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ON THE RESTRICTION OF THE FOURIER TRANSFORM
TO A CONICAL SURFACE

BY

BARTOLOME BARCELO TABERNER

ABSTRACT. Let r be the surface of a circular cone in R3. We show that if

1 < p < 4/3, 1/g = 3(1 - 1/p) and / 6 LP(R3), then the Fourier transform

of / belongs to Lq{T,da) for a certain natural measure a on I\ Following P.

Tomas we also establish bounds for restrictions of Fourier transforms to conic

annuli at the endpoint p = 4/3, with logarithmic growth of the bound as the

thickness of the annulus tends to zero.

1. Introduction. Given a conical surface T in R3 and / €E LP{B?), 1 < p < 4/3,

we prove that we can restrict the Fourier transform of /, f(tf) to the surface of the

cone, and we have the bound

(i) iKjv\f(i)\qMi))  9<cpJf\\LP,R3),

where 1/q = 3[1 — 1/p] and <ic(£) — r~l dp{tf), with dp the Lebesgue measure over

T and r the distance to the cone vertex.

This measure is a necessary condition as seen by homogeneity arguments. The

homogeneity of the measure absorbs that of the Fourier transform.

Observe that in a compact piece of V, da is like the Lebesgue measure.

In an unpublished work, A. Cordoba and E. Stein proved that such inequality

is true for q = 2 in Rn. R. Strichartz [5] later extended the result to more general

quadratic surfaces. Their proof is done by estimating the Fourier transform of the

singular measure over the surface and by using a complex interpolation argument.

The conjecture, however, was that the indices p and q, for which (1) holds true, are

1 < p < 4/3, 1/g = 3[1 - 1/p].
The idea of the proof consists of desingularising the measure and making / a step

function, in order to continue with geometrical arguments in a good decomposition

that will allow us to prove the dual bound for (1). The present work follows, in

a certain sense, the line introduced by A. Cordoba (see for example [1]) and later

followed by A. Ruiz [3].

In the third section we go on to prove that for p = 4/3 such an inequality is not

possible, but it has a logarithmical growth in the following sense: if the surface of

the cone is expanded a little in a homogeneous way, that is, at a certain height r, it

has a thickness Sr, and if we call the "fat" cone obtained in this way, T*, we then

have

(2) (^X. I/^)|4/3||^)3/4 < ̂ log^l1/2 - ll/IU/3-
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322 BARTOLOME BARCELO TABERNER

Observe that, if the factor | logt5| did not exist on the right-hand side of (2), we

could obtain the inequality (1) by letting 6 go to zero for p = q = 4/3. This is the

reason why we affirm that there is a logarithmical growth of the restriction.

To prove (2), we follow P. Tomas [7] who proves the same result for the boundary

of the unit circle. To do this, if <pg(tl) is the characteristic function of T* and we

set

(2) can be written as

(3) ll^/lU/a^C^llog^r^il/n^

and, by duality, if we define the multiplier (Tsf)^(C) = ^6 (£)•/(£), (3) is equivalent

to

II^/IU < C53/4|log<5|1/2||/||4,

which is what we prove in Theorem 2.

Different constants may appear in the course of the proof and these will be

denoted by the same letter C. When we say that a family of sets has a disjoint

intersection, or that it has a finite overlapping, we mean that the number of sets

that contain a given point is bound by an absolute constant that is independent of

the decomposition. Consequently, the bound obtained will only be changed by a

constant factor.

On the other hand, these results are sharp in the sense that Theorem 1 is false

if p > 4/3 or 1/q f= 3[1 - 1/p]. Also, there is inevitably a power of | log<5| on the

right-hand side of the inequality of Theorem 2.

Finally, I am deeply grateful to Professor A. Cordoba for his constant encour-

agement and advice regarding these problems.

2. Let r be a conical surface in R3 and let do be the singular measure introduced

before.

THEOREM  1.    We have the a priori inequality

(4) (/r 1/(01'<M0)  " <cPJf\\P

for every f G S(R3) and 1 < p < 4/3, 1/3 = 3[1 - 1/p].

PROOF. Due to the fact that the Fourier transform is well behaved with respect

to translations and rotations, we may assume, without loss of generality, that the

cone has its vertex at the origin and that it is generated by the half-line z = x,

z > 0, around the z-axis. We then have the cartesian equation z2 = x2 + y2, z > 0,

and we can parametrise it by

z = r,     x = rcos6,     y = rsin6,

and with this parametrisation do is da = dr d6.

