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On the restriction of representations of GL2(F )

to a Borel subgroup

Vytautas Paskunas

Abstract

Let F be a non-Archimedean local field and let p be the residual characteristic of F . Let
G = GL2(F ) and let P be a Borel subgroup of G. In this paper we study the restriction
of irreducible smooth representations of G on Fp-vector spaces to P . We show that in a
certain sense P controls the representation theory of G. We then extend our results to
smooth O[G]-modules of finite length and unitary K-Banach space representations of G,
where O is the ring of integers of a complete discretely valued fieldK with residue field Fp.

1. Introduction

Let F be a non-Archimedean local field and let p be the residual characteristic of F . Let G = GL2(F )
and let P be a Borel subgroup of G. In this paper we study the restriction of smooth irreducible
Fp-representations of G to P . We show that in a certain sense P controls the representation theory
of G. We then extend our results to smooth O[G]-modules of finite length and unitary K-Banach
space representations of G, where O is the ring of integers of a complete discretely valued field K,
with residue field Fp and uniformizer �K .

The study of smooth irreducible Fp-representations of G have been initiated by Barthel and
Livne in [BL94]. They have shown that smooth irreducible Fp-representations of G with central
character fall into four classes:

(1) one-dimensional representations χ ◦ det;

(2) (irreducible) principal series IndG
P (χ1 ⊗ χ2), with χ1 �= χ2;

(3) special series Sp⊗χ ◦ det;

(4) supersingular.

Here, Sp is defined by an exact sequence

0 → 1 → IndG
P 1 → Sp → 0,

and the supersingular representations can be characterised by the fact that they are not subquotients
of IndG

P χ for any smooth character χ : P → F×
p . Such representations have only been classified in the

case when F = Qp, by Breuil [Bre03]. If F �= Qp no such classification is known so far, although in a
joint work with Breuil [BP07] we can show that there are ‘a lot more’ supersingular representations
than in the case F = Qp.

The main result of this paper can be summed as follows.

Theorem 1.1. Let π and π′ be smooth Fp-representations of G, such that π is irreducible with a
central character, then the following hold:
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(i) if π is in the principal series, then π|P is of length 2; otherwise π|P is an irreducible represen-
tation of P ;

(ii) we have

HomP (Sp, π′) ∼= HomG(IndG
P 1, π′),

and if π is not in the special series, then

HomP (π, π′) ∼= HomG(π, π′).

The first part of this theorem and the second part with π′ irreducible are due to Berger [Ber05]
in the case F = Qp. Berger uses the theory of (φ,Γ)-modules and the classification of supersingular
representations. Our proof is completely different and purely representation theoretic. In fact, this
paper grew out of trying to find a simple representation theoretic reason to explain Berger’s results.
Vigneras [Vig06] has studied the restriction of principal series representation of split reductive p-
adic groups to a Borel subgroup. Her results contain the first part of the theorem in the case where
π is not supersingular and F arbitrary.

Using the theorem, we extend the result to smooth O[G] modules of finite length.

Theorem 1.2. Let π and π′ be smooth O[G] modules, and suppose that π is of finite length and that
the irreducible subquotients of π admit a central character. Let φ ∈ HomO[P ](π, π′) and suppose
that φ is not G-equivariant. Let τ be the maximal submodule of π, such that φ|τ is G-equivariant,
and let σ be an irreducible G-submodule of π/τ , then

σ ∼= Sp⊗δ ◦ det,

for some smooth character δ : F× → F×
p . Moreover, choose v ∈ π such that the image v in σ spans

σI1, then Πφ(v) − φ(Πv) �= 0, �K(Πφ(v) − φ(Πv)) = 0, and

g(Πφ(v) − φ(Πv)) = δ(det g)(Πφ(v) − φ(Πv)), ∀g ∈ G,
where Π and I1 are defined in § 2.

This criterion implies the following.

Corollary 1.3. Let Π1 and Π2 be unitary K-Banach space representations of G. Let ‖·‖1 and
‖·‖2 be G-invariant norms defining the topology on Π1 and Π2. Set

L1 = {v ∈ Π1 : ‖v‖1� 1}, L2 = {v ∈ Π2 : ‖v‖2� 1}.
Suppose that L1 ⊗O Fp is of finite length as an O[G] module and that the irreducible subquotients
admit a central character. Moreover, suppose that if Sp⊗δ ◦ det is a subquotient of L1 ⊗O Fp, then
δ ◦ det is not a subobject of L2 ⊗O Fp, then

LG(Π1,Π2) ∼= LP (Π1,Π2),

where L(Π1,Π2) denotes continuous K-linear maps.

