) were 
applied to the separated Gulf Stream which flows 
toward the northeast and gradually loses heat to 
the atmosphere. The model results agree 
qualitatively with the observed behavior. On this 
basis, it is suggested that the observed seasonal 
movement of the mean Gulf Stream position may 
be related to the seasonal variability of the heat 
loss. It is also suggested that the observed 
steepening of the thermocline during the late winter 
may result from the associated heat loss. 
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