It is sufficient to consider the first quadrant 0 < 0 < tt/2, since the symmetry of

the cone will allow us to treat the other cases equally and the result will only be

affected by a different constant. We divide the cone into dyadic pieces Tn, n 6 Z,
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Figure 1

where Tn is the part of the cone comprised between the planes of height 2™ and

2"+1.

Given that 6 > 0, we expand To in the radial direction by a thickness 6r, in such

a way that we obtain a "fat" cone Tq, and at a height z with 1 < z < 2 we obtain

the ring 0 < 6 < tt/2, z(l - 6/2) <r<z{l + 6/2).

We now divide Tq into 6~1/2 x <5-1/2 tiles Qoju, where QoJU will be the tile of

dimensions 6 x 6XI2 x (51/2 formed by the points of Tq at a height 1 + j61/2 < z <

1 + {j + 1)61/2 and with an angular direction 61/2v < 0 < 6l/2{v + 1).

Once we obtain the decomposition of Lq, we obtain T* and, by homogeneity, a

similar partition of T* into tiles. In this way, T^ will be divided into <5-1/2 x <5-1/2

pieces Qnjv, where Qnjv is the tile of dimensions 2"<5 x 2™<51/'2 x 2n61^2 at a height

2n + 2™7'f51/2 < z < 2n + 2n(j + 1)6X/2 and an angular direction 6ll2v < 9 <

61/2(u-\-l). For purposes of calculations, we may assume that Qn]V are rectangular

tiles adapted to the surface.

We set T* = Un Tn ana we ca^ fnju the characteristic function of Qnju-

To prove inequality (4), in desingularising the measure, it is sufficient to consider

^oG/r-1^'^)179-™1-

and to prove this inequality by duality, it is enough to take functions g(tf) =

^3 [/anjv(Pnjj/(0 that are constant in each tile, so that for each sufficiently small

<5>0

(5) Y^^Ti^i"      <C61'q   J2a^P"J»

where p' and q' are the dual exponents for p and q respectively.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



324 BARTOLOME BARCELO TABERNER

Because only the limiting case (5 —> 0 is of interest, we consider any fixed portion

2~M < z < 2M of the cone, and we shall prove (5) for M fixed with bounds

independent of M once 6 is sufficiently small.

We take then anju = 0 for |n| > M. We consider also 6 such that

|n-m|< |log2r5|/2

because this geometrically means, if for example m < n, the diameter of Fm is

smaller than each tile in T*. This is necessary for the computations that follow.

Since p' > 4, we can apply the Hausdorff-Young theorem to the left-hand side of

(5), with 1/s + 2/p' = 1; then

\ njv J

/ p'/a     \2/p'!/2

nm   y/c    i/^ J

If a     a   k '     \^
^ [I  E E E 22n/^/g P»i" * *w*)    dx

\ nm   jk    vp. f

( f a     a  k S     \ ^
^C\ E E E l^l^la <P"J» * Vrnkv(x)      dX\

\ m<n jk    vfi f

\ If a-a   k '      VI1'2

r=n —m>0  \ n     jTc    1^71 /

-1 1/2

= C     Y.Ar
r>0

where, for fixed r > 0, Ar is the above expression with parentheses in which, once

n is taken, m is m = n — r.

Note also that r < | log2 6\/2 because we are in the fixed portion 2~M < z < 2M

of the cone.

The proof follows by carefully analyzing the different terms inside the integrand.

To do this we need to estimate the size of the supports and how they overlap.

The role of the ^-coordinate appears in the vertical overlapping, while the hori-

zontal one is used to study the convolution of a measure f(9) d6 on circles of distinct

radii living in R2.

To estimate Ar, as we shall see in the calculations below, if m is close to n,

the overlapping is small and the size is large. But if m moves away from n, the

overlapping increases and the size decreases. It is marvelous to observe that one

exactly compensates the other.
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To measure the vertical overlapping, if m < n, we consider in TL, the 2m/<51/22"

rings r^(, where T^; is the ring of height 61/22n obtained by the union |Jfc M Qmkn',

with p, varying over all angular directions and k such that

r51/22n/ < r51/22mfc < S1/22n(l + 1).