Moreover, Theorem 1.1 implies the following.

Corollary 1.4. Let Π be a unitary K-Banach space representation of G, let ‖·‖ be a G-invariant
norm defining the topology on Π. Set

L = {v ∈ Π : ‖v‖� 1}.
Suppose that L ⊗O Fp is a finite length O[G] module and that the irreducible subquotients are
either supersingular or characters, then every closed P -invariant subspace of Π is also G-invariant.
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According to Breuil’s p-adic Langlands philosophy a two-dimensional p-adic representation of the
absolute Galois group of F should be related to a unitary K-Banach space representation of G; see a
forthcoming work of Colmez [Col07] for the case F = Qp, where the restriction to a Borel subgroup
plays a prominent role. However, if F �= Qp it is an open problem to construct such unitary K-
Banach space representations of G. We hope that our results will help to understand this.

2. Notation

Let o be the ring of integers of F , let p be the maximal ideal of o and let q be the number of elements
in the residue field o/p. We fix a uniformiser � and an embedding o/p ↪→ Fp. For λ ∈ Fq we denote
the Teichmüller lift of λ to o by [λ]. Set

Π =
(

0 1
� 0

)
, s =

(
0 1
1 0

)
, t =

(
� 0
0 1

)
.

Let P be subgroup of upper-triangular matrices in G, T the subgroup of diagonal matrices, K =
GL2(o) and

I =
(

o× o

p o×

)
, I1 =

(
1 + p o

p 1 + p

)
, K1 =

(
1 + p p

p 1 + p

)
.

All of the representations in this paper are on Fp-vector spaces, except for § 6.

3. Key

In this section we show how to control the action of s on a supersingular representation π in terms
of the action of P . All of the hard work here is done by Barthel and Livne in [BL94], we just record
a consequence of their proof of [BL94, Theorem 33].

Let σ be an irreducible representation of K. Let σ̃ be a representation of F×K such that �
acts trivially on σ̃ and σ̃|K = σ. Set Fσ = c-IndG

F×K σ̃ and Hσ = EndG(Fσ). It is shown in [BL94,
Proposition 8] that as an algebra Hσ

∼= Fp[T ], for a certain T ∈ Hσ, defined in [BL94, § 3]. Fix
ϕ ∈ Fσ such that Suppϕ = F×K and ϕ(1) spans σI1 . Since ϕ generates Fσ as a G-representation,
T is determined by Tϕ.

Lemma 3.1. We have the following.

(i) If σ ∼= ψ ◦ det, for some character ψ : o× → F×
p , then

Tϕ = Πϕ+
∑
λ∈Fq

(
1 [λ]
0 1

)
tϕ.

(ii) Otherwise,

Tϕ =
∑
λ∈Fq

(
1 [λ]
0 1

)
tϕ.

Proof. In the notation of [BL94] this is a calculation of T ([1, e�0]). The claim follows from [BL94,
(19)].

Let π be a supersingular representation of G, such that � acts trivially. Let v ∈ πI1 and suppose
that 〈K · v〉 ∼= σ. The Frobenius reciprocity gives α ∈ HomG(Fσ , π), such that α(ϕ) = v.

Lemma 3.2. There exists an n � 1 such that α ◦ T n = 0.
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Proof. Now HomG(Fσ, π) is naturally a right Hσ-module; let M = 〈α ·Hσ〉 be an Hσ-submodule of
HomG(Fσ , π) generated by α. The proof of [BL94, Proposition 32] implies that dimFp

M is finite.
Let T be the image of T in EndFp

(M) and let m(X) be the minimal polynomial of T . Let λ ∈ Fp

be such that m(λ) = 0, then we may write m(X) = (X − λ)h(X). Since m(X) is minimal the
composition

h(T )(Fσ) → Fσ → π

is non-zero. According to [BL94, Theorem 19], Fσ is a free Hσ module, hence h(T ) is an injection
and so h(T )(Fσ) is isomorphic to Fσ. This implies that π is a quotient of Fσ/(T − λ). Since π is
supersingular [BL94, Corollary 36] implies that λ = 0, and hence m(X) = Xn, for some n � 1.

Corollary 3.3. Let π be a supersingular representation, such that � acts trivially. Let v ∈ πI1

be such that 〈K · v〉 is an irreducible representation of K. Set v0 = v and for i � 0 set

vi+1 =
∑
λ∈Fq

(
1 [λ]
0 1

)
tvi.

Then vi ∈ πI1 for all i � 1 and there exists an n � 1, such that vn = 0.

Proof. Set σ = 〈K · v〉. If σ is not a character then Lemma 3.1(ii) implies that vi = (α ◦ T i)(ϕ),
for all i � 0 in particular I1 acts trivially on vi and the statement follows from Lemma 3.2. If σ is
a character, then after twisting we may assume that σ = 1. Since I acts trivially on Πv0 the space
〈K · (Πv0)〉 is a quotient of IndK

I 1. Now

v1 =
∑
λ∈Fq

(
1 [λ]
0 1

)
s(Πv0).

If v1 = 0, then we are done. If v1 �= 0, then [Pas04, (3.1.7) and (3.1.8)] imply that 〈K · v1〉 ∼= St,
where St is the inflation of the Steinberg representation of GL2(Fq). We may apply the previous
part to v1.

Lemma 3.4. Let π be a smooth representation of G and let v ∈ πI1 . Suppose that

∑
λ∈Fq

(
1 [λ]
0 1

)
tv = 0.

Then

sv = −
∑

λ∈F×
q

(−�[λ−1] 1
0 �−1[λ]

)
v.

Proof. Since

tv = −
∑

λ∈F×
q

(
1 [λ]
0 1

)
tv

we obtain

v = −
∑

λ∈F×
q

t−1

(
1 [λ]
0 1

)
tv = −

∑
λ∈F×

q

(
1 �−1[λ]
0 1

)
v.

If β ∈ F×, then (
0 1
1 0

)(
1 β
0 1

)
=

(−β−1 1
0 β

)(
1 0
β−1 1

)
. (1)

Since v ∈ πI1 and (
1 0

�[λ] 1

)
∈ I1 ∀λ ∈ F×

q
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we obtain

sv = −
∑

λ∈F×
q

(−�[λ−1] 1
0 �−1[λ]

)(
1 0

�[λ−1] 1

)
v = −

∑
λ∈F×

q

(−�[λ−1] 1
0 �−1[λ]

)
v.

Since G = PI1 ∪ PsI1, we use Lemma 3.4 to show that the action of P on π already ‘contains
all the information’ about the action of G on π.

4. Supersingular representations

In this section we study the restriction of supersingular representations of G to a Borel subgroup.

Lemma 4.1. Let π be a smooth representation of G and let v ∈ πI1 be non-zero and such that I
acts on v via a character χ, then there exists j ∈ {0, . . . , q − 1} (usually non-unique) such that

w :=
∑
λ∈Fq

λj

(
1 [λ]
0 1

)
tv

is in πI1 and 〈K · w〉 is an irreducible representation of K.

Proof. Set τ = 〈K · (Πv)〉. For 0 � j � q − 1 set

wj =
∑
λ∈Fq

λj

(
1 [λ]
0 1

)
s(Πv) =

∑
λ∈Fq

λj

(
1 [λ]
0 1

)
tv.

The set {Πv,wj : 0 � j � q − 1} spans τ .
If w0 = 0 then Lemma 3.4 implies that

Πv =
(

1 0
0 �

)
sv = −

∑
λ∈F×

q

(−�[λ−1] 1
0 [λ]

)
v

= −
∑

λ∈F×
q

(
� [λ]
0 1

)(−[λ] 0
0 [λ−1]

)
v = −

∑
λ∈F×

q

χ

((−[λ] 0
0 [λ−1]

))(
1 [λ]
0 1

)
tv.

Since

χ

((
[λ] 0
0 [λ−1]

))
= λr, ∀λ ∈ F×

q

for some 0 � r < q − 1, we obtain that τ is spanned by the set {wj : 1 � j � q − 1}. Let σ be
a K-irreducible subrepresentation of τ . The space σI1 is one dimensional, so I acts on σI1 by a
character. However, one may verify that the group{(

[λ] 0
0 1

)
: λ ∈ F×

q

}

acts on the set wj for 1 � j � q − 1 by distinct characters, hence σI1 is spanned by wj for some
1 � j � q − 1.