Hence

[rmz + supp(v3njv)] n [rm// + SU.pp(v?n;,-'„<)] + 0

for I + j = I' + j', while this intersection has a finite overlapping independent of 6

ifl+j^l' + f.
Thereby, fixing n, tn, a point in T*ml + supp(<£>n,,v) belongs at most to 2m/(51//22™

different sums of this kind.

Since

SUpp I <pnjv * ̂  Vmkn J  n SUpp I <pnjl/ * ̂  fmk'u I   ±   0

for all fc, fc' with supp(£M <Pmkp) C T^( and supp(£M £WM) C r^, and there are

2n/2m of these indices, it results that a point in supp(y2„j„ * Yla'Prnku) belongs at

most to
{2m/61/22n) • (2"/2m) = «T1/2

different supports of this class.

This provides us with the vertical overlapping. We therefore have

(7)

if a     a  k S     Y/S
EA'= E {   /    E E E ^g^ Vnjv * Vmknix)       dx\

r 0<r<d/2|log2 S\   \ n     jk    fp. J
r—n—m

n-m<|log2<5|   (   n    jk v
m<n

s        \ 1/s

*y^,amkp.fmkfi(x)       dx\

IJ- )

Let us now go on to estimate the horizontal overlapping. We have to bear in

mind that if two supports Qnjv and Qmkp. have small angular separation \v - p\,

then the size of the sum Qnjw + Qmkp. is going to be as large as Qnju and there will

be considerable overlapping with other supports. The contrary happens if there is

a large angular separation.

Once we have fixed the heights j and fc, in order to study the situation it is

sufficient to observe how it works in a section Sjk perpendicular to the cone axis

at a height
2" + 2m + j6ll22n + k61l22m

because s\XQo(ipnju * Y^^fmkiJ.) is found at this height and the final sum Qnjv +

Qmkp. would be obtained by moving its section with Sjk parallel to the vertical

direction of Qnjw
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Qnjv //\ \\ \

/ /    \ 5:^v \

l>/^9*» \    \
Figure 2

In the Sjk plane, supp(y?njv * fmkif) is centered at the point

2n(l + 6l/2j)e™1'2 + 2m(l + 61/2k)e7"ll/2

and is essentially like a block of length 2n6xl2 and width

£i/22" + 61'22m sin((|i/ - a*| + 1)£1/2)-

Also, supp((p„jI/ * fmkp.) is translated a distance 61/22m sin(|i/ — /i^1/2) ~

62m\i> — p\ from supp{pnju * <pm,k,v+i), as is observed if it is projected in the

v direction.

To measure the number of sums supp(v2njv * Pmkfi) that overlap, we will distin-

guish the following two cases:

(i) \v-p\-\-l <2™"m.

In this case a point belongs to no more than N different supports, with N such

that

62m\v - p\ + 62m(\u - p\ - 1) + ■ ■ ■ + 62m(\i> -p\-N)~ 62n,

that is N < 2n~m/{\i> - p\ + 1). Moreover,

\s\ipp((pnj„ * <pmkp.)\ - \stipp{<Pnju)\ = 62Q?n

and

Wfnju * fmk^Wco - |sUpp(^mfcM)| = 6223m\

hence / \<pnjv * <pmkp.{x)\sdx < C62s+223ms23n.

(ii) \v-p\ + l >2""m.

Then snpp{fn]U * tpmkp.) has a finite overlapping when p varies, and

Isuppbn,, * Vmk^ < C6222n2m{\u - M| + 1),

Wfnju * fmkjoo < C622n22m/{\V - pt\ + 1).

Therefore,

/                                                               £28+2 2n(2+s) 2^(23 + 1)
\<Pnjv * <Pmkp.{x)\S dx < C-        _     | + 1)s_i-•
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Then with (i) and (ii) we can write

{g-(a-l)/2

n     jk

m<n

(<yn — m      \ s—1
*_      \ c2s-\-2r,Znr,3ms\„ \s\„ is

\u-a\ + l) ' njVl ' *"*"'

s   1   1   1/S
V^ c23 + 2on(2 + 8)om(23+l)   l0njvl*l°mfc^r I

^ (^-/Xl + l)8"1      f|i/-M| + l>2"-m Vl n ' J  1

| (c-(3-l)/2(c23+22m(2s+l)2n(2 + 3)