Suppose that w0 �= 0. If w0 and Πv are linearly independent, then the natural map IndK
I χs → τ

is an injection, because it induces an injection on (IndK
I χs)I1 . It follows from [Pas04, (3.1.5)] that

〈K · w0〉 is an irreducible representation of K. If w0 and Πv are not linearly independent, then
χ = χs. It follows from [Pas04, (3.1.8)] that 〈K · w0〉 is isomorphic to a twist of the Steinberg
representation by a character.

Proposition 4.2. Let π be a smooth representation of G and let w be a non-zero vector in π. Then
there exists a non-zero v ∈ 〈P · w〉 ∩ πI1 such that 〈K · v〉 is an irreducible representation of K.
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Proof. Since π is smooth there exists k � 0 such that w is fixed by
( 1 0
pk+1 1

)
. Then w1 := tkw is

fixed by
(

1 0
p 1

)
. Iwahori decomposition gives us

I1 =
(

1 + p o

0 1 + p

)(
1 0
p 1

)
.

Hence, τ := 〈I1 · w1〉 = 〈(I1 ∩ P ) · w1〉 ⊆ 〈P · w〉. Since I1 is a pro-p group, we have τ I1 �= 0, and
hence 〈P · w〉 ∩ πI1 �= 0. Let w2 ∈ 〈P · w〉 ∩ πI1 �= 0 be non-zero. Since |I/I1| is prime to p, there
exists a smooth character χ : I → F×

p such that

w3 :=
∑

λ,µ∈F×
q

χ

((
[λ−1] 0

0 [µ−1]

))(
[λ] 0
0 [µ]

)
w2

is non-zero. As I acts now on w3 by a character χ we may apply Lemma 4.1 to w3 to obtain the
required vector.

Theorem 4.3. Let π be supersingular, then π|P is an irreducible representation of P .

Proof. Let w ∈ π be non-zero. According to Proposition 4.2 there exists a non-zero v ∈ 〈P ·w〉∩πI1,
such that σ := 〈K · v〉 is an irreducible representation of K. Corollary 3.3 implies that there exists
a non-zero v′ ∈ πI1 ∩ 〈P · v〉 such that

∑
λ∈Fq

(
1 [λ]
0 1

)
tv′ = 0.

According to Lemma 3.4 sv′ ∈ 〈P ·v′〉. Since G = PI1∪PsI1 and π is an irreducible G-representation
we have

π = 〈G · v′〉 = 〈P · v′〉 ⊆ 〈P · w〉.
Hence, π = 〈P · w〉 for all w ∈ π and so π|P is irreducible.

Theorem 4.4. Let π and π′ be smooth representations of G, such that π is supersingular, then

HomP (π, π′) ∼= HomG(π, π′).

Proof. As HomG(π, π′) ↪→ HomP (π, π′) we only have to prove surjectivity. Let φ ∈ HomP (π, π′) be
non-zero. We are going to find v′ ∈ πI1 such that φ(v′) ∈ (π′)I1 and

∑
λ∈Fq

(
1 [λ]
0 1

)
tv′ = 0,

∑
λ∈Fq

(
1 [λ]
0 1

)
tφ(v′) = 0.

Choose v ∈ πI1 such that 〈K · v〉 is an irreducible representation of K. Since π|P is irreducible by
Theorem 4.3, φ is an injection and hence φ(v) �= 0. Since v is fixed by I1 and φ is P -equivariant, we
have that φ(v) is fixed by I1 ∩ P . Since π′ is smooth there exists an integer k � 1 such that φ(v) is
fixed by

( 1 0
pk 1

)
. Suppose that k > 1. Lemma 4.1 implies that there exists j, such that 0 � j � q− 1

and if we set

v1 =
∑
λ∈Fq

λj

(
1 [λ]
0 1

)
tv,

then v1 ∈ πI1 and 〈K · v1〉 is an irreducible representation of K. Since φ is P -equivariant, φ(v1) is
fixed by I1 ∩ P and

φ(v1) =
∑
λ∈Fq

λj

(
1 [λ]
0 1

)
tφ(v).
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If α ∈ o and β ∈ p, then(
1 0
β 1

)(
1 α
0 1

)
=

(
1 α(1 + αβ)−1

0 1

)(
(1 + αβ)−1 0

β 1 + αβ

)
.

This matrix identity coupled with (
1 0

pk−1 1

)
t = t

(
1 0
pk 1

)
,

implies that φ(v1) is fixed by
( 1 0
pk−1 1

)
. By repeating the argument we obtain w ∈ πI1 such that

〈K · w〉 is an irreducible representation of K and φ(w) is fixed by
(

1 0
p 1

)
. Iwahori decomposition

implies that φ(w) is fixed by I1. Set v0 = w and for i � 0,

vi+1 =
∑
λ∈Fq

(
1 [λ]
0 1

)
tvi.

Since vi are fixed by I1, φ(vi) are fixed by I1 ∩ P . Moreover,

φ(vi+1) =
∑
λ∈Fq

(
1 [λ]
0 1

)
tφ(vi).

Since φ(v0) is fixed by I1, the argument used above implies that φ(vi+1) are fixed by
(

1 0
p 1

)
and

hence fixed by I1. Corollary 3.3 implies that vn = 0 for some n � 1. Let m be the smallest integer
such that vm = 0 and set v′ = vm−1. Then v′ ∈ πI1, φ(v′) ∈ (π′)I1 and

∑
λ∈Fq

(
1 [λ]
0 1

)
tv′ = 0,

∑
λ∈Fq

(
1 [λ]
0 1

)
tφ(v′) = 0.

Lemma 3.4 applied to v′ and φ(v′) implies that

φ(sv′) = −φ
( ∑

λ∈F×
q

(−�[λ−1] 1
0 �−1[λ]

)
v′

)

= −
∑

λ∈F×
q

(−�[λ−1] 1
0 �−1[λ]

)
φ(v′) = sφ(v′).

Since G = PI1 ∪ PsI1 this implies that φ(π(g)v′) = π′(g)φ(v′), for all g ∈ G. Since π is irreducible
π = 〈G · v′〉 and this implies that φ is G-equivariant.

5. Non-supersingular representations

Let χ : T → F×
p be a smooth character. We consider it as a character of P , via P → P/U ∼= T . We

define a smooth representation κχ of P by the short exact sequence

0 → κχ → IndG
P χ→ χ→ 0 (2)

where the map on the right is given by the evaluation at the identity. The representation κχ is
absolutely irreducible by [Vig06, Théorème 5]. If χ = ψ ◦ det for some smooth character ψ : F× →
F×

p , then the sequence splits as a P -representation and we obtain

Sp⊗ψ ◦ det|P ∼= κχ.

Lemma 5.1. Let π be a smooth representation of G. Suppose that HomP (χ, π) �= 0, then χ extends
uniquely to a character of G, and

HomP (χ, π) ∼= HomG(χ, π).
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Proof. Let φ ∈ HomP (χ, π) be non-zero and let v be a basis vector of the underlying vector space
of χ. Since π is a smooth representation of G, there exists k � 1 such that φ(v) is fixed by

( 1 0
pk 1

)
.

Since tφ(v) = φ(tv) = χ(t)φ(v), we obtain that φ(v) is fixed by
( 1 0
pk−1 1

)
, and by repeating this we

obtain that φ(v) is fixed by sUs. Now sUs and P generate G. This implies the claim.

Corollary 5.2. Let π′ be a smooth representation of G. Suppose that χ �= χs and let φ ∈
HomP (IndG

P χ, π
′) be non-zero, then φ is an injection.

Proof. Lemma 5.1 implies that HomP (χ, IndG
P χ) = 0. Hence, the sequence (2) cannot split. So if

Kerφ �= 0, then Kerφ contains κχ. Hence, φ induces a homomorphism φ̄ ∈ HomP (χ, π′). Lemma 5.1
implies that φ̄ = 0 and hence φ = 0.

Corollary 5.3. Suppose that χ �= χs, then

HomP (IndG
P χ, IndG

P χ) ∼= HomG(IndG
P χ, IndG

P χ).

Proof. Suppose that φ1, φ2 ∈ HomP (IndG
P χ, IndG

P χ) are non-zero, then by Corollary 5.2 the restric-
tion of φ1 and φ2 to κχ induces non-zero homomorphisms in HomP (κχ, κχ). Since κχ is absolutely
irreducible this implies that there exists a scalar λ ∈ F×

p such that the restriction of φ1 − λφ2 to
κχ is zero. Now φ1 − λφ2 ∈ HomP (IndG

P χ, IndG
P χ) and is not an injection, hence by Corollary 5.2

it must be equal to zero.