— Z—> I Zw Z-* 22na/^22TTls/i
n—m<|log25|   ^   **    jfc

m<n

V""^   lanjVrlamA:^r    I

"^O-d + l)-!/

and by a fractional integration argument

/ x   (3-3)/2    , v   (3-s)/2

<C7[^KV|W(3-3)j /^|am^|2s/(3-3)\ .

hence

(7) < C Y^ ^(3s-3)/s2-in-m|(s-l)/s

n—m<| log2 5|

(/ \(3-»)/2

e tovi,j/,3-'W"

• x   (3-s)/2 \  V»

•    Ela^Ml2s/(3-3)«223m

/ \     / \   (3-s)/s

< C(S(3s-3)/s £"> 2-|"-mK3-1)/3       (^la^l23/'3-5'*^3"]

n-m<|log26| I    \njV y

but
y^       2-ln-mK5-1)/s < c,

n—m<\ log2 <S|
m<n

and then we have proved

(\  (3-s)/s

^|V|2s/(3"s)^23n
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328 BARTOLOME BARCELO TABERNER

Now, observing that (3s-3)/2s = 1/q, (3-s)/2s = 1/q', we can conclude finally

E|g^ ^C(yA <C8l'q    EW«7,        ,
njv . \   r / nju ,

P q'

which is inequality (5).

We notice that in fact we have proved a more general theorem:

Given any strictly convex cone in R3, that is, a surface T given by z = r(x,y)

where r(x,y)  > 0 is homogeneous of degree 1 on R2 with {(x,y)\r(x,y) =  1}

having positive curvature at each point, if da is the measure da = r13 dp, where

—2 < B < -1 and dp the Lebesgue measure over T, then we have

||/IU«(r,d<T) < CpJ\f\\LP(R3)    where p' > Zjj^ and q = ~3~p''

The proof is the same as in Theorem 1 introducing the straightforward changes.

The result is sharp as we can see using homogeneity arguments.

3. Using the decomposition and the notation of the previous section, let tpsiO

be the characteristic function of the "fat" cone widened by a thickness 6r, T*, and

let

M0=  1^372^(0-

Then we define the multiplier

THEOREM 2.   There exists a constant C, independent of 6, such that

(8) ||Tj||4<CS3/4|log(5n|/||4

for every f e 5(R3).

PROOF. If ^(0 ^s the characteristic function of the dyadic piece of the cone T*,

we set V,n(0 = <P%(0-MZ) and let Sn be the multiplier (S„/H0 = tl>?(£) ■ /(£)■

By the Littlewood-Paley theorem ||Tfi/||4 ~ || QTn |Sn/|2)1/2||4, which implies

/ \ !/2   4 / \ 2

(9) ||Tj||44^    f^|5„/|2j =/R3(El5«/^)n    dt

= E / l5«/(^)' Smf(0\2 di = YJf \{SJT* (5m/)»|2 dx
n,m n,m

2

/i _ i
E^^/^^E^ti/-^^) dx>

jii^.ji jv kp,

where fnjv — f ■ <pnju is the restriction of / to the tile Qnjv, which is in T* at a

height 2™ + 2nj61/2 and an angular direction 61/22nv.
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We now divide sum (9) into | log2 6\ blocks of n, m indices, in each of which we

have n — m > | log2 6\. Let A be one of these; then

2

(9)<ciiog2r5i y: /e^/^e^/^m dx

<C\logS\ \z2 J   E^7a^"*E^72^*MW    dx
(io) V"6A     iv

2      \

/I _ 1
E 23^j2 fa" * E ^nj2 /"•*/» ̂      dX

m<.n j

= C|logr5|(X>E)-
V(i)    mf

(a) To estimate Ylm we observe that

supp I E fnj" * E Z"*^ I n SUPP ( E /"J'" * E /n/c> ) ̂  0

if and only if \j - j'\ + \k - k'\ < C, where C is independent of 6.

As j,k vary from 1 to <5-1/2; we have that suppC/ny„ * J2» fnkp.) has a

maximal overlapping with other supports of <5-1/2, and in this way

2

E = E /   E 2^/2 "^ * E 23^/2 /™^(a;)    rfx
(1) neA-7       ji/ fc^

£-1/2 /■ 2

^^E^en-E/ E/"^*E/"^(x) dx
n jk v p.