Theorem 5.4. Let π be a smooth representation of G, then the restriction to κχ induces an
isomorphism

ι : HomG(IndG
P χ, π) ∼= HomP (κχ, π).

Proof. If χ �= χs, then the injectivity of ι is given by Corollary 5.2. If χ = χs, then the injectivity
follows from Lemma 5.1 and [BL94, Theorem 30(1)(b)]. We are going to show that ι is surjective.

Let ϕ1 ∈ IndG
P χ be an I1 invariant function such that Suppϕ1 = PI1 and ϕ1(1) = 1. Set

ϕ2 =
∑
λ∈Fq

(
1 [λ]
0 1

)
sϕ1.

Then {ϕ1, ϕ2} is a basis of (IndG
P χ)I1 and I acts on ϕ1 by a character χ and on ϕ2 by a character

χs. Since G = PK we have
(IndG

P χ)K1 ∼= IndK
I χ,

as a representation of K, and hence σ = 〈K ·ϕ2〉 is an irreducible representation of K, which is not
a character. We let F× act on σ via χ. Frobenius reciprocity gives us a map

α : c-IndG
F×K σ → IndG

P χ.

It follow from [BL94, Theorem 30(3)] that there exists λ ∈ F
×
p , determined by χ, such that α

induces an isomorphism
c-IndG

F×K σ/(T − λ) ∼= IndG
P χ,

where T ∈ EndG(c-IndG
F×K σ) is as in § 3. Lemma 3.1 implies that

ϕ2 = λ−1

( ∑
µ∈Fq

(
1 [µ]
0 1

)
tϕ2

)
.

Let ψ ∈ HomP (κχ, π) be non-zero. Since Suppϕ2 = PsI1 we have ϕ2(1) = 0 and hence ϕ2 ∈ κχ.
Since κχ is irreducible ψ(ϕ2) �= 0 and the P -equivariance of ψ gives:

ψ(ϕ2) = λ−1

( ∑
µ∈Fq

(
1 [µ]
0 1

)
tψ(ϕ2)

)
. (3)
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This equality coupled with the argument used in the proof of Theorem 4.4 implies that ψ(ϕ2) is
fixed by

(
1 0
p 1

)
. Since ψ is P -equivariant, ψ(ϕ2) is fixed by I1∩P . The Iwahori decomposition implies

that ψ(ϕ2) is fixed by I1.
So I1 fixes Πψ(ϕ2) and I acts on Πψ(ϕ2) via the character χ. Hence, 〈K ·Πψ(ϕ2)〉 is a quotient

of IndK
I χ. Now

∑
µ∈Fq

(
1 [µ]
0 1

)
s(Πψ(ϕ2)) = ψ

( ∑
µ∈Fq

(
1 [µ]
0 1

)
tϕ2

)
= λψ(ϕ2) �= 0. (4)

If χ|T∩K �= χs|T∩K , then this implies that 〈K ·Πψ(ϕ2)〉 ∼= IndK
I χ. Equation (4) and [Pas04, (3.1.5)]

imply that 〈K · ψ(ϕ2)〉 ∼= σ. If χ|T∩K = ψ ◦ det for some ψ : o× → F×
p , then the above equality

implies that if Πψ(ϕ2) and ψ(ϕ2) are linearly independent, then

〈K · Πψ(ϕ2)〉 ∼= IndK
I χ,

otherwise
〈K · Πψ(ϕ2)〉 ∼= St⊗ψ ◦ det,

where St is the lift to K of Steinberg representation of GL2(Fq). In both cases we obtain that
〈K · ψ(ϕ2)〉 ∼= St⊗ψ ◦ det ∼= σ. Hence, 〈G · ψ(ϕ2)〉 is a quotient of c-IndG

F×K σ. Equation (3) and
Lemma 3.1 imply that 〈G · ψ(ϕ2)〉 is a quotient of

c-IndG
F×K σ/(T − λ) ∼= IndG

P χ.

Hence, ι is also surjective.

Corollary 5.5. Suppose that χ �= χs and let π be a smooth representation of G, then

HomG(IndG
P χ, π) ∼= HomP (IndG

P χ, π).

Proof. Let ψ ∈ HomP (IndG
P χ, π) be non-zero. It follows from Corollary 5.2 that the composition

IndG
P χ→ π → π/〈G · ψ(κχ)〉

is zero. Hence, the image of ψ is contained in 〈G · ψ(κχ)〉. It follows from Theorem 5.4 applied
to π = 〈G · ψ(κχ)〉 and the irreducibility of IndG

P χ that IndG
P χ is isomorphic to 〈G · ψ(κχ)〉 as a

G-representation. The G-equivariance of ψ follows from Corollary 5.3.

Corollary 5.6. Let π be a smooth representation of G, then

HomP (Sp, π) ∼= HomG(IndG
P 1, π).

Note that HomG(Sp, IndG
P 1) = 0, but HomG(IndG

P 1, IndG
P 1) �= 0, so the above result cannot be

improved.

6. Applications

Let K be a complete discrete valuation field, O the ring of integers and �K a uniformizer, and we
assume that O/�KO ∼= Fp. We extend the results of previous sections to smooth O[G] modules of
finite length and, after passing to the limit, to unitary K-Banach space representations of G.

Theorem 6.1. Let π and π′ be smooth O[G] modules and suppose that π is of finite length and
let the irreducible subquotients of π admit a central character. Let φ ∈ HomO[P ](π, π′) and suppose
that φ is not G-equivariant. Let τ be the maximal submodule of π, such that φ|τ is G-equivariant,
and let σ be an irreducible G-submodule of π/τ , then

σ ∼= Sp⊗δ ◦ det,
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for some smooth character δ : F× → F×
p . Moreover, choose v ∈ π such that the image v in σ spans

σI1; then Πφ(v) − φ(Πv) �= 0, �K(Πφ(v) − φ(Πv)) = 0, and

g(Πφ(v) − φ(Πv)) = δ(det g)(Πφ(v) − φ(Πv)), ∀g ∈ G.
Proof. We denote by IndG

1 π
′ the space of smooth functions from G to the underlying O module of

π′, equipped with the G action via right translations. Let α : π → IndG
1 π

′ be a P -equivariant map,
given by

[α(w)](g) = gφ(w) − φ(gw), ∀w ∈ π, ∀g ∈ G.

Then τ = Kerα. Hence, α induces a P -equivariant map

α : σ → IndG
1 π

′.

Suppose that α is G-equivariant, then

[g−1α(gv)](1) = [g−1α(gv)](1) = [α(v)](1) = [α(v)](1) = 0.

Hence, gφ(v) = φ(gv), for all g ∈ G. So the maximality of τ implies that α is not G-equivariant.
Hence, Theorem 4.4, Lemma 5.1, Corollaries 5.5 and 5.6 imply that

σ ∼= Sp⊗δ ◦ det

for some smooth character δ : F× → F×
p , and

〈G · α(v)〉 ∼= IndG
P 1⊗ δ ◦ det.

After twisting we may assume that δ is the trivial character. It follows from [BL94, Theorem
30(1)(b)] that

HomG(IndG
P 1, IndG

P 1) ∼= Fp.

Corollary 5.6 applied to π = IndG
P 1 implies that α(v) is a scalar multiple of the function denoted

by ϕ2 in the proof of Theorem 5.4. By construction α(v) = α(v). Hence, α(v) is fixed by I1 and
Πα(v) + α(v) spans the trivial subrepresentation of G. In particular,

[Πα(v)](1) + [α(v)](1) = [hΠα(v)](1) + [hα(v)](1), ∀h ∈ P.
Since φ is P -equivariant, we obtain

Πφ(v) − φ(Πv) = h(Πφ(v) − φ(Πv)), ∀h ∈ P.

Suppose that Πφ(v) = φ(Πv). Since α(v) is I1-invariant we obtain

hΠuφ(v) − φ(hΠuv) = [uα(v)](hΠ) = [α(v)](hΠ) = h(Πφ(v) − φ(Πv)) = 0,

for all h ∈ P and u ∈ I1. Also

huφ(v) − φ(huv) = [uα(v)](h) = [α(v)](h) = 0, ∀u ∈ I1, ∀h ∈ P.