6~1/2 f
-    CE^6^EE /   l/ryV*/nfc/.(:C)|2<fe

since

SUpp(/„jV * /„fcM) fl SUpp(/nJv * fnkp.') =   0

if (u,p)^(u', p').

LEMMA  1.

//)223n\fnju * fnkp.(x)\2dx < C-——-\\fnJ„\\2\\fnkJ2.

PROOF. By the Cauchy-Schwarz inequality

\fnju * fnkp(x)\2 < [\fnjA2* |/nfcj2)(z) ■ (XQ„,v * XQ„tJ(z>-
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Then integrating this inequality and using

IIXQnj., * XQ„ JU < C7r5223"(li, -p\ + l)-1

we obtain (11).

Given the lemma we have

ES n\^ ^ g2r>3nV^V^  ll/rajf I^H/w/cmI^
^Cl^^n-d2      Z^A.        \u-p\ + l

(1) n jk    up '

<c6*'2z±z\w\(e\\m\i)   -(eii/»*.iis)
n jk \   v } \   ii f

<c6^J2^\^^-1/2){1/2)2 (Ell/^iis)   • (Eh/^II42)   ■
n y jV J \kp J

and since

\\Sn3u\\l = j \fn3u\2 <{622^2\\fn]v\\l

we finally obtain

(12) E^^i^^iE^iEii/^ii4)
(1) ™ \jv J

= C63\log6\J2\\fnj4i = C6:i\\og6\\\f\\i.
nju

(b) We shall now estimate

2

E=    E    2^2^ /   E/«^*E/m^W    dx;
(2) n,m£A jv kp

m<n

since 2m < 62n, we have

SUpp      /„,„ * E /mfcM      n SUPP      /nj'"' * E /"lfc'i      =   0

except for |j — j'| + |f — i/| < C.
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Thus

2
i        i       _     r

E^C     E      2^ 2^ E/    fnj, *J2 fmkp(x)      dX
(2) n,m€A ju kp

m<n

2

= c E i^E/i/^(oi2-Ewo *z
n,m6A ju kfi

<^/(EE2^i/^(oi2)  E i EU(fl   d*
\neA ju J    \ m£A kp J

(13) 2 1/2

/ 2       \  1/2

■ /E^ EU) ^

V(3)/ V(!)        (2)7

where we have written

E = f (e^-JU(0\2) d,
(3) ^     \nju J

=    E    EE 2^ 2^" / \f*J»*f»'3'A*)\2<k

= E+ E EE 23^23^/ l/nj"*/»'i'^(a:)l2da:
(1)        n^ra' ij'   i/i/'

and if n' < n — | log2 6 \,

y \fnju * fn>fu> (x)\2 dX < C6223n' ||/By„ gWfn'j'u' \\l

whose proof is like that of Lemma 1. Therefore

(3) (1) n'<n jj1   uu'
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With ||/njV||2 < |sUPp(/nJv)|1/2||/„Jv||I = (^23")1/2||/n,i/||42-   Thus

E ^E+c E ^Hn-"'|3/2EEii/^n2ii/«^'ii4
(3) (1) n'<n jj'   vv'

<^2+c6H3'2 e(eu/^iu2)      • E(Eum-ii2)
(i) v« V ̂        J J      v"' ^y'"' ^ 7

<J2+C6463'26~X   (Ell/n7,|l44 J (    E    Wfn'fu'Wl)
(1) \nju J \n']'u' J

= E+^9/2n/nt
(i)

Now, from this last inequality and (12) we have

e^(e+e)  (e+^9/2ii/u44) .
(2)       v.(i)    (2)7     V(i) 7

and since from (12)

E<^3iiog*iii/ii4J

(i)

we obtain

E+E^3ilosWH4-
(1) (2)

Inserting this expression into (11) we finally obtain

m/n.^ciiogiii1/2^/4!!/!!,,

which is the assertion (8) of Theorem 2.

We notice that if we had refined the proof of Theorem 2 we would obtain

l|r«/||4<c*s/4|iag*|1/4||/||4

for every / e L4(R3).
The equality is satisfied by taking a particular / (see P. Tomas [7]); then there

is an inevitable power of | log6\ on the right-hand side of inequality (8) and 1/4 is

the accurate power of |log<5| that must appear.
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