Since G = PI1 ∪ PΠI1, we obtain that gφ(v) = φ(gv), for all g ∈ G, but this contradicts the
maximality of τ . So Πφ(v) − φ(Πv) �= 0. Since σ is irreducible �Kv = 0, and hence

[�Kα(v)](Π) = �K(Πφ(v) − φ(Πv)) = 0,

so O(Πφ(v) − φ(Πv)) = Fp(Πφ(v) − φ(Πv)). Lemma 5.1 implies that G acts trivially on Πφ(v) −
φ(Πv).

Corollary 6.2. Let π and π′ be as above and suppose that if Sp⊗δ ◦ det is a subquotient of π,
then δ ◦ det is not a subobject of π′. Then

HomG(π, π′) ∼= HomP (π, π′).
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Definition 6.3. A unitary K-Banach space representation Π of G is a K-Banach space Π equipped
with a K-linear action of G, such that the map G × Π → Π, (g, v) �→ gv is continuous and such
that the topology on Π is given by a G-invariant norm.

Corollary 6.4. Let Π1 and Π2 be unitary K-Banach space representations of G. Let ‖·‖1 and
‖·‖2 be G-invariant norms defining the topology on Π1 and Π2. Set

L1 = {v ∈ Π1 : ‖v‖1� 1}, L2 = {v ∈ Π2 : ‖v‖2� 1}.
Suppose that L1⊗O Fp is of finite length as an O[G] module and the irreducible subquotients admit
a central character. Moreover, suppose that if Sp⊗δ ◦det is a subquotient of L1 ⊗O Fp, then δ ◦det
is not a subobject of L2 ⊗O Fp, then

LG(Π1,Π2) ∼= LP (Π1,Π2),

where L(Π1,Π2) denotes continuous K-linear maps.

Proof. Corollary 6.2 implies that for all k � 1 we have

HomG(L1/�
k
KL1, L2/�

k
KL2) ∼= HomP (L1/�

k
KL1, L2/�

k
KL2).

Since HomO(L1/�
k
KL1, L2/�

k
KL2) ∼= HomO(L1, L2/�

k
KL2) by passing to the limit we obtain

HomG(L1, L2) ∼= HomP (L1, L2).

It follows from [Sch01, Proposition 3.1] that

L(Π1,Π2) ∼= HomO(L1, L2) ⊗O K.

Hence,
LG(Π1,Π2) ∼= HomG(L1, L2) ⊗O K ∼= HomP (L1, L2) ⊗O K ∼= LP (Π1,Π2).

Proposition 6.5. Let π be a smooth O[G] module of finite length and suppose that the irreducible
subquotients of π are either supersingular or characters, then every P -invariant O-submodule of π
is also G-invariant.

Proof. Let π′ be O[P ] submodule of π. If σ is an irreducible subquotient of π, then by Theorem 4.3
σ|P is also irreducible, hence π and π′ are O[P ] submodules of finite length.

Let τ be an irreducible O[P ]-submodule of π′. Since π is a finite length O[G] module, the
submodule 〈G · τ〉 is of finite length. Let σ be a G-irreducible quotient of 〈G · τ〉. Since τ generates
〈G · τ〉 as a G-representation, the P -equivariant composition

τ → 〈G · τ〉 → σ

is non-zero, and since τ is irreducible, it is an injection. Now σ|P is irreducible, so the above compo-
sition is an isomorphism. Theorem 4.4 and Lemma 5.1 imply that τ is G-invariant and isomorphic
to σ. By induction on the length of π′ as an O[P ]-module, π′/τ is a G-invariant O-submodule of
π/τ . Since π′ is the set of elements of π whose image in π/τ lies in π′/τ , π′ is G-invariant.

Corollary 6.6. Let Π be a unitary K-Banach space representation of G, let ‖·‖ be a G-invariant
norm defining the topology on Π. Set

L = {v ∈ Π : ‖v‖� 1}.
Suppose that L ⊗O Fp is a finite length O[G] module and the irreducible subquotients are either
supersingular or characters, then every closed P -invariant subspace of Π is also G-invariant.

Proof. Let Π1 be a closed P -invariant subspace of Π. SetM = Π1∩L, then M is an open P -invariant
lattice in Π1. Proposition 6.5 implies that for all k � 1, M/�k

KM is a G-invariant O-submodule
of L/�k

KL. By passing to the limit we obtain that M is a G-invariant O-submodule of L. Since
Π1 = M ⊗O K we obtain the claim.
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